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Consider the problem of finding a complex projective log canonical pair (X,B)
with B a nonzero reduced divisor and KX+B ample such that the volume of KX+B
is as small as possible. This problem arises naturally in attempts to classify stable
varieties of general type [13, Remark 7.10]. We know that there is some positive
lower bound for the volume in each dimension, by Hacon-McKernan-Xu [8, Theorem
1.6].

V. Alexeev and W. Liu constructed a log canonical pair (X,B) of dimension 2
with B a nonzero reduced divisor and KX +B ample such that KX +B has volume
1/462 [1, Theorem 1.4]. J. Liu and V. Shokurov showed that this example is not at
all arbitrary: it has the smallest possible volume in dimension 2, under the given
conditions [13, Theorem 1.4]. (See also Kollár’s example in the broader class of log
canonical pairs with standard coefficients, Remark 2.3.)

In this paper, we give a simpler description of Alexeev-Liu’s example: it is a non-
quasi-smooth hypersurface in a weighted projective space, X42 ⊂ P3(21, 14, 6, 11),
with B the curve {x3 = 0} ∩ X (in coordinates [x0, x1, x2, x3]). (This fits into
a remarkable number of classification problems in algebraic geometry for which
the extreme case is known or conjectured to be a weighted hypersurface [4, 5].) We
generalize that construction to produce a log canonical pair (X,B) of any dimension
with B a nonzero reduced divisor such that KX + B is ample and has extremely
small volume. We conjecture that our example has the smallest possible volume of
KX +B in every dimension. The volume is doubly exponentially small in terms of
the dimension.

A similar story was worked out earlier in the case B = 0, where smaller volumes
can occur. Namely, Alexeev and Liu constructed a projective klt surface with
ample canonical class and volume 1/48983 [1, Theorem 1.4]. Totaro found that
their surface is a non-quasi-smooth hypersurface in a weighted projective space,
X438 ⊂ P3(219, 146, 61, 11). Generalizing that construction, he produced a klt
variety of each dimension with ample canonical class and conjecturally minimal
volume [14, Theorem 2.1].

We also develop examples for some related extremal problems. Esser constructed
a klt Calabi–Yau variety which conjecturally has the smallest minimal log discrep-
ancy in each dimension [3, Conjecture 4.4]. (In particular, this variety has mld 1/13
in dimension 2, 1/311 in dimension 3, and 1/677785 in dimension 4. In dimension
2, we know that 1/13 is the smallest possible mld [5, Proposition 6.1].) However,
the properties of Esser’s example were not worked out in all dimensions. We now
prove the desired properties of Esser’s example (in particular, we determine its mld
1/m), as Theorem 5.1. Using this example, it follows that the “first gap of global
lc thresholds” (in Liu-Shokurov’s terminology) is at most the same number 1/m,
meaning that there is a klt Calabi–Yau pair (X, (1 − 1

m)S) with S an irreducible
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divisor. We present such a “pair” variant of Esser’s example explicitly in Theorem
6.1.

Likewise, Wang and the authors constructed a klt Calabi–Yau variety which
conjecturally has the largest index in each dimension [5, Conjecture 7.10]. This
variety has index 19 in dimension 2, 493 in dimension 3, and 1201495 in dimension
4. (In dimension 2, we know that 19 is the largest possible index [5, Proposition
6.1].) The numerics in this example are extremely similar to Esser’s, and so we
can now give clearer proofs of many of its properties (section 7). Nevertheless, the
precise formula for the index depends on a conjecture that two explicit numbers are
relatively prime (Conjecture 7.4), which holds in dimensions at most 30.

In section 8, we compute asymptotics for the small mld and large index examples
that provide additional evidence for their optimality.

Totaro was supported by NSF grant DMS-2054553, Simons Foundation grant
SFI-MPS-SFM-00005512, and the Charles Simonyi Endowment at the Institute for
Advanced Study.

1 Notation

Our examples use Sylvester’s sequence, defined by s0 = 2 and sj+1 = sj(sj − 1)+ 1.
The sequence begins 2, 3, 7, 43, 1807, . . .. We have sj+1 = s0 · · · sj + 1, and hence
the numbers in Sylvester’s sequence are pairwise coprime. The key property of this
sequence is that

1

s0
+ · · ·+ 1

sj
= 1− 1

sj+1 − 1
.

The sequence sj grows doubly exponentially, with sj > 22
j−1

for all j ≥ 0.
For positive integers a0, . . . , an, the weighted projective space Y = Pn(a0, . . . , an)

means the quotient variety (An+1 − 0)/Gm over C, where the multiplicative group
Gm acts by t(x0, . . . , xn) = (ta0x0, . . . , t

anxn) [9, section 6]. We say that Y is well-
formed if gcd(a0, . . . , ˆ︁aj , . . . , an) = 1 for each j, which means that the Gm-action is
free in codimension 1. For a well-formed weighted projective space Y and an inte-
ger m, OY (m) is the reflexive sheaf associated to a Weil divisor. The divisor class
OY (m) is Cartier if and only if m is a multiple of every weight aj . Well-formedness
of Y ensures that the canonical divisor is given by KY = OY (−

∑︁
aj).

Let Y be a well-formed weighted projective space. A closed subvariety X of
Y is called quasi-smooth if its affine cone in An+1 is smooth outside the origin.
In particular, a quasi-smooth subvariety has only cyclic quotient singularities and
hence is Kawamata log terminal (klt). (A reference for the singularities of the
minimal model program such as klt, plt, lc is [11, Definition 2.8].) Also, X is well-
formed if Y is well-formed and the codimension of X ∩ Y sing in X is at least 2.
(For a well-formed weighted projective space Y , the singular locus of Y corresponds
to the locus where the Gm-action is not free.) Iano-Fletcher proved the following
sufficient criterion for well-formedness [9, Theorem 6.17].

Proposition 1.1. As long as the degree d is not equal to any of the weights, ev-
ery quasi-smooth hypersurface of dimension at least 3 in a well-formed weighted
projective space is well-formed.
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For a well-formed normal hypersurface X of degree d in a weighted projective
space Y , the canonical divisor is given by KX = OX(d−

∑︁
aj) [14, section 1]. Here

X need not be quasi-smooth.
A Weil divisor or more generally a Q-divisor is said to be ample if some positive

multiple is an ample Cartier divisor. The volume of a Q-divisor D on a normal
projective variety X is

vol(D) := lim
m→∞

h0(X, ⌊mD⌋)/(mn/n!),

where n = dim(X). (The volume in this generality is discussed in [6].) The volume is
equal to the intersection number Dn if D is ample. The volume of an ample Cartier
divisor is an integer, but that fails in general for an ample Weil divisor. For example,
the volume of OY (1) on a well-formed weighted projective space Y = Pn(a0, . . . , an)
is 1/(a0 · · · an).

A pair (X,D) in this paper means a normal variety X with a Q-divisor D such
that KX + D is Q-Cartier. A pair is Calabi–Yau if D is effective and KX + D
is Q-linearly equivalent to zero. In that case, the index of (X,D) is the smallest
positive integer m such that m(KX + D) ∼ 0. Here the symbol “∼” denotes
linear equivalence. A pair has standard coefficients if each coefficient of D is of
the form 1 − 1

b with b a positive integer or ∞. For a klt Calabi–Yau pair (X,D)
with standard coefficients and index m, the (global) index-1 cover of (X,D) is a
projective variety Y with canonical Gorenstein singularities such that the canonical
class KY is linearly equivalent to zero [11, Example 2.47, Corollary 2.51]. Here
(X,D) is the quotient of Y by an action of the cyclic group µm such that µm acts
faithfully on H0(Y,KY ) ∼= C. (Explicitly, D has coefficient 1− 1

b on the image of an
irreducible divisor on which the subgroup of µm that acts as the identity has order
b.)

For a pair (X,D) and a proper birational morphism π : Y → X with Y normal,
there is a uniquely defined Q-divisor DY on Y such that KY +DY = π∗(KX +D).
(This is an equality, not just a linear equivalence: for a positive integer m with
m(KX + D) Cartier, π∗(m(KX + D)) −mKY , viewed as a reflexive sheaf of rank
1, has a canonical rational section s given by pulling back differential forms on the
smooth locus, and the divisor of zeros of s is mDY .) The log discrepancy of (X,D)
with respect to an irreducible divisor S on Y is 1 minus the coefficient of S in DY .
The minimal log discrepancy (mld) of (X,D) is the infimum of all log discrepancies
of (X,D) with respect to all irreducible divisors on all birational models of X. Thus
(X,D) is klt if and only if its mld is positive, and a pair with smaller mld can be
considered more singular.

Berglund-Hübsch-Krawitz mirror symmetry considers weighted-homogeneous poly-
nomials of the following three basic types, Fermat, loop, and chain, as well as com-
binations of them in disjoint sets of variables [2, section 2.2]:

WFermat = xb,

Wloop = xb11 x2 + xb22 x3 + · · ·+ x
bn−1

n−1 xn + xbnn x1,

Wchain = xb11 x2 + xb22 x3 + · · ·+ x
bn−1

n−1 xn + xbnn .

The corresponding weighted projective hypersurfaces are quasi-smooth for any pos-
itive integers bi, not all 1.
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2 A pair with nonzero boundary and small volume

Theorem 2.1. For each integer n at least 2, in terms of the Sylvester sequence sn,
let

an+1 :=

{︄
1
4(s

2
n − sn + 2) if n is even

1
4(s

2
n − 3sn + 4) if n is odd.

Let d := sn+1−1, and ai := d/si for 0 ≤ i ≤ n. Then there is a complex hypersurface
X of degree d in Pn+1(a0, . . . , an+1) that is well-formed and klt. Let B := {xn+1 =
0} ∩ X. Then the pair (X,B) is purely log terminal (hence log canonical), B is a
nonzero reduced divisor, KX +B is ample, and the volume of KX +B is

1

(sn+1 − 1)n−1an+1
,

which is asymptotic to 4/s2nn . In particular, this is less than 1/22
n
.

The numerology here is similar but not identical to that of the klt variety with
ample canonical class and conjecturally minimal volume. In particular, the latter
example involves the same weight an+1 [14, Theorem 2.1]. For comparison, the
volume of KX in that example is asymptotic to 22n+2/s4nn , which is much smaller
than the volume of KX + B above. (Requiring B to be a nonzero reduced divisor
forces the volume to be bigger, it seems.)

Explicitly, define the variety X in Theorem 2.1 by the equation, for n ≥ 2 even:

0 = x20 + x31 + · · ·+ xsnn + x1 · · ·xnx2n+1.

