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ABSTRACT

Rapidly evolving taxa are excellent models for understanding the mechanisms that give rise to
biodiversity. However, developing an accurate historical framework for comparative analysis of such
lineages remains a challenge due to ubiquitous incomplete lineage sorting and introgression. Here, we
use a whole-genome alignment, multiple locus-sampling strategies, and summary-tree and SNP-based
species-tree methods to infer a species tree for eastern North American Neodiprion species, a clade of
pine-feeding sawflies (Order: Hymenopteran; Family: Diprionidae). We recovered a well-supported
species tree that—except for three uncertain relationships—was robust to different strategies for
analyzing whole-genome data. Nevertheless, underlying gene-tree discordance was high. To understand
this genealogical variation, we used multiple linear regression to model site concordance factors
estimated in 50-kb windows as a function of several genomic predictor variables. We found that site
concordance factors tended to be higher in regions of the genome with more parsimony-informative
sites, fewer singletons, less missing data, lower GC content, more genes, lower recombination rates, and
lower D-statistics (less introgression). Together, these results suggest that incomplete lineage sorting,
introgression, and genotyping error all shape the genomic landscape of gene-tree discordance in
Neodiprion. More generally, our findings demonstrate how combining phylogenomic analysis with
knowledge of local genomic features can reveal mechanisms that produce topological heterogeneity

aCross genomes.
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INTRODUCTION

It has long been recognized that gene trees need not match species trees due to stochastic sorting of
ancestral polymorphism (i.e., incomplete lineage sorting), hybridization and introgression, horizontal
gene transfer, and gene duplication and loss (Avise et al. 1987; Maddison 1997). An important
implication of gene tree-species tree discordance is that data from many unlinked loci are necessary to
accurately reconstruct divergence histories, but large molecular datasets were prohibitively expensive to
generate using pre-genomic methodologies. Together, next-generation sequencing and the multi-
species coalescent model have revolutionized molecular phylogenetics (Edwards 2009; McCormack et al.
2013; Edwards et al. 2016; Rannala et al. 2020). Next-generation sequencing made it possible to
comprehensively sample the “cloud of gene histories” (Maddison 1997) embedded within a species tree.
And by modeling the coalescent process that gives rise to these heterogeneous histories, the multi-
species coalescent model (Rannala and Yang 2003) can improve species-tree inference (Ogilvie et al.

2017; Jiang et al. 2020; Rannala et al. 2020).

Despite much progress, a central challenge in species-tree analysis is that no model
accounts for all possible sources of phylogenetic discordance. So-called “full-likelihood
methods” (e.g., BEST and *BEAST; Liu 2008; Heled and Drummond 2010) accommodate both
uncertainty in gene-tree estimation and incomplete lineage sorting (ILS) by simultaneously
modelling nucleotide substitution and the coalescent process, but these approaches remain
computationally burdensome (Liu et al. 2015; Rannala et al. 2020). In lieu of full-likelihood
methods, many researchers use approximate approaches based on the multi-species coalescent
model (e.g., MP-EST and ASTRAL, Liu et al. 2010; Zhang et al. 2018). These methods—
sometimes referred to as summary-tree methods (Bryant and Hahn 2020)—use estimated gene
trees for species-tree inference and assume that input gene trees are accurate and that there is no

recombination within, but free recombination between loci. These assumptions create a trade-off
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for sampling loci: shorter loci are more likely to satisfy the “no intralocus recombination”
assumption, but less likely to yield sufficient information for accurate gene-tree inference (Chou
et al. 2015). An alternative to having to define non-recombining loci is to use single nucleotide
polymorphism (SNP)-based methods that assume free recombination between variable sites in
the dataset (e.g., SNAPP and SVDquartets, Bryant et al. 2012; Chifman and Kubatko 2014).
Another source of phylogenetic discordance that is widespread in nature is introgression
(Harrison and Larson 2014; Leaché et al. 2014; Fontaine et al. 2015; Mallet et al. 2016; Edelman
et al. 2019; Hibbins and Hahn 2022). The multi-species coalescent model has been extended to
include interspecific gene flow (Hey and Nielsen 2004; Yu et al. 2014), but full-likelihood
implementations of these models (Jones 2018; Wen and Nakhleh 2018; Wen et al. 2018; Zhang
et al. 2018a; Flouri et al. 2020) are computationally demanding (Flouri et al. 2020; Hibbins and
Hahn 2022). For this reason, heuristic approaches for detecting introgression (e.g., SNaQ,
ABBA-BABA tests, or HyDe; Green et al. 2010; Durand et al. 2011; Solis-Lemus et al. 2016;
Blischak et al. 2018) are often used in conjunction with other species-tree methods that assume
discordance is due to incomplete lineages sorting (e.g., Edelman et al. 2019; Meleshko et al.
2021). Although no species-tree method accounts for all sources of gene-tree discordance,
coalescent-based methods nevertheless appear to perform reasonably well even when model
assumptions are violated (Lanier and Knowles 2012; Chou et al. 2015; Adams et al. 2018; Long
and Kubatko 2018; Borges et al. 2022; Yan et al. 2022).
In addition to creating new analytical challenges, genome-scale datasets also reveal that phylogenetic
discordance is unevenly distributed across the genome (Pollard et al. 2006; White et al. 2009; Fontaine
et al. 2015; Edelman et al. 2019; Small et al. 2020). Two potential sources of heterogeneous discordance
are genotyping error (e.g., due to sequencing, alignment, and genotype-calling errors) and gene-tree

estimation error, which may vary across the genome due to local base composition, repetitive sequence
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content, and the density of phylogenetically informative sites (Betancur-R. et al. 2013). The genomic
landscape of discordance is also likely to be influenced by the interplay between natural selection, gene
flow, and recombination. For example, because selection on a locus reduces the effective population
size (N.) at linked neutral sites, regions of the genome evolving under positive or negative selection are
expected to have reduced levels of ILS (Maynard Smith and Haigh 1974; Charlesworth et al. 1993; Slatkin
and Pollack 2006; Stukenbrock et al. 2011; Pease and Hahn 2013; Dutheil et al. 2015). Because the
effects of linked selection are most pronounced in low-recombination and gene-dense regions of the
genome (Payseur and Nachman 2002; Charlesworth et al. 2009; Barton 2010; Cutter and Payseur 2013),

such regions may have reduced phylogenetic discordance via ILS (Pease and Hahn 2013).

Low-recombination regions of the genome may also have reduced rates of introgression. This is because
neutral or positively selected variants in low-recombination regions of the genome are more likely to be
linked to deleterious alleles that prevent introgression (Nachman and Payseur 2012; Brandvain et al.
2014; Schumer et al. 2018; Li et al. 2019; Martin et al. 2019). Overall, research to date suggests that
genealogical concordance (i.e., the extent to which gene trees match the underlying species tree) should
correlate with genomic variables—such as the density of variable sites (parsimony-informative sites and
sites for which a rare allele is present on one chromosome only [singletons]), the amount of missing
data, gene density, base composition, and recombination rate (Table 1)—that influence the probability
of genotyping error, gene-tree estimation error, incomplete lineage sorting, and introgression. However,
the relative contribution of different genomic predictor variables to genome-wide variation in

concordance with the underlying species tree remains an open question.

Here, we revisit a classic case study in messy species-tree inference (Linnen and Farrell 2007, 2008b,
2008a; Linnen 2010) armed with a high-quality reference genome, whole-genome resequencing data for
19 species, and newer species-tree methods. Specifically, we focus on the eastern North American

“Lecontei” clade of Neodiprion sawflies (Order: Hymenoptera, Family: Diprionidae). Previous studies
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suggest that this clade radiated with gene flow sometime within the last 2-10 million years (Linnen and
Farrell 2007, 2008b; Bendall et al. 2022). Upon colonizing eastern North America, population divergence
and speciation were likely driven by rapid adaptation to new pine (Pinus) hosts (Linnen and Farrell 2010;
Bagley et al. 2017; Bendall et al. 2017; Glover et al. 2023). In addition to variation in host use, there is
intra- and interspecific variation in larval and adult morphology, behavior, and overwintering strategy
(Coppel and Benjamin 1965; Knerer and Atwood 1973). This phenotypic variation, coupled with a rich
natural history literature and experimentally tractable species that can be reared and crossed in the lab
(Knerer 1984; Bendall et al. 2017, 2023; Linnen et al. 2018), makes Neodiprion an excellent model for
characterizing both the genetic mechanisms and evolutionary drivers of population differentiation and
speciation. For accurate inferences about evolution in this group, an accurate species-tree estimate is

essential.

