
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023 109

Simulating Our Way to Safer Software: A Tale of Integrating Microarchitecture
Simulation and Leakage Estimation Modeling

Justin Feng , Graduate Student Member, IEEE, Fatemeh Arkannezhad , Graduate Student Member, IEEE,
Christopher Ryu, Student Member, IEEE, Enoch Huang, Student Member, IEEE,

Siddhant Gupta, Student Member, IEEE, and Nader Sehatbakhsh , Member, IEEE

Abstract—An important step to protect software against side-
channel vulnerability is to rigorously evaluate it on the target hard-
ware using standard leakage tests. Recently, leakage estimation
tools have received a lot of attention to improve this time-consuming
process. Despite their advancements, existing tools often neglect
the impact of microarchitecture and its underlying events in their
leakage model which leads to inaccuracies. This paper takes the
first step in addressing these issues by integrating a physical side-
channel leakage estimation tool into a microarchitectural simu-
lator. To achieve this, we first systematically explore the impact
of various architecture and microarchitecture activities and their
underlying interactions on the produced physical side-channel sig-
nals and integrate that into the microarchitecture model. Second, to
create a comprehensive leakage estimation report, we leverage taint
tracking and symbolic execution to accurately analyze different
paths and inputs. The final outcome of this work is a tool that takes
a binary and generates a leakage report that covers architecture
and microarchitecture-related leakages for both data-dependent
and path-dependent information leakage scenarios.

Index Terms—Leakage modeling, side-channels.

I. INTRODUCTION

IN DEVELOPING reliable and trustworthy software and
systems, physical side-channel signals (e.g., electromagnetic

and power) pose an important security concern [1], [2]. Thus,
side-channel attacks can be prevented by estimating the potential
leakage and patching the software properly during its design.

A popular approach for side-channel leakage estimation relies
on automated modeling tools [3], [4], [5], [6], [7], [8]. These
tools emulate the underlying system and hardware and accu-
rately model the interaction between the hardware and software.
For a given application, such models provide a software tool for
estimating the physical side-channel leakage.

This paper improves the state-of-the-art by proposing a new
comprehensive modeling tool called GLORIA. The key con-
tribution is that our model is able to automatically identify
leakage scenarios for three different layers: architecture, mi-
croarchitecture, and events – the third one has been absent in
all existing tools, as well as modeling both data-dependent and
path-dependent leakage scenarios.

Manuscript received 4 July 2023; accepted 1 August 2023. Date of publication
10 August 2023; date of current version 31 August 2023. This work was
supported in part by NSF under Grants CNS-2211301 and CNS-2312089.
(Corresponding author: Nader Sehatbakhsh.)

The authors are with the School of Engineering, Department of Electrical and
Computer Engineering, University of California, Los Angeles, CA 90095 USA
(e-mail: jfeng10@ucla.edu; fatemeharkan@g.ucla.edu; cryu17@g.ucla.edu;
eihuang@g.ucla.edu; siddhantgupta@g.ucla.edu; nsehat@ucla.edu).

Digital Object Identifier 10.1109/LCA.2023.3303913

Fig. 1. The steps for designing our leakage estimation tool, GLORIA. Our
tool first builds a model from all possible instructions (RISC-V) and system
events. Using this model, it extends a microarchitecture simulation tool to enable
leakage estimation. We then develop new features for the tool to find data and
path-dependent leakages and automatically generate a comprehensive leakage
report. Optionally, it can patch the software based on the report.

To achieve this, our method is designed in two main steps as
outlined in Fig. 1. The fundamental idea is to integrate a leak-
age estimation model into a microarchitecture simulation tool.
This is implemented by first, systematically searching different
instruction sequences to identify “leakage gadgets.” Briefly,
we define a leakage gadget as any sequence of instructions
where changing the input would create a statistically signifi-
cant signal using a distance metric (e.g., Hamming distance).
Compared to prior work, however, this search includes architec-
ture/microarchitecture (i.e., sequence of instructions and their
underlying interactions) AND microarchitecture events (e.g.,
cache misses, branch mispredictions). The latter is achieved
since a detailed microarchitecture simulator is embedded in the
tool.