For n ≥ 3 odd, define X by

0 = x20 + x31 + · · ·+ xsnn + x1 · · ·xn−1x
2
nx

2
n+1.

Also, define B := {xn+1 = 0} ∩X. Since the number of monomials is equal to the
number of variables, any linear combination of these monomials with all coefficients
nonzero defines a variety isomorphic to X, by scaling the variables. One can check
that the monomials shown are all the monomials of degree d, and hence that an
open subset of all hypersurfaces of degree d are isomorphic to the one indicated;
but we will not need those facts.

Here X is not quasi-smooth. Note that the weights ai depend on the dimension
n as well as on i. For convenience, we write ai rather than an,i.

Conjecture 2.2. For each integer n at least 2, the pair in Theorem 2.1 has the
smallest volume among all projective lc pairs (X,B) of dimension n withB a nonzero
reduced divisor and KX +B ample.

We know that there is some positive lower bound for the volume in each dimen-
sion, by Hacon-McKernan-Xu [8, Theorem 1.6].

In dimension 2, our example is X42 ⊂ P3(21, 14, 6, 11) and B = {x3 = 0} ∩X,
with vol(KX + B) = 1/462

.
= 2.2 × 10−3. As discussed in the introduction, this

is the smallest possible volume for a projective lc pair (X,B) of dimension 2 with
B a nonzero reduced divisor and KX + B ample, by J. Liu and V. Shokurov [13,
Theorem 1.4]. This example was found by V. Alexeev and W. Liu, without the
description as a hypersurface [1, Theorem 1.4].
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In dimension 3, our example is

X1806 ⊂ P4(903, 602, 258, 42, 431).

For B = {x4 = 0} ∩X, we have vol(KX + B)
.
= 7.1 × 10−10. In dimension 4, our

example is

X3263442 ⊂ P5(1631721, 1087814, 466206, 75894, 1806, 815861).

For B = {x5 = 0} ∩X, we have vol(KX +B)
.
= 3.5× 10−26.

Remark 2.3. In the broader class of log canonical pairs (X,B) such that B has stan-
dard coefficients with ⌊B⌋ ̸= 0 and KX +B ample, Kollár conjectured the example
of smallest volume [10, Example 5.3.1]: for general hyperplanes H0, . . . ,Hn+1 in
Pn, let

(X,B) = (Pn,
1

2
H0 +

2

3
H1 + · · ·+ sn − 1

sn
Hn +Hn+1).

Here KX +B has volume 1/(sn+1−1)n, which is asymptotic to 1/s2nn . In dimension
2, Kollár showed that this example is indeed optimal with these properties, with
volume 1/1764 [10, Remark 6.2.1].

In high dimensions, Kollár’s pair has about 1/4 of the volume in Theorem 2.1,
which is extremely close for such small numbers. That is some evidence for the
optimality of Theorem 2.1, in the narrower setting of reduced divisors.

Proof. (Theorem 2.1) The weight an+1 is odd, as we showed in [14, proof of Theorem
2.1] (since our example with B = 0 included the same weight an+1 as here). For
the reader’s convenience, here is the argument: sn is 7 (mod 8) if n ≥ 2 is even
and 3 (mod 8) if n ≥ 3 is odd. This is immediate by induction from the recurrence
sn+1 = sn(sn − 1) + 1. It follows that s2n − sn +2 is 4 (mod 8) if n ≥ 2 is even, and
that s2n − 3sn + 4 is 4 (mod 8) if n ≥ 3 is odd. So an+1 is odd in both cases.

Next, we show that the weighted projective space Y = Pn+1(a0, . . . , an+1) is
well-formed. That is, we have to show that gcd(a0, . . . , ˆ︁aj , . . . , an+1) = 1 for each j.
We have sn+1 − 1 = s0 · · · sn with s0, . . . , sn pairwise coprime, which implies that
gcd(a0, . . . , an) = 1. For the rest, it suffices to show that gcd(sn+1 − 1, an+1) = 1.
Here sn+1 − 1 = sn(sn − 1), so it suffices to show that gcd(sn − 1, an+1) = 1 and
gcd(sn, an+1) = 1. The first statement was shown in [14, proof of Theorem 2.1].
For the second, if a prime number p divides sn and an+1, then p > 2 since an+1 is
odd. If n is even, it follows that an+1 = 1

4(s
2
n − sn + 2) ≡ 1

2 (mod p), not 0, which
is a contradiction. If n is odd, we have an+1 =

1
4(s

2
n − 3sn + 4) ≡ 1 (mod p), not 0,

which is a contradiction. That completes the proof that Y is well-formed.
From the equation for X, the only coordinate linear space of Y contained in

X is the point p := [0, . . . , 0, 1]. Since that has codimension at least 2 in X, X is
well-formed. Also, X is quasi-smooth outside p, so it has only quotient singularities
outside p, and so X is klt outside p. At the point p, in coordinates xn+1 = 1, X is
defined by the equation

0 = x20 + x31 + · · ·+ xsnn + x1 · · ·xn

for n even, resp.
0 = x20 + x31 + · · ·+ xsnn + x1 · · ·xn−1x

2
n
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for n odd (in An+1/µan+1). The same hypersurfaces in An+1 appeared in our klt
variety of conjecturally minimal volume, and we showed that these hypersurfaces
in An+1 have canonical singularities (hence are klt) [14, proof of Theorem 2.1]. The
klt, plt, and lc properties are preserved upon dividing by a finite group action that
is free in codimension 1 [11, Corollary 2.43]. Therefore, X is klt.

The divisor B = {xn+1 = 0}∩X is quasi-smooth and misses the point p. So the
pair (X,B) is étale-locally (near each point of B) the quotient of (An, An−1) by a
finite group action, free in codimension 1. Since X is klt outside B, it follows that
the pair (X,B) is plt (hence lc).

Let d = sn+1 − 1 be the degree of the hypersurface X. Since X is well-formed
and normal, we have

KX = OX(d−
∑︂

aj)

= OX

(︃
(sn+1 − 1)

(︃
1− 1

s0
− · · · − 1

sn

)︃
− an+1

)︃
= OX(1− an+1).

The divisor B on X is linearly equivalent to OX(an+1), and so KX + B ∼ OX(1).
It follows that

vol(KX +B) = vol(OX(1))

=
d

a0 · · · an+1

=
(sn+1 − 1)s0 · · · sn
(sn+1 − 1)n+1an+1

=
1

(sn+1 − 1)n−1an+1
.

Here sn+1 is asymptotic to s2n (with error term on the order of sn) as n goes to
infinity, and an+1 ∼ s2n/4; so the volume of KX +B is asymptotic to 4/s2nn .

3 Esser’s klt Calabi–Yau variety with small mld

Esser constructed a klt Calabi–Yau variety which conjecturally has the smallest
mld (roughly 1/22

n
) in each dimension n [3, Conjecture 4.4]. (For example, this

variety has mld 1/13 in dimension 2, 1/311 in dimension 3, and mld 1/677785 in
dimension 4.) We know that there is some positive lower bound for this problem in
each dimension, by Hacon-McKernan-Xu [7, Theorem 1.5].

In version 1 of [3] on the arXiv, the example was worked out completely only
in dimensions at most 18. In this paper, we prove the desired properties of Esser’s
example in all dimensions, in particular confirming Esser’s conjectured value for
its mld (Theorem 5.1). By Lemma 8.1, this mld is within a constant factor of
the conjecturally smallest mld in the broader setting of klt Calabi–Yau pairs with
standard coefficients.

We were led to this analysis by constructing a related example among pairs,
although in this paper we will prove the properties of Esser’s example first. The
example among pairs (Theorem 6.1) is a klt Calabi–Yau pair (X, (1− 1

m)S) of each
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dimension n ≥ 2 with S an irreducible divisor. The number 1/m is the same as the
mld of Esser’s example, and in fact (X, (1 − 1

m)S) is crepant-birational to Esser’s
Calabi–Yau variety V/µm (Lemma 6.3). (That is, S is the divisor that shows that
V/µm has mld 1/m.)

In each dimension n ≥ 2, Esser’s example is the quotient of a hypersurface V
in a weighted projective space Pn+1(a0, . . . , an+1) by an action of a cyclic group [3,
section 4]. (The order of the cyclic group should be the number m defined below,
but that will be proved later, in Theorem 5.1. We define the µm-action explicitly
in the proof of Lemma 6.3.) In odd dimension n = 2r + 1, the equation of V has
the form

0 = xb00 x2r+2 + xb11 x2r+1 + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ x
b2r+1

2r+1 x0 + x
v2r+1

2r+2 xr+1,

for exponents bj and v2r+1 defined below. In even dimension n = 2r, the equation
of V has the form

0 = xb00 + xb11 x2r+1 + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ xb2r2r x1 + xv2r2r+1xr+1.

To define the exponents, we’ll use the following notation. For short, given integers
bi1 , . . . , bik , write Bi1···ik for the alternating sum

Bi1···ik := bi1 · · · bik − bi1 · · · bik−1
+ · · ·+ (−1)k−1bi1 + (−1)k.

We note for future reference the following symmetry property for alternating sums
of B’s:

Lemma 3.1. For any integers bi1 , . . . , bik ,

Bi1···ik −Bi2···ik + · · ·+ (−1)k−1Bik = Bik···i1 −Bik−1···i1 + · · ·+ (−1)k−1Bi1 .

Esser defines the exponents b0, . . . , bn as follows, for n = 2r + 1 or n = 2r, with
r ≥ 1. For 0 ≤ i ≤ r, let bi := si, the Sylvester number. Then define all but one of
the remaining exponents inductively by

br+i := 1 + (br+1−i − 1)2Br+1,r,r+2,r−1,...,r−1+i,r+2−i

= 1 + b0 · · · br−i(br+1−i − 1)Br+1,r,r+2,r−1,...,r−1+i,r+2−i

for 1 ≤ i ≤ r + 1 when n = 2r + 1, and for 1 ≤ i ≤ r when n = 2r. (A symbol B
with empty subscript is understood to be 1, and so br+1 = 1 + (br − 1)2.) These
exponents bi, as well as the other numbers defined below, depend on the dimension
n as well as on i. For convenience, we write bi rather than bn,i. Finally, the last
exponent is given by{︄

v2r+1 := Br+1,r,r+2,r−1,...,2r+1,0 −Br,r+2,r−1,...,2r+1,0 + · · · −B0 if n = 2r + 1,

v2r := 2(Br+1,r,r+2,r−1,...,2r,1 −Br,r+2,r−1,...,2r,1 + · · · −B1) + 1 if n = 2r.