The first informal phylogenetic hypothesis for Neodiprion consisted of five named species complexes
(lecontei, pinusrigidae, pratti, abbotii, and virginianus) based on shared morphological and ecological
traits (Ross 1955). Over fifty years later, these proposed species groups were evaluated with DNA
sequence data from one mitochondrial locus and three nuclear genes. As expected under a scenario of
rapid and recent divergence with gene flow, gene-tree topologies differ among the four loci (Linnen and
Farrell 2007, 2008a). However, gene-tree discordance is especially pronounced between the
mitochondrial locus and the three nuclear loci, likely due to extensive mitochondrial introgression
(Linnen and Farrell 2007). To obtain a species-tree estimate from the remaining three nuclear loci,
Linnen and Farrell (2008a) used multiple species-tree methods (Takahata 1989; Maddison 1997;
Maddison and Knowles 2006; Edwards et al. 2007; Liu and Pearl 2007). Overall, these analyses yielded
consistent support for two of Ross’s proposed species groups (lecontei and pinusrigidae), mixed support
for the virginianus and pratti species groups, and no support for the abbotii species group. Although

different methods and subsets of individuals per species produced different topologies, Linnen and
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Farrell (2008a) used areas of agreement across phylogenetic analyses to propose a provisional species

tree for the Lecontei group (Fig. 1).

In this study, we expand the four-locus Lecontei-group dataset to the entire genome. Our study
has three goals. First, we take advantage of a small, tractable genome (~272 Mb) to evaluate how
inferred species-tree topologies are influenced by: (1) different analysis methods; specifically,
concatenation vs. summary-tree (ASTRAL-III) and SNP-based (SVDquartets) species-tree approaches; and
(2) subsampling the genome in ways that mimic reduced-representation approaches such as exon
capture (approximated by sampling coding exons only) and restriction-associated DNA sequencing
(approximated by subsampling SNPs). Second, we integrate all species-tree results to suggest an
updated species tree for comparative work, highlighting areas of remaining uncertainty that are
sensitive to sampling strategy and species-tree methodology. Third, we investigate genome-wide
variation in concordance, measured using site concordance factors (sCFs), which describe the proportion
of “decisive” sites for that are concordant with a focal branch in a reference species-tree topology (Minh
et al. 2020a). Using multiple linear regression, we then evaluate several genomic variables that may
predict genealogical concordance (Table 1). Based on our findings, we highlight priorities for future work

on this system and make recommendations for other genome-wide phylogenomic analyses.
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MATERIALS & METHODS
Assembly and Annotation of a Reference-Quality Genome for Neodiprion lecontei

DNA extraction and library preparation.—We obtained samples for DNA extraction
from haploid male siblings that were the progeny of a single virgin N. lecontei female that had
been collected in Lexington, KY (38°00'50.4"N 84°30'14.4"W) as a larva and lab-reared to
adulthood. To maximize sawfly DNA yields and minimize host plant material in the gut, we
flash-froze male larvae that were either in the final, non-feeding instar or dissected from freshly
spun cocoons. We extracted genomic DNA from a single haploid male with a MagAttract HMW
DNA Kit (Qiagen, Hilden Germany) using the fresh or frozen tissue protocol. To further improve
sample purity, we performed a 2.0x bead clean-up using polyethylene glycol containing solid-
phase reversible immobilization beads solution for each sample (DeAngelis et al. 1995). We
quantified double-stranded DNA using a dsSDNA Broad Range (BR) Qubit assay and assessed
using the fluorometer feature of a DS-11 Spectrophotometer and Fluorometer (DeNovix Inc,
Wilmington, DE, USA). We quantified DNA purity using the UV-Vis spectrometer feature on
the DS-11, which reported OD 230/260/280 ratios.

We sheared DNA to a mean size distribution of ~20 kb using a Diagenode Megaruptor 2 according to the
manufacturer’s protocol, (Denville, New Jersey, USA) and sized sheared DNA on a Fragment Analyzer
(Agilent Technologies, Santa Clara, California, USA) using the High Sensitivity (HS) Large Fragment kit.
Sheared DNA was the starting input for PacBio SMRTBell library preparation using the SMRTbell Express
Template Prep Kit 2.0 according to the manufacturer’s protocol (Pacific Biosciences, Menlo Park,
California, USA). The final library was shipped to the USDA-ARS Genomics and Bioinformatics Research
Unit in Stoneville, Mississippi, USA where it was sequenced on one Pacific Biosciences 8M SMRT Cell on
a Sequel Il system (Pacific Biosciences, Menlo Park, California, USA) with a pre-extension time of 2 hours

and a movie collection time of 30 hours.
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In a parallel pipeline, we prepared an enriched chromosome conformation capture (HiC) library using
another N. lecontei sample from the same haploid male family. Briefly, we crosslinked tissue using the
Arima HiC low input protocol and performed proximity ligation using the Arima HiC Kit (Arima Genomics,
San Diego, California, USA). After proximity ligation, we sheared the DNA using a Diagenode Bioruptor
and then size-selected to enrich for DNA fragments of 200-600bp. We prepared an lllumina library from
the sheared and size-selected DNA using the Swift Accel NGS 2S Plus kit (Integrated DNA Technologies,
Coralville, lowa, USA). The final Illumina HiC library was sequenced on a NovaSeq 6000 at the Hudson
Alpha Genome Sequencing Center (Huntsville, Alabama, USA) with paired-end 150 bp (PE150) reads. We
trimmed sequence reads for lllumina adapter artifacts using the lllumina BaseSpace software (Illumina,

San Diego, California, USA).

Genome assembly.—Following sequencing, circular consensus sequence (CCS) calling
was performed on the raw subreads generated by the Sequel II system using the SMRTLink v8.0
software (Pacific Biosciences, Menlo Park, California, USA). We filtered the resulting CCS
reads for adapter contamination using the software HiFiAdapterFilt v2.0 (Sim et al. 2022). The
filtered dataset served as input sequences for the HiFi data assembly software HiFiASM v0.16.1-
r375 (Cheng et al. 2021) using default parameters. We converted the resulting contig assembly
(.gfa format) to .fasta format using the software any2fasta (Seeman, 2018

https://github.com/tseemann/any2fasta).

To produce the HiC scaffolded assembly, we mapped paired lllumina HiC reads to the HiFi derived contig
assembly using the mem function of the software BWA. We removed PCR duplicate artifacts from the
resulting .sam file using the software samblaster (Faust and Hall 2014). We then used the resulting .bam
file as the input file to the Phase Genomics Matlock suite of HiC functions (Kronenberg and Sullivan,

2018 https://github.com/phasegenomics/matlock) (Phase Genomics, Seattle, Washington, USA), which

converted mapped reads into a HiC format that could be converted to a .hic and .assembly file using the
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3d-dna script ‘run-assembly-visualizer.sh™ and visualized using the software Juicebox v1.11.08 (Durand
et al. 2016). Manual edits to the HiC scaffold assembly were performed using Juicebox v1.11.08 and
changes were applied to the assembly using the Phase Genomics script

‘juicebox_assembly_converter.py’ (https://github.com/phasegenomics/juicebox_scripts).

