

1 **Recurrent selection shapes the genomic landscape of differentiation between a pair of host-  
2 specialized haplodiploids that diverged with gene flow**

3

4 Running title: Genomic divergence in pine sawflies

5

6 Ashleigh N. Glover<sup>1</sup>, Vitor C. Sousa<sup>2</sup>, Ryan D. Ridenbaugh<sup>1</sup>, Sheina B. Sim<sup>3</sup>, Scott M. Geib<sup>3</sup>,  
7 and Catherine R. Linnen<sup>1</sup>

8

9 <sup>1</sup>Department of Biology, University of Kentucky, Lexington, KY 40506, United States

10 <sup>2</sup>CE3C – Center for Ecology, Evolution and Environmental Changes, Department of Animal  
11 Biology, Faculdade de Ciências da Universidade de Lisboa, University of Lison, Lisboa,  
12 Portugal

13 <sup>3</sup>USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center Tropical Pest  
14 Genetics and Molecular Biology Research Unit, Hilo, HI 96270, United States

15

16 Corresponding author: Ashleigh N. Glover, [angl226@uky.edu](mailto:angl226@uky.edu)

17

18

19 **ABSTRACT**

20 Understanding the genetics of adaptation and speciation is critical for a complete picture  
21 of how biodiversity is generated and maintained. Heterogeneous genomic differentiation  
22 between diverging taxa is commonly documented, with genomic regions of high differentiation  
23 interpreted as resulting from differential gene flow, linked selection, and reduced recombination  
24 rates. Disentangling the roles of each of these non-exclusive processes in shaping genome-wide  
25 patterns of divergence is challenging but will enhance our knowledge of the repeatability of  
26 genomic landscapes across taxa. Here, we combine whole-genome resequencing and genome  
27 feature data to investigate the processes shaping the genomic landscape of differentiation for a  
28 sister-species pair of haplodiploid pine sawflies, *Neodiprion lecontei* and *Neodiprion pinetum*.  
29 We find genome-wide correlations between genome features and summary statistics are  
30 consistent with pervasive linked selection, with patterns of diversity and divergence more  
31 consistently predicted by exon density and recombination rate than the neutral mutation rate  
32 (approximated by dS). We also find that both global and local patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  provide  
33 strong support for recurrent selection as the primary selective process shaping variation across  
34 pine sawfly genomes, with some contribution from balancing selection and lineage-specific  
35 linked selection. Because inheritance patterns for haplodiploid genomes are analogous to those  
36 of sex chromosomes, we hypothesize that haplodiploids may be especially prone to recurrent  
37 selection, even if gene flow occurred throughout divergence. Overall, our study helps fill an  
38 important taxonomic gap in the genomic landscape literature and contributes to our  
39 understanding of the processes that shape genome-wide patterns of genetic variation.

40

41 **Keywords:** genomic landscape, linked selection, speciation genomics, *Neodiprion*, haplodiploid

## 42 **INTRODUCTION**

43 A core goal in speciation genomics is to use genome-scale data from closely related  
44 populations and species to make inferences about the genetic underpinnings, evolutionary  
45 mechanisms, and demographic context of speciation (Wolf and Ellegren 2016; Han et al. 2017;  
46 Stankowski et al. 2019; Shang et al. 2023). Technological advances over the last two decades  
47 have made it possible to characterize the genome-wide landscape of genetic variation in virtually  
48 any organism. A deluge of such genomic landscapes has revealed highly heterogeneous patterns  
49 of genetic variation across genomes as well as variable landscapes across taxa (e.g., Martin et al.  
50 2013; Burri et al. 2015; Irwin et al. 2016, 2018; Ma et al. 2018; Han et al. 2017; Talla et al. 2019;  
51 Stankowski et al. 2019; Sun et al. 2022; Bendall et al. 2022; Jiang et al. 2023; Shang et al. 2023).

52 As more and more data accrue, an emerging challenge is to identify factors that reliably predict  
53 genomic landscape characteristics. To this end, three general frameworks have emerged to  
54 interpret patterns of genomic variation: (1) exploration of relationships between genome features  
55 and genetic summary statistics; (2) exploration of relationships among different genetic summary  
56 statistics; and (3) comparison among taxa differing in features that are likely to affect genomic  
57 landscapes of differentiation.

58 The first framework for interpreting genomic landscapes incorporates decades of  
59 theoretical work that describe how the interplay of mutation, gene flow, selection, and  
60 recombination affects levels of genetic variation and differentiation (Ravinet et al. 2017; Burri  
61 2017a). For example, purifying selection purges deleterious mutations while positive selection  
62 fixes advantageous mutations (Charlesworth et al. 1993; Maynard Smith and Haigh 1974;  
63 Rodrigues et al. 2023). Importantly, neutral loci that are physically linked to the deleterious  
64 and/or beneficial mutations are also affected: the haplotype background on which the mutation

65 arose is either lost (background selection) or sweeps to high frequency or fixation (selective  
66 sweep), resulting in the loss of most or all other haplotypes. Thus, both background selection and  
67 selective sweeps, collectively referred to as “hitchhiking” or “linked selection”, lead to a loss of  
68 local within-species genetic diversity ( $\pi$ ) and increased differentiation ( $F_{ST}$ ) between species  
69 (Charlesworth et al. 1993; Charlesworth 1998; Fay and Wu 2000; Via and West 2008; Cutter and  
70 Payseur 2013; Rougemont et al. 2019; Han et al. 2017). That said, recent theoretical work  
71 suggests that selective sweeps lead to a greater loss of genetic diversity compared to background  
72 selection (Matthey-Doret and Whitlock 2019; Schrider 2020).

73 The abundance of different types of polymorphic sites will also be affected by linked  
74 selection. For example, both background selection and selective sweeps are expected to produce  
75 a deficit of mid-frequency neutral variants surrounding selected sites (Tajima 1989;  
76 Charlesworth et al. 1995; Cutter and Payseur 2013; Burri et al. 2015). Moreover, an expectation  
77 unique to selective sweeps is an excess of high-frequency derived variants (Fay and Wu 2000;  
78 Burri et al. 2015). Because linked selection is expected to be most pronounced in low-  
79 recombination and gene-dense regions of the genome, widespread linked selection predicts  
80 genome-wide correlations between genetic variation summaries ( $\pi$ ,  $F_{ST}$ ,  $d_{XY}$ , and summaries of  
81 the site-frequency spectrum such as Tajima’s D and Fay and Wu’s H) and both recombination  
82 rate and gene density (Table 1A, Cutter and Payseur 2013; Comeron 2017; Rougemont et al.  
83 2019; Stankowski et al. 2019; Chase et al. 2021).

84 Variable mutation rates can also contribute to heterogeneity in diversity and  
85 differentiation across genomes (Ravinet et al. 2017). On the one hand, as the ultimate source of  
86 new variation, mutation rate is expected to correlate positively with diversity (Castellano et al.  
87 2019). On the other hand, because most non-neutral mutations are deleterious (Muller 1950),

88 genomic regions with high mutation rates may be more likely to be targeted by background  
89 selection, resulting in low diversity and high differentiation (Ohta 1992; Eyre-Walker and  
90 Keightley 2007; Ravinet et al. 2017). Other features of the genomic landscape can have similarly  
91 nuanced effects on genetic variation. For example, centromeric regions are often subject to  
92 unique selection pressures (Henikoff et al. 2001; Padmanabhan et al. 2008; Fishman and  
93 Saunders 2008; Hofstatter et al. 2021) and often have higher mutation rates and lower  
94 recombination rates and gene densities than non-centromeric regions (Bensasson 2011; Ravinet  
95 et al. 2017). Accordingly, some studies found that within-species genetic diversity is lower and  
96 differentiation is higher near centromeres (e.g., Begun et al. 2007; Gore et al. 2009), while other  
97 studies found that within-species genetic diversity is higher near centromeres (e.g., Branca et al.  
98 2011; Clark et al. 2007). Overall, many genomic variables—which are also expected to correlate  
99 to varying degrees with one another—are predicted to affect genome-wide patterns of genetic  
100 variation. Evaluating their contribution to observed genomic landscapes requires high quality,  
101 annotated genomes with complementary data for inferring mutation and recombination rates.  
102 When such data are available, multiple linear regression can be used to evaluate the explanatory  
103 power of each genomic predictor variable relative to other sources of variation for each genetic  
104 summary statistic (e.g., Burri et al. 2015; Samuk et al. 2017; Stankowski et al. 2019; Kartje et al.  
105 2020).

106 The second framework for interpreting patterns of genomic variation examines  
107 relationships among genetic summary statistics [differentiation ( $F_{ST}$ ); between-population  
108 pairwise nucleotide distance, commonly referred to as absolute divergence ( $d_{XY}$ ); and within-  
109 species pairwise nucleotide diversity ( $\pi$ )] at both local and genome-wide scales to make  
110 inferences about the selection scenario(s) shaping observed genomic landscapes (Table 1B-C).

111 Due to recombination, each bout of selection should affect only selected sites plus tightly linked  
112 sites. Thus, different selection scenarios are expected to give rise to different local patterns of  
113  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$ . Although most genomic landscapes are almost certainly shaped by multiple  
114 types of selection, examining genome-wide relationships among genetic summary statistics can  
115 reveal whether a particular type of selection scenario has tended to predominate. The four  
116 primary evolutionary scenarios considered under this framework are divergence-with-gene-flow,  
117 allopatric selection, recurrent selection, and balancing selection (Han et al. 2017; Irwin et al.  
118 2016, 2018; Shang et al. 2023).

119 In the first scenario, divergence-with-gene-flow, loci that contribute to reproductive  
120 isolation, as well as any linked neutral loci, experience restricted gene exchange between the  
121 diverging lineages. This results in locally reduced  $\pi$  and elevated  $F_{ST}$  (Han et al. 2017). Due to  
122 the locally restricted gene flow, average coalescent times between lineages of the two  
123 populations are older, leading to locally elevated  $d_{XY}$  (Charlesworth 1998; Cruickshank and  
124 Hahn 2014). Other parts of the genome are homogenized by gene flow, thereby reducing both  
125  $F_{ST}$  and  $d_{XY}$  (Irwin et al. 2018). The remaining three scenarios are similar in that they do not  
126 explicitly include gene flow, but they differ in the primary selection pressures shaping genome-  
127 wide variation.

128 Under what has been referred to as the allopatric selection scenario, selective sweeps  
129 associated with local environmental conditions and background selection occur independently in  
130 geographically separated populations. This results in local reductions of  $\pi$  and elevated  $F_{ST}$  at  
131 selected and linked neutral loci (Irwin et al. 2016; Han et al. 2017). In contrast to  $F_{ST}$ ,  $d_{XY}$  should  
132 be unaffected by reduced  $\pi$  caused by selection in isolated populations (Nachman and Payseur  
133 2012; Burri 2017b). For this reason,  $d_{XY}$  is expected to be similar on average between areas of

134 high  $F_{ST}$  and low  $F_{ST}$  under the allopatric selection scenario (Cruickshank and Hahn 2014; Han et  
135 al. 2017; Irwin et al. 2018).

136 The last two scenarios, recurrent selection and balancing selection, are expected to  
137 produce genome-wide correlations among summary statistics in the same directions (Table 1B),  
138 but they produce very different local patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  (Table 1C, Shang et al. 2023).  
139 Under the recurrent selection scenario, standing genetic variation is reduced at some regions of  
140 the genome via selective sweeps or background selection in the common ancestor. After the  
141 common ancestor splits into two independent lineages, these same regions that were under  
142 selection in the ancestral population are also targeted by selection in the descendant lineages  
143 (Irwin et al. 2018). This scenario is expected to produce localized reductions of  $\pi$  and elevated  
144  $F_{ST}$  due to selection in descendant lineages. The recurrent selection scenario is also expected to  
145 produce localized reductions in  $d_{XY}$  due to selection in the common ancestor, which reduces  
146 coalescence times between descendant lineages (Han et al. 2017; Irwin et al. 2018; Stankowski et  
147 al. 2019). These effects will be most pronounced in gene-dense and low-recombination regions,  
148 predicting correlations between  $d_{XY}$  and these genome features that are unique to linked selection  
149 in ancestral populations (Table 1A).

150 Finally, under the balancing selection scenario, ancestral polymorphism is maintained in  
151 the two descendant lineages (Charlesworth 2006). Under this scenario, selected loci will have  
152 elevated  $\pi$  and reduced  $F_{ST}$ . Maintenance of ancestral polymorphism in the descendant lineages  
153 will also increase coalescence times, causing elevated  $d_{XY}$  at loci with a history of balancing  
154 selection. Importantly, this balancing selection scenario does not refer to lineage-specific  
155 balancing selection, which does not necessarily generate elevated  $d_{XY}$ , or the case where  
156 divergent ancestral haplotypes are sorted rather than maintained in the descendant lineages,

157 which would cause elevated  $d_{XY}$  and  $F_{ST}$ , thereby mirroring the pattern produced by differential  
158 gene flow (Han et al. 2017; Guerrero and Hahn 2017).

159 The third framework for interpreting genomic landscapes uses a comparative approach to  
160 identify whether patterns of genomic variation differ consistently across taxa and divergence  
161 time points (e.g., Burri et al. 2015; Stankowski et al. 2019; Chase et al. 2021; Shang et al. 2023)  
162 and/or between autosomes and sex chromosomes (e.g., Irwin et al. 2016; Wong Miller et al.  
163 2017; Talla et al. 2019; Fiteni et al. 2022). For example, many studies have found that patterns of  
164 variation differ markedly between sex chromosomes and autosomes: on sex chromosomes,  $\pi$  is  
165 usually lower, and thus  $F_{ST}$  is usually higher, which could simply reflect the lower effective sizes  
166 of sex chromosomes (e.g., Nachman and Payseur 2012; Irwin et al. 2016; Wong Miller et al.  
167 2017; Talla et al. 2019; Fiteni et al. 2022; Moreira et al. 2023). Yet, this observation is consistent  
168 with the hypothesis that sex chromosomes are predisposed to experience recurrent selection  
169 because all recessive mutations are expressed in the heterogametic sex, increasing the probability  
170 that they will fix (if beneficial) or be purged (if deleterious) (Charlesworth et al. 1987; Ellegren  
171 et al. 2012; Oyler-McCance et al. 2015; Irwin et al. 2016; Miller and Sheehan 2023).  
172 Haplodiploid inheritance patterns resemble those of sex chromosomes: males develop from  
173 unfertilized eggs and are haploid across their entire genome (not recombining), while females  
174 develop from fertilized eggs, are diploid and recombine (Nouhaud et al. 2020). Thus, like sex  
175 chromosomes, haplodiploids may be especially prone to experience repeated bouts of linked  
176 selection, even if there is gene flow throughout divergence. As approximately 15% of all  
177 invertebrates are haplodiploid (de la Filia et al. 2015; Blackmon et al. 2017), this taxon-specific  
178 factor may have a widespread effect on patterns of genomic divergence in nature. However,  
179 compared to diploid organisms, very few genomic landscapes are currently available for

180 haplodiploid organisms (but see Wallberg et al. 2015; Christmas et al. 2021; Mozhaitseva et al.  
181 2023; Everitt et al. 2023). As a first step to evaluating the broader effects of haplodiploid  
182 inheritance on genome-wide patterns of genetic variation, we combine whole-genome  
183 resequencing and genome feature data from a sister-species pair of haplodiploid pine sawflies,  
184 *Neodiprion lecontei* and *Neodiprion pinetum*.