The weights a0, . . . , an+1 and degree D of V are determined uniquely by the
equation of V , given the requirement that gcd(a0, . . . , an+1) = 1. Esser shows that
V is a well-formed quasi-smooth Calabi–Yau hypersurface; we write out the details
in section 5. In version 1 of [3, Section 4] on the arXiv, Esser conjectured that the
last weight a2r+2 is equal to 1, and he verified this in dimensions at most 18. Using

7



that assumption, he shows that there is an action of the cyclic group µm on V ,
where m = mn is given by

m :=

{︄
m2r+1 = B0,2r+1,1,2r,...,r,r+1 if n = 2r + 1,

m2r = B1,2r,2,2r−1,...,r,r+1 if n = 2r.

The number m = mn is doubly exponential in the dimension n; in particular,
mn > 22

n
for n > 2. Esser’s conjecture would also imply that the degree D of V is

given by D = u2r+1 if n = 2r + 1 and D = 2u2r if n = 2r, where

u :=

{︄
u2r+1 = Br+1,r,r+2,r−1,...,2r+1,0 if n = 2r + 1,

u2r = Br+1,r,r+2,r−1,...,2r,1 if n = 2r.

(A connection between dimensions 2r and 2r + 1 is that the exponent b2r+1 for
n = 2r + 1 satisfies b2r+1 = u2r + 1.)

Esser’s conjecture would imply that V/µm is a klt Calabi–Yau variety with mld
1/m; so this was initially proved in dimensions n ≤ 18. We prove the conjecture
in all dimensions in Theorem 5.1, using the product formulas proved in the next
section.

In dimension 2, Esser’s hypersurface is:

V = V22 ⊂ P3(11, 7, 3, 1),

0 = x20 + x31x3 + x52x1 + x193 x2.

Here V/µ13 is a klt Calabi–Yau surface of mld 1/13, which is the smallest possible
[5, Proposition 6.1]. In dimension 3, we have:

V = V191 ⊂ P4(95, 61, 26, 8, 1),

0 = x20x4 + x31x3 + x52x1 + x123 x0 + x1654 x2,

with an action of the cyclic group of order 311. In dimension 4, we have:

V = V925594 ⊂ P5(462797, 308531, 132129, 21445, 691, 1),

0 = x20 + x31x5 + x72x4 + x373 x2 + x8934 x1 + x9041495 x3,

with an action of the cyclic group of order 677785.

4 Product formulas for the small-mld example

Here we prove some product formulas which imply the desired properties of the klt
Calabi–Yau variety with small mld [3, equation (6)]. The formulas are also useful
for the klt Calabi–Yau variety with large index, because the equations for the two
varieties are similar.

Fix a positive integer r. Let b0, . . . , b2r+1 be the numbers defined in section
3. (These are all but the last exponent of Esser’s hypersurface V of dimension
2r + 1.) In the notation of that section, define the following related numbers for
0 ≤ k ≤ r + 1:

gk := Bk,2r+1−k,...,r,r+1

tk := Br+1,r,...,2r+1−k,k

wk := (sk − 1)[Br+1,r,...,2r+1−k,k −Br,...,2r+1−k,k + · · · −Bk + 1]− 1.
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Proposition 4.1. For 0 ≤ k ≤ r + 1, we have

(sk − 1)gktk − 1 = bk · · · b2r+1−kwk.

For k = 0, we’ll see in section 5 that this proposition directly implies Esser’s
conjecture for the small-mld example of dimension n = 2r + 1; in the notation of
section 3, the k = 0 statement reads m2r+1u2r+1 − 1 = b0 · · · b2r+1v2r+1. Likewise,
for k = 1, the proposition reads 2m2ru2r−1 = b1 · · · b2rv2r in the notation of section
3; this will imply Esser’s conjecture for dimension 2r. Generalizing these product
formulas to Proposition 4.1 makes an inductive proof possible.

Proof. (Proposition 4.1) We prove this by descending induction on 0 ≤ k ≤ r + 1.
For k = r+ 1, both sides of the equation are equal to (sr+1 − 1)− 1. Next, assume
that 0 ≤ k ≤ r and the equation holds for k + 1, meaning that

(sk+1 − 1)gk+1tk+1 − 1 = bk+1 · · · b2r−kwk+1. (4.1)

We will prove it for k.
We prove the following lemma at the same time as Proposition 4.1.

Lemma 4.2. For 0 ≤ k ≤ r,

gk − skgk+1 = (sk − 1)bk+1 · · · b2r−kwk+1.

Proof. Given that Proposition 4.1 holds for k + 1, we prove this lemma for k. By
definition of gk, we have

gk = bkb2r+1−kgk+1 − (bk − 1).

So, noting that bk = sk (the Sylvester number), we have

gk − skgk+1 = sk(b2r+1−k − 1)gk+1 − (sk − 1).

By definition of b2r+1−k, we have b2r+1−k − 1 = (sk − 1)2tk+1. So

gk − skgk+1 = sk(sk − 1)2gk+1tk+1 − (sk − 1)

= (sk − 1)[(sk+1 − 1)gk+1tk+1 − 1]

= (sk − 1)bk+1 · · · b2r−kwk+1,

using that Proposition 4.1 holds for k + 1 (equation 4.1). That proves the lemma
for k.

We continue the proof of Proposition 4.1 for k, using that it holds for k+1. By
definition of tk, we have

tk − tk+1 = (sk − 1)bk+1 · · · b2r+1−k.

Using Lemma 4.2 for the given number k, it follows that

(sk − 1)gktk − 1 = (sk − 1)[skgk+1 + (sk − 1)bk+1 · · · b2r−kwk+1]

· [tk+1 + (sk − 1)bk+1 · · · b2r+1−k]− 1

= (sk+1 − 1)gk+1tk+1 − 1 + (sk − 1)2bk · · · b2r+1−kgk+1

+ (sk − 1)2bk+1 · · · b2r−ktk+1wk+1 + (sk − 1)3(bk+1 · · · b2r−k)
2b2r+1−kwk+1.

9



Since Proposition 4.1 holds for k + 1 (equation 4.1), it follows that

(sk−1)gktk−1 = bk+1 · · · b2r−k[(sk−1)2bkb2r+1−kgk+1+wk+1+(sk−1)2tk+1wk+1

+ (sk − 1)3bk+1 · · · b2r+1−kwk+1].

By definition, b2r+1−k = 1+(sk − 1)2tk+1. So we can combine the second and third
terms in the bracket above into a multiple of b2r+1−k:

(sk − 1)gktk − 1 = bk+1 · · · b2r+1−k[(sk − 1)2bkgk+1 + wk+1

+ (sk − 1)3bk+1 · · · b2r−kwk+1].

Therefore, to prove Proposition 4.1 for k (completing the induction), it suffices to
show that:

bkwk = (sk − 1)2bkgk+1 + wk+1 + (sk − 1)3bk+1 · · · b2r−kwk+1. (4.2)

By definition,

wk = (sk − 1)[Br+1,r,...,2r+1−k,k −Br,...,2r+1−k,k + · · · −Bk + 1]− 1

and

wk+1 = sk(sk − 1)[Br+1,r,...,2r−k,k+1 −Br,...,2r−k,k+1 + · · · −Bk+1 + 1]− 1.

Therefore, subtracting term by term and using that bk = sk, we have

bkwk − wk+1 = sk(sk − 1)[(bk − 1)b2r+1−kbk+1b2r−k · · · brbr+1

− (bk − 1)b2r+1−kbk+1b2r−k · · · br + · · ·+ (bk − 1)b2r+1−k − (bk − 1) + 1]− (sk − 1)

= (sk − 1)2[bkb2r+1−kbk+1b2r−k · · · brbr+1 − bkb2r+1−k · · · br + · · ·+ bkb2r+1−k − bk + 1]

= (sk − 1)2Bk,2r+1−k,...,r,r+1

= (sk − 1)2gk.

So the left side of (4.2) is

bkwk = (sk − 1)2gk + wk+1.

By Lemma 4.2 for the given number k, we can expand gk here, giving that

bkwk = (sk − 1)2bkgk+1 + wk+1 + (sk − 1)3bk+1 · · · b2r−kwk+1.

That proves equation 4.2. Thus Proposition 4.1 holds for k given that it holds for
k + 1. The proposition is proved.
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5 Proof of the properties of Esser’s example in all di-
mensions

Prior to this paper, the properties of Esser’s klt Calabi–Yau variety with small
mld were known completely only in dimensions at most 18. We now prove the
desired properties in all dimensions (Theorem 5.1), using the product formulas in
Proposition 4.1.

Theorem 5.1. In each dimension n ≥ 2, Esser’s hypersurface V defined in section
3 has an action of the cyclic group µm (for the number m = mn defined there)
such that V/µm is a complex klt Calabi–Yau variety with mld 1/m. In particular,
mn > 22

n
for n > 2.

We also compute the weights and degree of Esser’s hypersurface explicitly, in
particular proving Esser’s conjecture that the last weight an+1 is equal to 1.

Proof. Let r be a positive integer, and let n be 2r or 2r + 1. We first prove the
basic properties of Esser’s hypersurface V , namely that it is a well-formed quasi-
smooth Calabi–Yau hypersurface. Here V was defined in section 3 by writing out
its equation. That determines the weights a0, . . . , an+1 and degree D of V , given
the requirement that gcd(a0, . . . , an+1) = 1. By the form of the equation (a loop
for n odd, x20 plus a loop for n even), V is quasi-smooth.

The weighted projective space containing V is well-formed: if a prime number
p divides all but one weight ai, then p divides D since there is a monomial not
involving xi. Then, there is either a monomial of the form xajxi in the equation
for V or n is even and i = 0. In the former case, we get that p divides ai too,
contradicting that gcd(a0, . . . , an+1) = 1. The same holds in the latter case unless
p = 2. If p = 2 divides all weights except a0 in the n even case, then D ≡ 2 (mod 4).
The remaining exponents b1, . . . , b2r, v2r are odd, so this means the weights ai would
have to alternate between 0 (mod 4) and 2 (mod 4) moving around the loop part
of the equation of X. But the loop has odd length, a contradiction. It follows that
V is well-formed by Proposition 1.1, together with a look at the equation for V in
dimension 2 (section 3).

Lemma 5.2. The hypersurface V is Calabi–Yau, in the sense that D =
∑︁

aj.

