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Abstract—Hardware-assisted security features are a powerful tool for
safeguarding computing systems against various attacks. However, inte-
grating hardware security features (HWSFs) within complex System-on-
Chip (SoC) architectures often leads to scalability issues and/or resource
competition, impacting metrics such as area and power, ultimately leading
to an undesirable trade-off between security and performance. In this study,
we propose re-evaluating HWSF design constraints in light of the recent
paradigm shift from integrated SoCs to chiplet-based architectures. Specif-
ically, we explore the possibility of leveraging a centralized and versatile
security module based on chiplets called security helper chiplets. We study
the cost implications of using such a model by developing a new framework
for cost analysis. Our analysis highlights the cost tradeoffs across different
design strategies.

Index Terms—Chiplet systems, hardware security monitoring.

I. INTRODUCTION

T HE chipletization paradigm shift enables designers to reassess
fundamental assumptions about the design and manufacturing of

computing systems. This involves reevaluating perspectives on com-
puting, memory, and other critical concepts such as security. While
there has been significant focus on addressing various technological
and design aspects of chipletization, the impact of chipletization on
hardware security remains largely unexplored. Toward this goal, this
study explores the cost implications of chipletization on hardware
security services in modern systems.

With security becoming increasingly paramount, modern systems
feature an array of defensive measures, such as malware detection and
dynamic information monitoring, to maintain security [1], [2], [3]. In
an SoC, security services have to be either embedded within the core or
tightly coupled as a coprocessor, all within the same monolithic SoC [1],
[4]. This is shown in Fig. 1(a) and (b). A key insight is that the recent
transition from monolithic SoCs to a chiplet-based architecture presents
an opportunity to reconsider how hardware security should be imple-
mented. In this paradigm, a system is formed by assembling various
smaller “chiplets” instead of developing a monolithic, single-die IC.
Each chiplet generally serves a specific function or a designated set of
functions and can be manufactured independently. It would, therefore,
be possible to design hardware security services as a dedicated and
scalable security chiplet, and/or integrate specific security features to
individual chiplets.

Despite the prospective benefits of a chiplet approach, the cost
overhead of implementing hardware security in a chiplet system should
be systematically studied. Specifically, it is important to understand
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Fig. 1. Existing platforms consist of (a) monolithic SoCs where security
features are embedded within the core itself, (b) monolithic SoCs with security
implemented as a coprocessor, (c) chiplet-based systems with security embedded
in an active interposer, and (d) heterogeneous integrated chiplet-based systems
with security implemented within distributed utility chiplets. The last two models
are SHCHI compatible platforms.

when it is beneficial to have separate dedicated chiplets (for security,
core, memory, I/O, etc.) as opposed to a monolithic system where
security services are tightly integrated with other components. More
specifically, the cost of bonding and extra packaging is an expense
overhead that may make the chiplet systems more expensive at small
scales. However, the key insight is that commercial enterprises are rarely
interested in a single design/solution; they will almost certainly offer a
diverse suite of products through a combination of binning and multiple
design variants to meet a wide range of market demands [5]. This makes
chiplet-based systems more attractive in many scenarios.

In this paper, we develop a framework for analyzing the cost implica-
tions of hardware security features (HWSFs) in the context of a chiplet
system. Specifically, we consider three main design strategies: (a) a
monolithic design where security is tightly integrated with other regular
functionalities, (b) a distributed chiplet-based security design where the
entire design is broken down into smaller chiplets but the security is
still tightly integrated into each chiplet, and (c) a centralized design
where all the security functionalities are implemented in a dedicated
security helper chiplet(s) (SHCHI 1). An overview of different variants
is shown in Fig. 1.

We carefully analyze the cost and design challenges of achieving
this capability and present our takeaways and insights. In summary, the
main contributions of this paper are:! A cost model to quantify the effective cost of various security

solutions in a chiplet system, allowing for a more informed
comparison to the current state of the art.! A systematic evaluation of the advantages and disadvantages
of different design strategies on cost and performance for
next-generation heterogeneous chiplet systems.