185 For several reasons, *N. lecontei* and *N. pinetum* are an outstanding model for speciation  
186 genetics and genomics (Figure 1). Like all *Neodiprion* (Order: Hymenoptera; Family:  
187 Diprionidae), these sister species are conifer feeders that depend on their host plant for all stages  
188 of their life cycle (Coppel and Benjamin 1965; Knerer and Atwood 1973; Linnen and Farrell  
189 2008a; Herrig et al. 2024). *Neodiprion lecontei* and *N. pinetum* have largely overlapping ranges  
190 in eastern North America (Linnen and Farrell 2008a, 2010; Glover et al. 2023), and a recent  
191 demographic analysis suggests that they diverged in sympatry with continuous gene flow  
192 (Bendall et al. 2022). Although the two species are frequently found at the same geographical  
193 locations, they are adapted to different pine species with dissimilar needle morphologies. While  
194 *N. pinetum* specializes on the thin-needed white pine (*Pinus strobus*), *N. lecontei* avoids white  
195 pine and uses a variety of *Pinus* species that have thicker needles (Wilson et al. 1992; Linnen and  
196 Farrell 2010; Bendall et al. 2017). In addition to their divergent host preferences, *N. lecontei* and  
197 *N. pinetum* also differ in adult body size, female ovipositor morphology, and additional egg-  
198 laying traits (Bendall et al. 2017; Glover et al. 2023). These divergent host-use traits contribute  
199 to both prezygotic and postzygotic barriers to gene flow (Bendall et al. 2017, 2023; Glover et al.  
200 2023) and map to many regions across the genome (Bendall 2020). Although reproductive  
201 isolation between *N. lecontei* and *N. pinetum* is strong, it is incomplete: these species  
202 occasionally hybridize in nature and viable, fertile hybrids for both sexes and cross directions

203 can be produced in the lab (Bendall et al. 2017, 2022, 2023). Finally, in addition to their  
204 experimental tractability and well-characterized ecological differences and demographic history,  
205 *N. lecontei* and *N. pinetum* have excellent genomic resources, including annotated, chromosome-  
206 level genome assemblies for both species and a high-quality recombination map for *N. lecontei*  
207 (Linnen et al. 2018; Vertacnik et al. 2023; Herrig et al. 2024).

208 As host-specialized haplodiploids that diverged with gene flow and have complementary  
209 genome-feature data available, *N. lecontei* and *N. pinetum* offer a unique opportunity to evaluate  
210 how the demography and ecology of speciation, haplodiploid transmission genetics, and genome  
211 features shape the genomic landscape of differentiation. To this end, we first use multiple linear  
212 regression to determine which genomic features predict genetic diversity and differentiation and  
213 to ask whether the data are consistent with pervasive linked selection (Table 1A). We then  
214 examine both genome-wide and local patterns of genetic summary statistics to determine which,  
215 if any, of the four selection scenarios have shaped patterns of variation within and between *N.*  
216 *lecontei* and *N. pinetum* (Table 1B and 1C). On the one hand, based on their ecological  
217 differences and divergence history, we might expect our genomic data to exhibit patterns  
218 consistent with divergence-with-gene-flow. On the other hand, due to the increased efficacy of  
219 selection in hemizygous males (Avery 1984; Charlesworth et al. 1987; Presgraves 2018; Bendall  
220 et al. 2022), we might instead expect our genomic data to support a recurrent selection scenario.  
221 A third possibility is that a mixture of selection scenarios obscures genome-wide patterns but is  
222 evident in local patterns of variation (Irwin et al. 2016, 2018; Stankowski et al. 2019; Shang et  
223 al. 2023). When interpreted in light of these *a priori* predictions, our findings have implications  
224 for the predictability of genomic landscapes of differentiation, which we consider further in the  
225 discussion.

226

227 **MATERIALS AND METHODS**228 **Sampling, sequencing and read processing**

229 We collected *Neodiprion lecontei* and *N. pinetum* mid- to late-instar larval colonies from  
230 Lexington, Kentucky and surrounding areas (Table S1). To confirm sex (and therefore ploidy),  
231 we reared the larvae to adults in the lab using standard lab protocols (Harper et al. 2016; Bendall  
232 et al. 2017). The adults were either preserved in 100% ethanol (stored at -20 °C) or flash frozen  
233 and stored at -80 °C. To avoid sampling close relatives, we selected one individual from each  
234 larval colony (each colony typically represents a group of siblings). In total, we sampled 20 *N.*  
235 *lecontei* females and 18 *N. pinetum* females. We extracted DNA from head and thorax tissue  
236 with a Qiagen DNeasy Blood & Tissue Kit. We followed the standard manufacturer protocol for  
237 insects, including an optional RNase A step. DNA concentration was measured with a Quant-iT  
238 dsDNA High-Sensitivity fluorescence assay (Invitrogen). A single library was prepared using a  
239 Tn5 tagmentation protocol following Bendall (2020). Whole-genome resequencing was  
240 performed with 150bp paired-end sequencing technology in an Illumina Hi-Seq X sequencer at  
241 Admera Health (Plainfield, NJ). The library was first run in a single lane of the sequencer. A  
242 subset of samples that had low read counts were then re-pooled and run on a second lane.

243 Demultiplexed reads were cleaned using trimmomatic v0.39 (Bolger et al. 2014) with the  
244 following criteria: (a) remove adapters, (b) perform sliding window trimming where a sequence  
245 is cut when a window (4bp) drops below a quality threshold (15), (c) remove low quality bases  
246 (quality score < 3) from the beginning and end of each read. Then, for each lane separately, the  
247 cleaned reads were mapped to the high-quality chromosome-level *N. lecontei* reference genome  
248 (iyNeoLeco1.1, GCA\_021901455.1; Herrig et al. 2024) using the BWA-MEM algorithm in bwa

249 v0.7.17 (Li and Durbin 2009). We used samtools v1.13 (Li et al. 2009; Danecek et al. 2021) to  
250 mark PCR duplicates ('markdup') and remove ambiguously mapped reads/secondary alignments  
251 ('view -F 1284 -f 0x02'). We then used samtools to merge the filtered reads from the two lanes  
252 ('merge') and index the resulting bam files ('index').

253

#### 254 **Estimates of summary statistics**

255 All genetic summary statistics were calculated in ANGSD v0.933 (Korneliussen et al.  
256 2014), a program that is suitable for low coverage whole-genome resequencing data because it  
257 incorporates genotype likelihoods (rather than hard-called genotypes) and information contained  
258 in the site frequency spectrum (which contains variant and invariant sites) to calculate summary  
259 statistics following equations in Fumagalli et al. (2013) and Korneliussen et al. (2013). To  
260 estimate  $F_{ST}$  across the genome using the Hudson et al. (1992) estimator, we first created a  
261 sample allele frequency file for each species ('-dosaf 1 -uniqueOnly 1 -remove\_bads 1 -  
262 only\_proper\_pairs 1 -trim 0 -baq 1 -minMapQ 20 -minQ 20 -setMinDepth 14 (for *N. lecontei*)/11  
263 (for *N. pinetum*) -setMaxDepth 210 (for *N. lecontei*)/165 (for *N. pinetum*) -minInd 14 (for *N.*  
264 *lecontei*)/11 (for *N. pinetum*) -doCounts 1 -GL 1'). We included the genome of another  
265 *Neodiprion* species (*N. virginiana*; Herrig et al. 2024) as an outgroup in the ANGSD runs so that  
266 we could polarize SNPs and generate unfolded site frequency spectra. The resultant outputs were  
267 used to generate an unfolded site frequency spectrum for each species separately as well as an  
268 unfolded pairwise joint site frequency spectrum using the 'realSFS' function. The sample allele  
269 frequency files and joint site frequency spectrum were then used as input files to calculate per-  
270 site  $F_{ST}$  using 'realSFS', which was then used as an input file to calculate  $F_{ST}$  in 50 kbp non-  
271 overlapping windows ('-win 50000 -step 50000'). We chose this window size because it is larger

272 than the distance at which linkage disequilibrium has decayed to approximately zero (Figure S1).  
273 These and all other scripts for subsequent analyses can be found on DRYAD (Glover et al.  
274 2024).

275 To estimate window-based within-species pairwise nucleotide diversity ( $\pi$ ), Tajima's D,  
276 and Fay and Wu's H across the genome, we first performed ANGSD runs for each species  
277 separately to calculate per-site "pairwise differences" theta. These runs included the same  
278 parameters above but with an additional '*-doThetas 1*' command and the unfolded site frequency  
279 spectrum generated for the  $F_{ST}$  analysis as input ('*-pest*'). The resulting per-site theta files were  
280 then used to calculate 50kbp windowed statistics ('*-win 50000 -step 50000*') using the 'thetaStat'  
281 function.

282 To estimate  $d_{XY}$  across the genome, we used a custom script by Josh Peñalba  
283 (<https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R>) with the following  
284 modification: we removed the SNP-calling flags in the ANGSD runs so that invariant sites were  
285 included in addition to variant sites. We first calculated allele frequencies in ANGSD ('  
286 *uniqueOnly 1 -remove\_bads 1 -only\_proper\_pairs 1 -trim 0 -baq 1 -minMapQ 20 -minQ 20 -*  
287 *setMinDepth 25 -setMaxDepth 375 -minInd 25 -doCounts 1 -GL 1 -doMajorMinor 1 -doMaf 1 -*  
288 *doGlf 4*') and then used the resultant output as input for the custom R script. We averaged the  
289 resulting per-site  $d_{XY}$  across 50kbp windows in R version 4.1.0 (R Core Team 2021).

290 To ensure that our results and conclusions were not biased by choice of window size, we  
291 also calculated  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  in 25kbp and 100kbp non-overlapping windows. Finally, to  
292 reduce biases due to poor mapping/genotyping error, we filtered out windows where the number  
293 of called sites (invariant + variant) fell below the 10<sup>th</sup> percentile (i.e., windows that had < 921  
294 sites). We chose this cutoff based on the distribution of site counts per window (Figure S2).

295 Finally, note that of all summary statistics considered, only Fay and Wu's H depends on  
296 polarizing ancestral states. Hence, misidentification of ancestral and derived states is not  
297 expected to affect our conclusions, which was confirmed by repeating the analyses with the  
298 folded SFS for all other summary statistics.

299

### 300 **Genome features**

301 We measured recombination rate, exon density (a measure of gene density), and  
302 synonymous substitution rate (dS; a proxy for the neutral mutation rate) in each 50kbp window  
303 and measured the distance of each window from the centromere. We obtained recombination  
304 rates (cM/Mb) from a previously published high density linkage map generated from a cross  
305 between divergent *N. lecontei* populations (Linnen et al. 2018; Herrig et al. 2024).

306 To estimate exon density, we first extracted all exons from the *Neodiprion lecontei*  
307 genome annotation (GCF\_021901455.1\_iyNeoLeco1.1\_genomic.gtf; Herrig et al. 2024).  
308 Because many genes have more than one transcript, we retained the transcript with the most  
309 exons. We then used a custom R script from Samuk et al. (2017;  
310 [https://github.com/ksamuk/gene\\_flow\\_linkage/blob/master/ev\\_prep\\_scripts/gene\\_density\\_calc\\_build.R](https://github.com/ksamuk/gene_flow_linkage/blob/master/ev_prep_scripts/gene_density_calc_build.R)) to calculate the proportion of each 50kbp window containing exon sequence.

312 To estimate mutation rate, we calculated the synonymous substitution rate (dS) in 50kbp  
313 windows. We first inferred orthologous gene groups between *Neodiprion lecontei*, *N. pinetum*,  
314 and *N. virginiana* using Broccoli v1.2 (Derelle et al. 2020). For this analysis, we used annotated  
315 genes from reference-quality genomes for the three species  
316 (GCF\_021901455.1\_iyNeoLeco1.1\_genomic.gff;  
317 GCF\_021155775.1\_iyNeoPine1.1\_genomic.gff; GCF\_021901495.1\_iyNeoVirg1.1\_genomic.gff;

318 Herrig et al. 2024). Genes from these three species were matched to 10,686 orthogroups using  
319 maximum likelihood ('-phylogenies ml'). We excluded 24 orthogroups that were located on  
320 unplaced scaffolds prior to downstream analysis. Before alignment, orthogroups were checked  
321 for the presence of multiple isoforms. If multiple isoforms were present, only the longest isoform  
322 for each species was retained. Then, filtered orthogroups were aligned using the L-INS-I method  
323 in MAFFT v7.509 (Katoh and Standley 2013). With these aligned sequences as input, we  
324 calculated the synonymous substitution rate for each orthogroup using codeml with model = 0  
325 and Nsites = 0 (one omega ratio for all branches) in PAML v4.10.6 (Yang 2007). We then  
326 filtered out orthogroups where the estimated dS for any species was greater than or equal to two  
327 standard deviations above the mean. Next, we used a custom script from Samuk et al. (2017;  
328 [https://github.com/ksamuk/gene\\_flow\\_linkage/blob/master/ev\\_prep\\_scripts/ds\\_dn\\_7\\_recomb\\_analysis.R](https://github.com/ksamuk/gene_flow_linkage/blob/master/ev_prep_scripts/ds_dn_7_recomb_analysis.R)) to assign the mutation rate estimates to 50kbp windows for each species. Finally, we  
329 calculated the average dS between *N. lecontei* and *N. pinetum* for each window to produce a  
330 single mean dS value for each window.

332 To estimate distance from the centromere, we first used Juicebox v1.11.08 (Durand et al.  
333 2016) to visualize the HiC contacts for each chromosome (Figures S3-S9, Herrig et al. 2024) and  
334 estimated the midpoint of each centromere by identifying the local maximum delta in the number  
335 of contacts between adjacent loci within each chromosome. These points were also identified  
336 visually and were supported by depressed levels of repeat density, HiC read coverage, GC  
337 content, and gene density (Figures S3-S9). We then calculated the distance of each window from  
338 the centromere by taking the absolute value of the midpoint of each window subtracted from the  
339 midpoint of the centromere.

340 Finally, we also wanted to consider the potential effect of local genotyping error on  
341 patterns of genetic variation. Due to variation in base composition, repetitive sequence content,  
342 and sequence divergence, some regions of the genome are more prone to sequencing, mapping,  
343 and genotyping error. As a rough metric for this error, we used site counts for each 50kbp  
344 window, which are the number of invariant and variable sites that were called after quality  
345 filtering. Because ANGSD directly calculates windowed  $F_{ST}$ ,  $\pi$ , Tajima's D, and Fay and Wu's  
346 H as well as provides the called site count for each window (i.e., the number of sites used to  
347 calculate the statistic in each window), site counts were taken directly from ANGSD outputs for  
348 each of these windowed summary statistics. However, ANGSD does not directly calculate  $d_{XY}$ .  
349 Therefore, to obtain the number of called sites used to calculate  $d_{XY}$  in each window, we used a  
350 custom R script that takes the per-site  $d_{XY}$  file and counts the number of called sites in each  
351 50kbp window. Our assumption here is that more error-prone regions of the genome would have  
352 lower site counts. As noted above, windows with the lowest site counts were filtered out prior to  
353 analysis, but the remaining windows still exhibited substantial variation in site counts.

354

### 355 **Correlation and regression analyses of summary statistics and genome features**

356 To explore evolutionary processes shaping genome-wide patterns of genetic variation, we  
357 first examined the genome-wide correlations among differentiation, absolute divergence,  
358 diversity, and features of the genome. We estimated Pearson's correlation coefficients between  
359 pairs of these statistics and calculated *p*-values using the *correlation* v0.7.1 package (Makowski  
360 et al. 2020) in R version 4.1.0 (R Core Team 2021); *p*-values were adjusted for multiple testing  
361 using the Holm (1979) method. We then used the *corrplot* v0.90 package (Wei and Simko 2021)  
362 to visualize the correlation matrix. Second, to investigate relationships between summary

363 statistics and genome features, we used a multiple regression approach in R version 4.1.0 (R  
364 Core Team 2021). We first normal-quantile transformed all predictor variables to ensure they  
365 were on the same scale. Then, using the 50kbp windows as data points, we fit multiple linear  
366 regression models (“lm” function) for our genetic summary statistics ( $F_{ST}$ ,  $d_{XY}$ ,  $\pi$ , Tajima’s D,  
367 and Fay and Wu’s H) using the following form: summary statistic ~ recombination rate + exon  
368 density + mutation rate + distance from the centromere + window site count. After fitting each  
369 model, we used a type II analysis of variance (ANOVA) implemented in the *car* v3.1.0 package  
370 (Fox and Weisberg 2019) to evaluate the significance of model terms.

371

### 372 **Local patterns of summary statistics**

373 In addition to the global analyses, we also examined local patterns via identifying  
374 windows that exhibited patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  matching one of the four evolutionary  
375 scenarios: divergence-with-gene-flow, allopatric selection, recurrent selection, and balancing  
376 selection (Table 1C, Han et al. 2017; Irwin et al. 2016, 2018; Shang et al. 2023). For  $F_{ST}$ ,  $d_{XY}$ ,  
377 and  $\pi$ , we considered windows with elevated values to be those with estimates above the 95<sup>th</sup>  
378 percentile and windows with decreased values to be those with estimates below the 5<sup>th</sup> percentile.  
379 We considered windows with average  $d_{XY}$  to be those with estimates that fell within the  
380 interquartile range (for the allopatric selection scenario) following Shang et al. (2023) and  
381 Piatkowski et al. (2023).