Proof. Let A be the (n+ 2)× (n+ 2) matrix that encodes the equation of V (with
each row specifying the exponents of one monomial in the equation). Define the
charges q0, . . . , qn+1 as the sums of the rows of the matrix A−1. Then the degree D
of V is the least common denominator of the charges qi, and the weights of V are
given by ai = Dqi [3, section 2.3]. To show that V is Calabi–Yau, we have to show
that the sum of the charges is 1, that is, that the sum of the entries of A−1 is 1. We
use the formula for the inverse of a loop matrix [3, Lemma 2.7]:

Lemma 5.3. Let A be the loop matrix

A =

⎛⎜⎜⎜⎜⎝
e1 1

e2
. . .
. . . 1

1 ek

⎞⎟⎟⎟⎟⎠
11



with k odd. Then the inverse matrix A−1 is

1

e1 · · · ek + (−1)k−1

⎛⎜⎜⎜⎜⎜⎝
e2 · · · ek −e3 · · · ek · · · −ek 1

1 e3 · · · eke1 · · · eke1 −e1
...

...
...

...
...

e2 · · · ek−2 · · · 1 eke1 · · · ek−2 −e1 · · · ek−2

−e2 · · · ek−1 · · · −ek−1 1 e1 · · · ek−1

⎞⎟⎟⎟⎟⎟⎠ .

For n = 2r+1, it follows that A−1 is an integer matrix divided by b0 · · · b2r+1v2r+1+
1. So we want to show that b0 · · · b2r+1v2r+1 + 1 minus the sum of the entries
of that integer matrix is 0. Analyze this difference by collecting all terms that
are multiples of br+1 · · · b2r+1v2r+1, then the remaining terms that are multiples of
br+2 · · · b2r+1v2r+1, and so on. The result is:

br+1 · · · b2r+1v2r+1

[︃
b0 · · · br

(︃
1− 1

b0
− · · · − 1

br

)︃]︃
−

r+1∑︂
i=1

br+1+i · · · b2r+1v2r+1[b0 · · · br−i(br+1−i − 1)Br+1,r,...,r−1+i,r+2−i]

− [Br+1,r,...,2r+1,0 −Br,...,2r+1,0 + · · · −B0 + 1] + 1.

The first term in brackets is 1, by the properties of the Sylvester numbers b0, . . . , br.
By definition of br+i, the expression in brackets in the term indexed by i (for 1 ≤
i ≤ r+1) is br+i − 1. Finally, the last line is −v2r+1. Therefore, the sum telescopes
to zero. Thus V is Calabi–Yau in the sense that D =

∑︁
aj .

For n = 2r, the proof is similar. Again, we have to show that the sum of
the entries of the matrix A−1 is 1. In this case, the equation of V is x20 plus a
loop. By Lemma 5.3, A−1 is the block matrix 1/2 followed by 1/(b1 · · · b2rv2r + 1)
times an integer matrix C. So we need to show that the sum of the entries of C is
(b1 · · · b2rv2r+1)/2. Explicitly, b1 · · · b2rv2r+1 minus 2 times the sum of the entries
of C (which we want to be zero) is

br+1 · · · b2rv2r
[︃
b1 · · · br

(︃
1− 2

(︃
1

b1
− · · · − 1

br

)︃)︃]︃
−

r∑︂
i=1

br+1+i · · · b2rv2r[2b1 · · · br−i(br+1−i − 1)Br+1,r,...,r−1+i,r+2−i]

− 2[Br+1,r,...,2r,1 −Br,...,2r,1 + · · · −B1 + 1] + 1.

Again, the first term in brackets is 1, the expression in brackets in the term indexed
by i is br+i − 1, and the last line is −v2r. So the sum telescopes to zero. Thus V is
Calabi–Yau in the sense that D =

∑︁
aj , in even as well as odd dimensions. Lemma

5.2 is proved.

By Lemma 5.2 plus the preceding results, V is a well-formed quasi-smooth
Calabi–Yau hypersurface. More precisely, KV = OV (D −

∑︁
aj) = OV , and so

KV is linearly equivalent to zero. As a result, KV is Cartier and V is klt, so V is
canonical.
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The inverse A−1 of a loop matrix is written explicitly in Lemma 5.3. We read
off that the charge q2r+2 is the alternating sum

q2r+2 =
B0,2r+1,...,r,r+1

b0 · · · b2r+1v2r+1 + 1

=
m2r+1

b0 · · · b2r+1v2r+1 + 1

=
1

u2r+1
,

by Proposition 4.1. The degree D of V is the least common multiple of the denom-
inators of the charges qi; but in this case of a loop matrix, all the charges have the
same denominator [5, Lemma 7.1]. Therefore, the degree D of V is equal to u2r+1.
So the weights of V are ai = u2r+1qi. In particular, the weight a2r+2 is equal to 1,
as we want.

By the loop equation of V , the absolute value of the determinant of A is given
by [2, section 3]:

| det(A)| = b0 · · · b2r+1v2r+1 + 1.

The group AutT (V ) of toric automorphisms of V is the group of automorphisms of
V that are given by diagonal matrices in the given coordinates. This is related to
the degree D of V by [2, section 3]:

| det(A)| = D|AutT (V )|.

By the computation of the degree D above, it follows that |AutT (V )| = m2r+1.
Moreover, since the equation of V is a loop, the group AutT (V ) is cyclic [2, Propo-
sition 2]. So the group of toric automorphisms of V is the cyclic group µm with
m = m2r+1. (We will describe the µm-action explicitly in the proof of Lemma 6.3.)

Also, because the equation of V is a loop, the action of µm on V is free in
codimension 1 [5, Proposition 7.2]. As a result, V/µm is a klt Calabi–Yau variety
(not a pair).

Esser showed that the mld of V/µm is the smallest charge of the BHK mirror of
V [3, Theorem 3.1]. (The mirror is defined to be the hypersurface whose equation
is associated to the transpose of the matrix A.) One mirror charge is

qT2r+2 =
Br+1,r,r+2,r−1,...,2r+1,0

b0 · · · b2r+1v2r+1 + 1

=
u2r+1

b0 · · · b2r+1v2r+1 + 1

=
1

m2r+1
.

Since AT is a loop matrix, all the mirror charges have the same denominator, and
so 1/m2r+1 is the smallest mirror charge. Thus mld(V/µm) = 1/m, as we want.
(Another way to compute the mld is given in Lemma 6.3: the variety V/µm is
crepant-birational to the pair (X, (1− 1

m)S) discussed later.)
It remains to give the analogous argument in even dimensions. Let n = 2r.

Because the equation of V is of the form x20 plus a loop, we can write out the
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inverse matrix A−1 using the formula for the inverse of a loop matrix, Lemma 5.3.
We read off that the charge q2r+1 is the alternating sum

q2r+1 =
B1,2r,...,r,r+1

b1 · · · b2rv2r + 1

=
m2r

b1 · · · b2rv2r + 1

=
1

2u2r
,

by Proposition 4.1. The degree D of V is the least common multiple of the denom-
inators of the charges qi; so the degree D is a multiple of 2u2r, say D = 2u2rλ for
a positive integer λ. The last weight a2r+1 is then Dq2r+1 = λ. Using the loop of
monomials (starting with x

v2r+1

2r+1 xr+1) in the equation of V , it follows that all weights
ai with i ̸= 0 are also multiples of λ. By the monomial x20 in the equation of V , we
have a0 = D/2 = u2rλ, which is also a multiple of λ. Since gcd(a0, . . . , a2r+1) = 1,
it follows that λ = 1. Thus the degree D of V is equal to 2u2r, the weights of V are
ai = 2u2rqi, and the weight a2r+1 is equal to 1, as we want.

Since the equation of V for n = 2r is x20 plus a loop, the absolute value of the
determinant of A is given by [2, section 3]:

| det(A)| = 2(b1 · · · b2rv2r + 1).

The group of toric automorphisms is related to the degree D of V by [2, section 3]:

| det(A)| = D|AutT (V )|.

By the computation of the degree D above, it follows that |AutT (V )| = 2m2r.
Moreover, since the equation of V is x20 plus a loop, the group AutT (V ) is µ2 times
a cyclic group [2, Proposition 3.2]. So the group of toric automorphisms of V is the
product group µ2 × µm with m = m2r. (We will describe the µm-action explicitly
in Lemma 6.3. The µ2-action changes the sign of x0.)

Also, because the equation of V is x20 plus a loop, the action of µm on V ∩{x0 ̸= 0}
is free in codimension 1 [5, Proposition 7.2]. Also, a toric automorphism that fixes
the divisor V ∩ {x0 = 0} can be written as [x0, . . . , xn+1] ↦→ [ex0, x1, . . . , xn+1] for
some e ∈ C∗. We have e2 = 1, because the automorphism preserves the equation
x20 + x31x2r+1 + · · · = 0 of V . Since m = m2r is odd, it follows that no nontrivial
element of µm fixes this divisor. So µm acts freely in codimension 1 on V , and
hence V/µm is a klt Calabi–Yau variety (not a pair). Given that, Esser showed
that mld(V/µm) = 1/m [3, section 4]. (Another way to compute the mld is given
in Lemma 6.3: the variety V/µm is crepant-birational to the pair (X, (1 − 1

m)S)
discussed later.)

6 On the first gap of global log canonical thresholds

Theorem 6.1. For every n ≥ 2, there is a complex klt Calabi–Yau pair (X, (1 −
1
m)S) of dimension n with S an irreducible divisor, and with the number m = mn

defined in section 3. In particular, mn > 22
n
for n > 2.

14



In principle, this follows from Theorem 5.1, with X some birational model of
Esser’s klt Calabi–Yau variety V/µm; but the point of this section is to construct
an explicit variety X. This example should be optimal. A bit more strongly, we
conjecture:

Conjecture 6.2. For every n ≥ 2, if (X, (1−b)S) is a complex klt Calabi–Yau pair
of dimension n such that S is a nonzero effective Weil divisor, then b ≥ 1/mn for
the number mn in Theorem 6.1.

The conjecture is true in dimension 2, by Liu and Shokurov [13, Theorem 1.1].
They formulate several other extremal problems which have the same bound in
dimension 2 (namely, 1/13), and conjecturally in all dimensions. In dimension 1,
the bound in Conjecture 6.2 is 1/3, by the example of (P1, 23S) with S equal to 3
points. We know that there is some positive lower bound for this problem in each
dimension, by Hacon-McKernan-Xu [7, Theorem 1.5].

In dimension 2, our example is:

X = X30 ⊂ P3(15, 10, 4, 13),

0 = x20 + x31 + x52x1 + x23x2.