The second step (2 and 3 in Fig. 1) is to design an analysis
tool that takes the list of leakage gadgets and a binary, searches
through the binary, and lists all detected leakage sequences.
The tool then generates a report that could be used for mod-
ifying/repairing the software to eliminate these gadgets and
ultimately removing the side-channel leakage scenarios. GLORIA
reports the leakage in two categories: data-dependent leakage
and path/control-flow-dependent leakage. To ensure high code
coverage and accurate data-flow tracking, GLORIA employs
symbolic execution [9] and dynamic taint tracking [10].1 The
final outcome is a report for data and path-dependent leakages
(4 in Fig. 1).

To measure the signals for each given instruction sequence in
step 1, GLORIA utilizes real hardware. Specifically, we imple-
ment an open-source in-order RISC-V processor and measure
the side-channel (power and/or EM). The microarchitecture is
based on marss-riscv simulation tool [11]. Further, we evaluate

1The analysis could be further strengthened by employing fuzzing which is
left for future work.

1556-6056 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on July 02,2025 at 18:12:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0003-4723-4808
https://orcid.org/0009-0005-3987-2097
https://orcid.org/0000-0001-7181-2258
mailto:jfeng10@ucla.edu
mailto:fatemeharkan@g.ucla.edu
mailto:cryu17@g.ucla.edu
mailto:penalty%20-@M%20eihuang@g.ucla.edu
mailto:penalty%20-@M%20eihuang@g.ucla.edu
mailto:siddhantgupta@g.ucla.edu
mailto:nsehat@ucla.edu

110 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023

Fig. 2. The microarchitecture used in our setup for measuring the real side-
channel signals based on marss-riscv [11]. The processor has five stages of
(in-order) pipeline and supports RISC-V 32-bit ISA (RV32GC).

our model using a standard set of benchmarks. Specifically, we
use Mibench suite [12] which is a standard and popular set of
tools for embedded systems applications.

In short, the main contributions of this paper are as follows:! The design and implementation of a new comprehensive
leakage estimation mechanism that models the system at
three levels including the system event level.! The development of an automated tool to find all sequences
of instructions that could create side-channel leakage for a
given program.! A proof-of-concept implementation of the tool using open-
source simulation tools and standard benchmarks.

II. DESIGN

Overview: The key to our design is creating a fully customiz-
able yet realistic measurement setup. To achieve this, we rely
upon developing a RISC-V-based processor. We implement our
design on an FPGA to collect real signal traces using an EM
probe placed close to the FPGA board.

The microarchitecture of our design is shown in Fig. 2. Our
design is heavily based on the microarchitecture used in the
MARSS-RISCV simulation tool [11], as GLORIA is built on top of
this simulator. With this method, we can measure both physical
signals from real hardware (using our FPGA implementation)
and events using the MARSS simulator. Note that to build our
leakage estimation tool, we assume that the designer has full
knowledge of the microarchiteture.

Leakage Modeling: Our framework, GLORIA, uses a multi-
step algorithm to estimate leakage. The ultimate goal of the tool
is to take a binary as input and outputs a report that describes var-
ious leakage scenarios. The details of our algorithm are shown
in Algorithm 1. Briefly, the algorithm first estimates the leakage
for each instruction. Then, it computes the pairwise information
leakage (i.e., the difference between a pair of instructions) using
a metric. GLORIA then extends this model further to consider
system events. This is achieved by repeating the pairwise ex-
periments but this time by intentionally creating a system event
(e.g., a cache miss) during that measurement. Combining these
together, GLORIA is then able to take an assembly program as
input and parse through the program, and estimate the leakage
for each instruction and for the overall program. This will be
reported for both data-dependent leakage (i.e., same instruc-
tion, different data) and path-dependent leakage (i.e., different
instructions).

Algorithm 1: Calculating Architecture, Microarch, and
Event-Level Leakages for All Groups of Instructions.