382

## 383 **RESULTS**

### 384 **Genomic landscape of differentiation between *Neodiprion lecontei* and *N. pinetum***

385 Whole-genome resequencing of 38 *Neodiprion lecontei* and *N. pinetum* individuals  
386 resulted in an average read count of 5,876,752 (range: 3,114,858 – 11,143,016). After excluding  
387 females with < 5 million reads (to balance data quality and sample size), we retained 14 *N.*  
388 *lecontei* and 11 *N. pinetum* individuals with an average site depth of 4.97x. Despite their recent  
389 divergence and continued gene exchange (Bendall et al. 2022), *N. lecontei* and *N. pinetum*  
390 exhibited substantial genomic divergence. Average genome-wide  $F_{ST}$  was 0.61 and  $d_{XY}$  was 3.16  
391  $\times 10^{-3}$ . Average  $\pi$  was  $1.78 \times 10^{-3}$  for *N. lecontei* and  $1.51 \times 10^{-3}$  for *N. pinetum*. Average  
392 Tajima's D was -1.19 for *N. lecontei* and -1.25 for *N. pinetum*. Average Fay and Wu's H was -  
393 0.20 for *N. lecontei* and -0.36 for *N. pinetum*. Overall, all statistics were highly heterogeneous  
394 across the genome, with the most extreme values tending to occur in the putative centromeres  
395 (Figure 2). Notably, these putative centromeric regions also had the lowest number of called sites  
396 per window (Figure S10) and thus comprised the majority of the 570 windows that were filtered  
397 out and excluded from analysis for low site counts.

398

### 399 Relationships between genomic features and genetic summary statistics

400 The effects of linked selection on genetic variation are expected to be most pronounced in  
401 gene-dense and low-recombination regions (Ravinet et al. 2017; Stankowski et al. 2019),  
402 producing genome-wide correlations among recombination rate, gene density, within-species  
403 genetic diversity, and differentiation (Table 1A). While most of our genomic variables are  
404 themselves correlated (Figure 3), our multiple regression models were nevertheless able to tease  
405 apart some of their individual contributions to variation in each summary statistic (Table 2).  
406 Looking first at patterns of within-species variation, we found significant and negative genome-  
407 wide correlations between  $\pi$  and exon density in both *N. lecontei* and *N. pinetum* (Figure 3) and a

408 significant and negative relationship between exon density and  $\pi$  in multiple regression models  
409 for both species (Table 2). Although we did not detect a significant genome-wide correlation  
410 between recombination rate and  $\pi$  for *N. lecontei* (Figure 3), our multiple regression model  
411 revealed a significant and positive relationship between recombination rate and  $\pi$  in *N. lecontei*  
412 after taking into account other genomic variables (Table 2). For *N. pinetum*, however, the  
413 relationship between within-species diversity and recombination rate was significant and  
414 negative (Figure 3; Table 2). We consider possible explanations for this and other results that did  
415 not fit predictions of linked selection (Table 1A) in the discussion.

416 We also examined the relationship between genome features and two summary statistics  
417 derived from the site-frequency spectrum within each species. For Tajima's D, we found a  
418 significant and negative relationship between exon density and Tajima's D in both *N. lecontei*  
419 and *N. pinetum* (Table 2), supporting the prediction that signatures of linked selection (negative  
420 Tajima's D) are more pronounced in gene-dense regions. As expected, we also found a  
421 significant and positive relationship between recombination rate and Tajima's D in *N. lecontei*  
422 (Table 2). We did not recover a significant relationship between recombination rate and Tajima's  
423 D in *N. pinetum* (Table 2). For Fay and Wu's H, for which negative values are indicative of  
424 selective sweeps (Burri et al. 2015), we found a significant and *positive* relationship between  
425 exon density and Fay and Wu's H in both species (Table 2), implying that signatures of selective  
426 sweeps are most pronounced in gene-poor regions. Our multiple regression models also  
427 recovered a significant and *negative* relationship between recombination rate and Fay and Wu's  
428 H in *N. lecontei*, indicating more evidence of selective sweeps in high-recombination regions.  
429 We did not recover a significant relationship between recombination rate and Fay and Wu's H in  
430 *N. pinetum*.

431 Looking at patterns of differentiation between species, we found a significant and  
432 positive genome-wide correlation between  $F_{ST}$  and exon density (Figure 3) and a significant and  
433 positive relationship between exon density and  $F_{ST}$  in our multiple regression model (Table 2).  
434 Additionally, we found a significant and negative genome-wide correlation between  $F_{ST}$  and  
435 recombination rate (Figure 3) and a significant and negative relationship between recombination  
436 rate and  $F_{ST}$  in our multiple regression model (Table 2). These findings support the prediction  
437 that  $F_{ST}$  will be highest in gene-rich and low-recombination regions of the genome (Table 1A).  
438 For  $d_{XY}$ , we found that absolute divergence was highest in gene-poor and low-recombination  
439 regions. These findings provide mixed support for linked selection in ancestral populations  
440 (Table 1A, see below).

441 In addition to exploring the relationship between gene density and recombination rate and  
442 genetic summary statistics, we also examined the impact of site count, distance from the  
443 centromere, and mutation rate (approximated with dS). Site count predicted variation in all  
444 summary statistics except  $F_{ST}$  (Table 2). Whereas Fay and Wu's H tended to increase as site  
445 count increased,  $\pi$ ,  $d_{XY}$ , and Tajima's D decreased as site count increased. We detected  
446 significant relationships between distance from the centromere and all summary statistics except  
447  $F_{ST}$  and *N. lecontei*  $\pi$ ; when significant, all relationships were negative except for *N. lecontei*  
448 Tajima's D: divergence and genetic diversity declined as distance from the centromere increased  
449 and signatures of linked selection tended to be found on chromosome arms (Table 2). We note,  
450 however, that when significant relationships were detected for site count and distance from the  
451 centromere, their effect sizes tended to be smaller than those estimated for exon density (Table  
452 2). Finally, for mutation rate (dS), we only detected a significant relationship for *N. lecontei*  $\pi$   
453 and *N. lecontei* Tajima's D, with both relationships being positive (Table 2). Estimated effect

454 sizes for mutation rate (dS) also tended to be smaller than those of all other predictor variables  
455 (Table 2).

456 Taken together, our results suggest that background selection has played an important but  
457 not exclusive role in shaping the heterogeneous landscape of differentiation between *N. lecontei*  
458 and *N. pinetum*: there are numerous regions across the genome for both species that exhibit  
459 signatures of selective sweeps (i.e., extremely negative Fay and Wu's H values; Figure 2), with  
460 Fay and Wu's H tending to be lower when  $F_{ST}$  is high (Figure S11). Additionally, there are  
461 multiple windows for both species where estimates of Tajima's D and Fay and Wu's H are  
462 strongly negative, suggesting that the low values for Tajima's D in those windows is driven by  
463 selective sweeps and not background selection (Figure S12).

464

#### 465 **Genome-wide correlations between summary statistics**

466 Genome-wide, we found a significant and negative correlation between  $F_{ST}$  and  $d_{XY}$ , a  
467 significant and negative correlation between  $F_{ST}$  and mean  $\pi$ , and a significant and positive  
468 correlation between  $d_{XY}$  and mean  $\pi$  (Figure 3). These correlations were not sensitive to our  
469 choice of window size (Figure S13). Collectively, these results are consistent with either the  
470 recurrent selection or balancing selection evolutionary scenarios (Table 1B). Lending further  
471 support to the recurrent selection scenario, we also found a significant and negative relationship  
472 between exon density and  $d_{XY}$  in both our genome-wide correlations (Figure 3) and multiple  
473 regression model (Table 2). Together, these results are consistent with widespread linked  
474 selection in the ancestral population reducing coalescent times—and therefore  $d_{XY}$ —between  
475 descendant lineages.

476

477 **Local patterns of variation**

478 As an additional method for distinguishing between recurrent selection and balancing  
479 selection—as well as to identify windows with variation patterns that deviate from the primary  
480 genome-wide pattern—we also examined local patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$ . We found that most  
481 windows with unusually high or low values for our focal summary statistics fit the recurrent  
482 selection evolutionary scenario (60.7% for *N. lecontei*  $\pi$  and 49.5% for *N. pinetum*  $\pi$ ; Figures 4,  
483 S14-S20). Genomic regions matching the balancing selection evolutionary scenario were the  
484 second most frequent (31.5% for *N. lecontei*  $\pi$  and 48.5% for *N. pinetum*  $\pi$ ), and these windows  
485 were located primarily in or near centromeres (Figures 4, S14-S20). The remainder of the  
486 detected windows (7.9% for *N. lecontei*  $\pi$  and 2.0% for *N. pinetum*  $\pi$ ) fit the allopatric selection  
487 evolutionary scenario, in which high  $F_{ST}$  was the result of low  $\pi$  and not high  $d_{XY}$ . We did not  
488 detect any windows that fit the divergence-with-gene-flow evolutionary scenario for either  
489 species. In the discussion, we consider possible limitations of the predictions outlined in Table  
490 1C.

491

492 **DISCUSSION**493 **Genome-wide patterns of variation in pine sawflies support pervasive linked selection**

494 Over 50 years ago, Kimura (1968) proposed the neutral theory of molecular evolution,  
495 which posits that differences between species are due to neutral substitutions and that within-  
496 species polymorphism is governed by mutation-drift equilibrium dynamics. As genome  
497 assemblies and population genomic datasets became available, genome-wide patterns of  
498 polymorphism and divergence and their relationship with genome features have featured  
499 prominently in debates about whether modern data support neutral theory. Under neutrality,

500 variation in the neutral mutation rate across the genome is expected to produce a strong positive  
501 correlation between interspecific divergence and intraspecific polymorphism. By contrast, except  
502 for the potential mutagenic effect of recombination (Pratto et al. 2014; Arbeithuber et al. 2015),  
503 recombination environment is expected to have no effect on levels of polymorphism under  
504 neutrality (Hudson 1983). Under selection, however, polymorphism levels should relate to  
505 recombination rate (with lower recombination rates having stronger effects on linked neutral  
506 sites; Stankowski et al. 2019). For this reason, the positive correlations between polymorphism  
507 and recombination that have been observed in several taxa (Cutter and Payseur 2013) have been  
508 interpreted as evidence that neutral theory does not adequately explain modern genomic data  
509 (Hahn 2008; Kern and Hahn 2018; but see Jensen et al. 2018). Meanwhile, others have argued  
510 that the number of species with relevant data—i.e., high quality reference genomes and  
511 independent estimates of recombination rate (e.g., from crosses)—remain too limited to support  
512 this claim (Jensen et al. 2018). Additionally, while it is uncontroversial that linked selection  
513 affects patterns of polymorphism (Maynard Smith and Haigh 1974; Charlesworth et al. 1993),  
514 the proportion of the genome affected and the relative importance of background selection versus  
515 selective sweeps remains debated (Jensen et al. 2018; Kern and Hahn 2018; Pouyet et al. 2018).  
516 Ultimately, more data are needed to characterize genomic landscapes across diverse taxa.  
517 Interpreting these landscapes in light of neutral theory requires well-annotated reference  
518 genomes, recombination rate data, and adequate controls for genotyping error.

519 Consistent with neutral expectations, we found a strong positive correlation between  
520 interspecific divergence ( $d_{XY}$ ) and intraspecific polymorphism ( $\pi$ ) in both *N. lecontei* and *N.*  
521 *pinetum* (Figure 3). However, the synonymous substitution rate (dS; our proxy for the neutral  
522 mutation rate) tended to have the smallest estimated effect size among our genomic predictor

523 variables and was not significant after accounting for other variables in most of our multiple  
524 regression models (Table 2). By contrast, and as observed in other taxa including in other  
525 invertebrates (Wallberg et al. 2015; Christmas et al. 2021; Herrig et al. 2024), vertebrates (Burri  
526 et al. 2015; Rettelbach et al. 2019; Kartje et al. 2020; Chase et al. 2021; Rougemont et al. 2019;  
527 Rodrigues et al. 2023; Moreira et al. 2023), and plants (Flowers et al. 2012; Stankowski et al.  
528 2019; Shang et al. 2023), we found significant relationships between intraspecific polymorphism  
529 and recombination rate, although not always in the direction predicted under simple models of  
530 linked selection (Figure 3; Tables 1A, 2; see below). Another line of evidence consistent with  
531 expectations under linked selection is that exon density—which should correlate positively with  
532 the density of selected sites (Payseur and Nachman 2002)—was negatively correlated with  
533 intraspecific polymorphism in both species (Figure 3; Table 2). In fact, exon density often had  
534 the largest effect size of all variables in our multiple regression models (Table 2). Overall, these  
535 data suggest that neutral mutation rate alone cannot explain our observed positive correlations  
536 between divergence and polymorphism. Instead, we argue that these patterns result from  
537 selection repeatedly targeting the same regions in ancestral and descendant populations (i.e.,  
538 recurrent selection, see below). In further support of pervasive linked selection in ancestral  
539 populations, a recent analysis of genealogical variation across the genomes of 19 eastern North  
540 American *Neodiprion* species (including the focal species here) revealed that concordance with  
541 the estimated species tree tended to be highest in low-recombination and gene-dense regions  
542 (Herrig et al. 2024). These patterns are expected under linked selection because when ancestral  
543 polymorphism is reduced, phylogenetic discordance via incomplete lineage sorting will also be  
544 reduced (Pease and Hahn 2013).

545            Although most of our results fit the patterns expected from widespread linked selection,  
546    some patterns deviate from expectations. Specifically, we found that both  $\pi$  in *N. pinetum* and  
547     $d_{XY}$  tended to be lower in high-recombination regions of the genome. Indeed, studies in other  
548    animal and plant taxa have revealed a mixture of correlations between  $\pi$  and recombination rate  
549    ranging from strong positive correlations (e.g., Wallberg et al. 2015; Burri et al. 2015;  
550    Rougemont et al. 2019; Stankowski et al. 2019), to minimal or no correlations (e.g., Payseur and  
551    Nachman 2002; Flowers et al. 2012; Kartje et al. 2020), to negative correlations (e.g., Flowers et  
552    al. 2012). Here, we consider three non-mutually exclusive explanations for unexpected negative  
553    correlations between recombination rate and polymorphism (Table 1A). Before doing so, we first  
554    note that absolute divergence ( $d_{XY}$ ) between two species is the combination of the amount of  
555    variation that existed in the ancestral population at the time of the speciation event (i.e., ancestral  
556     $\pi$ ) and the accumulation of substitutions post-speciation (Cruickshank and Hahn 2014). For  
557    recently diverged species,  $d_{XY}$  largely reflects ancestral diversity.

558            One potential explanation for the negative correlation between recombination rate and  
559    diversity in *N. pinetum* ( $\pi$ ) and in the *N. lecontei*/*N. pinetum* ancestor ( $d_{XY}$ ) is that we quantified  
560    exon density using a *N. lecontei* genome annotation and used a genetic map from a *N. lecontei*  
561    cross to quantify recombination rate across the genome, potentially leading to incorrect  
562    inferences about local gene density and recombination rate in *N. pinetum* and in the shared  
563    ancestor. However, chromosome-level assemblies for *N. lecontei* and *N. pinetum* indicate that the  
564    two genomes are colinear (Herrig et al. 2024), and recombination rate estimates from  
565    interspecific genetic maps recapitulate patterns in our *N. lecontei* genetic map (unpublished  
566    data). For these reasons, we expect very similar patterns of local gene density and recombination  
567    rates in the two species, making it unlikely that the unexpected correlations with recombination

568 rate can be explained by our use of *N. lecontei* genome feature data. Nevertheless, local  
569 recombination rate sometimes varies between closely related species (McGaugh et al. 2012, but  
570 see Burri et al. 2015; Rodrigues et al. 2023; Wang et al. 2022; Moreira et al. 2023; Shang et al.  
571 2023), so an intraspecific recombination rate map in *N. pinetum* would be necessary to rule out  
572 this potential explanation.