II. COST ANALYSIS: IS SHCHI IS BENEFICIAL?

We formulate a model aimed at estimating the cost associated with
implementing SHCHI. We first systemize the security features that
commonly exist in modern systems and then develop a cost model
for security.

1Pronunced like she.
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A. Security Cost Modeling Systemization

There are various hardware security features (HWSF) in modern sys-
tems. Some HWSFs protect against software attacks at the architectural
level, such as control flow integrity (CFI), information flow tracking
(IFT), rowhammer mitigations (RHM), and Spectre and Meltdown
mitigations [3], [6], [7]. Others are security-specific hardware modules
such as cryptographic accelerators for AES and physical unclonable
functions (PUFs) [8].

Our key observation is that the associated cost for implementing
security can be modeled by categorizing HWSFs into three groups:
area dominant features, I/O dominant features, and a third group with
a moderate need for I/O and area, hybrid features. In the following, we
explain the rationale for such categorization and describe each category.

Area Dominant Features: This class compromises hardware se-
curity solutions with minimal inputs but a significant amount of
logic required for computation. Examples include cryptographic co-
processors/accelerators. These accelerators are usually integrated on-
chip and serve multiple cores, as their services are not frequently
needed. Therefore, implementing these features is primarily sensitive to
area considerations rather than I/O. Moving these accelerators off-chip
could introduce additional latency to the cryptographic operations,
although they can leverage existing networks and hide the delay through
various techniques (e.g., pipelining).

I/O Dominant Features: Another class is security features that mainly
rely on I/O for their enforcement. For instance, hardware monitoring
units are a prime example. Hardware monitoring units are a broad
category that encompasses multiple categories of monitoring features
that track several hardware activities, such as data buses, performance
counters, memory addresses, and more. Examples of defenses include
protection against bus fault/probing attacks and/or memory tagging ap-
proaches. Typically, they require transferring some additional integrity
tags in parallel with actual data in real-time resulting in additional I/Os.

Hybrid: A class in between are methods that need both I/O and logic
for enforcing security. Depending on the complexity, either or both
I/O and logic might be large. Two prime examples in this category are
(dynamic) information flow tracking (DIFT) and hardware malware
detectors (HMD).

B. Security Cost Formulation

A plethora of research over the past several decades has provided
models to estimate the cost of monolithic SoCs and chiplet-based
systems [9], [10], [11]. However, to understand the advantage of using
SHCHI for cost-effective security, we must first define a cost model
for a chiplet-based system. We breakdown our analysis into two main
parts: manufacturing and non-recurring engineering (NRE) costs.

Security Chiplet Manufacturing Cost: We observe that there are two
possibilities for integrating security in a chiplet system: distributed and
centralized. In the distributed format, security features are integrated
into different chiplets (tightly coupled with regular compute) whereas
in centralized, ALL security features are integrated into one chiplet
(security chiplet). An overview of such designs is shown in Fig. 2.

For monolithic designs, the cost depends on the security area. We
define the manufacturing cost of security within an SoC/monolithic
design as follows:

Cmono,security = SAR× Cwafer/Nchip

Ychip
, (1)

where SAR is the proportion of area dedicated to security features to
the area of the full system (security area ratio). Nchip is the maximum
number of chips obtainable from a single wafer, and Ychip is the

Fig. 2. Possible security integration strategies. Monolithic SoCs (a) and Dis-
tributed chiplet systems (b.1) must add security using their respective process
node. While centralized chiplet system (b.2) employs tiling where clusters of
regular chiplets share a Security chiplet that may use an older process node. A
refers to the added area.

respective yield (defined by the binomial yield model [11] given some
chip area A).

For chiplet-based approaches (distributed and/or centralized), two
separate costs should be considered: (i) per chiplet cost, and (ii) inte-
gration cost (e.g., to create a 2.5D system). Specifically, the cost of a
2.5D system can be modeled as:

C2.5D = Cint +
n∑

i=1

(Ci + Cassemblyi)

Y pc
bondi

, (2)

where Ci is the cost of the ith chiplet (security and/or functional),
Ybondi is the bonding cost for the ith chiplet, Cassembly is per-chiplet
assembly cost, Cint is the silicon interposer cost, and pc is the number
of I/O pins per chiplet.