Assembly quality analysis.—To estimate genome size, we performed k-mer distribution analysis on the
raw data using the k-mer counting software KMC (Deorowicz et al. 2013) and GenomeScope v.2.0
(Ranallo-Benavidez et al. 2020). To evaluate the assembly for duplicate contigs, we performed k-mer
spectra analysis with the K-mer Analysis Toolkit (KAT) (Mapleson et al. 2016) using the raw data and the
contig assembly. We evaluated duplicate content and genome completeness with BUSCO v5.0 in
‘genome’ mode for the Metazoa, Arthropoda, Insecta, Endopterygota, and Hymenoptera ortholog sets
(Manni et al. 2021). To characterize the read depth of each contig, we used the mapping software
minimap2 (Li 2018) with the contig assembly and raw HiFi CCS read set. We used the NCBI nucleotide
(nt) database (accessed 2017-0605) and the UniProt Reference Proteomes database (accessed 2020-03)
to assign each contig to a taxonomic class using BLAST+ (Camacho et al. 2009) in blastn mode and
Diamond (Buchfink et al. 2021) in blastx mode, respectively. Results from the hierarchical BUSCO
analysis, read depth analysis, and taxon assignment were visualized using BlobTools2 (Laetsch and
Blaxter 2017), and summarized using the python script blobblurb

(https://github.com/sheinasim/blobblurb).
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Gene annotation.—The NCBI Neodiprion lecontei Annotation Release 101 was
completed using the NCBI Eukaryotic Genome Annotation Pipeline Software version 9.0.
Briefly, BUSCO v4.1.4 was run in protein mode on the annotated gene set and the longest gene
was retained. WindowMasker (Morgulis et al. 2006) was used to mask the genome (26.24%
masked). Previously deposited transcriptome sequences from Neodiprion (including 77 specific
tissues isolated from N. lecontei at five life stages from Herrig et al. 2021), RefSeq proteins, and
GenBank Insecta proteins were then aligned to the masked genome using Splign, minimap2, or
ProSplign (Kapustin et al. 2008; Li 2018). The alignments were then passed to Gnomon
(Souvorov et al. 2010) for gene predictions. 14,732 genes and pseudogenes were identified in

this process including 11,969 protein-coding genes.

Taxonomic Sampling, Library Preparation and Sequencing, and Reference-Anchored Alignment
We extracted fresh DNA from ethanol-preserved exemplars from 19 Neodiprion species, often from the
same individuals or colonies as used in earlier phylogenetic studies of this genus (Linnen and Farrell
2007). Larval individuals had been collected in the United States and Canada (Table S1; this and all
supplementary material can be found in the Dryad data repository:

https://doi.org/10.5281/zen0d0.11154212) and stored in ethanol at -202C. Sampling included all species

in the eastern North American “Lecontei” clade except N. insularis and N. cubensis, both endemic to
Cuba. We included the western North American species N. autumnalis an outgroup (Linnen and Farrell
2008b). Based on the presence of heterozygous sites in Sanger-sequence data from three nuclear loci,

all individuals included in this study were diploid.

We dissected tissue from the prolegs and the ventral region of the larvae, avoiding the gut region. We
then ground liquid nitrogen-frozen tissue with pestles made from 1-mL micropipette tips, and incubated

the resulting powder in CTAB buffer with proteinase K and RNase A. We extracted DNA using phenol-
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chloroform-isoamyl alcohol, dried the ethanol precipitate overnight, and resuspended in TE buffer. We
assessed DNA integrity with a 0.7% agarose gel, DNA purity with the 260/280 ratio, and DNA
concentration with a Quant-iT dsDNA High-Sensitivity fluorescence assay (Thermo Fisher Scientific). The
Georgia Genomics and Bioinformatics Core (Athens, GA, USA) prepared and sequenced one small-insert
DNA library for each species. Libraries had a mean fragment size of 619 bp and were sequenced on

Illumina NextSeq 500 with PE150 reads. Sequencing produced 14-27 million filtered reads per individual.

To obtain a multi-genome alignment, we used a pseudo-reference-based approach, with our annotated,
reference quality N. lecontei genome (described above) serving as the reference. This approach is
appropriate for this clade because synteny is high and genetic divergence among species is low (see
results). Our pipeline was based on the published Pseudo-It pipeline (Sarver et al. 2017) (Fig. S1) with
some modifications. Briefly, we first used bowtie2 v2.4.1 (Langmead and Salzberg 2012) to map reads
from each species to the N. lecontei reference genome. To allow for divergence between reads and the
N. lecontei reference, we initially allowed a mismatch in the seed and “local” mapping options in
bowtie2. New variants (excluding indels) were incorporated using samtools v1.10 (Li et al. 2009) and
bcftools v1.10.2 (Li 2011). In a second round of mapping, this process was repeated using the first
iteration of the genome for each species as the new reference genome. The third round of mapping
removed the seed mismatch. The fourth and fifth iterations required end-to-end mapping. After the fifth
iteration, we replaced any nucleotide that had a read depth less than 4 or that had excessively high
mapping depth (highest 1% of depths for each species) with an “N” using a custom script. Heterozygous
genotypes were indicated using the IUPAC nucleotide code. Unless otherwise noted, all bioinformatics
commands and scripts can be found on Zenodo and the LinnenLab GitHub page under the

Herrig_etal_NeodiprionPhylogeny repository.
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To calculate genetic distance between species, we used the dist.dna command within the R v3.6.2
package ape v5.5 (Paradis and Schliep 2019) and default parameters to calculate Kimura’s two-

parameter (K80) distance (Kimura 1980) between every pair of species.

Dataset Preparation and Phylogenetic Inference

Our genome assembly and pseudo-reference approach produced 20 aligned genomes: the de novo N.
lecontei genome and 19 pseudo-reference genomes (18 Lecontei clade species plus outgroup N.
autumnalis from the western North American Sertifer group). To explore how genomic sampling
strategy and analysis method affects species-tree inference, we sampled the alighed genomes in three
ways. First, we used bedtools v2.30.0 (Quinlan 2014) to divide the seven Neodiprion chromosomes into
non-overlapping windows of 50 kb. To evaluate the effect of window size on species-tree
inference, we also generated non-overlapping windows of 10 kb, 100 kb, 500 kb, and 1000 kb.
Because some regions of the genome had high levels of missing data, we used custom python scripts to
exclude windows for which the amount of missing data (Ns in the alignment) was more than 10%. We
then used IQ-TREE v2.2.2.6 (Minh et al. 2020b) to estimate a maximum-likelihood (ML) tree for the
entire dataset (concatenated tree) and a gene tree for each window, in both cases allowing IQ-tree to
select the best-fit substitution model for each window. We then used the estimated gene trees as input
for ASTRAL-III'v5.7.3 (Zhang et al. 2018b) to produce a single coalescent-based species tree for each of
the windowed datasets. To visualize variation in gene tree topologies among 50-kb windows, we used
DensiTree v3.0.2 (Bouckaert 2010). To prepare gene trees for visualization, the R package ape v5.7-1
(Paradis and Schliep 2019) was used to root trees using N. autumnalis as an outgroup and to standardize

branch lengths via the “compute.brlen” command and the “Grafen” method (Grafen 1989).

Second, to approximate a dataset of protein-coding genes analogous to an RNAseq or exon-capture

phylogenomic dataset, we used gffread v0.11.7 with the —w flag to write FASTA files with spliced exons
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for each transcript for each species using the NCBI Neodiprion lecontei Annotation Release
(iyNeolLecol.1 RefSeq GCF_021901455.1). Custom scripts were used to define and keep the isoform
with the most parsimony informative sites. We again used IQ-TREE to estimate a ML gene tree each
gene, excluding genes containing fewer than 10 parsimony-informative sites. Finally, we used ASTRAL-III

to estimate a species tree for the protein-coding dataset as described above.

Third, we called SNPs across the entire genome using SNP-sites v2.5.1 (Page et al. 2016). We then
filtered the data to exclude SNPs that were absent in more than 10% of species and sites with more than
two alleles. In addition to analyzing all SNPs (which likely contains tightly linked sites), we produced
additional datasets with one SNP sampled every 1 kb, 5 kb, 10 kb, 50 kb, or 100 kb using SNP-sites, with
more sparsely sampled SNPs on par with a dataset that might be generated via RADseq. We
transformed each of the six datasets into nexus format and used SVDquartets (Chifman and Kubatko
2014), implemented in PAUP v4.0a (Swofford 2000), to produce a species tree for each dataset.

Heterozygous sites were handled using the “Distribute” option.

To generate comparable measures of topological variation among sites for branches in species trees
produced by the different methods and datasets, we used IQ-TREE v2.2.2.6 (Minh et al. 2020b) to
generate ML estimates of sCFs (Mo et al. 2023) for each branch in a focal species tree, using the same
alignment used to produce the corresponding species tree (e.g., an alighment of SNPs was used for the
SVDquartets tree). For methods that use gene trees as input, we also estimated gene concordance

factors to quantify topological variation among loci.