Step 0: Initialization. The design of GLORIA starts with a
pre-processing phase. During this phase, we first decide what
group of instructions and events need to be considered. Further,
we need to consider what types of data-dependent/register-level
activities should be modeled.

To achieve this, we first focus on the instruction modeling
problem. One approach to consider is to model all instructions
(and their grouping) for the given ISA. While this would be quite
accurate, it comes with a large computational complexity. For
RV32GC, there are more than 60 unique instructions, therefore,
for a five-stage pipeline design, the total number of possible
groupings would be close to one trillion unique combinations.
Clearly, this makes the measurement cumbersome, thus some
clustering is needed. Similar to prior work [5], [7], we observe
that individual instructions can be formed into supergroups
where, intuitively, instructions in each group excite similar
parts of the hardware and hence have very similar side-channel
signals. As can be seen in line 1 of Algorithm 1, we observed

Authorized licensed use limited to: UCLA Library. Downloaded on July 02,2025 at 18:12:13 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023 111

that there are eight different distinct groups to consider in our
design.

Step 1: Baseline Leakage Computation. Once the pre-
processing phase is completed, we will start computing the
leakage for each supergroup by creating an instruction sequence
that consists of the target instruction padded (before and after)
with NOP (no operation) instructions. This will ensure that the
interferences caused by other units are minimal.

The created sequence is then passed to instGen function,
which takes the sequence and register set (i.e., “high” or “low”),
and creates an instruction sequence, Prog, that can be executed
on the processor. “high” is for generating lots of bit flips while
“low” is the opposite. Note that we also considered instructions
with register-immediate as operands and observed that they
behave quite similarly to register-register operations with the
same activity (e.g., ADD vs. ADDI).

The generated program is executed on the real hardware and
the corresponding signal is collected and stored. The Hamming
distance (HD) for each signal when compared to a signal gen-
erated by an ALL NOP sequence (baseline) is calculated for all
supergroups (for both “high” and “low”).

Step 2: Data and Path-Dependent Leakage Estimation. Once
the leakages over the baseline were computed, we extends the
method to compute what we call the pair-wise leakages. We use
this insight that information can be leaked through side-channels
by two scenarios: data-dependent and path-dependent leakage.
In both cases, an adversary observes/collects multiple runs and
by analyzing the differences, infers some secret.

In the path-dependent scenario, information is leaked because
the program follows different paths. Since each path executes
a unique sequence of instructions, the generated side-channel
signal may exhibit variations. An adversary gathers multiple
signals and notices their dissimilarity at one or more locations,
suggesting non-similarity in the paths taken for each occurrence.
If execution is dependent on a secret value, the detection of these
differences will reveal the secret value(s).

In the data-dependent scenario, the code follows the same
path but with different input values (i.e., different operands,
register and/or immediate, for each instruction). The adversary
collects multiple runs and analyzes them. If any difference can
be observed, the adversary can find the secret input(s).

To compute the leakage in each scenario, GLORIA follows
lines 9-18 in Algorithm 1. Specifically, it computes two weights,
path and data Hamming weight, PHW and DHW. The data-
dependent leakage (DHW) is computed by comparing the low-
high runs for each given supergroup. The path-dependent leak-
age is a pair-wise metric (i.e., an 8× 8 matrix). Since each pair
has four possible values (i.e., all possible pairings of low-high),
we keep the maximum (see lines 17-18 in Algorithm 1).

Step 3: Event Leakage Estimation. The final and critical part
of GLORIA is adding the estimation for system events. Recall
that our goal is to model various events. Line 19 in Algorithm 1
defines this list. We consider six different events. It is important
to mention that we only selected events that could be handled
in our implementation (see Fig. 2). Additional events (e.g.,
page fault, system call) could be modeled by adding additional
support to our design. We believe the current list is realistic
although not comprehensive.

To estimate leakage, each event is passed to a function named
instGenE. This function is responsible to create a sequence
(aka program) that can generate the desired event (e.g., a cache

miss). Note that this can be achieved by controlling the hardware
implementation (e.g., we can control when and how a particular
event such as cache miss can happen by adding additional control
signals). We carefully change the hardware when needed. It
is important to note that the changes were minimal to avoid
changing the baseline signals.