Based on Fig. 2, the per-chiplet cost (Ci) for a distributed approach
is similar to that of Cmono,security . The only difference is SAR (i.e.,
the ratio between Asys and Asec) is different for chiplet-based systems
(see the difference between Fig. 2(a) and (b.1)).

For a centralized approach, the cost for regular chiplets does not
change compared to a non-secure version. However, adding extra cen-
tralized security chiplets will increase the total number of dies/chiplets
in the system (n in (2)). Furthermore, the security chiplet cost will
depend on (i) the security area of the security chiplet and (ii) its yield.

Specifically, for centralized security chiplets, pc can be modeled as:
SIR×Achiplet,sec, where SIR is defined as the Security I/O Ratio
(SIR). Our main observation is that the area and I/O parameters are
relatively correlated, and SIR can be used to determine the amount of
correlation between the two overheads. For I/O-dominant features (see
Section II-A), even a small HWSF has large I/Osec, and SIR is quite
large (e.g., around 10). Alternatively, for area-dominant features (e.g.,
a crypto engine) SIR is relatively low (around 0.1) but Achiplet,sec is
higher (and the hybrid HWSF has balanced parameters). Furthermore,
note that centralized approaches could benefit from a higher yield
because they can be manufactured in more mature technologies.

The assembly cost per chiplet,Cassembly , is also an important factor,
particularly in small-scale systems. This cost is a function of various
parameters, including the overhead of chiplet handling and placement
on the interposer, which involves precise machine-based pick-and-place
operations [10].

Lastly, the silicon interposer cost functions, Cint (see (2)), as a chip
in its own right, adhering to the principles of yield and cost outlined
in (1) (without the SAR term). Nevertheless, owing to its absence of
active devices and its reliance solely on wiring, it can be produced using
a more mature process, resulting in lower wafer costs and defect rates
close to zero (i.e., Cint << Cmono) [12].

Chiplet Design Cost: Apart from manufacturing costs, non-recurring
(design) engineering costs should also be considered. Specifically,Cnre
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TABLE I
COST MODEL PARAMETERS

for a given chip/chiplet can be expressed as:

Cnre,tot ≈
Cnre

Vchip
× (ku+ r(1− u)) . (3)

The process-dependent base NRE cost, Nnre, is amortized over the
chip volume, Vchip. Parameters k, u, and r are defined as the number
of design variants, unshareable portion of NRE between designs, and
non-reuse factor proportional to chip area, respectively. To further
understand the above parameters, note that in chiplet systems, scal-
ability is achieved through two main factors: the higher yield rate due
to smaller-sized chiplets and the shared NRE costs. However, chiplet
systems cost more to fabricate due to the additional components (e.g.,
interposer) and bonding costs. The cost advantage becomes apparent
when the designer wishes to create multiple variants of a particular
design (i.e., k in (3)).

While reusability exists in all three cases, it can be argued that the
more specific a chiplet’s functionality is, the more reusable it will be.
For example, an FFT chiplet would be more reusable than an FFT
module on a bigger chip [12] hence u in (3) decreases. Furthermore,
the shareable portion is also impacted by the (non-)reusability, r, of the
design (because the smaller the area, the more likely it is reusable) [12].

The key insight is that while chiplet systems incur initial NRE for
each chiplet design (e.g., fab costs, masks), each subsequent system
design would only incur some portion of NRE due to reuse and
sharability. This contrasts with an SoC where each design incurs the full
NRE cost. Furthermore, a similar argument can be made for centralized
vs. distributed scenarios where the centralized approach can benefit
most from reusability because the security and regular functionalities
can be designed and implemented independently. As a result, the same
security chiplet can be reused in different systems (i.e., with different
regular chiplets), and/or the same regular chiplets can be reused with a
different security chiplet.