Here S = X ∩ {x3 = 0}, and (X, 1213S) is the desired Calabi–Yau pair. In dimension
3, we have:

X = X360 ⊂ P4(180, 115, 49, 15, 311),

0 = x20 + x31x3 + x52x1 + x123 x0 + x4x2.

Here S = X∩{x4 = 0}, and (X, 310311S) is the desired Calabi–Yau pair. In dimension
4, we have:

X = X1387722 ⊂ P5(693861, 462574, 198098, 32152, 1036, 677785),

0 = x20 + x31 + x72x4 + x373 x2 + x8934 x1 + x25x3.

Here S = X ∩ {x5 = 0}, and (X, 677784677785S) is the desired Calabi–Yau pair.

Proof. (Theorem 6.1) We want to construct a klt Calabi–Yau pair (X, (1 − 1
m)S)

of dimension n ≥ 2 with S an irreducible divisor (and the number m = mn

defined above). We define X as a hypersurface in a weighted projective space
Y = Pn+1(c0, . . . , cn+1). Namely, if n = 2r+ 1, let X have the same equation as V
(from section 3) except for the first and last terms:

0 = x20 + xb11 x2r+1 + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ x
b2r+1

2r+1 x0 + x2r+2xr+1.

We also have formulas for the degree d and the weights cj of X. (With these
definitions, it is straightforward that each monomial above has degree d.) First,
d := b0 · · · b2r+1. Next, the last weight c2r+2 is m2r+1 = B0,2r+1,1,2r,...,r,r+1, the
index of Esser’s example. Finally,

cr+1+i := br+1−i · · · brbr+1 · · · br+iB0,2r+1,1,2r,...,r−i

for 0 ≤ i ≤ r, and

cr−i := br+1−i · · · brbr+1 · · · br+1+iB0,2r+1,1,2r,...,r−1−i,r+2+i
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for 0 ≤ i ≤ r. (Since a B with empty subscript is 1, we have c0 = b1 · · · b2r+1.)
If n = 2r, let X have the same equation as V except for the second and last

terms:

0 = x20 + x31 + xb22 x2r + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ xb2r2r x1 + x22r+1xr+1.

Again, we have formulas for the degree d and weights cj of X. First, d := b0 · · · b2r.
Next, the last weight c2r+1 ism2r = B1,2r,2,2r−1,...,r,r+1, the index of Esser’s example.
Also, c0 := b1 · · · b2r. Finally,

cr+1+i := 2br+1−i · · · brbr+1 · · · br+iB1,2r,2,2r−1,...,r−i

for 0 ≤ i ≤ r − 1, and

cr−i := 2br+1−i · · · brbr+1 · · · br+1+iB1,2r,2,2r−1,...,r−1−i,r+2+i

for 0 ≤ i ≤ r − 1.
Define the divisor S to be X ∩ {xn+1 = 0}. From the form of the equation (a

chain as in section 1, or x20 plus a chain), it is immediate that X and S are quasi-
smooth. (Since S is a hypersurface of dimension at least 1 in a weighted projective
space, it follows that S is irreducible.) The weight cn+1 (the degree of S) is equal
to the index m of Esser’s example, Next, we show that KX = OX(d−

∑︁
cj) is equal

to OX(1 − m), so that (X, (1 − 1
m)S) is a klt Calabi–Yau pair (assuming that X

is well-formed, as we show below). Since cn+1 = m, it is equivalent to show that
d−

∑︁n
j=0 cj = 1. Assume that n = 2r+1. We compute d−

∑︁n
j=0 cj by collecting all

terms (in the formulas above for d and the cj ’s) that are multiples of br+1 · · · b2r+1,
then the remaining terms that are multiples of br+2 · · · b2r+1, and so on. The result
is:

d−
2r+1∑︂
j=0

cj = br+1 · · · b2r+1

[︃
b0 · · · br

(︃
1− 1

b0
− · · · − 1

br

)︃]︃

−
r+1∑︂
i=1

br+1+i · · · b2r+1[b0 · · · br−i(br+1−i − 1)Br+1,r,...,r−1+i,r+2−i].

The first term in brackets is 1, by the properties of the Sylvester numbers b0, . . . , br.
By definition of br+i, the expression in brackets in the term indexed by i (for 1 ≤
i ≤ r+1) is br+i−1. Therefore, the sum telescopes, showing that d−

∑︁2r+1
j=0 cj = 1,

as we want. For n = 2r, the proof is similar:

d−
2r∑︂
j=0

cj = br+1 · · · b2r
[︃
b0 · · · br

(︃
1− 1

b0
− · · · − 1

br

)︃]︃

−
r∑︂

i=1

br+1+i · · · b2r[2b1 · · · br−i(br+1−i − 1)Br+1,r,...,r−1+i,r+2−i].

Again, the expression in brackets in the term indexed by i is br+i − 1. So the sum
telescopes, showing that d−

∑︁2r
j=0 cj = 1, as we want.

The only property that remains to be checked is that X is well-formed. (We
need this in order to justify the formula above for KX , with X viewed as a variety
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rather than a pair.) The main point is to show that the weighted projective space
Y = Pn+1(c0, . . . , cn+1) is well-formed. Indeed, from there it follows that X is
well-formed when n ≥ 3, by Proposition 1.1. This general result does not apply in
dimension 2, but in that case we can check by hand that our example is well-formed.
Namely, the example is X ⊂ Y = P3(15, 10, 4, 13), defined by 0 = x20 + x31 + x52x1 +
x23x2. This is well-formed, because X does not contain the 1-dimensional stratum
{x2 = x3 = 0} of Y with stabilizer µ5 or the 1-dimensional stratum {x0 = x3 = 0}
with stabilizer µ2.

So, for each n ≥ 2, we need to show that Y is well-formed, meaning that
gcd(c0, . . . , ˆ︁ca, . . . , cn+1) = 1 for each 0 ≤ a ≤ n + 1. Let p be a prime number
dividing cj for each j ̸= a; we will derive a contradiction. From looking at the
equation of X, we see that it includes a monomial not involving xa, and so p divides
the degree d of X. For n = 2r + 1, the variable xa occurs with exponent 1 in some
monomial in the equation of X, and so p divides ca as well. For n = 2r, we get
the same conclusion unless a = 0 or a = 2r + 1. In those cases, the variable xa
occurs with exponent 2 in some monomial in the equation of X, and so p divides
2ca. It follows that p divides ca unless p = 2. To analyze the case where n = 2r and
p = 2, use that b1, . . . , b2r are all odd by their definition. So c0 = b1 · · · b2r is odd
and c2r+1 = m2r = B1,2r,...,r,r+1 ≡ 1− 1+1− 1+ · · ·+1 ≡ 1 (mod 2), contradicting
that 2 divides all but one of the weights cj . Thus, if p divides all but one of the
weights cj , then it divides all the weights.

Return to allowing any dimension n ≥ 2. We now have a prime number p that
divides the weight cj for each 0 ≤ j ≤ n + 1, and we want to get a contradiction.
For n = 2r + 1, we have c0 = b1 · · · b2r+1 and c2r+2 = m2r+1. By Proposition
4.1, m2r+1u2r+1 − 1 = b0 · · · b2r+1v2r+1, and so c0 and c2r+2 are relatively prime.
Next, for n = 2r, we have c0 = b1 · · · b2r and c2r+1 = m2r. By Proposition 4.1,
2m2ru2r−1 = b1 · · · b2rv2r, and so c0 and c2r+1 are relatively prime. This completes
the proof that X is well-formed. Theorem 6.1 is proved.

We remark that X is rational at least in odd dimensions, n = 2r + 1. Indeed,
the variable x2r+2 occurs only in one monomial, and it has exponent 1. So the
projection from X to P2r+1(c0, . . . , c2r+1) is a birational map.

Lemma 6.3. In each dimension n ≥ 2, the klt Calabi–Yau pair (X, (1 − 1
m)S) of

Theorem 6.1 is crepant-birational to Esser’s klt Calabi–Yau variety V/µm with mld
1/m.

The proof also gives an explicit formula for the action of µm on V , in terms of
the weights cj of X.

Proof. Let n ≥ 2. Let W be the index-1 cover of the klt Calabi–Yau pair (X, (1−
1
m)S) of dimension n from Theorem 6.1. It follows thatW has canonical singularities
and KW ∼ 0. Explicitly, for n = 2r + 1, W is the Calabi–Yau hypersurface

W = Wd ⊂ P2r+2(c0, . . . , c2r+1, 1),

0 = x20 + xb11 x2r+1 + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ x
b2r+1

2r+1 x0 + xm2r+2xr+1.

The degree d of W is the same as for X, and the exponents bj and weights cj are
the same except for j = 2r+2. The last weight is changed from c2r+2 = m2r+1 = m
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to 1. Let the cyclic group µm act on W with weights (0, . . . , 0,−1); then the
quotient W/µm is the pair (X, (1− 1

m)S). (The quotient map W → X is given by
[x0, . . . , x2r+2] ↦→ [x0, . . . , x2r+1, x

m
2r+2].)

In even dimensions n = 2r, the index-1 cover W of (X, (1− 1
m)S) has a similar

description. Here W is the Calabi–Yau hypersurface

W = Wd ⊂ P2r+1(c0, . . . , c2r, 1),

0 = x20 + x31 + xb22 x2r + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ xb2r2r x1 + x2m2r+1xr+1.

Again, the last weight has been changed from c2r+1 = m2r = m to 1, and the cyclic
group µm acts on W with weights (0, . . . , 0,−1).

The equations of W and Esser’s hypersurface V are the same in the affine charts
xn+1 = 1, and the variable xn+1 has weight 1 in both cases. Therefore, we get a
birational map φ : W ‧‧➡ V by sending

[x0, . . . , xn, 1] ↦→ [x0, . . . , xn, 1].

Since W and V are Calabi–Yau varieties with canonical singularities, φ is automat-
ically crepant.

Moreover, we can define an action of µm on V that makes φ µm-equivariant.
Indeed, we can rewrite the action of µm on W as

ζ([x0, . . . , xn, xn+1]) = [x0, . . . , xn, ζ
−1xn+1]

= [ζc0x0, . . . , ζ
cnxn, xn+1].

That suggests defining an action of µm on V by the formula:

ζ([x0, . . . , xn, xn+1]) = [ζc0x0, . . . , ζ
cnxn, xn+1].

To show that this action preserves the hypersurface V , it suffices to check this in
the affine chart xn+1 = 1; but there it is clear, because the equation of V in this
chart is the same as the equation of W in the corresponding chart. Given that, it is
clear that the map φ is µm-equivariant. (It suffices to check this in the affine chart
xn+1 = 1, where the two µm-actions are given by the same formula.)