Similar to step 2, the program is then executed and the signals
are collected. The event-related leakages are calculated and
stored in a matrix (6 events and 7 supergroups) using the same
distance metric explained before.

System Integration: To analyze a program with the leakage
model, we extend the baseline microarchitecture simulator with
the leakage estimation using the method explained above. We
now turn our attention to systematically analyzing a binary to
extract all leakage scenarios.

GLORIA leverage binary analysis tools, specifically angr [9],
to extract two critical pieces of information. First, we extract
a list of all basic blocks for a given program. Second, a set of
inputs for each unique path that has been covered by angr’s
symbolic execution engine. GLORIA takes these numbers and
starts its leakage analysis as described below:

1) Path-Dependent Leakage Estimation: GLORIA takes two
basic blocks (i and j) as input and computes the leakage using
the path and event matrices (see lines 18 and 24 in Algorithm 1).
We call this BBS[i][j] (basic block leakage score). Since the
goal is to estimate the leakage for different paths, we don’t need
to compute BBS for all possible basic block pairs. Instead, only
pairs that are connected by a parent basic block need to be evalu-
ated. BBS is calculated by parsing through instructions for each
basic block and computing the pairwise difference between the
two instructions (path, PHW , and/or event Hamming weight,
EHW). For basic blocks with different sizes, we pad the shorter
ones with NOPs.

2) Data-Dependent Leakage Estimation: For a given trace
(sequence of executed instruction), GLORIA also computes an
overall leakage which we call PS (program leakage score). PS
is essentially the summation of all executed basic blocks for a
given input. For calculating this score, however, we only con-
sider data and event Hamming weights as we are only concerned
about data-dependent leakages. PS provides an estimation of
how vulnerable the program is against changes in input (even
when the path is identical).

Furthermore, GLORIA can support selective data-dependent
leakage estimation via taint analysis. More specifically, instead
of computing the overall leakage for all variables, GLORIA can
track user-defined variables (i.e., sensitive values/inputs), and
compute the potential leakage only for instructions that use this
sensitive value and/or its dependencies (e.g., variables that are
dependent on the sensitive value). This will allow a more realistic
leakage estimation as only the leakage relevant to sensitive
values is reported.

III. EVALUATIONS

We collected signals from real hardware using the microarchi-
tecture design shown in Fig. 2. The hardware was implemented
in Verilog HDL on an Intel Cyclone V FPGA. Intel Quartus was
used for synthesis. The FPGA board we used was a Terassic DE0
board that includes an FPGA board and several other modules.

We collected the electromagnetic (EM) side-channel signals
from the board using an EM probe (Langer EMV H-Field Probe).

Authorized licensed use limited to: UCLA Library. Downloaded on July 02,2025 at 18:12:13 UTC from IEEE Xplore. Restrictions apply.

112 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023

Fig. 3. Path and data-dependent leakages for Mibench benchmark. Without
properly modeling the events, there will be more than 10% modeling error.

The probe was placed right on top of the FPGA (not touching)
in the center of the board. We used a Keysight Oscilloscope
(DSOX6002) to record the signals. The recorded signals are
downsampled to have four samples/data points per cycle. We
ran each recording 100 times and aligned and averaged the
recordings. For aligning, we used an external trigger for the
Oscilloscope. The trigger was connected to one of the FPGA
pins. We modified our processor’s code to generate the trigger
at the beginning of each measurement.

Once the raw signals are collected for all pairings including
architecture, microarchitecture, and events, our code, imple-
mented in Python, followed the steps in Algrotihm 1 to generate
DHW , PHW , and EHW . This measurement campaign re-
quires about (order of) 100 thousand measurements which took
place in a span of a month.

For computing the data-dependent and path-dependent leak-
ages using the matrices calculated above we used Mibench stan-
dard benchmark suite [12], a popular benchmark for embedded
and IoT applications.

We used MARSS-RISCV cycle-accurate simulation tool to
run our applications [11]. MARSS leverages an emulator,
TinyEMU, to emulate the system events and activities.