III. COST EVALUATIONS

A. Chiplet Vs. SoC NRE Security Costs

To further illustrate NRE and average costs, we examine the total
system cost (i.e., the sum of manufacturing and NRE costs) as the
number of design variations (k) increase. The parameters used are
explained in Table I and their respective values are defined based on
previous works [10], [12]. In the SoC, we assume that the first design
variant is 20 mm2, and each subsequent variant is an additional 10 mm2.
While in the chiplet-based approach, the first variant is 20 mm2, and
each subsequent variant is an additional 10 mm2 or two chiplets.

Fig. 3 shows that the total cost spent on developing all variants of a
given design becomes more cost-effective for the chiplet-based system
when the number of design variants exceeds six. The NRE cost of a

Fig. 3. Change in relative security cost as a function of the number of design
variants, normalized to the single variant SoC (u = 10%, r = 1 [12]).

Fig. 4. Cost of security across various platform configurations.

system that utilizes a compute chiplet and a security chiplet incurs a
near-constant NRE with only a slight increase due to packaging NRE-
related costs. At larger scales, the NRE cost overhead associated with
designing a security module in an SoC becomes more dominant over
the design cost of an entire chiplet-based system. The diminishing cost
of heterogeneous integration not only makes architectures like SHCHI
economically viable but positions them as a necessity in the evolving
landscape of architecture and hardware security [13].

B. SoC Vs. Distributed Vs. Centralized Cost Analysis

Fig. 4 illustrates nine distinct configurations comparing the cost
of security area ratio (SAR) and overall system size across different
platforms. Specifically, it uses a 7 nm process for the SoC and distributed
platforms, and a 65 nm process for security chiplets in the centralized
model. We consider a 1 to 3 security/utility to regular chiplet (UDR)
ratio for the centralized model. Numbers are normalized with respect
to the SoC cost in the first configuration, and we consider hybrid
HWSFs. The graph elucidates the trends in security costs as system
size expands, and highlights the cost differentials between platforms at
each respective system size.

IV. PERFORMANCE ANALYSIS

To model performance as a function of security configuration, we
examine the performance using the gem5 simulator on SPEC2017
benchmark suites. We consider four classes of HWSFs. Specifically, we
define an HWSF delay-sensitive if it is tightly connected to the pipeline.
On the other hand, if delays can be concealed through various methods
such as speculation, the performance impact is reduced. We call this
category delay-insensitive. Examples of the former are SpecCFI [3] and
STT [14]. For the latter, examples are RHMD [1] and Cyclone [15]. In
addition to sensitivity, the frequency of such events is crucial. Lastly, the
impact of network latency should be considered. For example, HWSFs
that are far away from SHCHI could experience longer delays due to
more hopping. We consider this as part of the delay sensitivity.

Consequently, we model sensitive/non-sensitive (N/S) and high/low
frequency (H/L) categories. For the baseline model, we consider an
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Fig. 5. Per-core performance overhead for various configurations (sensitive
vs. non-sensitive and high frequency vs. low frequency.

TABLE II
RELATIVE COST-PERFORMANCE TRADE OFF

out-of-order system with a private L1 of 16 KB and 64 KB of shared
L2 cache. For each class, we inject a delay for each relevant activity.
Delays are induced by instrumenting the code and modifying the gem5
simulator to stall when these specific transactions are detected. To
model these four variants, we designate the return instructions as
the low frequency variant and the direct conditional instructions as
the high frequency variant. Additionally, we assign 2 cycles as the
non-sensitive (small) latency penalty and 8 cycles as the sensitive (large)
latency penalty. The results of this model are illustrated in Fig. 5.
It should be noted that several benchmarks were excluded from the
presentation due to similar results. The observed results suggest that
high-frequency events should stay on chip while low-frequency events
are good candidates for SHCHI.

V. CONCLUSIONS AND MAIN TAKEAWAYS

Our findings reveal that while the integration of HWSFs into
chiplets poses unique challenges, it offers unparalleled opportunities for
customization (summarized in Table II).

The trade-offs between performance and cost depend on the type
of HWSF and other circuit-level and microarchitectural considera-
tions. These tradeoffs can be optimized by leveraging different design
methodologies (e.g., hybrid).
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