IQ-TREE analyses also produced phylogenies with branch lengths scaled to substitutions per site;
however, introgression and hemiplasy cause biases in branch length estimation (Hibbins et al. 2020). To
correct for these biases and convert branch lengths to coalescent units, we used the function ‘subs2coal’

within the python package HelST v.0.3.1 (Hibbins et al. 2020). This tool redistributes branch lengths
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based on information from gene- or site-concordance factors. We used our 50-kb window phylogeny

with sCF values as input, and the resulting tree was visualized using FigTree v.1.4.4 (Rambaut 2007).

To evaluate the potential for introgression to contribute to topological variation revealed by DensiTree
and concordance-factor analyses, we used the f-branch metric (Malinsky et al. 2018), which detects
gene flow among tips as well as internal branches on the phylogeny. To perform this analysis, we first
used the ‘DtriosCombine’ function in the Dsuite v0.4 package (Malinsky et al. 2021) to calculate
genome-wide f4-ratio statistics for all possible trios of species, with the 50-kb ASTRAL-III species-tree as
the guide tree. The resulting f4-ratio values were then used as input for the Dsuite command ‘Fbranch’
with default settings. The f-branch statistics were visualized using the ‘dtools.py’ python utility included

with the Dsuite package.

Genomic Correlates of Concordance

To quantify how concordance with a focal species tree varies across the genome, we used IQ-TREE
v2.2.2.6 to calculate ML site concordance factor estimates for each internal branch in the species tree
for each 50-kb window, with the corresponding ASTRAL-IIl species tree as the focal tree. To visualize
how topological concordance varies across the genome for each internal node of the species tree, we
used chromPlot v1.26.0 (Ordstica and Verdugo 2016) and colorspace v2.1-0 to paint the chromosomes
based on observed site concordance factors. All regression and painting analyses were performed in R

v4.3.3 (R Core Team 2024).

For these same 50-kb windows, we then generated summary statistics corresponding to the predictor
variables in Table 1. First, to describe variation in each 50-kb window, we used summaries of the
number of parsimony-informative sites and singletons produced in IQ-TREE log files. Second, to quantify
missing data for each window, we calculated the proportion of sites in each 50-kb alighment that were

Ns. Third, to quantify GC content for each window, we calculated the proportion of nucleotides in each
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alignment that were G or C. Fourth, to calculate gene density for each window, we used the NCBI
Neodiprion lecontei Annotation Release 1.1 (iyNeolLecol.1 RefSeq GCF_021901455.1) to define the

number of genes with start codons within each window using custom scripts.

Fifth, to estimate local recombination rate for each window, we used data from a mapping population
that was previously used to identify quantitative trait loci for larval color traits that differ between two
populations of N. lecontei (Linnen et al. 2018). The original analysis consisted of 503 SNPs genotyped in
429 F; haploid males (like all hymenopterans, Neodiprion are haplodiploid) generated via double-digest
restriction-associated DNA sequencing (Peterson et al. 2012). To increase marker density, we first
mapped the raw sequencing reads (NCBI BioProject PRINA434591, SRR6749156) to the new N. lecontei
genome assembly (iyNeolecol.1). To identify fixed differences between the two parental populations,
we first mapped reads from the cross parents (4 males; 4 females) and 10 F; females to the reference
genome using BWA-MEM v0.7.17 (Li 2013) with the =M option, followed by samtools v1.10 (Li et al.
2009) to convert the sam output to a bam file. SNPs were called using mpileup in bcftools v1.9 (Li et al.
2009). We then used vcftools v0.1.16 (Danecek et al. 2011) to remove sites with indels and sites that
were missing genotype information for more than 50% of the parents. To retain only putative fixed
differences between the parent populations, we used vcftools to calculate the Fsr for each site and a
custom python script to retain sites with Fsr = 1, resulting in 21,887 SNPs. To further validate that these
SNPs were fixed between populations, we required that at least one of the F; females was heterozygous
and that none of the F; females were homozygous at a read depth of 10. We used a custom python
script to drop any sites that did not meet these criteria, reducing our dataset to 13,462 SNPs. We next
mapped F, haploid male reads to the reference genome and called SNPs using BWA, samtools, and
bcftools. For genotyping, we required a minimum read depth of 4 at each site and removed sites that

had more than 50% missing information and that did not pass filtering in parents and F; females using
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custom scripts. In total, we retained 3,104 ancestry-informative SNPs that were called in at least 50% of

F, males.

We used R/qgtl (Broman et al. 2003) to remove sites with identical genotypes to another site, sites
exhibiting segregation distortion, and individuals that were missing genotypes at more than 50% of
markers, producing a final dataset of 1436 markers genotyped in 402 F, males. Marker location was
inferred based on physical location in the reference genome. To estimate a genetic map with positions
of markers in centiMorgans (cM), we used the “quickEst” function in ASMap v1.0-4 (Taylor and Butler
2017), with a Kosambi mapping function. To estimate local recombination rate, we used MareyMap
Online (Rezvoy et al. 2007; Siberchicot et al. 2017) with the sliding window option. We then used the

recombination rate estimate for the midpoint of each window for our regression analysis.

Our final genomic variable was the D-statistic (or ABBA-BABA statistic), which we calculated for each
internal branch for every 50-kb window. To calculate this statistic, we used the two site discordance
factors (sDF1 and sDF2) produced by IQ-TREE. These values give the percentage of sites within a window
that support the two alternative resolutions of a focal branch. Under ILS, these percentages are
expected to be roughly equal; strong deviations from this expectation could be produced by gene flow
(Green et al. 2010; Patterson et al. 2012). We calculated D-statistics describing the magnitude of skew in
discordant topologies using the following formula: |(sDF1*sN)-(sDF2*sN)/(sDF1*sN)+(sDF2*sN)|, where
sDF1, sDF2, and sN are the two site discordance factors and the number of decisive sites for a particular

branch in the species tree.

To determine which genomic summary statistics predicted topological concordance, we fit a linear
model for each internal branch in the window-based ASTRAL-III species tree, with all seven summary
statistics (number of parsimony-informative sites, number of singletons, proportion missing data, GC

content, D-statistic, gene density, and recombination rate) as predictor variables. To ensure all predictor
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variables were on the same scale, we applied a normal-quantile transformation to each variable prior to
fitting the model. To select a model that best explains the data without including unnecessary variables,
we used the “step” function in R to perform bi-directional stepwise model selection via the Akaike
information criterion (AIC). To assess correlations between variables, we used ggplot2 v3.3.5 and the
GGally v2.1.2 extension to create a scatterplot matrix and estimate Pearson correlation coefficients and

p-values.

RESULTS

Neodiprion De Novo and Pseudo-Reference Genome Assemblies

The N. lecontei iyNeolecol.1 assembly was sequenced to 93x coverage of PacBio HiFi reads and
produced an assembly size of 272.074 MB in 106 scaffolds from 168 contigs with only 2% of the genome
represented in gaps. Additional assembly statistics such as contig and scaffold N/L50 and N/L90 can be
found in Table S2. Assessment for genome completeness using BUSCOs revealed that for all relevant
databases from Eukaryota, Metazoa, Arthropoda, Insecta, Endopterygota, and Hymenoptera, genome
completeness estimates ranged from 95.2% (Hymenoptera ortholog database v.10) to 99.6% (Eukaryota
ortholog database v.10) (Table S3). All BUSCOs were found in assembled chromosomes, and none were

in unplaced contigs.

For the remaining species, an average of 96.2% (range: 93.5-97.7%) of sequencing reads
mapped to the N. lecontei reference genome, resulting in a final average coverage of 20.1x (range: 16x-
28x) after removing regions with low or unusually high coverage (Table S4). The high mapping rates are
likely attributable to low overall genetic divergence among eastern North American Neodiprion species:
across all species, genome-wide average pairwise genetic distance (K80) was 0.0047 (range: 0.0003 -

0.0093) (Table S5).

20z Ainp 80 uo 1sanb Aq 87980/ //9€09EAS/010SAS/E601 0 L/10P/3]21ME-a0uBApPE/0IgSAS/WOoo dnoolwapede//:sdily woiy papeojumoq



Species-Tree Estimates for Eastern North American Neodiprion
The N. lecontei genome and our 19 reference-based whole-genomes produced a 50-kb window dataset,
a “gene” dataset, and six SNP datasets, summarized in Table S6 (all data are available on Dryad

https://doi.org/10.5061/dryad.bg79cnpf7). For the 50-kb window dataset, ML analysis of concatenated

data and a summary-tree method (ASTRAL-Il) produced identical topologies (Fig. 2a, 2b). We also
explored the effect of window-size on ASTRAL-III species-tree estimates and found that windows of size
10-kb, 100-kb, 500-kb, and 1000-kb produced topologies identical to the 50-kb dataset. An ASTRAL-III
tree estimated using 10,601 coding loci differed from the 50-kb window tree only in the placement of N.
compar and N. dubiosus (Fig. 2c). Finally, a topology produced by our “all SNPs” dataset (i.e., 13,732,314
SNPs that passed quality and completeness thresholds) differed from both ASTRAL-III trees in the

placement of N. dubiosus and the pratti species complex (Fig. 2d).