Therefore, we have a crepant birational map from W/µm (viewed as a pair,
namely (X, (1− 1

mS))) to the klt Calabi–Yau variety V/µm. In particular, this shows
more explicitly why V/µm has mld 1/m: because the divisor S has log discrepancy
1/m with respect to V/µm.

7 Esser-Totaro-Wang’s klt Calabi–Yau variety with large
index

A major problem on boundedness of Calabi–Yau varieties is the Index Conjecture,
which says (in particular) that the index is bounded among all klt Calabi–Yau
varieties of a given dimension. In [5, section 7], the authors and Wang constructed
a klt Calabi–Yau variety of each dimension n ≥ 2 which conjecturally has the
largest index, roughly 22

n
in dimension n. (For example, this variety has index 19

in dimension 2, 493 in dimension 3, and 1201495 in dimension 4.) In this section,
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we present this example, give a clearer proof of many of its properties, and provide
a conjectural formula for the index. We reduce the problem of computing the index
in a given dimension to showing that two explicit numbers are relatively prime, as
explained in Proposition 7.3. That holds by a computer check in dimensions at most
30. The expected value of the index is within a constant factor of the conjecturally
largest index in the broader setting of klt Calabi–Yau pairs with standard coefficients
(Lemma 8.2).

The varieties are again quotients of quasi-smooth Calabi–Yau hypersurfaces in
weighted projective space by finite groups; the numerology of these hypersurfaces
is extremely similar to that of the small mld examples. Indeed, for n = 2r+ 1 odd,
the hypersurface V ′ ⊂ Pn+1(a′0, . . . , a

′
n+1) has the form

0 = xb00 x2r+2+xb11 x2r+1+· · ·+xbrr xr+2+x
br+1

r+1 xr+· · ·+xb2r2r x1+x
b′2r+1

2r+1 x0+x
v′2r+1

2r+2 xr+1.

In even dimension n = 2r, the equation of V ′ has the form

0 = xb00 + xb11 x2r+1 + · · ·+ xbrr xr+2 + x
br+1

r+1 xr + · · ·+ x
b2r−1

2r−1 x2 + x
b′2r
2r x1 + x

v′2r
2r+1xr+1.

These equations have the same shape as the small mld examples and share all
the same exponents except for the last two, b′n and v′n. We define these last two
exponents as follows:{︄

b′2r+1 :=
1
2(1 + b1 · · · b2r + (s1 − 1)Br+1,r,...,2r,1) if n = 2r + 1,

b′2r :=
1
3(1 + 2(s1 − 1)2b2 · · · b2r−1 + 2(s2 − 1)Br+1,r,...,2r−1,2) if n = 2r.

It is straightforward to check that these two expressions are integers. We note the
following comparison between b′n and bn and define constants E = En for future
use: {︄

E2r+1 := b′2r+1 − b2r+1 + 1 = 1
2(b1 · · · b2r + 1) if n = 2r + 1,

E2r := b′2r − b2r + 1 = 1
3(8b2 · · · b2r−1 + 1) if n = 2r.

(7.1)

The last exponent is given by

v′2r+1 := B1,2r,...,r,r+1 + (s1 − 1)[Br+1,r,...,2r,1 −Br,...,2r,1 + · · · −B1 + 1]− 1

if n = 2r + 1, and

v′2r := (s1−1)2B2,2r−1,...,r,r+1+(s2−1)[Br+1,r,...,2r−1,2−Br,...,2r−1,2+ · · ·−B2+1]−1

if n = 2r. Using the notation above Proposition 4.1, we may write v′n more concisely
as v′2r+1 = g1 + w1 for n = 2r + 1 and v′2r = 4g2 + w2 for n = 2r.

The weights a′0, . . . , a
′
n+1 and degree D′ of V ′ are uniquely determined by the

equation of V ′, given the requirement that gcd(a′0, . . . , a
′
n+1) = 1.

We set the following additional definitions:

u′ :=

{︄
u′2r+1 = b1 · · · b2r + (s1 − 1)Br+1,r,r+2,r−1,...,2r,1 if n = 2r + 1,

u′2r = (s1 − 1)b2 · · · b2r−1 + s1Br+1,r,r+2,r−1,...,2r−1,2 if n = 2r.

Notice that u′2r+1 = 2b′2r+1 − 1 and 4u′2r = 3b′2r − 1. Finally, define

m′ :=

{︄
m′

2r+1 := b0b
′
2r+1B1,2r,...,r,r+1 − b0 + 1 if n = 2r + 1,

m′
2r := b1b

′
2rB2,2r−1,...,r,r+1 − b1 + 1 if n = 2r.

(7.2)

With the setup in place, we will now prove several properties of V ′.
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Theorem 7.1. In each dimension n ≥ 2, the hypersurface V ′ ⊂ P(a′0, . . . , a
′
n+1)

defined above is well-formed, quasi-smooth, and Calabi–Yau. The degree D′ of V ′

is given by D′ = u′2r+1 if n = 2r + 1 is odd, and D′ = 2u′2r if n = 2r is even. The
last two weights a′n and a′n+1 of V ′ equal 1. There is an action on V ′ by the cyclic
group of order m′ = m′

n, which is free in codimension 1.

The large index example will then be the quotient V ′/µm′ . We expect this quo-
tient to have index m′ in every dimension, but this is conditional on the statement
in Proposition 7.3.

For n = 2, the hypersurface V ′ is

{x20 + x31x3 + x72x1 + x93x2 = 0} ⊂ P3(5, 3, 1, 1),

with an action of µ19. Here V ′/µ19 is a klt Calabi–Yau surface of index 19, which
is the largest possible [5, Proposition 6.1]. For n = 3, the hypersurface V ′ is

{x20x4 + x31x3 + x52x1 + x193 x0 + x324 x2 = 0} ⊂ P4(18, 12, 5, 1, 1),

with an action of the cyclic group of order 493. For n = 4, the hypersurface V ′ is

{x20 + x31x5 + x72x4 + x373 x2 + x15834 x1 + x23195 x3 = 0} ⊂ P5(1187, 791, 339, 55, 1, 1),

with an action of the cyclic group of order 1201495.

Proof of Theorem 7.1. Since the equation is a loop or x20 plus a loop, the hypersur-
face V ′ is quasi-smooth.

The weighted projective space containing V ′ is well-formed: if a prime number
p divides all but one weight a′i, then p divides D′ since there is a monomial not
involving xi. Then, there is either a monomial of the form xajxi in the equation
for V ′ or n is even and i = 0. In the former case, we get that p divides a′i too,
contradicting that gcd(a′0, . . . , a

′
n+1) = 1. The same holds in the latter case unless

p = 2. If p = 2 divides all weights except a′0 in the n even case, thenD′ ≡ 2 (mod 4).
The remaining exponents b1, . . . , b2r−1, b

′
2r, v

′
2r are odd, so this means the weights a′i

would have to alternate between 0 (mod 4) and 2 (mod 4) moving around the loop
part of the equation of V ′. But the loop has odd length, a contradiction. It follows
that V ′ is well-formed by Proposition 1.1, together with a look at the equation for
V ′ in dimension 2 (above).

Lemma 7.2. The hypersurface V ′ is Calabi–Yau, in the sense that D′ =
∑︁

a′j.

Proof. Let A be the (n + 2) × (n + 2) matrix encoding the equation of V ′. As in
Lemma 5.2, it will be enough to show that the sum of the entries of A−1 is 1. We
use the description of the inverse loop matrix from Lemma 5.3. For n = 2r + 1,
A−1 is an integer matrix divided by b0 · · · b2rb′2r+1v

′
2r+1 + 1. We will show that

b0 · · · b2rb′2r+1v
′
2r+1 minus the sum of entries of this integer matrix is 0. To do this,

collect all terms that are multiples of br+1 · · · b2rb′2r+1v
′
2r+1, then the remaining
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terms that are multiples of br+2 · · · b2rb′2r+1v
′
2r+1, and so on. The result is:

br+1 · · · b2rb′2r+1v
′
2r+1

[︃
b0 · · · br

(︃
1− 1

b0
− · · · − 1

br

)︃]︃
−

r∑︂
i=1

br+1+i · · · b2rb′2r+1v
′
2r+1[b0 · · · br−i(br+1−i − 1)Br+1,r,...,r−1+i,r+2−i]

− v′2r+1[Br+1,r,...,2r,1]

− [B′
r+1,r,...,2r+1,0 −B′

r,...,2r+1,0 + · · · −B′
0 + 1] + 1.

The notation B′ in the last line indicates that we have substituted b′2r+1 for b2r+1

where appropriate in the alternating sums. We want to show that this whole ex-
pression equals 0. So far, the grouping of terms is the same as in the proof of the
Calabi–Yau property for the small mld example with n = 2r + 1 in section 5.

The bracketed term on the first line is 1, while on the second it is br+i − 1 in
the ith summand. On the third line, v′2r+1 is multiplied by b2r+1 − 1 rather than
b′2r+1 − 1, so the terms do not telescope quite as before. Instead, the sum of all but
the last line gives v′2r+1(b

′
2r+1 − b2r+1 + 1). Using (7.1) and also Lemma 3.1 on the

last line, we have therefore reduced to showing

b1 · · · b2r + 1

2
v′2r+1 = [B′

0,2r+1,...,r,r+1 −B′
2r+1,...,r,r+1 + · · · −B′

r+1 + 1]− 1. (7.3)

On the left-hand side, we can rewrite (b1 · · · b2rv′2r+1)/2 (leaving behind the remain-
ing v′2r+1/2) as follows, using Proposition 4.1 for k = 1:

1

2
b1 · · · b2rv′2r+1 =

1

2
(b1 · · · b2rg1 + b1 · · · b2rw1)

=
1

2
(b1 · · · b2rg1 + (s1 − 1)g1t1 − 1) = g1

(︃
b′2r+1 −

1

2

)︃
− 1

2
.

On the other hand, the right-hand side becomes

[B′
0,2r+1,...,r,r+1 −B′

2r+1,...,r,r+1 + · · · −B′
r+1 + 1]− 1

= b′2r+1g1 − b0 + 1 + 1 + [B1,2r,...,r,r+1 −B2r,...,r,r+1 + · · · −Br+1 + 1]− 1

= b′2r+1g1 + [B1,2r,...,r,r+1 −B2r,...,r,r+1 + · · · −Br+1 + 1]− 1.