573 A second potential explanation for the negative correlation between diversity metrics  
574 involving *N. pinetum* ( $\pi$  and  $d_{XY}$ ) and recombination rate is that we mapped all sequencing reads  
575 to the *N. lecontei* reference genome. Although synteny plots constructed from annotated gene  
576 sets indicate that *N. lecontei* and *N. pinetum* genomes are colinear (Herrig et al. 2024), alignment  
577 errors for the non-reference species could be elevated in the repeat-rich centromeric regions,  
578 which also have the lowest recombination rates in the genome. Indeed, the highest  $d_{XY}$  and *N.*  
579 *pinetum*  $\pi$  values tended to be observed in and around centromeres (Figure 2). To control for  
580 variation in genotyping error across the genome, we excluded genomic windows with unusually  
581 low site count and included both distance from centromere and site count (a proxy for local  
582 genotyping error) in our regression models (Table 2). Despite these efforts, it is possible that our  
583 data remain insufficient to fully tease apart the effects of minimal recombination and increased  
584 genotyping error in centromeric regions. Long-read population genomic data and re-analysis  
585 using a *N. pinetum* reference genome would be informative for evaluating the accuracy of  
586 diversity estimates obtained using the *N. lecontei* reference genome.

587 A third potential explanation for the negative correlation between genetic diversity and  
588 recombination rate in *N. pinetum* and the shared ancestor, but not *N. lecontei*, is that the former  
589 lineages experienced more intense Hill-Robertson interference, which refers to the reduction in  
590 the efficacy of selection stemming from selection on two or more linked sites (Hill and

591 Robertson 1966). Because this reduced efficacy of selection is expected to be most pronounced  
592 in low-recombination regions, increased recombination rates should reduce Hill-Robertson  
593 interference and increase fixation rates for beneficial alleles (Felsenstein 1974; Comeron et al.  
594 2008; Flowers et al. 2012). This mechanism has been proposed to explain the stronger negative  
595 correlation between  $\pi$  and recombination rate (driven by lower  $\pi$  on chromosome arms) in  
596 domesticated strains of rice compared to a wild strain (Flowers et al. 2012). Similarly, we  
597 propose that pervasive Hill-Robertson interference associated with novel host-associated  
598 selection pressures could explain the observed negative correlation between diversity and  
599 recombination rate in *N. pinetum* and in the *N. pinetum*/*N. lecontei* ancestor.

600 The eastern North American *Neodiprion* clade radiated rapidly and recently onto a  
601 variety of pine species (Linnen and Farrell 2008a,b; Herrig et al. 2024), making it likely that  
602 ancestral populations experienced abundant novel host-associated selection pressures. Similarly,  
603 *N. pinetum* recently shifted onto eastern white pine, a novel host with much thinner and less  
604 resinous needles than other eastern North America pines (Linnen and Farrell 2010; Herrig et al.  
605 2024). Adaptation to this novel host—which all other eastern North American *Neodiprion*  
606 avoid—required changes to behavioral, physiological, and morphological traits expressed in  
607 eggs, larvae, and adults (Bendall et al. 2017, 2023; Glover et al. 2023). By contrast, based on  
608 host associations in other *Neodiprion* species, host-use patterns in *N. lecontei* likely resemble  
609 those of the ancestral population (Linnen and Farrell 2010; Herrig et al. 2024). When adaptation  
610 is highly polygenic, as is likely the case for host adaptation in these specialist pine feeders,  
611 selection can affect a substantial proportion of the genome (Stankowski et al. 2019). Thus,  
612 compared to *N. lecontei*, we might expect more of *N. pinetum*'s genome (and potentially the  
613 ancestral genome) to have experienced positive selection. Consistent with this prediction, there

614 are numerous regions across the genome that exhibit signatures of selective sweeps (i.e.,  
615 strongly negative Fay and Wu's H values) in both species, with these regions appearing to be  
616 more numerous in *N. pinetum* (Figures 2, S12). Moreover, average genome-wide Fay and Wu's  
617 H is lower in *N. pinetum* (-0.36) compared to *N. lecontei* (-0.20). Also consistent with the  
618 hypothesis that Hill-Robertson interference affects genome-wide patterns of variation in  
619 *Neodiprion* is the observation that in both *N. lecontei* and *N. pinetum*, signatures of selective  
620 sweeps (i.e., more negative Fay and Wu's H estimates) tend to be found in gene-poor regions  
621 (Table 2). Overall, these findings add to the growing body of empirical (e.g., Irwin et al. 2016;  
622 Rettelbach et al. 2019; Stankowski et al. 2019; Chase et al. 2021; Wang et al. 2022; Shang et al.  
623 2023; Jiang et al. 2023) and theoretical (Matthey-Doret and Whitlock 2019; Schrider 2020)  
624 literature demonstrating that background selection alone may not be sufficient to explain the  
625 observed patterns of diversity and differentiation. Regardless of the explanation, our study shows  
626 that the effects of linked selection can vary in important ways even among closely related taxa,  
627 such as *N. lecontei* and *N. pinetum*.

628

### 629 **Pine sawfly genomic landscapes support recurrent selection, not divergence-with-gene-flow**

630 A unique feature of the pine sawfly system is that their ecology, demography, and  
631 haplodiploid transmission genetics (Figure 1) allow us to make competing *a priori* predictions  
632 about the predominant evolutionary scenarios shaping their genomic landscape of differentiation.  
633 Specifically, we expected to find evidence of recurrent selection, divergence-with-gene-flow, or  
634 some mixture of the two. Examination of both global and local patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$   
635 provided strong support for recurrent selection—i.e., when selection repeatedly targets the same  
636 regions of the genome in both ancestral populations and descendant lineages—as the primary

637 process shaping variation across pine sawfly genomes. These findings are consistent with a  
638 growing number of studies in diverse animal and plant taxa that have also identified recurrent  
639 selection as the primary driver of heterogeneous genomic differentiation (e.g., Irwin et al. 2016,  
640 2018; Stankowski et al. 2019; Chase et al. 2021; Jiang et al. 2023).

641 While most of our local “outlier” windows fit the recurrent selection evolutionary  
642 scenario (~50-60%), we did detect at least some windows that had patterns consistent with either  
643 the balancing selection or the allopatric selection evolutionary scenarios (Figures 4, S14-S20).

644 This suggests that although many of the same regions of the genome have been targeted by  
645 selection in the common ancestor and in both *N. lecontei* and *N. pinetum*, there are some regions  
646 of the genome where ancestral polymorphism has been maintained and where lineage-specific  
647 selection has occurred due to local ecological adaptation (Han et al. 2017; Shang et al. 2023).

648 Intriguingly, patterns of balancing selection were most evident near the centromeres (Figures 4,  
649 S14-S20). As noted above, one potential explanation for elevated  $\pi$  and  $d_{XY}$  surrounding  
650 centromeres is that these are artifacts of increased genotyping error in and around repeat-rich  
651 centromeres.

652 Signatures of balancing selection near centromeres could also be due to unique  
653 evolutionary dynamics near centromeres. For example, in *Mimulus* monkeyflowers, strong  
654 female meiotic drive has been linked to a centromere-associated repeat domain locus. Individuals  
655 that are homozygous for the driving allele suffer reduced pollen viability; thus, balancing  
656 selection prevents the fixation or loss of the driving allele within the population (Fishman and  
657 Saunders 2008). More generally, there are several mechanisms by which balancing selection  
658 maintains polymorphism, including heterozygote advantage, frequency-dependent selection,  
659 sexual antagonism, and variation in fitness across time (including between larval and adult

660 stages) and space (Llaurens et al. 2017). However, trans-species polymorphisms can also persist  
661 due to neutral processes (Wiuf et al. 2004). Thus, additional tests (e.g., simulations) are required  
662 to rule out neutral processes and demonstrate that trans-species polymorphisms have been  
663 maintained by long-term balancing selection. Overall, more work is required to determine the  
664 underlying mechanisms maintaining polymorphism in *N. lecontei* and *N. pinetum*, particularly in  
665 or near centromeres.

666 Surprisingly, we did not recover any windows that fit the divergence-with-gene-flow  
667 evolutionary scenario. We do not think this finding is due to incorrect inferences about the  
668 demography and ecology of speciation in *N. lecontei* and *N. pinetum* because all existing data  
669 strongly and consistently support ecological speciation driven by a recent host shift with  
670 substantial gene exchange throughout divergence (Linnen and Farrell 2007, 2010; Bendall et al.  
671 2017, 2022, 2023; Glover et al. 2023). One potential explanation for this finding is that our  
672 observed lack of divergence-with-gene-flow windows is an artifact of how we selected and  
673 categorized outlier windows. Recurrent selection, allopatric selection, and divergence-with-gene-  
674 flow all predict some outlier windows with high  $F_{ST}$  and low  $\pi$ , corresponding to regions under  
675 selection. These scenarios differ only in their predictions about whether absolute divergence  
676 ( $d_{XY}$ ) will be high (divergence-with-gene-flow), average (allopatric selection), or low (recurrent  
677 selection) relative to the rest of the genome. Categorization is therefore influenced by arbitrary  
678 cutoffs for what we consider low (bottom 5%), average (interquartile range), or high (top 5%).

679 Additionally, the predictions for divergence-with-gene-flow windows assume that outside  
680 of barrier loci, the rest of the genome is evolving neutrally. Based on the evidence discussed  
681 above supporting pervasive linked selection, this assumption is almost certainly violated.  
682 Importantly, when a locus experiences selection in the ancestral population, the statistical power

683 to detect increased  $d_{XY}$  between the descendant lineages at this locus due to restricted gene flow  
684 is drastically reduced unless very high levels of gene flow occur across the rest of the genome  
685 (Cruickshank and Hahn 2014). Thus, while examining local genomic patterns of variation  
686 provides some additional context when interpreting genome-wide correlations—especially  
687 distinguishing between recurrent and balancing selection—such qualitative categorizations  
688 should be interpreted with caution.

689        Regardless of how we identify and categorize putative outlier windows, it is nevertheless  
690 true that the predominant patterns in our genome-wide data do not fit published expectations for  
691 divergence-with-gene-flow (Table 1B). One potential explanation for this finding is that genome-  
692 wide signatures of divergence-with-gene-flow are likely to be ephemeral and *N. lecontei* and *N.*  
693 *pinetum* are already too diverged to recover this pattern (Figure 2). In early stages of primary  
694 speciation-with-gene-flow (i.e., no periods of allopatry throughout divergence), theory predicts  
695 that gene flow will be reduced only at loci involved in reproductive isolation (i.e., “speciation  
696 genes”) and tightly linked loci, forming localized “islands of differentiation”, while the rest of  
697 the genome is homogenized by gene flow (Wu 2001; Turner et al. 2005; Via and West 2008; Via  
698 2012; Nosil and Feder 2012). As additional loci diverge, effective gene flow is reduced across  
699 more of the genome, eventually leading to widespread genomic divergence (Nosil and Feder  
700 2012). When this occurs, islands of differentiation become harder to detect (Via 2012; Han et al.  
701 2017; Gauthier et al. 2018; Jiang et al. 2023) and genome-wide correlations between  $F_{ST}$ ,  $d_{XY}$ ,  
702 and  $\pi$  may become less pronounced. Moreover, as reproductive isolation increases and gene flow  
703 declines further, diverging populations will increasingly behave as semi-independent  
704 populations, diverging via drift and independent bouts of selection. Eventually, an initial pattern  
705 of divergence-with-gene-flow may get “overwritten” by subsequent bouts of selection,

706 increasingly producing genome-wide correlations consistent with whatever selection scenario  
707 predominated post-divergence.

708 Evaluating our hypothesis that divergence-with-gene-flow signatures are ephemeral will  
709 require characterizing the genomic landscape of divergence across multiple timepoints in the  
710 *Neodiprion* speciation continuum. Indeed, this strategy is increasingly applied in other taxa and  
711 is becoming a promising tool to investigate how genomic landscapes “evolve” as speciation  
712 proceeds (e.g., Burri et al. 2015; Stankowski et al. 2019; Shang et al. 2023). As a complementary  
713 approach, simulations under a wide range of selection scenarios, demographic histories, and  
714 divergence time scales would be very useful for evaluating the robustness and temporal stability  
715 of the qualitative predictions outlined in Tables 1B, 1C (e.g., Matthey-Doret and Whitlock 2019;  
716 Rettelbach et al. 2019; Stankowski et al. 2019). From these studies, we can better understand the  
717 evolutionary forces shaping the genomic landscape, further enhancing our understanding of the  
718 genetics of adaptation and speciation.

719

## 720 **Does haplodiploidy predict recurrent selection?**

721 Sex chromosomes are hypothesized to be particularly prone to recurrent selection due to  
722 expression of all recessive mutations in the heterogametic sex (Charlesworth et al. 1987;  
723 Ellegren et al. 2012; Oyler-McCance et al. 2015; Irwin et al. 2016; Miller and Sheehan 2023).  
724 Because haplodiploid inheritance patterns are similar to that of sex chromosomes (Nouhaud et al.  
725 2020), we hypothesize that haplodiploids may be especially prone to recurrent selection, even if  
726 there is gene flow throughout divergence. In support of this hypothesis, we found that recurrent  
727 selection is likely the primary process shaping the heterogeneous landscape of differentiation  
728 between *N. lecontei* and *N. pinetum*. Unfortunately, a taxonomic bias in the literature precludes

729 us from assessing the prevalence of this pattern in haplodiploids. Although other taxa such as  
730 birds (e.g., Burri et al. 2015; Irwin et al. 2016, 2018; Han et al. 2017; Rettelbach et al. 2019;  
731 Chase et al. 2021; Jiang et al. 2023; Moreira et al. 2023), fish (e.g., Rougemont et al. 2019;  
732 Wang et al. 2022; Sun et al. 2022), plants (e.g., Flowers et al. 2012; Ma et al. 2018; Stankowski  
733 et al. 2019; Piatkowski et al. 2023; Shang et al. 2023), and other insects (e.g., Lindtke et al. 2017;  
734 Wong Miller et al. 2017; Talla et al. 2019; Fiteni et al. 2022) are well represented in genomic  
735 landscape studies, we only found one other comparable study (i.e., that estimates and compares  
736 patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  across the genome so that these patterns can be matched to one or  
737 more of the four selection-based evolutionary scenarios) in a haplodiploid system (Christmas et  
738 al. 2021).

739 As in our study, Christmas et al. (2021) found that genomic windows with elevated  
740 differentiation in *Bombus* alpine bumblebees tended to be found in genomic regions with high  
741 gene density, low recombination rates, and low  $\pi$ . Additionally, they found evidence of recurrent  
742 selection (low  $d_{XY}$  in  $F_{ST}$  outlier windows) in an intraspecific comparison and in an allopatric  
743 species pair. Conversely, and unlike our findings, they found evidence of divergence-with-gene-  
744 flow (high  $d_{XY}$  in  $F_{ST}$  outlier windows) in a sympatric species pair. Notably, average genome-  
745 wide  $F_{ST}$  in the *Bombus* sympatric species pair (0.41) is considerably lower than in our  
746 *Neodiprion* pine sawflies (0.61). Also, it is unclear whether these sympatric *Bombus* species  
747 diverged with continuous gene flow or whether they experienced periods of allopatry and  
748 subsequent gene flow upon secondary contact. The power to detect locally elevated  $d_{XY}$  due to  
749 restricted gene flow is much higher when gene flow occurs upon secondary contact compared to  
750 divergence with continuous gene flow at short divergence times (Cruickshank and Hahn 2014).  
751 Collectively, the overall lower genomic differentiation and possibly different demographic

752 history between the sympatric *Bombus* species compared to *N. lecontei* and *N. pinetum* could  
753 explain the different findings between our study and Christmas et al. (2021). Ultimately,  
754 however, more studies in diverse haplodiploid taxa are needed to determine whether this mode of  
755 reproduction has a predictable impact on genome-wide patterns of genetic differentiation.

756

757 **CONCLUSIONS**

758 Collectively, our study makes several important contributions to the study of genomic  
759 landscapes. First, our study adds to the growing body of literature documenting evidence of  
760 pervasive linked selection across the genome. Second, our study highlights that even when there  
761 is widespread linked selection, genomic predictors of variation can differ even between closely  
762 related species. Third, although gene density and recombination rate appear to be the primary  
763 biological sources of variation in genetic summary statistics across the genome, our study  
764 demonstrates that it is important to consider other factors, such as genotyping error and  
765 proximity to centromeres. Fourth, by focusing on a haplodiploid species pair, our study fills an  
766 important taxonomic gap in the speciation genomics literature and supports the hypothesis that  
767 patterns of variation in haplodiploids will be heavily influenced by recurrent selection.