We also examined the effect of subsampling SNPs on species-tree inference in SVDquartets. A dataset
consisting of SNPs sampled everyl kb (212,496 SNPs) produced a tree identical to the “all-SNPs” tree
(Fig. S2a). SNPs sampled at 5-kb and 10-kb intervals (46,473 SNPs and 12,427 SNPs, respectively)
produced a topology that differed from the all-SNPs tree in the placement of the pratti group (Fig. S2b).
Unique topologies were also produced by the most sparsely sampled SNP datasets (1 per 50-kb = 5,131

SNPs; 1 per 100-kb = 2,611 SNPs; Fig. S2c,d).

Across all species trees (except the smallest SNP dataset), we consistently recovered five primary clades:

N. lecontei + N. pinetum (lecontei species complex); N. excitans + N. hetricki + N. pinusrigidae + N.
swainei (pinusrigidae species complex); N. maurus + N. pratii + N. taedae (pratti species complex), N.
abbotii + N. dubiosus + N. fabricii + N. nigroscutum (abbotii species complex minus N. compar and plus
N. dubiosus), and N. knereri + N. merkeli + N. rugifrons + N. virginiana + N. warreni (virginianus complex
minus N. dubiosus) (Fig. 2 and Fig. S2). Most of the relationships within these clades were also highly

stable across analyses and datasets. However, three relationships were sensitive to sampling approach
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and analysis method: 1) the placement of N. dubiosus within the abbotii clade, 2) the placement of N.
compar relative to remaining Lecontej group species, and 3) the placement of the pratti clade relative to
the virginianus and abbotii clades. Not surprisingly, these relationships also tended to have the lowest

site and gene concordance factors across the trees, regardless of dataset (Fig. 2, Fig. S2).

To visualize variation in gene-tree topologies, we plotted gene trees estimated from 50-kb windows
using DensiTree (Fig. 3). Consistent with generally low to moderate concordance factors for branches in
our species-tree estimates (Fig. 2, Fig. S2), the DensiTree plot revealed considerable heterogeneity
among gene trees. Although heterogeneity is expected under incomplete lineage sorting, f-branch
statistics reveal evidence of introgression in areas of the tree with especially pronounced site and gene-
tree discordance. For example, the highest f-branch scores involve taxa from the virginianus, abbotii,
and pratti species complexes (e.g., N. rugifrons, N. abbotii, N. nigroscutum, and N. pratti; Fig. 3), clades

that tend to have lower concordance factors and tend to be more unstable across analyses (Fig. 2).

Notably, however, there is minimal signal of introgression between N. compar and other species (Fig. 3).

Thus, the uncertainty in the placement of this species may stem instead from factors that increase

incomplete lineage sorting.

Genomic Correlates of Concordance

To quantify concordance across branches in the Neodiprion species tree and across the genome, we
extracted site concordance factors for every 50-kb window and every branch in the corresponding
species tree (Fig. 2b). To visualize variation in concordance, we painted the chromosomes according to
the 50-kb site concordance factors for each branch (Fig. 4; to improve interpretability, branch lengths
are scaled to coalescent units). Consistent with variable genome-wide concordance factors across

branches in the 50-kb window species tree (Fig. 2b), this visualization revealed extensive variation in
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concordance across clades, with some clades having much higher concordance levels on average than
others (Fig. 4). For each clade, there were also variable levels of site concordance across the genome,
with areas of relatively high and low concordance spread fairly evenly across the chromosomes (Fig. 4).
There were two notable exceptions to this pattern. For some clades, Chromosome 1 or Chromosome 7
(or both) had areas of noticeably more uniform site concordance values compared to the rest of the
genome. These areas, denoted by stars in Figure 4, could be explained by inversions that restrict
recombination in these genomic locations. Notably, the putative inversion on Chromosome 1 is
supported by independent evidence from synteny plots generated from recently produced
chromosome-level assemblies for four Neodiprion species (Fig. S3). Comparable assemblies from

additional species are needed to evaluate the putative inversion on Chromosome 7.

To explore factors that give rise to heterogeneous site concordance factors across the genome and
species tree, we quantified several genomic predictor variables for each 50-kb window. To estimate
local recombination rate, we constructed a new genetic map using sequencing reads from a previous
cross between N. lecontei populations/(Linnen et al. 2018). By mapping reads to a new reference
genome, we nearly tripled the number of markers (from 503 to 1436) and decreased the average
spacing between markers from 2.4 cM (maximum spacing = 24.3 cM) to 0.9 cM (maximum spacing =
13.2 cM). The total map length was 1271.6 cM. With an assembled genome size of ~272 Mb, this
corresponds to a genome-wide recombination rate of 4.68 cM/Mb, a slightly higher rate than was
previously reported (3.43 cM/Mb; Linnen et al. 2018). Plotting genetic distance as a function of physical
distance revealed an even coverage of markers across chromosomes; gaps in the new genetic map
corresponded to low-recombination centromeric regions (Figs. S4, S5). Using these data, local
recombination rates were estimated via sliding windows, revealing heterogeneous recombination rates

across the genome (Figs. S4, S5).
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We also investigated pairwise correlations between all genomic predictor variables (Fig. S6). The
strongest correlation we observed was between the number of parsimony informative sites and the
number of singletons. These statistics also correlated positively with the amount of missing data and
negatively with GC content and gene count. Recombination rate was positively correlated with missing

data, GC content, and gene count (Fig. S6).

To determine which genomic variables best predict variation in concordance across the genome for each
of the 17 branches in our species tree, we performed stepwise regression for each clade. These
regression results are summarized in Figure 5, Table S7, and Table 2. Toimprove interpretability, branch
lengths in Figure 5 are scaled to coalescent units. Overall, the amount of variation in site concordance
factors explained by our regression models ranged from 3% to a 62%, with the highest value observed
for the clade containing N. pinetum + N. lecontei (notably, the source species for recombination rate and
gene density estimates). In general, site concordance factors were highest in 50-kb windows with: more
parsimony-informative sites, fewer singletons, less missing data, lower GC content, higher D-statistics,
more genes, and lower recombination rates (Table 2). Overall, these findings fit our predictions outlined

in Table 1.

DiscusSION

Whole-genome datasets provide a comprehensive sample of heterogeneous histories, and the multi-
species coalescent provides a framework for modeling sources of heterogeneity. Here, we combine a
high-quality reference genome with whole-genome alignments for 20 pine sawfly species to achieve
three goals: 1) determine the effect of sampling strategy and analysis method on species-tree
estimation from whole-genome data, 2) estimate a species tree for eastern North American Neodiprion

species, and 3) identify genomic predictors of gene-tree heterogeneity and phylogenetic concordance.
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Below, we discuss progress on each of our three goals and possible explanations for regression results
that deviate from predictions outlined in Table 1, while also highlighting both the broader implications

and limitations of our analyses.

Species-Tree Estimates Mostly Robust to Locus-Sampling Strategy and Analysis Method
Although there is growing body of research investigating how marker-sampling strategies and species-
tree analysis methods impact the accuracy of species-tree estimates, many outstanding questions
remain (Chou et al. 2015; Chen et al. 2017; Reddy et al. 2017; Huang et al. 2020; Karin et al. 2020; Alda
et al. 2021; Literman and Schwartz 2021; Mongiardino Koch 2021). In the absence of a consensus for
phylogenomic best practices, whole-genome alignments offer an opportunity to investigate how
partitioning and analyzing the data in different ways affect species-tree estimates. Based on previous
work (Linnen and Farrell 2007; Bendall et al. 2022), f-branch statistics (Fig. 3), and the presence of
multiple short internal branches in our species tree (Figs. 4,5), both introgression and high levels of
incomplete lineage sorting complicate species-tree inference in Neodiprion. Nevertheless, our analysis
of whole-genome alignments from closely related pine sawfly species revealed that, with a few
exceptions, topologies were remarkably robust to marker sampling strategy and species-tree method

(Fig. 2, S2).