Here we’ve reverted B′ to B in sums where the index 2r + 1 does not appear. We
can now cancel the terms involving b′2r+1 from both sides of (7.3) and apply Lemma
3.1 to the bracketed term on the last line. This gives:

v′2r+1

2
=

1

2
g1 + [Br+1,r,...,2r,1 −Br,...,2r,1 + · · · −B1 + 1]− 1

2
.

After multiplying by 2, we recover the original definition for v′2r+1, so the proof is
complete.

Now we’ll show the Calabi–Yau property when n = 2r. Again, we need to
demonstrate that the sum of entries of the matrix A−1 is 1, where A−1 is now a
block diagonal matrix with 1/2 in the top left corner followed by a (n+1)× (n+1)
block which is 1/(b1 · · · b2r−1b

′
2rv

′
2r + 1) times an integer matrix C of inverse loop
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form (as in Lemma 5.3). Explicitly, b1 · · · b2r−1b
′
2rv

′
2r + 1 minus 2 times the sum of

the entries of C (which we want to be zero) is

br+1 · · · b2r−1b
′
2rv

′
2r

[︃
b1 · · · br

(︃
1− 2

(︃
1

b1
− · · · − 1

br

)︃)︃]︃
−

r−1∑︂
i=1

br+1+i · · · b2r−1b
′
2rv

′
2r[2b1 · · · br−i(br+1−i − 1)Br+1,r,...,r−1+i,r+2−i]

− v′2r[2(b1 − 1)Br+1,r,...,2r−1,2]

− 2[B′
r+1,r,...,2r,1 −B′

r,...,2r,1 + · · · −B′
1 + 1] + 1.

So far, the grouping of terms is the same as in the proof of the Calabi–Yau property
for the small mld example with n = 2r in section 5. The notation B′ in the last line
indicates that we have substituted b′2r for b2r where appropriate in the alternating
sums.

The bracketed term on the first line is 1, while it is br+i− 1 in the ith summand
on the second line. On the third line, v′2r is multiplied by b2r−1 rather than b′2r−1,
so the sum does not completely telescope as before. Instead, the sum of all but the
last line gives v′2r(b

′
2r − b2r + 1). Using (7.1) and also Lemma 3.1 on the last line,

we have therefore reduced to showing

8b2 · · · b2r−1 + 1

3
v′2r = 2[B′

1,2r,...,r,r+1 −B′
2r,...,r,r+1 + · · · −B′

r+1 + 1]− 1. (7.4)

On the left-hand side, we can rewrite (8b2 · · · b2r−1v
′
2r)/3 (leaving behind the re-

maining v′2r/3) as follows, using Proposition 4.1 for k = 2:

8

3
b1 · · · b2rv′2r =

8

3
(b1 · · · b2r4g2 + b2 · · · b2r−1w2)

=
8

3
(4b2 · · · b2r−1g2 + (s2 − 1)g2t2 − 1) = 4g2

(︃
b′2r −

1

3

)︃
− 8

3
.

On the other hand, the right-hand side becomes

2[B′
1,2r,...,r,r+1 −B′

2r,...,r,r+1 + · · · −B′
r+1 + 1]− 1

= 4b′2rg2 − 2b1 + 2 + 2 + 2[B2,2r−1,...,r,r+1 −B2r−1,...,r,r+1 + · · · −Br+1 + 1]− 1

= 4b′2rg2 + 2[B2,2r−1,...,r,r+1 −B2r−1,...,r,r+1 + · · · −Br+1 + 1]− 3.

Here we’ve reverted B′ to B in sums where the index 2r does not appear. We can
now cancel the terms involving b′2r from both sides of (7.4) and apply Lemma 3.1
to the bracketed term on the right-hand side. This gives:

v′2r
3

=
4

3
g2 + 2[Br+1,r,...,2r−1,2 −Br,...,2r−1,2 + · · · −B2 + 1]− 1

3
.

After multiplying by 3, we recover the original definition for v′2r. We’ve shown that
V ′ is Calabi–Yau in every dimension. Lemma 7.2 is proved.

By Lemma 7.2, KV ′ = OV ′(D′ −
∑︁

a′j) = OV ′ . Since the hypersurface V ′ is klt
and has trivial canonical class, it is canonical.
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Next, we’ll state and prove expressions for the degree D′ of V ′ and the order m′

of a cyclic group action on this hypersurface. Along the way, we’ll also prove that
the last two weights a′n and a′n+1 equal 1. First, we show the following identities
involving m′

n and u′n:{︄
m′

2r+1u
′
2r+1 − 1 = b0 · · · b2rb′2r+1v

′
2r+1 if n = 2r + 1,

2m′
2ru

′
2r − 1 = b1 · · · b2r−1b

′
2rv

′
2r if n = 2r.

(7.5)

First, when n = 2r + 1,

u′2r+1m
′
2r+1 − 1 = u′2r+1(b0b

′
2r+1B1,2r,...,r,r+1 − 1)− 1

= (b1 · · · b2r + (s1 − 1)Br+1,r,...,2r,1)b0b
′
2r+1B1,2r,...,r,r+1 − u′2r+1 − 1

= b0 · · · b2rb′2r+1B1,2r,...,r,r+1+ b0b
′
2r+1(s1− 1)Br+1,r,...,2r,1B1,2r,...,r,r+1−u′2r+1− 1.

We may now apply Proposition 4.1 with k = 1 to replace the expression (s1 −
1)Br+1,r,...,2r,1B1,2r,...,r,r+1 = (s1 − 1)g1t1 with b1 · · · b2rw1 + 1. Hence

u′2r+1m
′
2r+1 − 1 = b0 · · · b2rb′2r+1(g1 + w1) + b0b

′
2r+1 − u′2r+1 − 1

= b0b1 · · · b2rb′2r+1v
′
2r+1 + b0b

′
2r+1 − u′2r+1 − 1

= b0b1 · · · b2rb′2r+1v
′
2r+1.

Looking at the form A−1 of the loop matrix in Lemma 5.3, we may read off the last
charge for the hypersurface V ′ and apply (7.5) to get:

q2r+2 =
b0b

′
2r+1b1b2r · · · brbr+1 − b0b

′
2r+1b1b2r · · · br + · · ·+ b0b

′
2r+1 − b0 + 1

b0b1 · · · b2rb′2r+1v
′
2r+1 + 1

=
m′

2r+1

b0b1 · · · b2rb′2r+1v
′
2r+1 + 1

=
1

u′2r+1

.

The degree D′ of V ′ is the least common denominator of the charges. All these
denominators are the same for a loop potential, so D′ = u′2r+1 and the weight
a′2r+2 = 1. Since x20x2r+2 is a monomial in the equation for V ′, we must have

a′0 = (u′2r+1 − 1)/2. Then, since x
b′2r+1

2r+1 x0 is a monomial also,

a′2r+1 =
u′2r+1 − (u′2r+1 − 1)/2

b′2r+1

= 1.

Let AutT (V
′) be the group of toric automorphisms of V ′. The order of this group

is related to the degree of the hypersurface and the matrix A by [2, section 3]

| det(A)| = D′|AutT (V ′)|.

Since det(A) = b0 · · · b2rb′2r+1v
′
2r+1 +1, the identity (7.5) implies that |AutT (V ′)| =

m′
2r+1. The equation of V ′ is a loop, so AutT (V

′) is a cyclic group of order m′ =
m′

2r+1. Since the equation of V ′ is a loop, the action of µm′ is free in codimension
1 [5, Proposition 7.2].
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Next, if n = 2r, then we prove (7.5) as follows:

2u′2r+1m
′
2r+1 − 1 = 2u′2r+1(b1b

′
2rB2,2r−1,...,r,r+1 − 2)− 1

= (2(s1 − 1)b2 · · · b2r−1 + 2s1Br+1,r,...,2r−1,2)b1b
′
2rB2,2r−1,...,r,r+1 − 4u′2r+1 − 1

= (s1 − 1)2b1 · · · b2r−1b
′
2rB2,2r−1,...,r,r+1

+ b1b
′
2r(s2 − 1)Br+1,r,...,2r−1,2B2,2r−1,...,r,r+1 − 4u′2r − 1.

We may now apply Proposition 4.1 with k = 2 to replace the expression (s2 −
1)Br+1,r,...,2r−1,2B2,2r−1,...,r,r+1 = (s2 − 1)g2t2 with b2 · · · b2r−1w2 + 1. Hence

2u′2rm
′
2r − 1 = b1 · · · b2r−1b

′
2r(4g2 + w2) + b1b

′
2r − 4u′2r − 1

= b1 · · · b2r−1b
′
2rv

′
2r + b1b

′
2r − 4u′2r − 1

= b1 · · · b2r−1b
′
2rv

′
2r.

For n = 2r, the (n + 2) × (n + 2) matrix A expressing the equation of V ′ is block
diagonal with 2 as the top left entry and an (n + 1) × (n + 1) loop matrix as the
other block. Therefore, we may read off the last charge q2r+1 from A−1 and apply
(7.5) to get:

q2r+1 =
b1b

′
2rb2b2r−1 · · · brbr+1 − b1b

′
2rb2b2r−1 · · · br + · · ·+ b1b

′
2r − b1 + 1

b1 · · · b2r−1b′2rv
′
2r + 1

=
m′

2r

b1 · · · b2r−1b′2rv
′
2r + 1

=
1

2u′2r

Therefore, the degree D′ is a multiple of 2u′2r, say D′ = 2λu′2r, so the last weight is
a′n+1 = λ. Following the monomials around the loop, it follows that every weight a′i
with i ̸= 0 is a multiple of λ. This contradicts the fact that the weighted projective
space containing V ′ is well-formed, so in fact we have D′ = 2u′2r and a′n+1 = 1.
Since x31x2r+1 is a monomial of V ′, we must have a′1 = (D′ − 1)/3 = (2u′2r − 1)/3.

Then, since x
b′2r
2r x1 is a monomial also,

a′2r =
2u′2r − (2u′2r − 1)/3

b′2r
= 1.

The determinant of the matrix A in this case is

| det(A)| = 2(b1 · · · b2r−1b
′
2rv

′
2r + 1)

and | det(A)| = D′|AutT (V ′)| so (7.5) yields |AutT (V ′)| = 2m′
2r. Because the

equation is of the form x20 plus a loop, AutT (V
′) ∼= µ2 × µm′ with m′ = m′

2r. Since
the shape of the equation is the same as in the mld example, the same argument
from the proof of Theorem 5.1 shows that the µm′-action is free in codimension 1.

This completes the proof of all the properties listed in Theorem 7.1.