768 Nevertheless, it is also clear that more genomic landscape studies from a broader range of taxa  
769 are required to determine whether there are consistent differences in landscape features among  
770 different taxonomic groups and divergence scenarios. Given the paucity of data from  
771 haplodiploids, we suggest that investigation of such taxa should be a high priority for future  
772 studies. As demonstrated here, genomic landscape studies are perhaps most informative when  
773 there are sufficient genomic resources (e.g., high-quality reference genomes, genome

774 annotations, recombination maps) and information about the study system (e.g., ecology and  
775 divergence history) to aid hypothesis generation and data interpretation.

776

777 **ACKNOWLEDGEMENTS**

778 We thank members of the Linnen lab for assistance with pine sawfly collection and  
779 rearing, Andres Bendesky for providing the reagents used in the Tn5 tagmentation library  
780 preparation protocol, Emily Bendall for advice on library preparation, and Danielle Herrig for  
781 providing the genome of an outgroup taxon. We also thank three anonymous reviewers whose  
782 comments helped us improve our analyses and interpretations and the clarity of our arguments.

783 This work was supported by the USDA National Institute of Food and Agriculture Predoctoral  
784 Fellowship (2022-67011-36550) to ANG and the National Science Foundation DEB-1257739  
785 and DEB-CAREER-1750946 to CRL. For computing resources, we thank the University of  
786 Kentucky Center for Computational Sciences, the Morgan Compute Cluster, and the SCINet  
787 project and the AI Center of Excellence of the USDA Agricultural Research Service, ARS  
788 project numbers 0201-88888-003-000D and 0201-88888-002-000D. The US Department of  
789 Agriculture, Agricultural Research Service is an equal opportunity/affirmative action employer  
790 and all agency services are available without discrimination.

791

792 **REFERENCES**

793 Arbeitshuber, B., Betancourt, A. J., Ebner, T., & Tiemann-Boege, I. (2015). Crossovers are  
794 associated with mutation and biased gene conversion at recombination hotspots.  
795 *Proceedings of the National Academy of Sciences of the United States of America*, 112,  
796 2109-2114. <https://doi.org/10.1073/pnas.1416622112>

797 Avery, P. J. (1984). The population genetics of haplo-diploids and X-linked genes. *Genetical  
798 Research*, 44(3), 321-341. <https://doi.org/10.1017/S0016672300026550>

799 Begun, D. J., Holloway, A. K., Stevens, K., Hillier, L. W., Poh, Y. P., Hahn, M. W., ... &  
800 Langley,  
801 C. H. (2007). Population genomics: whole-genome analysis of polymorphism and  
802 divergence in *Drosophila simulans*. *PLoS Biology*, 5(11), e310.  
803 <https://doi.org/10.1371/journal.pbio.0050310>

804 Bendall, E. E. (2020). From Genes to Species: Ecological Speciation with Gene Flow in  
805 *Neodiprion pinetum* and *N. lecontei*. *Theses and Dissertations—Biology*, 62,  
806 [https://uknowledge.uky.edu/biology\\_etds/62](https://uknowledge.uky.edu/biology_etds/62)

807 Bendall, E. E., Vertacnik, K. L., & Linnen, C. R. (2017). Oviposition traits generate extrinsic  
808 postzygotic isolation between two pine sawfly species. *BMC Evolutionary Biology*,  
809 17(1), 1-15. <https://doi.org/10.1186/s12862-017-0872-8>

810 Bendall, E. E., Bagley, R. K., Sousa, V. C., & Linnen, C. R. (2022). Faster-haplodiploid  
811 evolution under divergence-with-gene-flow: Simulations and empirical data from pine-  
812 feeding hymenopterans. *Molecular Ecology*, 00, 1-19. <https://doi.org/10.1111/mec.16410>

813 Bendall, E. E., Mattingly, K. M., Moehring, A. J., & Linnen, C. R. (2023). A test of Haldane's  
814 rule in *Neodiprion* sawflies and implications for the evolution of postzygotic isolation in

815                    haplodiploids. *The American Naturalist*, 202(1), 40-54. <https://doi.org/10.1086/724820>

816    Bensasson, D. (2011). Evidence for a high mutation rate at rapidly evolving yeast centromeres.

817                    *BMC Evolutionary Biology*, 11, 1-11. <https://doi.org/10.1186/1471-2148-11-211>

818    Blackmon, H., Ross, L., & Bachtrog, D. (2017). Sex determination, sex chromosomes, and

819                    karyotype evolution in insects. *Journal of Heredity*, 108(1), 78-93.

820                    <https://doi.org/10.1093/jhered/esw047>

821    Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina

822                    sequence data. *Bioinformatics*, 30(15), 2114-2120.

823                    <https://doi.org/10.1093/bioinformatics/btu170>

824    Branca, A., Paape, T. D., Zhou, P., Briskine, R., Farmer, A. D., Mudge, J., ... & Tiffin, P. (2011).

825                    Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the

826                    model legume *Medicago truncatula*. *Proceedings of the National Academy of Sciences*,

827                    108(42), E864-E870. <https://doi.org/10.1073/pnas.1104032108>

828    Burri, R. (2017a). Dissecting differentiation landscapes: A linked selection's perspective.

829                    *Journal*

830                    *of Evolutionary Biology*, 30(8), 1501-1505. <https://doi.org/10.1111/jeb.13108>

831    Burri, R. (2017b). Interpreting differentiation landscapes in the light of long-term linked

832                    selection. *Evolution Letters*, 1, 118-131. <https://doi.org/10.1002/evl3.14>

833    Burri, R., Nater, A., Kawakami, T., Mugal, C. F., Olason, P. I., Smeds, L., Suh, A., Dutoit, L.,

834                    Bureš, S., Garamszegi, L. Z., Hogner, S., Moreno, J., Qvarnström, A., Ružić, M.,

835                    Sæther, S.-A., Sætre, G.-P., Török, J., & Ellegren, H. (2015). Linked selection and

836                    recombination rate variation drive the evolution of the genomic landscape of

837                    differentiation across the speciation continuum of *Ficedula* flycatchers. *Genome*

838 *Research*, 25(11), 1656-1665. <https://doi.org/10.1101/gr.196485.115>

839 Castellano, D., Eyre-Walker, A., & Munch, K. (2019). Impact of mutation rate and selection at  
840 linked sites on DNA variation across the genomes of humans and other Homininae.

841 *Genome Biology and Evolution*, 12(1), 3550-3561. <https://doi.org/10.1093/gbe/evz215>

842 Charlesworth, B. (1998). Measures of divergence between populations and the effect of forces  
843 that reduce variability. *Molecular Biology and Evolution*, 15(5), 538-543.  
844 <https://doi.org/10.1093/oxfordjournals.molbev.a025953>

845 Charlesworth, D. (2006). Balancing selection and its effects on sequences in nearby genome  
846 regions. *PLoS Genetics*, 2(4), e64. <https://doi.org/10.1371/journal.pgen.0020064>

847 Charlesworth, B., Coyne, J. A., & Barton, N. H. (1987). The relative rates of evolution of sex  
848 chromosomes and autosomes. *American Naturalist*, 130(1), 113-146.  
849 <https://doi.org/10.1086/284701>

850 Charlesworth, B., Morgan, M. T., & Charlesworth, D. (1993). The effect of deleterious  
851 mutations  
852 on neutral molecular variation. *Genetics*, 134(4), 1289-1303.  
853 <https://doi.org/10.1093/genetics/134.4.1289>

854 Charlesworth, D., Charlesworth, B., & Morgan, M. T. (1995). The pattern of neutral molecular  
855 variation under the background selection model. *Genetics*, 141(4), 1619-1632.  
856 <https://doi.org/10.1093/genetics/141.4.1619>

857 Chase, M. A., Ellegren, H., & Mugal, C. F. (2021). Positive selection plays a major role in  
858 shaping signatures of differentiation across the genomic landscape of two independent  
859 *Ficedula* flycatcher species pairs. *Evolution*, 75(9), 2179-2196.  
860 <https://doi.org/10.1111/evo.14234>

861 Christmas, M. J., Jones, J. C., Olsson, A., Wallerman, O., Bunikis, I., Kierczak, M., ... &  
862 Webster, M. T. (2021). Genetic barriers to historical gene flow between cryptic species of  
863 alpine bumblebees revealed by comparative population genomics. *Molecular Biology and*  
864 *Evolution*, 38(8), 3126-3143. <https://doi.org/10.1093/molbev/msab086>

865 Clark, R. M., Schweikert, T., Toomajian, C., Ossowski, S., Zeller, G., Shinn, P., ... & Weigel, D.  
866 (2007). Common sequence polymorphisms shaping genetic diversity in *Arabidopsis*  
867 *thaliana*. *Science*, 317(5836), 338-342. <https://doi.org/10.1126/science.1138632>

868 Comeron, J. M. (2017). Background selection as null hypothesis in population genomics:  
869 insights and challenges from *Drosophila* studies. *Philosophical Transactions of the*  
870 *Royal Society of London. Series B, Biological Sciences*, 372, 20160471.  
871 <http://dx.doi.org/10.1098/rstb.2016.0471>

872 Comeron, J. M., Williford, A., & Kilman, R. M. (2008). The Hill-Robertson effect: evolutionary  
873 consequences of weak selection and linkage in finite populations. *Heredity*, 100(1), 19-  
874 31. <https://doi.org/10.1038/sj.hdy.6801059>

875 Coppel, H., & Benjamin, D. (1965). Bionomics of the Nearctic pine-feeding diprionids. *Annual*  
876 *Review of Entomology*, 10, 69-96. <https://doi.org/10.1146/annur ev.en.10.010165.000441>

877 Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of  
878 speciation are due to reduced diversity, not reduced gene flow. *Molecular Ecology*,  
879 23(13), 3133-3157. <https://doi.org/10.1111/mec.12796>

880 Cutter, A. D., & Payseur, B. A. (2013). Genomic signatures of selection at linked sites: unifying  
881 the disparity among species. *Nature Reviews Genetics*, 14(4), 262-274.  
882 <https://doi.org/10.1038/nrg3425>

883 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A.,

884 Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools  
885 and BCFtools. *GigaScience*, 10(2), giab008. <https://doi.org/10.1093/gigascience/giab008>

886 de la Filia, A. G., Bain, S. A., & Ross, L. (2015). Haplodiploidy and the reproductive ecology  
887 of arthropods. *Current Opinion in Insect Science*, 9, 36-43.  
888 <https://doi.org/10.1016/j.cois.2015.04.018>

889 Derelle, R., Philippe, H., & Colbourne, J. K. (2020). Broccoli: combining phylogenetic and  
890 network analyses for orthology assignment. *Molecular Biology and Evolution*, 37(11),  
891 3389-3396. <https://doi.org/10.1093/molbev/msaa159>

892 Durand, N. C., Robinson, J. T., Shamim, M. S., Machol, I., Mesirov, J. P., Lander, E. S., &  
893 Aiden, E. L. (2016). Juicebox provides a visualization system for Hi-C contact maps with  
894 unlimited zoom. *Cell Systems*, 3(1), 99-101. <http://dx.doi.org/10.1016/j.cels.2015.07.012>

895 Ellegren, H., Smeds, L., Burri, R., Olason, P. I., Backström, N., Kawakami, T., Künstner, A.,  
896 Mäkinen, H., Nadachowska-Brzyska, K., Qvarnström, A., Uebbing, S., & Wolf, J. B.  
897 (2012). The genomic landscape of species divergence in *Ficedula* flycatchers. *Nature*,  
898 491(7426), 756-760. <https://doi.org/10.1038/nature11584>

899 Everitt, T., Wallberg, A., Christmas, M. J., Olsson, A., Hoffmann, W., Neumann, P., & Webster,  
900 M. T. (2023). The genomic basis of adaptation to high elevations in Africanized honey  
901 bees. *Genome Biology and Evolution*, 15(9), evad157.  
902 <https://doi.org/10.1093/gbe/evad157>

903 Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations.  
904 *Nature Reviews Genetics*, 8(8), 610-618. <https://doi.org/10.1038/nrg2146>

905 Fay, J. C., & Wu, C. I. (2000). Hitchhiking under positive Darwinian selection. *Genetics*, 155,  
906 1405-1413. <https://doi.org/10.1093/genetics/155.3.1405>

907 Felsenstein, J. (1974). The evolutionary advantage of recombination. *Genetics*, 78(2), 737-756.

908 <https://doi.org/10.1093/genetics/78.2.737>

909 Fishman, L., & Saunders, A. (2008). Centromere-associated female meiotic drive entails male

910 fitness costs in monkeyflowers. *Science*, 322(5907), 1559-1562.

911 <https://doi.org/10.1126/science.1161406>

912 Fiteni, E., Durand, K., Gimenez, S., Meagher Jr, R. L., Legeai, F., Kergoat, G. J., ... & Nam, K.

913 (2022). Host-plant adaptation as a driver of incipient speciation in the fall armyworm

914 (*Spodoptera frugiperda*). *BMC Ecology and Evolution*, 22(1), 133.

915 <https://doi.org/10.1186/s12862-022-02090-x>

916 Flowers, J. M., Molina, J., Rubinstein, S., Huang, P., Schaal, B. A., & Purugganan, M. D.

917 (2012).

918 Natural selection in gene-dense regions shapes the genomic pattern of polymorphism in

919 wild and domesticated rice. *Molecular Biology and Evolution*, 29(2), 675-687.

920 <https://doi.org/10.1093/molbev/msr225>

921 Fox, J., & Weisberg, S. (2019). *An R companion to applied regression* (3<sup>rd</sup> ed.). Sage.

922 Fumagalli, M., Vieira, F. G., Korneliussen, T. S., Linderoth, T., Huerta-Sanchez, E.,

923 Albrechtsen,

924 A., & Nielsen, R. (2013). Quantifying population genetic differentiation from next-

925 generation sequencing data. *Genetics*, 195, 979-992.

926 <https://doi.org/10.1534/genetics.113.154740>

927 Gauthier, J., Gayral, P., Le Ru, B. P., Jancek, S., Dupas, S., Kaiser, L., ... & Herniou, E. A.

928 (2018). Genetic footprints of adaptive divergence in the bracovirus of *Cotesia sesamiae*

929 identified by targeted resequencing. *Molecular Ecology*, 27(8), 2109-2123.

930 https://doi.org/10.1111/mec.14574

931 Glover, A. N., Bendall, E. E., Terbot II, J. W., Payne, N., Webb, A., Filbeck, A., Norman, G., &  
932 Linnen, C. R. (2023). Body size as a magic trait in two plant-feeding insect species.  
933 *Evolution*, 77(2), 437-453. <https://doi.org/10.1093/evolut/qpac053>

934 Glover, A. N., Sousa, V. C., Ridenbaugh, R. D., Sim, S. B., Geib, S. M., & Linnen, C. R. (2024).  
935 Data from: Recurrent selection shapes the genomic landscape of differentiation between a  
936 pair of host-specialized haplodiploids that diverged with gene flow. *Dryad*. doi:  
937 <https://doi.org/10.5061/dryad.fxpnvx128>

938 Gore, M. A., Chia, J. M., Elshire, R. J., Sun, Q., Ersoz, E. S., Hurwitz, B. L., ... & Bucker, E. S.  
939 (2009). A first-generation haplotype map of maize. *Science*, 326(5956), 1115-1117.  
940 <https://doi.org/10.1126/science.1177837>

941 Guerrero, R. F., & Hahn, M. W. (2017). Speciation as a sieve for ancestral polymorphism.  
942 *Molecular Ecology*, 26, 5362-5368. <https://doi.org/10.1111/mec.14290>

943 Hahn, M. W. (2008). Toward a selection theory of molecular evolution. *Evolution*, 62(2),  
944 255-265. <https://doi.org/10.1111/j.1558-5646.2007.00308.x>

945 Han, F., Lamichhaney, S., Grant, B. R., Grant, P. R., Andersson, L., & Webster, M. T. (2017).  
946 Gene flow, ancient polymorphism, and ecological adaptation shape the genomic  
947 landscape of divergence among Darwin's finches. *Genome Research*, 27, 1004-1015.  
948 <https://doi.org/10.1101/gr.212522.116>

949 Harper, K. E., Bagley, R. K., Thompson, K. L., & Linnen, C. R. (2016). Complementary sex  
950 determination, inbreeding depression and inbreeding avoidance in a gregarious sawfly.  
951 *Heredity*, 117(5), 326-335. <https://doi.org/10.1038/hdy.2016.46>

952 Henikoff, S., Ahmad, K., & Malik, H. (2001). The centromere paradox: stable inheritance with

953 rapidly evolving DNA. *Science*, 293(5532), 1098-1102.