We found that a concatenated ML analysis and an ASTRAL-IIl analysis of ML gene trees for 50-kb
windows yielded identical topologies (Fig. 2a, 2b). This is perhaps surprising because concatenation is
expected to perform particularly poorly when there are many conflicting histories in the dataset
(Kubatko and Degnan 2007; Roch and Steel 2015; Mendes and Hahn 2018). Of course, with 50-kb
windows, we are almost certainly violating the multi-species coalescent model assumption that gene
trees were produced from non-recombining loci. Thus, our 50-kb loci are likely to contain many
discordant histories (Mendes et al. 2019), an assumption that is supported by relatively high

recombination rates (Fig. S4, S5) and many windows with low site concordance factors across the
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genome (Fig. 4). However, we also found that our ASTRAL-IIl results were insensitive to window sizes
ranging from 10 kb to 1 Mb, demonstrating that varying how badly we violated the “no intra-locus

recombination” assumption had little effect on the inferred species tree.

We also found that subsampling coding sequences from the whole-genome dataset—a dataset
analogous to one that might be produced from transcriptome sequencing or exome capture—had only a
modest effect on the inferred species tree (Fig. 2c vs. Fig. 2b). Compared to the 50-kb window dataset, a
dataset of 10,601 genes (coding sequences only) averaging 3,335 base pairs in length differed from the
50-kb window species tree in the placement of two species (N. compar and N. dubiosus). Although our
protein-coding genes are contained within the genomic windows, most of the windowed data consists
of intergenic or intronic sequence. Thus, our finding that chromosomal windows (largely non-coding)
and genes (coding sequence only) produced slightly different topologies is consistent with previous work
that indicates that data type (coding vs. non-coding sequence) can influence species-tree estimates
(Chen et al. 2017; Reddy et al. 2017; Alda et al. 2021; Literman and Schwartz 2021). That said,
topological conflicts between the 50-kb window dataset and the protein-coding dataset for this recently
diverged clade were modest in comparison to more striking differences that have been documented in
more distantly related taxa (e.g., hundreds of millions of years; Reddy et al. 2017; Literman and
Schwartz 2021). Thus, the impact of data type on species-tree inference may be dependent on the

divergence times of the taxa under study.

Turning to our SNP-based analyses, we found that the largest SNP datasets (all SNPs or 1 SNP sampled
every kb) produced topologies that differed from the concatenation (Fig. 2a) and summary-tree analyses
(Fig. 2b, 2c) only in the placement of N. dubiosus and the pratti complex. For N. compar, the SNP-based
analysis recovered the same placement as the summary-tree analysis of coding loci. Although
SVDquartets assumes that SNPs are independent—an assumption that is almost certainly violated in our

all-SNPS and possibly our 1 kb-SNPs datasets—previous work demonstrates that this method performs
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well even for datasets that include linked sites (Chifman and Kubatko 2014; Chou et al. 2015). Also, the
similarity of our SNP tree (assumes free recombination among SNPs) and ASTRAL-IIl trees (assumes no
recombination within loci) further suggests that violating model assumptions about recombination did

not have much of an effect on species tree inference for this group of organisms.

We did find, however, that reducing the number of SNPs in our SVDquartets analyses affected our
inferred species-tree topology (Fig. S2). For the more densely sampled datasets(1 per 1 kb, 5 kb, and 10
kb), topologies differed only in the same three relationships that were already unstable across datasets
and methods (placements of N. dubiosus, N. compar, and the pratti group). But as the SNP datasets got
sparser, we started to recover relationships that differed from all other analyses. For example, the 1 SNP
per 50kb dataset recovered a different placement for N. knereri in the virginianus complex. Additional
novel (and likely erroneous) relationships were recovered for the 1 SNP per 100kb dataset. Our
observation that otherwise robust relationships became increasingly unstable with reduced SNP number
is consistent with simulation work demonstrating that under some parameter combinations, large
numbers of SNPs may be needed for accurate species-tree inference using this method (Long and
Kubatko 2018; Wascher and Kubatko 2021). Notably, our smaller SNP datasets (~2,000-5,000 SNPs) are
on par with those that might be generated via RADseq coupled with choosing a single site per RAD locus.
Based on our results and previous studies of the behavior of SVDquartets, phylogenomic studies using
RADseq should choose library preparation protocols and filtering strategies that maximize the number

of loci and SNPs available for analysis.

While we have explored two types of species-tree methods (locus-based and SNP-based) and several
different ways of partitioning whole-genome alignments, we have not exhaustively compared all
species-tree methods or locus-sampling strategies. For example, data could be further subsampled to
mimic other types of phylogenomic datasets that use different types of markers (e.g., UCEs). Although

our whole-genome alignment would be prohibitive for full-likelihood methods, subsampled data could
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be analyzed using full-likelihood methods that account for uncertainty in gene-tree estimation, as well
as sources of discordance other than incomplete lineage sorting. A key question, however, is whether
the size of datasets that could be analyzed in a reasonable time frame would be sufficient for the
complex models under consideration. Consideration of divergence models that include hybrid species
formation—which has been hypothesized for at least one Neodiprion species (Ross 1961)—may also be
informative (e.g., Blischak et al. 2018). Finally, we have analyzed only a single exemplar per species, and
previous work on the Lecontei clade (albeit with far fewer loci) suggests that taxon sampling can have a
large effect on the inferred species tree (Linnen and Farrell 2008a). Also, when multiple individuals are
sampled per species, a suite of complementary methods can be used to estimate demographic
parameters, introgression rates, and population structure that might impact species-tree inference. For
these reasons, examining the impact of taxon sampling is also a high priority for future work on the

Lecontei species group.

An Updated Lecontei Group Species Tree

Aside from three lineages with uncertain placement (N. compar, N. dubiosus, and the pratti species
complex), remaining relationships among Lecontei group species were consistently recovered across
methods and datasets (Fig. 2). Based on these findings, we propose an updated species tree for the
Lecontei group, with the three uncertain placements represented as polytomies (Fig. 6). Our updated
species tree resembles the previous three-locus species tree (Fig. 1) but recovered an additional Ross
(1955) species complex (pratti group) and resolved most relationships within species complexes. Both
old and new species trees strongly reject the placement of N. compar within the abbotii complex, a
relationship that was proposed by Ross (1955) based on similar larval coloration and behavior. Based on

our results, we propose an updated N. abbotii complex that excludes N. compar.

Despite some uncertainty in the placement of N. dubiosus, our analyses consistently placed this species

within the abbotii species group, rendering the virginianus complex polyphyletic and the abbotii

20z Ainp 80 uo 1sanb Aq 87980/ //9€09EAS/010SAS/E601 0 L/10P/3]21ME-a0uBApPE/0IgSAS/WOoo dnoolwapede//:sdily woiy papeojumoq



complex paraphyletic (Fig. 6). Curiously, the previous three-gene species tree—which contained multiple
N. dubiosus individuals—consistently placed N. dubiosus within the virginianus species complex and
recovered the abbotii complex (minus N. compar) as monophyletic (Fig. 1; Linnen and Farrell 2007,
2008a). This discrepancy could simply mean that the whole-genome data enabled us to recover a more
accurate species-tree estimate. However, N. dubiosus adults are nearly indistinguishable from N.
rugifrons adults (Becker et al. 1966), raising the possibility that placement within the abbotii complex in
the whole-genome tree is incorrect. For example, it is possible that the N. dubiosus exemplar we chose,
which had typical N. dubiosus larval morphology, had an admixed genome due to recent hybridization.
We therefore refrain from reassigning N. dubiosus to the abbotii complex until additional samples can

be analyzed.