Since the action of µm′ on V ′ is free in codimension 1, the quotient V ′/µm′ is
a klt Calabi–Yau variety. The index of the quotient is determined by the induced
action of µm′ on H0(V ′,KV ′) ∼= C. In particular, the index of the quotient is m′ if
and only if this action is faithful. This in turn is equivalent to a concrete condition
involving the exponents.

24



Proposition 7.3. The quotient V ′/µm′ defined above has index m′ = m′
n in di-

mension n if and only if gcd(m′
n, En) = 1.

Recall that the constants m′ and A were defined in (7.2) and(7.1), respectively.

Proof. Suppose that n = 2r+ 1 is odd. The determinant of the matrix A encoding
the equation of V ′ is u′2r+1m

′
2r+1 by (7.5). The degree of the mirror hypersurface of

V ′ always divides u′2r+1m
′
2r+1/u

′
2r+1 = m′

2r+1. By [5, Proposition 7.3], the action
of µm′ on H0(V ′,KV ′) is faithful if and only if the mirror degree actually equals m′.
This degree is the least common denominator of the mirror charges of V ′, which are
the sums of columns of A−1.

We may use Lemma 5.3 to write the smallest mirror charge as

qT2r+2 =
br+1br · · · b2rb1b′2r+1b0 − br+1br · · · b2rb1b′2r+1 + · · · − br+1 + 1

u′2r+1m
′
2r+1

=
b′2r+1b1 · · · b2r +Br+1,r,...,2r,1

u′2r+1m
′
2r+1

=
1
2((2b

′
2r+1 − 1)b1 · · · b2r + b1 · · · b2r + 2Br+1,r,...,2r,1)

u′2r+1m
′
2r+1

=
1
2(b1 · · · b2r + 1)u′2r+1

u′2r+1m
′
2r+1

=
E2r+1

m′
2r+1

.

If gcd(E2r+1,m
′
2r+1) = 1, then this proves that the mirror degree is m′

2r+1. Con-
versely, if some prime p divides E2r+1 and m′

2r+1, and the mirror degree were m′
2r+1,

by following the loop potential, we’d have that p divides every weight of the mirror,
a contradiction.

The same reasoning holds when n = 2r. In that case, AutT (V
′) ∼= µ2 × µm′ .

The µ2-action (which sends x0 ↦→ −x0 and leaves the other variables unchanged) is
faithful on H0(V ′,KV ′), so the µm′-action is faithful if and only if the entire group
AutT (V

′) acts faithfully. The determinant of the matrix A encoding the equation
of V ′ is 4m′

2ru
′
2r. Using [5, Proposition 7.3] again, AutT (V

′) acts faithfully on
H0(V ′,KV ′) if and only if 2u2rD

T = 4m′
2ru

′
2r, where DT is the mirror degree. This

reduces to DT = 2m′
2r. We compute the smallest mirror charge as

qT2r+1 =
br+1br · · · b2r−1b2b

′
2rb1 − br+1br · · · b2r−1b2b

′
2r + · · · − br+1 + 1

2u′2rm
′
2r

=
(s1 − 1)b′2rb2 · · · b2r−1 +Br+1,r,...,2r−1,2

2u′2rm
′
2r

=
1
3((3b

′
2r − 1)(s1 − 1)b2 · · · b2r−1 + (s1 − 1)b2 · · · b2r−1 + 3Br+1,r,...,2r−1,2)

2u′2rm
′
2r

=
1
3(8b2 · · · b2r−1 + 1)u′2r

2u′2rm
′
2r

=
E2r

2m′
2r

.
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The constant E2r is odd, so if gcd(E2r,m
′
2r) = 1, then the mirror degree is 2m′

2r, as
required. Conversely, if a prime p (which must be odd) divides both E2r and m′

2r,
and the mirror degree were 2m′

2r, then the form of the equation of V ′ implies that
all mirror weights would be divisible by p, a contradiction.

Conjecture 7.4. For each integer n ≥ 2, the numbers m′
n and En defined above

are relatively prime.

By Proposition 7.3, Conjecture 7.4 is equivalent to the klt Calabi–Yau variety
V ′/µm′ of dimension n having index equal to m′ = m′

n. By computer calculation,
the conjecture holds in dimensions at most 30.

8 Asymptotics of the mld and index

We show in this section that our klt Calabi–Yau varieties of small mld or large index
are within a constant factor of the conjecturally optimal examples in the greater
generality of klt pairs with standard coefficients.

First, building on examples by Kollár, Jihao Liu constructed a klt Calabi–Yau
pair of dimension n with standard coefficients whose mld is 1/(sn+1−1) [12, Remark
2.6]. That is conjectured to be the smallest possible mld in this setting. Namely,
Liu’s pair is

(X,D) =

(︃
Pn,

1

2
H0 +

2

3
H1 +

6

7
H2 + · · ·+ sn − 1

sn
Hn +

sn+1 − 2

sn+1 − 1
Hn+1

)︃
, (8.1)

where H0, . . . ,Hn+1 are n+ 2 general hyperplanes in Pn.
In the narrower setting of klt Calabi–Yau varieties, it turns out that Esser’s

example has mld less than 6 times 1/(sn+1 − 1) in odd dimensions, and less than
23 times this number in even dimensions. That is extremely close for such small
numbers, and it supports the conjecture that Esser’s example has the smallest mld
among klt Calabi–Yau varieties.

There is a parallel story for the problem of large index. Wang and the authors
constructed a klt Calabi–Yau pair of dimension n with standard coefficients whose
index is (sn − 1)(2sn − 3) [5, Theorem 3.3]. That is conjectured to be the largest
possible index in this setting. We now show that the conjectural value for the index
of the klt Calabi–Yau variety of section 7 is within a constant factor of that number
(Lemma 8.2).

More precisely, define a constant

α := 2
∞∏︂
j=1

[︃
sj+1

(sj − 1)2

]︃2j−1

.
= 5.522868.

The convergence of this product is easy from the doubly exponential growth of the
Sylvester numbers sj and the fact that sj+1 = (sj − 1)2 + sj .

Lemma 8.1. For each integer n ≥ 2, let 1/mn be the mld of Esser’s klt Calabi–Yau
variety of dimension n (computed in Theorem 5.1). Then

1

mn
≤ α

1

sn+1 − 1
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if n is even and
1

mn
≤ 3α2

4

1

sn+1 − 1

if n is odd.

The ratio (sn+1 − 1)/mn actually converges to α for n even and to 3α2/4
.
=

22.876556 for n odd, as n goes to infinity; but we will not need that.

Proof. (Lemma 8.1) Let r be a positive integer, and let n be 2r or 2r + 1. Let
b0, . . . , bn+2 be the exponents of Esser’s example, listed in section 3. Then ba is
equal to the Sylvester number sa for a ≤ r. Therefore,

br+1 − 1 = (br − 1)2

= sr+1
(sr − 1)2

sr+1
.

By induction on 1 ≤ a ≤ r, it follows that

br+a ≥ sr+a
(sr+1−a − 1)2

sr+2−a

[︃
(sr+2−a − 1)2

sr+3−a

]︃20
· · ·

[︃
(sr − 1)2

sr+1

]︃2a−2

.

As a result, we have

m2r = B1,2r,...,r,r+1

= b1b2r · · · brbr+1 − b1b2r · · · br + · · ·
≥ b1 · · · br(br+1 − 1)br+2 · · · b2r

≥ s1 · · · s2r
[︃
(s1 − 1)2

s2

]︃20
· · ·

[︃
(sr − 1)2

sr+1

]︃2r−1

= (s2r+1 − 1)
1

2

[︃
(s1 − 1)2

s2

]︃20
· · ·

[︃
(sr − 1)2

sr+1

]︃2r−1

≥ 1

α
(s2r+1 − 1).

The proof for n = 2r + 1 is similar. Here m2r+1 = B0,2r+1,...,r,r+1 ≥ b0 · · · br(br+1 −
1)br+2 · · · b2r+1. The lower bound for br+a above holds (by induction) for all 1 ≤
a ≤ r + 1. We deduce that

m2r+1 ≥ s0 · · · s2r+1
(s0 − 1)2

s1

[︃
(s1 − 1)2

s2

]︃21
· · ·

[︃
(sr − 1)2

sr+1

]︃2r
= (s2r+2 − 1)

1

3

[︃
(s1 − 1)2

s2

]︃21
· · ·

[︃
(sr − 1)2

sr+1

]︃2r
≥ 4

3α2
(s2r+2 − 1).

Lemma 8.2. For each integer n ≥ 2, let m′
n be the conjectural index of Esser-

Totaro-Wang’s klt Calabi–Yau variety of dimension n from section 7. Then

m′
n ≥ (sn − 1)(2sn − 3)

9α/8
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if n is even and

m′
n ≥ (sn − 1)(2sn − 3)

6α2/7

if n is odd.

Here 9α/8
.
= 6.213227 and 6α2/7

.
= 26.144635. Thus the expected index of the

klt Calabi–Yau variety in section 7 is within a constant factor of the conjecturally
largest index among all klt Calabi–Yau pairs with standard coefficients.

Proof. The statement is easy for n = 2, and so we can assume that n > 2. The
index m′

n is defined in terms of the numbers b0, . . . , bn−1 (the same in the small-mld
example) together with b′n (section 7). For n = 2r with r > 1, we have

b′2r =
1

3
[1 + 8b2 · · · b2r−1 + 12Br+1,r,··· ,2r−1,2]

≥ 1

3
[8b2 · · · b2r−1 + 12(b2 − 1)b3 · · · b2r−1]

=
128

3
b3 · · · b2r−1

≥ 16

9
s2r

(s1 − 1)2

s2

[︃
(s2 − 1)2

s3

]︃20
· · ·

[︃
(sr − 1)2

sr+1

]︃2r−2

,

using the formula for br+1 − 1 and the lower bounds for br+a from the proof of
Lemma 8.1. Therefore,

m′
2r = B′

1,2r,...,r,r+1

≥ b1 · · · br(br+1 − 1)br+2 · · · b2r−1b
′
2r

≥ 16

9
s1 · · · s2r

[︃
(s1 − 1)2

s2

]︃20
· · ·

[︃
(sr − 1)2

sr+1

]︃2r−1

≥ 8

9
(s2r − 1)(2s2r − 3)

1

2

[︃
(s1 − 1)2

s2

]︃20
· · ·

[︃
(sr − 1)2

sr+1

]︃2r−1

≥ 8

9α
(s2r − 1)(2s2r − 3).

We omit the similar argument for n = 2r + 1.
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