954 <https://doi.org/10.1126/science.1062939>

955 Herrig, D. K., Ridenbaugh, R. D., Vertacnik, K. L., Everson, K. M., Sim, S. B., Geib, S. M.,

956 Weisrock, D. W., & Linnen, C. R. (2024). Whole genomes reveal evolutionary

957 relationships and mechanisms underlying gene-tree discordance in *Neodiprion* sawflies.

958 *Systematic Biology*, syae036. <https://doi.org/10.1093/sysbio/syae036>

959 Hill, W. G., & Robertson, A. (1966). The effect of linkage on limits to artificial selection.

960 *Genetics Research*, 8(3), 269-294. <https://doi.org/10.1017/S0016672300010156>

961 Hofstatter, P. G., Thangavel, G., Castellani, M., & Marques, A. (2021). Meiosis progression and

962 recombination in holocentric plants: what is known? *Frontiers in Plant Science*, 12,

963 658296. <https://doi.org/10.3389/fpls.2021.658296>

964 Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. *Scandinavian*

965 *Journal of Statistics*, 6(2), 65–70. <http://www.jstor.org/stable/4615733>

966 Hudson, R. R. (1983). Properties of a neutral allele model with intragenic recombination.

967 *Theoretical Population Biology*, 23(2), 183-201.

968 [https://doi.org/10.1016/0040-5809\(83\)90013-8](https://doi.org/10.1016/0040-5809(83)90013-8)

969 Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from

970 DNA sequence data. *Genetics*, 132(2), 583-589.

971 <https://doi.org/10.1093/genetics/132.2.583>

972 Irwin, D. E., Alcaide, M., Delmore, K. E., Irwin, J. H., & Owens, G. L. (2016). Recurrent

973 selection explains parallel evolution of genomic regions of high relative but low absolute

974 differentiation in a ring species. *Molecular Ecology*, 25(18), 4488-4507.

975 <https://doi.org/10.1111/mec.13792>

976 Irwin, D. E., Milá, B., Toews, D. P. L., Brelsford, A., Kenyon, H. L., Porter, A. N., Grossen, C.,  
977 Delmore, K. E., Alcaide, M., & Irwin, J. H. (2018). A comparison of genomic islands of  
978 differentiation across three young avian species pairs. *Molecular Ecology*, 27(23),  
979 4839-4855. <https://doi.org/10.1111/mec.14858>

980 Jensen, J. D., Payseur, B. A., Stephan, W., Aquadro, C. F., Lynch, M., Charlesworth, D., &  
981 Charlesworth, B. (2018). The importance of the Neutral Theory in 1968 and 50 years on:  
982 A response to Kern and Hahn 2018. *Evolution*, 73(1), 111-114.  
983 <https://doi.org/10.1111/evo.13650>

984 Jiang, Z., Song, G., Luo, X., Zhang, D., Lei, F., & Qu, Y. (2023). Recurrent selection and  
985 reduction in recombination shape the genomic landscape of divergence across multiple  
986 population pairs of Green-backed Tit. *Evolution Letters*, 7(2), 99-111.  
987 <https://doi.org/10.1093/evlett/qrad005>

988 Kartje, M. E., Jing, P., & Payseur, B. A. (2020). Weak correlation between nucleotide variation  
989 and recombination rate across the house mouse genome. *Genome Biology and Evolution*,  
990 12(4), 293-299. <https://doi.org/10.1093/gbe/evaa045>

991 Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7:  
992 improvements in performance and usability. *Molecular Biology and Evolution*, 30(4),  
993 772-780. <https://doi.org/10.1093/molbev/mst010>

994 Kern, A. D., & Hahn, M. W. (2018). The neutral theory in light of natural selection. *Molecular  
995 Biology and Evolution*, 35(6), 1366-1371. <https://doi.org/10.1093/molbev/msy092>

996 Kimura, M. (1968). Evolutionary rate at the molecular level. *Nature*, 217, 624-626.  
997 <https://doi.org/10.1038/217624a0>

998 Knerer, G., & Atwood, C. E. (1973). Diprionid sawflies: Polymorphism and speciation. *Science*,

999 179(4078), 1090-1099. <https://doi.org/10.1126/science.179.4078.1090>

1000 1000 Korneliussen, T. S., Moltke, I., Albrechtsen, A., & Nielsen, R. (2013). Calculation of Tajima's D  
1001 and other neutrality test statistics from low depth next-generation sequencing data. *BMC  
1002 Bioinformatics*, 14, 289. <https://doi.org/10.1186/1471-2105-14-289>

1003 1003 Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: analysis of next generation  
1004 sequencing data. *BMC Bioinformatics*, 15, 1-13.  
1005 <https://doi.org/10.1186/s12859-014-0356-4>

1006 1006 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler  
1007 transform. *Bioinformatics*, 25(14), 1754-1760.  
1008 <https://doi.org/10.1093/bioinformatics/btp324>

1009 1009 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & 1000 Genome Project  
1010 Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools.  
1011 *Bioinformatics*, 25(16), 2078-2079. <https://doi.org/10.1093/bioinformatics/btp352>

1012 1012 Lindtke, D., Lucek, K., Soria-Carrasco, V., Villoutreix, R., Farkas, T. E., Riesch, R., Dennis, S.  
1013 R., & Gompert, Z. (2017). Long-term balancing selection on chromosomal variants  
1014 associated with crypsis in a stick insect. *Molecular Ecology*, 26, 6189-6205.  
1015 <https://doi.org/10.1111/mec.14280>

1016 1016 Linnen, C. R., & Farrell, B. D. (2007). Mitonuclear discordance is caused by rampant  
1017 mitochondrial introgression in *Neodiprion* (Hymenoptera: Diprionidae) sawflies.  
1018 *Evolution*, 61(6), 1417-1438. <https://doi.org/10.1111/j.1558-5646.2007.00114.x>

1019 1019 Linnen, C. R., & Farrell, B. D. (2008a). Comparison of methods for species-tree inference in the  
1020 sawfly genus *Neodiprion* (Hymenoptera: Diprionidae). *Systematic Biology*, 57(6), 876-  
1021 890. <https://doi.org/10.1080/10635150802580949>

1022 Linnen, C. R., & Farrell, B. D. (2008b). Phylogenetic analysis of nuclear and mitochondrial  
1023 genes reveals evolutionary relationships and mitochondrial introgression in the sertifer  
1024 species group of the genus *Neodiprion* (Hymenoptera: Diprionidae). *Molecular*  
1025 *Phylogenetics and Evolution*, 48(1), 240-257.  
1026 <https://doi.org/10.1016/j.ympev.2008.03.021>

1027 Linnen, C. R., & Farrell, B. D. (2010). A test of the sympatric host race formation hypothesis in  
1028 *Neodiprion* (Hymenoptera: Diprionidae). *Proceedings of the Royal Society B: Biological*  
1029 *Sciences*, 277(1697), 3131-3138. <https://doi.org/10.1098/rspb.2010.0577>

1030 Linnen, C. R., O'Quin, C. T., Shackleford, T., Sears, C. R., & Lindstedt, C. (2018). Genetic basis  
1031 of body color and spotting pattern in redheaded pine sawfly larvae (*Neodiprion lecontei*).  
1032 *Genetics*, 209(1), 291-305. <https://doi.org/10.1534/genetics.118.300793>

1033 Llaurens, V., Whibley, A., & Joron, M. (2017). Genetic architecture and balancing selection: the  
1034 life and death of differentiated variants. *Molecular Ecology*, 26(9), 2430-2448.  
1035 <https://doi.org/10.1111/mec.14051>

1036 Ma, T., Wang, K., Hu, Q., Xi, Z., Wan, D., Wang, Q., Feng, J., Jiang, D., Ahani, H., Abbott, R.  
1037 J.,  
1038 Lascoux, M., Nevo, E., & Liu, J. (2018). Ancient polymorphisms and divergence  
1039 hitchhiking contribute to genomic islands of divergence within a poplar species complex.  
1040 *Proceedings of the National Academy of Sciences*, 115(2), E236-E243.  
1041 <https://doi.org/10.1073/pnas.1713288114>

1042 Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and algorithms for  
1043 correlation analysis in R. *Journal of Open Source Software*, 5(51), 2306.  
1044 <https://doi.org/10.21105/joss.02306>

1045 Martin, S. H., Dasmahapatra, K. K., Nadeau, N. J., Salazar, C., Walters, J. R., Simpson, F.,

1046 Blaxter, M., Manica, A., Mallet, J., & Jiggins, C. D. (2013). Genome-wide evidence for

1047 speciation with gene flow in *Heliconius* butterflies. *Genome Research*, 23(11), 1817-

1048 1828. <https://doi.org/10.1101/gr.159426.113>

1049 Matthey-Doret, R., & Whitlock, M. C. (2019). Background selection and  $F_{ST}$ : Consequences for

1050 detecting local adaptation. *Molecular Ecology*, 28, 3902-3914.

1051 <https://doi.org/10.1111/mec.15197>

1052 Maynard Smith, J., & Haigh, J. (1974). The hitch-hiking effect of a favorable gene. *Genetical*

1053 *Research*, 23(1), 23-35. <https://doi.org/10.1017/S0016672300014634>

1054 McGaugh, S., Smukowski, C., Manzano-Winkler, B., Himmel, T., & Noor, M. (2012).

1055 Recombination modulates how selection affects linked sites in *Drosophila*. *Nature*

1056 *Proceedings*, 1-1. <https://doi.org/10.1038/npre.2012.7005.1>

1057 Miller, S. E., & Sheehan, M. J. (2023). Sex differences in deleterious genetic variants in a

1058 haplodiploid social insect. *Molecular Ecology*, 00, 1-11.

1059 <https://doi.org/10.1111/mec.17057>

1060 Moreira, L. R., Klicka, J., & Smith, B. T. (2023). Demography and linked selection interact to

1061 shape the genomic landscape of codistributed woodpeckers during the Ice Age.

1062 *Molecular Ecology*, 32, 1739-1759. <https://doi.org/10.1111/mec.16841>

1063 Mozhaitseva, K., Tourrain, Z., & Branca, A. (2023). Population genomics of the mostly

1064 thelytokous *Diplolepis rosae* (Linnaeus, 1758)(Hymenoptera: Cynipidae) reveals

1065 population-specific selection for sex. *Genome Biology and Evolution*, 15(10), evad185.

1066 <https://doi.org/10.1093/gbe/evad185>

1067 Muller, H. J. (1950). Our load of mutations. *American journal of human genetics*, 2(2), 111.

1068 Nachman, M. W., & Payseur, B. A. (2012). Recombination rate variation and speciation:  
1069 Theoretical predictions and empirical results from rabbits and mice. *Philosophical  
1070 Transactions of the Royal Society B: Biological Sciences*, 367(1587), 409-421.  
1071 <https://doi.org/10.1098/rstb.2011.0249>

1072 Nosil, P., & Feder, J. L. (2012). Genomic divergence during speciation: Causes and  
1073 consequences. *Philosophical Transactions of the Royal Society B: Biological Sciences*,  
1074 367(1587), 332-342. <https://doi.org/10.1098/rstb.2011.0263>

1075 Nouhaud, P., Blanckaert, A., Bank, C., & Kulmuni, J. (2020). Understanding admixture:  
1076 haplodiploidy to the rescue. *Trends in Ecology & Evolution*, 35(1), 34-42.  
1077 <https://doi.org/10.1016/j.tree.2019.08.013>

1078 Ohta, T. (1992). The nearly neutral theory of molecular evolution. *Annual Review of Ecology,  
1079 Evolution and Systematics*, 23(1), 263-286.  
1080 <https://doi.org/10.1146/annurev.es.23.110192.001403>

1081 Oyler-McCance, S. J., Cornman, R. S., Jones, K. L., & Fike, J. A. (2015). Z chromosome  
1082 divergence, polymorphism and relative effective population size in a genus of lekking  
1083 birds. *Heredity*, 115(5), 452-459. <https://doi.org/10.1038/hdy.2015.46>

1084 Padmanabhan, S., Thakur, J., Siddharthan, R., & Sanyal, K. (2008). Rapid evolution of Cse4p-  
1085 rich centromeric DNA sequences in closely related pathogenic yeasts, *Candida albicans*  
1086 and *Candida dubliniensis*. *Proceedings of the National Academy of Sciences*, 105(50),  
1087 19797-19802. <https://doi.org/10.1073/pnas.0809770105>

1088 Payseur, B. A., & Nachman, M. W. (2002). Natural selection at linked sites in humans. *Gene*,  
1089 300(1-2), 31-42. [https://doi.org/10.1016/S0378-1119\(02\)00849-1](https://doi.org/10.1016/S0378-1119(02)00849-1)

1090 Pease, J. B., & Hahn, M. W. (2013). More accurate phylogenies inferred from low-  
1091 recombination

1092 regions in the presence of incomplete lineage sorting. *Evolution*, 67(8), 2376-2384.

1093 <https://doi.org/10.1111/evo.12118>

1094 Piatkowski, B., Weston, D. J., Aguero, B., Duffy, A., Imwattana, K., Healey, A. L., ... & Shaw,  
1095 A.

1096 J. (2023). Divergent selection and climate adaptation fuel genomic differentiation  
1097 between sister species of *Sphagnum* (peat moss). *Annals of Botany*, 132(3), 499-512.

1098 <https://doi.org/10.1093/aob/mcad104>

1099 Pouyet, F., Aeschbacher, S., Thiéry, A., & Excoffier, L. (2018). Background selection and biased  
1100 gene conversion affect more than 95% of the human genome and bias demographic  
1101 inferences. *eLife*, 7, e36317. <https://doi.org/10.7554/eLife.36317>

1102 Pratto, F., Brick, K., Khil, P., Smagulova, F., Petukhova, G. V., & Camerini-Otero, R. D. (2014).  
1103 DNA recombination. Recombination initiation maps of individual human genomes.  
1104 *Science*, 346, 1256442. <https://doi.org/10.1126/science.1256442>

1105 Presgraves, D. C. (2018). Evaluating genomic signatures of “the large X-effect” during complex  
1106 speciation. *Molecular Ecology*, 27(19), 3822-3830. <https://doi.org/10.1111/mec.14777>

1107 R Core Team. (2021). *R: A language and environment for statistical computing*. R Foundation  
1108 for Statistical Computing. <https://www.R-project.org/>.

1109 Ravinet, M., Faria, R., Butlin, R. K., Galindo, J., Bierne, N., Rafajlović, M., Noor, M. A. F.,  
1110 Mehlig, B., & Westram, A. M. (2017). Interpreting the genomic landscape of speciation:  
1111 a road map for finding barriers to gene flow. *Journal of Evolutionary Biology*, 30, 1450-  
1112 1477. <https://doi.org/10.1111/jeb.13047>

1113 Rettelbach, A., Nater, A., & Ellegren, H. (2019). How linked selection shapes the diversity  
1114 landscape in *Ficedula* flycatchers. *Genetics*, 212(1), 277-285.

1115 <https://doi.org/10.1534/genetics.119.301991>

1116 Rodrigues, M. F., Kern, A. D., & Ralph, P. L. (2023). Shared evolutionary processes shape  
1117 landscapes of genomic variation in the great apes. *bioRxiv*.

1118 <https://doi.org/10.1101/2023.02.07.527547>

1119 Rougemont, Q., Moore, J.-S., Leroy, T., Normandeau, E., Rondeau, E. B., Withler, R. E., Van  
1120 Doornik, D. M., Crane, P. A., Naish, K. A., Garza, J. C., Beacham, T. D., Koop, B. F., &  
1121 Bernatchez, L. (2019). Demographic history, linked selection, and recombination shape  
1122 the genomic landscape of a broadly distributed Pacific salmon. *bioRxiv*.

1123 <https://doi.org/10.1101/732750>

1124 Samuk, K., Owens, G. L., Delmore, K. E., Miller, S. E., Rennison, D. J., & Schluter, D. (2017).  
1125 Gene flow and selection interact to promote adaptive divergence in regions of low  
1126 recombination. *Molecular Ecology*, 26(17), 4378-4390.