Our updated species-tree also provides the necessary historical framework for investigating the
evolution of many different types of life history and morphological traits, such as overwintering strategy,
dietary specialization, and larval coloration (Fig. 6). However, how this tree should be used depends on
whether the goal is to assess phenotypic convergence or genetic convergence (Manceau et al. 2010;
Rosenblum et al. 2014). If the goal of an analysis is to assess phenotypic convergence—i.e., whether a
trait spread to high frequency or fixation independently in two or more lineages following their
divergence from a common ancestor, regardless of the genetic underpinnings of those trait changes—
then the extensive underlying gene-tree discordance (Fig. 3) should not impact overall conclusions so
long as any resulting uncertainty in the species-tree estimate is taken into account. This can be done, for
example, by considering how alternative resolutions of the polytomies in Fig. 6 affect conclusions. But if
the goal is to evaluate genetic convergence—i.e., whether phenotypic convergence is due to
independent genetic mutations rather than the same genetic mutation shared via ILS or introgression
(hemiplasy)—then gene-tree heterogeneity must be considered (Hahn and Nakhleh 2016; Guerrero and

Hahn 2018). One approach for evaluating the probability of genetic convergence vs. hemiplasy in the
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presence of ILS and introgression makes use of species trees with branch lengths scaled to coalescent
units (e.g., Fig. 4, 5) (Hibbins et al. 2020). The ultimate test of genetic convergence, however, is to
identify the genes and mutations responsible for convergent phenotypes (e.g., Wessinger and Rausher

2015).

Multiple Genomic Variables Predict Site Concordance Factors

Although most clades recovered in our species-tree analyses were robust to sampling and analysis
method, there was nevertheless substantial variation in gene-tree topologies (Fig. 3) and site
concordance factors (Fig. 4) across the genome, a pattern observed in many other taxa that diverged
rapidly, often with gene flow (Pease et al. 2016; Edelman et al. 2019; Alda et al. 2021; Kozak et al. 2021;
Meleshko et al. 2021b; Zhang et al. 2021). For the most part, variation in site concordance was highly
heterogeneous across clades and chromosomes. However, for some clades, chromosome painting
revealed unusually homogenous stretches of site concordance factors on Chromosomes 1 and 7 (Fig. 4).
Such patterns could be generated by inversions segregating within and between species that yield more
homogeneous phylogenetic histories due to restricted recombination within those regions. In support of
this hypothesis, synteny plots for four Neodiprion species revealed independent evidence of the
putative Chromosome 1 inversion (Fig. S3). Further evaluation of putative inversions and their
contribution to observed variation in site concordance factors will require long-read data from

additional populations and species.

Our high-quality chromosome-level assembly also provided us with an opportunity to investigate
mechanisms that produce gene-tree heterogeneity across the genome (Table 1). Because several
genomic predictors of concordance are correlated (Fig. S6), we used a stepwise regression approach to

disentangle the contributions of individual variables to local site concordance factors while controlling
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for other variables. We found that all seven genomic variables predicted windowed site concordance
factors, although some of their effects varied depending on the branch under consideration (Fig. 5,

Table 2, Table S7).

We found that both the amount and type of variation—as well as the amount of missing data—
contributed to variation in site concordance factors across the genome. For example, we found that site
concordance factors tended to increase with the number of parsimony-informative sites (10/14 branch-
specific regression models that retained parsimony informative sites revealed a positive relationship;
Fig. 5, Table 2). Although we had mixed predictions about the number of parsimony informative sites
(Table 1), our regression models suggest that loci with more informative sites tend to yield higher levels
of site concordance. In contrast to regression results for parsimony informative sites—and despite
positive genome-wide correlations between parsimony informative sites, singletons, and missing data
(Fig. S6)—we found that site concordance factors tended to decrease as the number of singletons and
the amount of missing data increased (Fig. 5, Table 2). We consider two non-mutually exclusive
explanations for these patterns (Table1). First, decreased site concordance, increased singleton
numbers, and increased missing data in some windows may simply reflect increased genotyping error,
which could be caused by genome-wide heterogeneity in alighnment error, sequencing error, and read
counts. Second, windows with increased levels of variation—i.e., more singletons and parsimony
informative sites and more indels that would be coded as missing data—may also be explained by
reduced positive and negative selection relative to the rest of the genome. Because selection reduces
local Ne, such relaxed-selection windows would be expected to have a higher density of discordant sites

due to ILS.

We also found that local base composition (GC content) predicted site concordance in 50-kb windows.
Out of our 17 branch-specific stepwise regression analyses, 14 retained GC-content in the final model,

with 10 of these exhibiting the predicted negative relationship between GC content and site
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concordance factors (Table 2). These findings are consistent with other phylogenomic datasets that have
reported high levels of phylogenetic discordance in GC-rich regions of the genome (Jarvis et al. 2014;
Bossert et al. 2017; Reddy et al. 2017; Romiguier and Roux 2017). One potential explanation for these
findings is that repeated bouts of GC-biased gene conversion and compensatory mutations produce high
levels of homoplasy (Jarvis et al. 2014; Romiguier and Roux 2017). GC-biased gene conversion is
expected to be most pronounced in high-recombination regions of the genome (Eyre-Walker 1993;
Galtier et al. 2001; Duret and Galtier 2009; Pessia et al. 2012; Figuet et al. 2015). Consistent with
patterns in numerous taxa (e.g., Fullerton et al. 2001; Backstrom et al. 2010; Stevison and Noor 2010;
Roesti et al. 2013), we found a positive correlation between GCcontent and recombination rate (Fig.

S6).

Our regression analyses also support the hypothesis that linked selection, through its effects on ILS,
contribute to genome-wide heterogeneity in site concordance factors. Because linked selection reduces
local N. (Maynard Smith and Haigh 1974; Charlesworth et al. 1993) and these effects are most
pronounced in low-recombination regions of the genome (Kaplan et al. 1989; Charlesworth 2012; Bryant
and Hahn 2020), ILS should correlate positively—and site concordance factors negatively—with
recombination rate (Pease and Hahn 2013). Additionally, because the density of selected sites will be
higher in gene-dense regions of the genome (Payseur and Nachman 2002; Pease and Hahn 2013), gene
density should correlate negatively with ILS and positively with site concordance factors (Pease and
Hahn 2013). However, correlations between gene density and recombination rate can potentially

obscure these patterns (Flowers et al. 2012; Cutter and Payseur 2013).

Consistent with patterns in several other taxa (Freudenberg et al. 2009; Gore et al. 2009; Flowers et al.
2012; but see Wright et al. 2003; Cutter and Payseur 2013), we find that gene density and
recombination rates—both inferred from N. lecontei—are positively correlated (Fig. S6). Nevertheless,

the correlation is relatively weak, and our multiple regression models were able to tease apart their
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independent effects (Fig. 5; Table S7). Out of our 17 branch-specific stepwise regression analyses, 14
retained gene density in the final model, with 12 of these exhibiting the predicted positive relationship
between gene density and site concordance factors (Table 2). For recombination rate, 8 of 12 branch-
specific models that included recombination rate had the predicted negative relationship with site
concordance factors (Table 2). When both terms were retained in the final model, gene density tended
to have an effect size that was equal or larger in magnitude compared to that of recombination rate,
implying that the local density of selected sites might be a better predictor of concordance than local
recombination rates. Alternatively, these differences may reflect more accurate estimates of gene
density than of local recombination rate (see below). Either way, our regression results are consistent
with work in other taxa demonstrating a negative relationship between the intensity of linked selection
and discordance via incomplete lineage sorting (Hobolth et al. 2011; Priifer et al. 2012; Pease and Hahn

2013).

Like ILS, levels of introgression are likely to vary across the genome. For example, selection against
locally maladaptive alleles or genetic incompatibility alleles will reduce introgression in some parts of
the genome (Nachman and Payseur 2012; Brandvain et al. 2014; Schumer et al. 2018; Li et al. 2019;
Martin et al. 2019). To evaluate the contribution of variable introgression across the genome to
variation in site concordance factors, we calculated D-statistics for each window for each branch in the
species tree. Although these D-statistics were calculated using the same sites that were used to
calculate site concordance factors, they are not inherently correlated since D-statistics reflect the
magnitude of imbalance between the proportion of sites that support the two discordant topologies. In
support of this, observed correlation coefficients between windowed site concordance factors and D-
statistics for the 17 branches in the species tree were highly variable, ranging between r=-0.029 and r =

-0.684. We found that windowed D-statistics were retained in all 17 regression models, with all 17
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models exhibiting the predicted negative relationship between introgression (D-statistic) and site

concordance factors (Fig. 5; Table 2).