Using GLORIA, we report two results. First, in Fig. 3 (top)
we report the number of critical branches (branches whose BBS
score is high) that our tool has found in each application. The
results are reported as the number of critical branches per 1 k
executed instructions.

As can be seen in the figure, most applications have quite
a lot of critical branches. The statistics are significantly better
for security applications (e.g., ‘blowfish’). The main reason is
that these applications are inherently leveraging less number of
branches with critical values.

The effect of modeling the system events is shown in Fig. 3
(bottom). Here we report the error when events are not modeled.

Error is defined as the ratio of missed critical branches over all
detected branches. The results are shown in percentages. As can
be seen in the figure, without modeling the events, GLORIA has
more than 10% modeling error on average (i.e., missing at least
1 out of 10 critical branches).

The important takeaway from this experiment was to empha-
size the importance of leakage modeling at the early stages of
software design. Proper design choices such as avoiding critical
branches (e.g., ‘blowfish’) could significantly improve leakage
estimation and allow better, low-overhead defense solutions.
Such early analysis is only possible if an accurate and capable
yet user-friendly tool such as GLORIA exists.

IV. CONCLUSION

A new comprehensive software leakage estimation tool was
presented in this paper. The key idea was to take a systematic
approach by integrating a new leakage model into an existing
microarchitecture simulator.

Overall, GLORIA improves the state-of-the-art in modeling
accuracy by adding the capability for modeling events. Further,
GLORIA allows for detailed analysis such as detecting critical
branches and/or selective secret leakage analysis.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, RSA,
DSS, and other systems,” in Proc. Annu. Int. Cryptology Conf., 1996,
pp. 104–113.

[2] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in
Proc. Int. Workshop Cryptographic Hardware Embedded Syst., 2003,
pp. 13–28.

[3] M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and
Y. Yarom, “ROSITA: Towards automatic elimination of power-analysis
leakage in ciphers,” in Proc. Annu. Netw. Distrib. Syst. Secur. Symp., 2019,
pp. 1–17.

[4] M. A. Shelton et al., “Rosita: Automatic higher-order leakage elimination
from cryptographic code,” in Proc. ACM Asia Conf. Comput. Commun.
Secur., 2021, pp. 685–699.

[5] D. McCann, E. Oswald, and C. Whitnall, “Towards practical tools
for side channel aware software engineering: ‘grey box’ modelling
for instruction leakages,” in Proc. USENIX Conf. Secur. Symp., 2017,
pp. 199–216.

[6] A. de Grandmaison, K. Heydemann, and Q. L. Meunier, “ARMISTICE:
Microarchitectural leakage modeling for masked software formal veri-
fication,” IEEE Trans. Comput.-Aided Design Integrated Circuits Syst.,
vol. 41, no. 11, pp. 3733–3744, Nov. 2022.

[7] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, “EMSim:
A microarchitecture-level simulation tool for modeling electromagnetic
side-channel signals,” in Proc. IEEE Int. Symp. High Perfor. Comput.
Architecture, 2020, pp. 71–85.

[8] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem,
“COCO: Co-design and co-verification of masked software imple-
mentations on CPUs,” in Proc. USENIX Conf. Secur. Symp., 2021,
pp. 1469–1468.

[9] Y. Shoshitaishvili et al., “SOK: (State of) the art of war: Offensive tech-
niques in binary analysis,” in Proc. IEEE Symp. Secur. Privacy, 2016,
pp. 138–157.

[10] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information
flow architecture for software security,” ACM SIGARCH Comput. Archit.
News, vol. 35, no. 2, pp. 482–493, 2007.

[11] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A Full System
Simulator for Multicore x86 CPUs,” in Proc. 48th Des. Automat. Conf.,
2011, pp. 1050–1055.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. IEEE 4th Annu. Int. Workshop Workload
Characterization, 2001, pp. 3–14.

Authorized licensed use limited to: UCLA Library. Downloaded on July 02,2025 at 18:12:13 UTC from IEEE Xplore. Restrictions apply.