1127 <https://doi.org/10.1111/mec.14226>

1128 Schrider, D. R. (2020). Background selection does not mimic the patterns of genetic diversity  
1129 produced by selective sweeps. *Genetics*, 216(2), 499-519.

1130 <https://doi.org/10.1534/genetics.120.303469>

1131 Shang, H., Field, D. L., Paun, O., Rendón-Anaya, M., Hess, J., Vogl, C., Liu, J., Ingvarsson,  
1132 P. K., Lexer, C., & Leroy, T. (2023). Drivers of genomic landscapes of differentiation  
1133 across a *Populus* divergence gradient. *Molecular Ecology*, 00, 1-14.

1134 <https://doi.org/10.1111/mec.17034>

1135 Stankowski, S., Chase, M. A., Fuiten, A. M., Rodrigues, M. F., Ralph, P. L., & Streisfeld, M. A.

1136 (2019). Widespread selection and gene flow shape the genomic landscape during a  
1137 radiation of monkeyflowers. *PLoS Biology*, 17(7), e3000391.

1138 <https://doi.org/10.1371/journal.pbio.3000391>

1139 Sun, N., Yang, L., Tian, F., Zeng, H., He, Z., Zhao, K., Wang, C., Meng, M., Feng, C., Fang, C.,  
1140 Lv, W., Bo, J., Tang, Y., Gan, X., Peng, Z., Chen, Y., & He, S. (2022). Sympatric or  
1141 micro-allopatric speciation in a glacial lake? Genomic islands support neither. *National  
1142 Science Review*, 9, nwac291. <https://doi.org/10.1093/nsr/nwac291>

1143 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA  
1144 polymorphism. *Genetics*, 123(3), 585-595. <https://doi.org/10.1093/genetics/123.3.585>

1145 Talla, V., Johansson, A., Dinca, V., Vila, R., Friberg, M., Wilklund, C., & Backström, N. (2019).  
1146 Lack of gene flow: Narrow and dispersed differentiation islands in a triplet of *Leptidea*  
1147 butterfly species. *Molecular Ecology*, 28, 3756-3770. <https://doi.org/10.1111/mec.15188>

1148 Turner, T. L., Hahn, M. W., & Nuzhdin, S. V. (2005). Genomic islands of speciation in  
1149 *Anopheles*

1150 *gambiae*. *PLoS Biology*, 3(9), e285. <https://doi.org/10.1371/journal.pbio.0030285>

1151 Vertacnik, K. L., Herrig, D. K., Godfrey, R. K., Hill, T., Geib, S. M., Unckless, R. L., ... &  
1152 Linnen, C. R. (2023). Evolution of five environmentally responsive gene families in a  
1153 pine-feeding sawfly, *Neodiprion lecontei* (Hymenoptera: Diprionidae). *Ecology and  
1154 Evolution*, 13(10), e10506. <https://doi.org/10.1002/ece3.10506>

1155 Via, S. (2012). Divergence hitchhiking and the spread of genomic isolation during ecological  
1156 speciation-with-gene-flow. *Philosophical Transactions of the Royal Society B: Biological  
1157 Sciences*, 367(1587), 451-460. <https://doi.org/10.1098/rstb.2011.0260>

1158 Via, S., & West, J. (2008). The genetic mosaic suggests a new role for hitchhiking in ecological

1159 speciation. *Molecular Ecology*, 17(19), 4334-4345.

1160 <https://doi.org/10.1111/J.1365-294X.2008.03921.X>

1161 Wallberg, A., Glémin, S., & Webster, M. T. (2015). Extreme recombination frequencies shape

1162 genome variation and evolution in the honeybee, *Apis mellifera*. *PLoS Genetics*, 11(4),

1163 e1005189. <https://doi.org/10.1371/journal.pgen.1005189>

1164 Wang, L., Liu, S., Yang, Y., Meng, Z., & Zhuang, Z. (2022). Linked selection, differential

1165 introgression and recombination rate variation promote heterogeneous divergence in a

1166 pair of yellow croakers. *Molecular Ecology*, 31(22), 5729-5744.

1167 <https://doi.org/10.1111/mec.16693>

1168 Wei, T., & Simko, V. (2021). R package ‘corrplot’: Visualization of a Correlation Matrix

1169 (Version

1170 0.90). <https://github.com/taiyun/corrplot>

1171 Wilson, L. F., Wilkinson, R. C., & Averill, R. D. (1992). *Redheaded pine sawfly: its ecology and*

1172 *management*. U.S. Dept. of Agriculture, Forest Service.

1173 Wiuf, C., Zhao, K., Innan, H., & Nordborg, M. (2004). The probability and chromosomal extent

1174 of trans-specific polymorphism. *Genetics*, 168(4), 2363-2372.

1175 <https://doi.org/10.1534/genetics.104.029488>

1176 Wolf, J. B., & Ellegren, H. (2016). Making sense of genomic islands of differentiation in light of

1177 speciation. *Nature Reviews Genetics*, 18, 87-100. <https://doi:10.1038/nrg.2016.133>

1178 Wong Miller, K. M., Bracewell, R. R., Eisen, M. B., & Bachtrong, D. (2017). Patterns of

1179 genome-wide diversity and population structure in the *Drosophila athabasca* species

1180 complex. *Molecular Biology and Evolution*, 34(8), 1912-1923.

1181 <https://doi.org/10.1093/molbev/msx134>

1182 Wu, C. I. (2001). The genic view of the process of speciation. *Journal of Evolutionary Biology*,  
1183 14(6), 851-865. <https://doi.org/10.1046/j.1420-9101.2001.00335.x>

1184 Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. *Molecular Biology  
1185 and Evolution*, 24(8), 1586-1591. <https://doi.org/10.1093/molbev/msm088>

1186

1187 **DATA ACCESSIBILITY AND BENEFIT SHARING STATEMENT**

1188 Trimmed (with trimmomatic) *Neodiprion* sequencing reads are published in the NCBI  
1189 SRA database (BioProject accession number PRJNA1107580). All input files and scripts  
1190 required for reproducing the analyses within the manuscript are published on DRYAD (doi:  
1191 <https://doi.org/10.5061/dryad.fxpnvx128>).

1192 Benefits Generated: Benefits from this study accrue from the sharing of our data and  
1193 results on public databases as described above.

1194

1195 **AUTHOR CONTRIBUTIONS**

1196 ANG prepared the resequencing dataset. ANG and CRL conceived of and designed the  
1197 study, performed data analysis, and drafted the manuscript. VCS, RDR, SBS, and SMG  
1198 contributed to data analysis and writing the manuscript. All authors have read and approved the  
1199 final manuscript.

1200  
1201

1202 **TABLES**

1203 **Table 1. Predicted patterns for genomic statistics under different evolutionary scenarios.**

1204 (A) Theory predicts that widespread linked selection across the genome will produce specific

1205 genome-wide correlations between gene density and recombination rate (factors that affect the

1206 intensity of linked selection) and genetic summary statistics. (B) Differences in the timing and

1207 nature of selection are expected to produce distinct genome-wide correlations between  $F_{ST}$ ,  $d_{XY}$ ,

1208 and mean  $\pi$ . Mean  $\pi$  refers to the average  $\pi$  for the two species included in the comparison. (C)

1209 Expected local patterns of  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  compared to the genomic background for each of the

1210 four primary evolutionary scenarios considered in (B).

1211

**(A) Predicted genome-wide correlations between genomic summary statistics and genome features under linked selection**

| Statistic          | Recombination rate | Gene density |
|--------------------|--------------------|--------------|
| $\pi$              | positive           | negative     |
| Tajima's D         | positive           | negative     |
| Fay & Wu's H       | positive           | negative     |
| $F_{ST}$           | negative           | positive     |
| $d_{XY}^{\dagger}$ | positive           | negative     |

**(B) Predicted genome-wide correlations among summary statistics under four evolutionary scenarios**

| Scenario                  | $F_{ST}$ vs. $d_{XY}$ | Mean $\pi$ vs. $F_{ST}$ | Mean $\pi$ vs. $d_{XY}$ |
|---------------------------|-----------------------|-------------------------|-------------------------|
| Divergence-with-gene-flow | positive              | negative                | negative                |
| Allopatric selection      | none                  | negative                | none                    |
| Recurrent selection       | negative              | negative                | positive                |
| Balancing selection       | negative              | negative                | positive                |

**(C) Predicted local patterns of summary statistics under four evolutionary scenarios**

| Scenario                  | Expected Patterns                                    |
|---------------------------|------------------------------------------------------|
| Divergence-with-gene-flow | $F_{ST}$ : high<br>$d_{XY}$ : high<br>$\pi$ : low    |
| Allopatric selection      | $F_{ST}$ : high<br>$d_{XY}$ : average<br>$\pi$ : low |
| Recurrent selection       | $F_{ST}$ : high<br>$d_{XY}$ : low<br>$\pi$ : low     |
| Balancing selection       | $F_{ST}$ : low<br>$d_{XY}$ : high<br>$\pi$ : high    |

1212 <sup>†</sup>Predictions expected when linked selection occurred in the ancestral population.

1213 **Table 2. Effect size estimates and type II ANOVA tables for multiple linear regression**  
 1214 **models for genetic summary statistics.** All predictor variables were normal-quantile  
 1215 transformed prior to running each model. Significant  $p$ -values ( $p < 0.05$ ) are indicated in bold.  
 1216

| Response variable                 | Genomic predictor variable | Estimate                 | Sum Sq                  | df   | F value | p-value                            |
|-----------------------------------|----------------------------|--------------------------|-------------------------|------|---------|------------------------------------|
| $\pi$ - <i>N. lecontei</i>        | recombination rate         | 4.97 x 10 <sup>-5</sup>  | 8.80 x 10 <sup>-6</sup> | 1    | 21.43   | <b>3.79 x 10<sup>-6</sup></b>      |
|                                   | exon density               | -2.74 x 10 <sup>-4</sup> | 2.51 x 10 <sup>-4</sup> | 1    | 610.43  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | mutation rate              | 2.42 x 10 <sup>-5</sup>  | 2.37 x 10 <sup>-6</sup> | 1    | 5.78    | <b>0.016</b>                       |
|                                   | distance from centromere   | -2.25 x 10 <sup>-7</sup> | 0                       | 1    | 0.0004  | 0.99                               |
|                                   | site count                 | -1.69 x 10 <sup>-4</sup> | 8.51 x 10 <sup>-5</sup> | 1    | 207.08  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | residuals                  |                          | 1.68 x 10 <sup>-4</sup> | 4083 |         |                                    |
| $\pi$ - <i>N. pinetum</i>         | recombination rate         | -8.20 x 10 <sup>-5</sup> | 2.38 x 10 <sup>-5</sup> | 1    | 40.61   | <b>2.07 x 10<sup>-10</sup></b>     |
|                                   | exon density               | -1.71 x 10 <sup>-4</sup> | 1.00 x 10 <sup>-4</sup> | 1    | 170.75  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | mutation rate              | -2.51 x 10 <sup>-6</sup> | 3.00 x 10 <sup>-8</sup> | 1    | 0.044   | 0.83                               |
|                                   | distance from centromere   | -1.64 x 10 <sup>-4</sup> | 7.99 x 10 <sup>-5</sup> | 1    | 136.40  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | site count                 | -1.42 x 10 <sup>-4</sup> | 6.49 x 10 <sup>-5</sup> | 1    | 110.67  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | residuals                  |                          | 0.0024                  | 4083 |         |                                    |
| Tajima's D - <i>N. lecontei</i>   | recombination rate         | 5.36 x 10 <sup>-2</sup>  | 10.26                   | 1    | 47.34   | <b>6.89 x 10<sup>-12</sup></b>     |
|                                   | exon density               | -2.16 x 10 <sup>-1</sup> | 155.91                  | 1    | 719.67  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | mutation rate              | 1.87 x 10 <sup>-2</sup>  | 1.42                    | 1    | 6.56    | <b>0.010</b>                       |
|                                   | distance from centromere   | 2.30 x 10 <sup>-2</sup>  | 1.50                    | 1    | 6.93    | <b>8.52 x 10<sup>-3</sup></b>      |
|                                   | site count                 | -1.23 x 10 <sup>-1</sup> | 44.83                   | 1    | 206.92  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | residuals                  |                          | 884.56                  | 4083 |         |                                    |
| Tajima's D - <i>N. pinetum</i>    | recombination rate         | -1.58 x 10 <sup>-2</sup> | 0.88                    | 1    | 2.55    | 0.11                               |
|                                   | exon density               | -1.57 x 10 <sup>-1</sup> | 83.56                   | 1    | 241.57  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | mutation rate              | -4.13 x 10 <sup>-4</sup> | 0                       | 1    | 0.0020  | 0.96                               |
|                                   | distance from centromere   | -8.77 x 10 <sup>-2</sup> | 22.93                   | 1    | 66.28   | <b>5.16 x 10<sup>-16</sup></b>     |
|                                   | site count                 | -1.27 x 10 <sup>-1</sup> | 51.83                   | 1    | 149.84  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | residuals                  |                          | 1412.40                 | 4083 |         |                                    |
| Fay & Wu's H - <i>N. lecontei</i> | recombination rate         | -8.13 x 10 <sup>-3</sup> | 0.24                    | 1    | 4.79    | <b>0.029</b>                       |
|                                   | exon density               | 2.78 x 10 <sup>-2</sup>  | 2.59                    | 1    | 52.56   | <b>4.97 x 10<sup>-13</sup></b>     |
|                                   | mutation rate              | -7.12 x 10 <sup>-4</sup> | 0.002                   | 1    | 0.042   | 0.84                               |
|                                   | distance from centromere   | -8.62 x 10 <sup>-3</sup> | 0.21                    | 1    | 4.29    | <b>0.038</b>                       |
|                                   | site count                 | 4.85 x 10 <sup>-2</sup>  | 6.98                    | 1    | 141.92  | <b>&lt; 2.2 x 10<sup>-16</sup></b> |
|                                   | residuals                  |                          | 200.83                  | 4083 |         |                                    |

## Fay &amp; Wu's

H - N.

|                       |                          |                          |                         |      |        |                           |
|-----------------------|--------------------------|--------------------------|-------------------------|------|--------|---------------------------|
| <i>pinetum</i>        | recombination rate       | -5.67 x 10 <sup>-3</sup> | 0.11                    | 1    | 1.20   | 0.27                      |
|                       | exon density             | 5.52 x 10 <sup>-2</sup>  | 10.40                   | 1    | 110.16 | < 2.2 x 10 <sup>-16</sup> |
|                       | mutation rate            | -6.40 x 10 <sup>-3</sup> | 0.17                    | 1    | 1.76   | 0.19                      |
|                       | distance from centromere | -1.58 x 10 <sup>-2</sup> | 0.75                    | 1    | 7.91   | 4.95 x 10 <sup>-3</sup>   |
|                       | site count               | 3.46 x 10 <sup>-2</sup>  | 3.85                    | 1    | 40.81  | 1.87 x 10 <sup>-10</sup>  |
|                       | residuals                |                          | 385.31                  | 4083 |        |                           |
| <i>F<sub>ST</sub></i> | recombination rate       | -8.94 x 10 <sup>-3</sup> | 0.29                    | 1    | 19.70  | 9.31 x 10 <sup>-6</sup>   |
|                       | exon density             | 2.28 x 10 <sup>-2</sup>  | 1.76                    | 1    | 121.94 | < 2.2 x 10 <sup>-16</sup> |
|                       | mutation rate            | 1.79 x 10 <sup>-4</sup>  | 0                       | 1    | 0.0090 | 0.92                      |
|                       | distance from centromere | -1.07 x 10 <sup>-3</sup> | 0.003                   | 1    | 0.23   | 0.63                      |
|                       | site count               | 4.14 x 10 <sup>-3</sup>  | 0.053                   | 1    | 3.68   | 0.055                     |
|                       | residuals                |                          | 59.08                   | 4083 |        |                           |
| <i>d<sub>XY</sub></i> | recombination rate       | -5.75 x 10 <sup>-5</sup> | 1.18 x 10 <sup>-5</sup> | 1    | 12.37  | 4.41 x 10 <sup>-4</sup>   |
|                       | exon density             | -2.96 x 10 <sup>-4</sup> | 2.98 x 10 <sup>-4</sup> | 1    | 312.71 | < 2.2 x 10 <sup>-16</sup> |
|                       | mutation rate            | 1.49 x 10 <sup>-5</sup>  | 9.00 x 10 <sup>-7</sup> | 1    | 0.94   | 0.33                      |
|                       | distance from centromere | -1.67 x 10 <sup>-4</sup> | 8.35 x 10 <sup>-5</sup> | 1    | 87.70  | < 2.2 x 10 <sup>-16</sup> |
|                       | site count               | -1.77 x 10 <sup>-4</sup> | 1.02 x 10 <sup>-4</sup> | 1    | 107.19 | < 2.2 x 10 <sup>-16</sup> |
|                       | residuals                |                          | 3.89 x 10 <sup>-3</sup> | 4083 |        |                           |