Overall, our regression results provide strong evidence that ILS, introgression, genotyping error, and
base composition all contribute to gene-tree heterogeneity and variable concordance across the
genome. Although previous work and our own results point to biological causes such as ILS and
introgression as major sources of gene-tree heterogeneity in recently diverged taxa (Bryant and Hahn
2020), our findings suggest that technological error—especially due to variable genotyping error across
the genome—should not be discounted. Also, effect sizes in our regression models suggest that the
relative importance of these different sources of heterogeneous concordance differ across branches in

the species tree (Table S7).

While our results were mostly consistent with the predictions outlined in Table 1, we did observe some
deviations from expected patterns in some of our branch-specific models (Fig. 5, Table S7, Table 2). Two
possible explanations for deviations from predicted relationships for some model terms for some
branches are: (1) some branches in the reference species tree used to calculate site concordance factors
are incorrect, and (2) N./lecontei-based genomic variable estimates are not applicable to all species in
this group. Regarding the second explanation, our estimates for genomic predictor variables came from
four main sources: alignments for our 19 focal species (parsimony-informative sites, singletons, missing
data, and GC content), site patterns for each branch (D-statistics), annotated genes in the N. lecontei
reference genome (gene density), and recombination frequencies from a mapping cross between
diverged N. lecontei populations (recombination rate). Of these sources, we expect our multi-species
alignments to provide a reasonably accurate gauge of potential genotyping error, overall levels of
variation, and base composition for each window. Site patterns were computed for each branch
separately. Also, based on synteny plots from available species (Fig. S3), we expect gene density

estimates from N. Jecontej to provide a good approximation of gene densities in the other species. We
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do not know, however, whether recombination rates estimated from a N. lecontei cross accurately
predict recombination rates in other Neodiprion species. Although recombination rate is conserved
among some closely related species, it is rapidly evolving in others (Smukowski and Noor 2011). It would
therefore be worthwhile to estimate recombination rates in additional populations and species to

further evaluate the robustness of our conclusions.

Conclusions

Over 15 years ago, we documented pervasive mitochondrial introgression in Neodiprion involving many
members of the eastern Lecontei clade, rendering mitochondrial data unreliable for species-tree
inference (Linnen and Farrell 2007). A “multi-locus” dataset of three nuclear genes was, unsurprisingly,
insufficient for generating a robust species-tree estimate (Linnen and Farrell 2008a). Here, a whole-
genome alignment analyzed with contemporary methods has produced a well-resolved species-tree
that—except for three uncertain relationships—is robust to locus-sampling and analysis strategy. Using
multiple regression, we found that genotyping error, ILS, and introgression all contribute to
heterogeneous phylogenetic signal across the genome. This approach also revealed multiple genomic
summary statistics that could be useful for identifying loci that are especially likely to recapitulate or
depart from the underlying species tree. Overall, our results demonstrate how combining phylogenomic
analysis with high-quality reference genomes, complementary genome feature data, and multiple
analysis strategies can not only improve species-tree inference in difficult groups, but also reveal the
sources of gene-tree heterogeneity that complicate phylogenetic inference. Similar analyses in
additional taxa are needed to determine whether correlates of concordance vary predictably among
taxa with different divergence histories. Essential ingredients for these analyses are high-quality,
annotated reference genomes, which are increasingly available for non-model organisms (Hotaling et al.

2021).
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FIGURE CAPTIONS

Figure 1: Proposed Neodiprion species complexes and species tree estimated from three nuclear loci.
Shading corresponds to proposed species complexes (Ross 1955) and tree topology corresponds to

proposed topology in Linnen and Farrell 2008a.

Figure 2: Neodiprion species trees estimated via concatenation, ASTRAL-Ill, and SVDquartets. a) ML
topology estimated via concatenating all 50-kb windows, b) ASTRAL-IIl species tree estimated from ML
gene trees estimated from 50-kb windows, c) ASTRAL-IIl species tree estimated from ML gene trees
estimated from coding loci only, d) SVDquartets species tree estimated from all SNPs (after quality
filtering). Shading corresponds to the named species complexes in Fig. 1. Numbers above nodes are site

concordance factors; numbers below nodes are gene concordance factors.

Figure 3: Genome-wide patterns of gene-tree discordance with f-branch statistics. The tree on the left
was generated using DensiTree and depicts topologies for gene-trees estimated from 50-kb windows
(gray/thinlines) and the corresponding ASTRAL-IIl species tree (blue/thick line). The matrix to the right
shows f-branch statistics generated using the Dsuite package. Since only a single exemplar was included

per species, f-branch statistics could not be obtained for sister taxa.

Figure 4: The genomic landscape of concordance. The tree on the left is the ASTRAL-1II species tree
estimated from 50-kb windows, with branch lengths scaled to coalescent units. Labeled clades

correspond to painted chromosomes in the 17 panels, each depicting how site concordance factors
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estimated in 50-kb windows change along each chromosome. Gray areas on each chromosome are
windows that were removed prior to analysis due to excessive missing data (mostly in centromeric and
telomeric regions). Stars highlight stretches of relatively uniform sites concordance factors on

Chromosome 1 and 7 that could be explained by inversions (see Fig. S3).

Figure 5: Summary of multiple regression results for site concordance in 50-kb windows. The tree is

the ASTRAL-III species tree from 50-kb windows used as the reference tree to calculate site concordance

factors for each 50-kb window. Each node has the seven predictor variables included in the multiple
regression models. Gray variables were not retained after stepwise model selection; blue and red
variables were retained in the final model with positive and negative effects, respectively. An asterisk
indicates that estimated effects from the regression model were in the opposite direction predicted in

Table 1. R? is reported for the final models; additional model results are in Table S7.

Figure 6: An updated species tree for eastern North American Neodiprion. The topology reflects
relationships robust to species-tree method and locus-sampling strategy (Fig. 2, Fig. S2), with three
uncertain relationships depicted as polytomies. Evolutionary analyses of variable characters such as
overwintering mode, host preferences (modified from Linnen and Farrell 2010), and larval color should

use alternative resolutions of these branches.
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Table 1. Predicted effects of genomic variables on site concordance factors (sCFs), a measure of

genealogical concordance

Genomic predictor Predicted effect on
variable sCFs

Rationale

Parsimony-informative

sites tor-
Singletons -
Missing data -
GC content -
D-statistic -
Gene density +
Recombination rate -

+: increased # of sites increases information content; -:

increased # of sites may reflect relaxed selection and
increased ILS

increased # of sites may reflect relaxed selection
(increased Ne and ILS) or increased genotyping error

higher levels of missing data may reflect higher
genotyping error

GC-biased gene conversion and compensatory
mutations can lead to high levels of homoplasy in GC-
rich regions of the genome

Genomic windows with evidence of introgression are
more likely to produce topologies that depart from the
species tree

Gene-rich regions have a higher density of selected
sites, decreasing Ne, and reducing ILS

Linked selection is most pronounced in low-

recombination regions, decreasing Ne, and reducing ILS
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Table 2. Summary of regression coefficient signs for genomic predictor variables obtained from
stepwise regression analysis of site concordance factors (sCFs) for 17 clades in the Neodiprion species
tree.!

Genomic predictor Predicted effect  # Clades + effect # Clades - effect # Clades no effect
variable on sCFs? on sCFs on sCFs on sCFs3
Parsimony- +or - 10 4 3
informative sites

Singletons - 4 11 2

Missing data - 2 14 1

GC content - 4 10 3
D-statistic - 0 17 0

Gene density + 12 2 3
Recombination rate - 4 8 5

!'See Table S7 for full regression results.
2 See Table 1 for the rationale underlying each prediction.
3 “No effect” indicates that predictor variable was not retained after stepwise model selection.
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Figure 1
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Figure 2

a) Concatenated (50-kb windows)
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Figure 3

Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syae036/7708678 by guest on 08 July 2024

0.05
0.04
0.03
0.02
0.01
0.00

BuBUIBIA
@y

laJauy

| | I wasem
|| "l [l suoyBni ﬂl

ml 7 | wninosoBIL
snsoignp

sninetwy

aepse]
aepibusnuid
sueloxs

wineuid
19)uco8}

redwoo

TS C EYEOREECO 0N EE DS
EEbeESFoEssEERissEs
EoCgEZ28e2z2 958828
S5EEESR88w® E2R22c809
,mm wmmm E weshphc
s g

k) £

] g




Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syae036/7708678 by guest on 08 July 2024

Figure 4
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Figure 5
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Figure 6
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