1217  
1218  
1219  
1220

1221 **FIGURE LEGENDS**  
1222

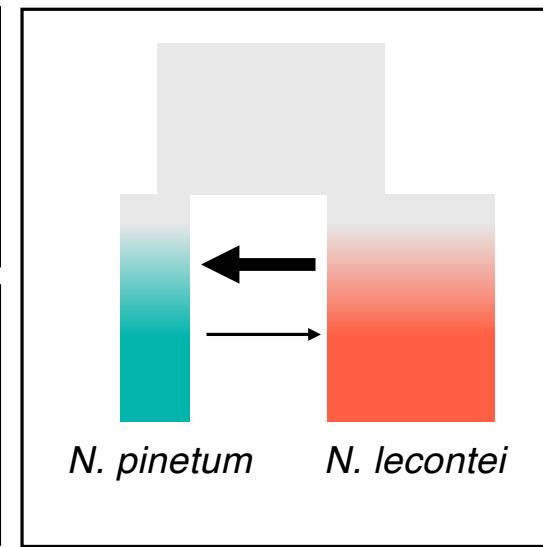
1223 **Figure 1. *Neodiprion lecontei* and *N. pinetum* as a model speciation genomics system.**  
1224 *Neodiprion lecontei* and *N. pinetum* have adapted to pine hosts with very different needle  
1225 morphology, exhibiting differences in larval and adult traits that enhance fitness on their  
1226 respective hosts (left panels show feeding larvae and ovipositing females of each species).  
1227 *Neodiprion lecontei* and *N. pinetum* also exhibit strong but incomplete reproductive isolation and  
1228 a history of divergence with gene flow (middle panel shows the best-fit demographic model  
1229 estimated in Bendall et al. (2022), with the sizes of boxes and arrows proportional to effective  
1230 population size and migration rates). Finally, *Neodiprion* pine sawflies are haplodiploid: females  
1231 develop from fertilized eggs and are diploid; males develop from unfertilized eggs and are  
1232 haploid (ploidy and morphology of adult females and males are shown in the last panel). Thus, in  
1233 addition to excellent genomic resources, their ecology, demographic history, and haplodiploidy  
1234 make *N. lecontei* and *N. pinetum* a good system for testing how these factors affect the genomic  
1235 landscape of differentiation. Photos by Robin Bagley and Ryan Ridenbaugh.  
1236

1237 **Figure 2. Patterns of genetic variation within and between *Neodiprion lecontei* and *N.***  
1238 ***pinetum*.** All measures of divergence ( $F_{ST}$ ,  $d_{XY}$ ), diversity ( $\pi$ ), selection (Tajima's D ( $D$ ) and Fay  
1239 & Wu's H ( $H$ )), recombination rate (cM/Mb), and exon density are highly heterogeneous across  
1240 the genome. Alternating white and gray boxes separate the seven chromosomes. The green  
1241 triangles and dotted purple lines indicate the estimated centromere midpoints.  
1242

1243 **Figure 3. Genome-wide correlations between pairs of statistics.** Pearson's correlation  
1244 coefficients between pairs of statistics describing genetic variation within and between  
1245 *Neodiprion lecontei* and *N. pinetum* as well as genome features. Abbreviations:  $\pi$  (L) = *N.*  
1246 *lecontei*  $\pi$ ;  $\pi$  (P) = *N. pinetum*  $\pi$ ; dS = synonymous substitution rate (proxy for the neutral  
1247 mutation rate); cM/Mb = recombination rate; dist from cent = distance from the centromere.  
1248 Significant correlations are indicated with asterisks (\* $p < 0.05$ ; \*\* $p < 0.01$ ; \*\*\* $p < 0.001$ ).  
1249

1250 **Figure 4.  $F_{ST}$ ,  $d_{XY}$ , and  $\pi$  for *Neodiprion lecontei* and *N. pinetum* on chromosome 4.**  
1251 Windows that exhibit local patterns for all three summary statistics matching the expected  
1252 pattern for one of the four evolutionary scenarios (Table 1C) are colored with bars. In each plot,  
1253 the dotted lines represent regions where the windows were excluded from analysis due to low  
1254 site count.  
1255

### Divergent Natural Selection


*N. lecontei*

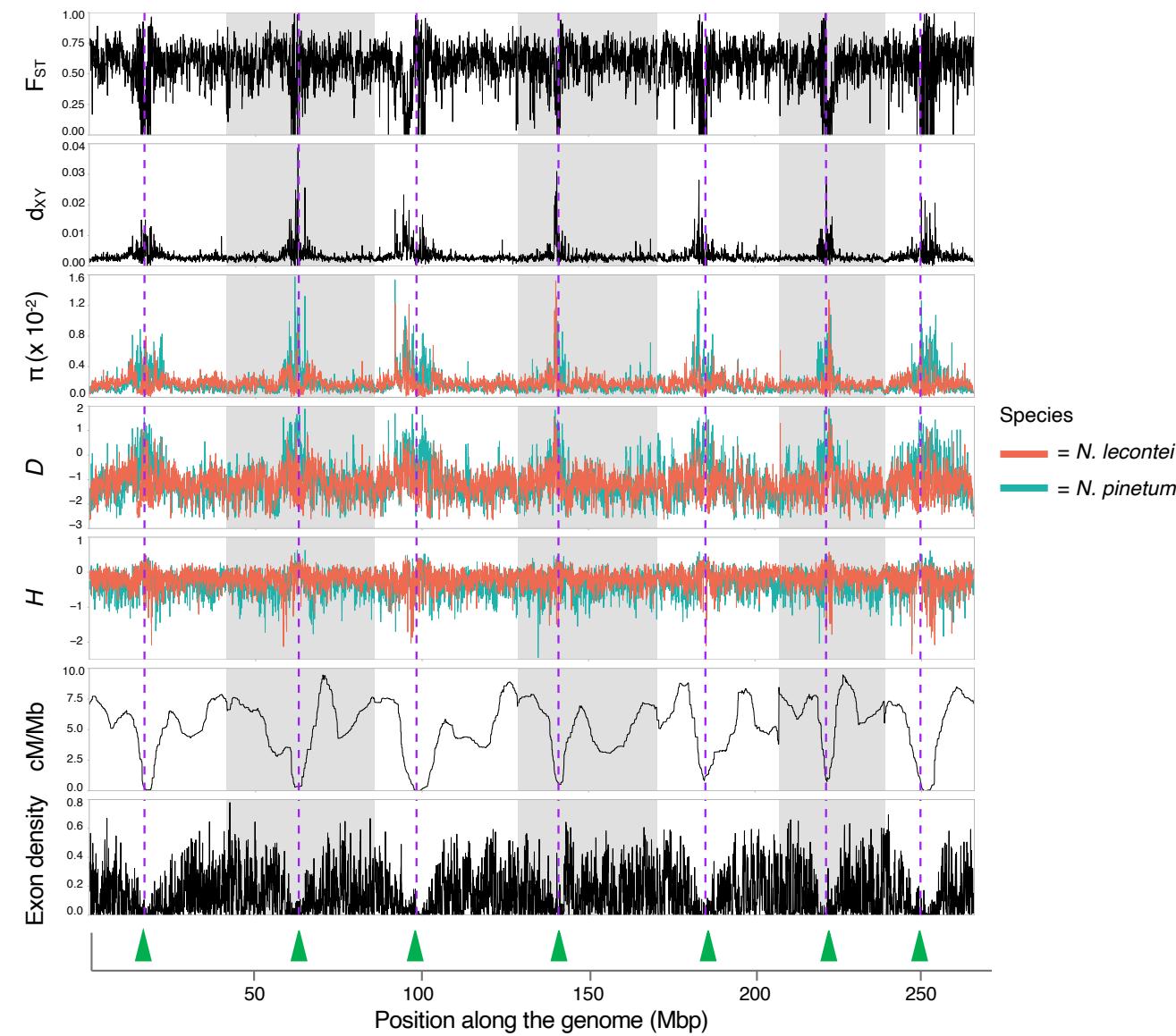


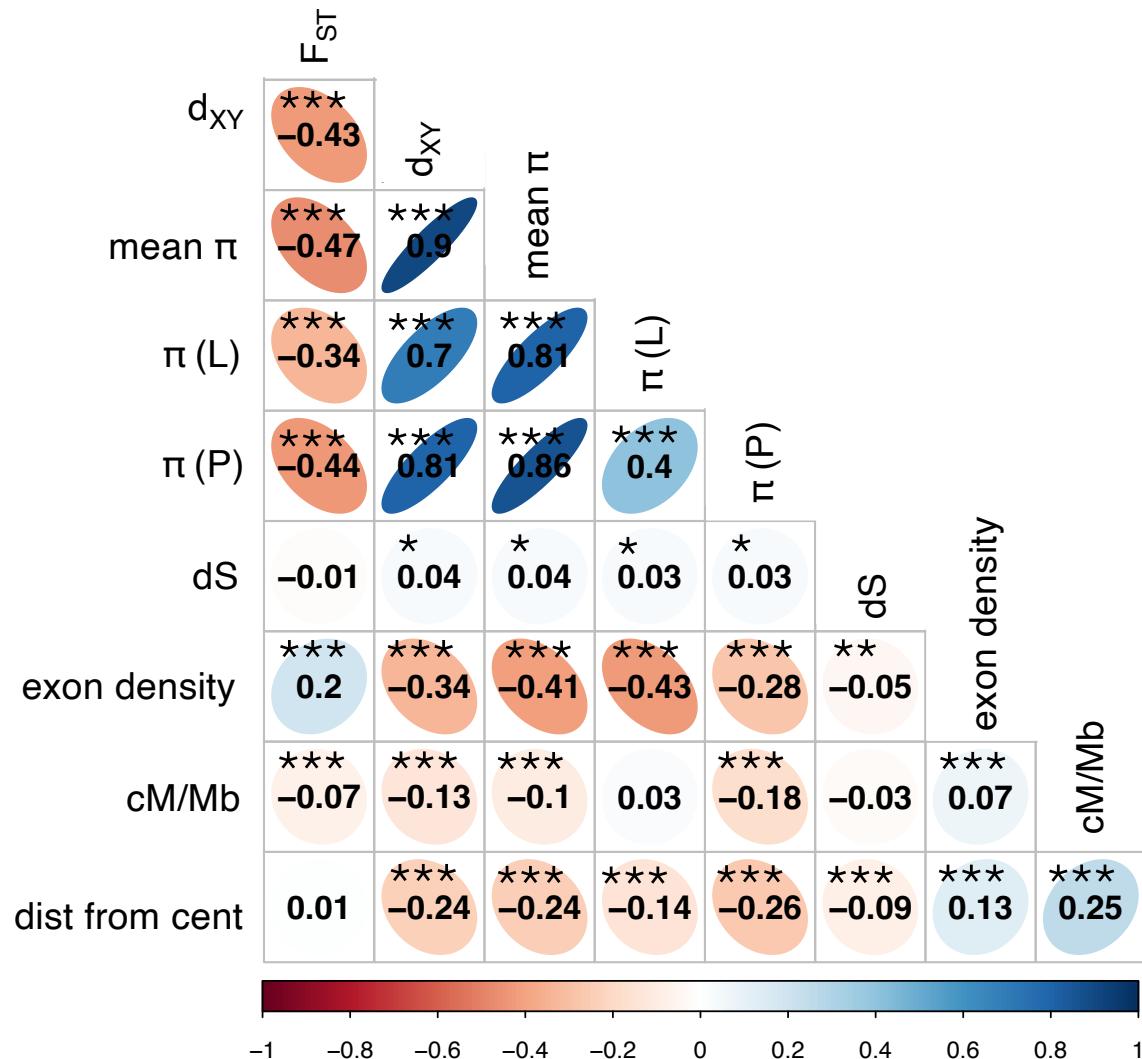
*N. pinetum*

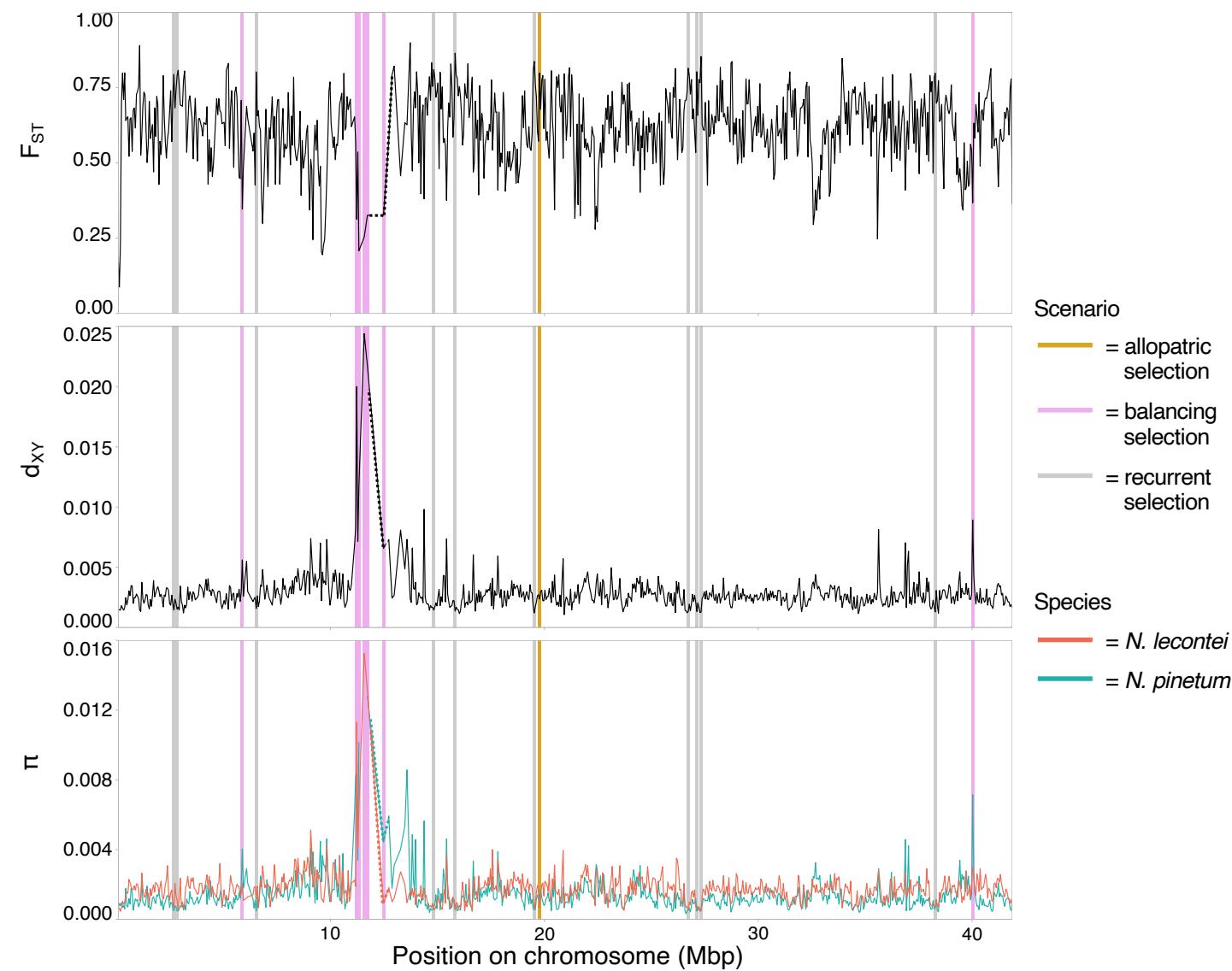


### History of Divergence




### Haplodiploidy


♀




♂







