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We prove a homological mirror symmetry result for maximally degenerating fam-
ilies of hypersurfaces in (C*)" (B-model) and their mirror toric Landau-Ginzburg
A-models. The main technical ingredient of our construction is a “fiberwise
wrapped” version of the Fukaya category of a toric Landau-Ginzburg model. With
the definition in hand, we construct a fibered admissible Lagrangian submanifold
whose fiberwise wrapped Floer cohomology is isomorphic to the ring of regular
functions of the hypersurface. It follows that the derived category of coherent
sheaves of the hypersurface quasi-embeds into the fiberwise wrapped Fukaya cat-
egory of the mirror. We also discuss an extension to complete intersections.
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1 Introduction

The range of settings in which mirror symmetry is expected to hold has steadily
expanded since the mirror conjectures were first formulated for projective Calabi-Yau
varieties, and there are now candidate mirror constructions in a wide range of settings.
Outside of the Calabi-Yau setting, the mirrors are in general Landau-Ginzburg models,
i.e. pairs (Y, W) where Y is a quasi-projective variety and W € O(Y) is a regular
function (the superpotential).

We focus on the case of hypersurfaces in (C*)" (or rather hypersurfaces defined over
the non-archimedean Novikov field K = A, which arise from maximally degenerating
families of hypersurfaces near the tropical limit). These have mirror Landau-Ginzburg
models which consist of a noncompact toric Calabi-Yau variety Y of dimension n+ 1,
equipped with a superpotential W which is a toric monomial vanishing to order 1
on each irreducible toric divisor of Y. The construction is summarized in Section
2, following the description given in [AAK] which arrives at these mirrors from
the perspective of SYZ mirror symmetry; see also [HV, Cl, CLL, GKR] for other
viewpoints.

To be specific, consider a degenerating family of complex hypersurfaces defined by a
Laurent polynomial of the form
(1-1) f=7 aa™ O,

aEPy
where Pz is a finite subset of Z", the exponents v(a) € R are assumed to satisfy a
convexity condition which ensures that Equation (1-1) is a sufficiently generic degen-
eration, and the coefficients a, are complex numbers in the simplest situations, but
will in general be given by elements of A of vanishing valuation (see Section 2). The
space Y which we associate to these data is the Kihler toric variety determined by the
polytope

(1-2) Ay ={&n|n> e} CR" DR,

where the piecewise linear function ¢ : R" — R is the tropicalization of f,
80(5) = max {<O[7 5) - V(Oé)}7
a€EPy

and the superpotential W = —z(®%D is (up to sign) the toric monomial associated to
the last coordinate of the ambient space R" & R in Equation (1-2). The regular
fibers of W : Y — C are isomorphic to (C*)", while the unique singular fiber
Z=w10) = Ua Zo is a union of toric varieties (the irreducible toric divisors
of Y, which are in one-to-one correspondence with the monomials appearing in f).
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In the simplest example, the hypersurface H is the higher-dimensional pair of pants
{1, yx) [ T+x 4+ - +x, =0} C (CY"

with mirror the Landau-Ginzburg model (Y = CHlw=—z.. .Zn+1), Whose sin-
gular fiber is the union of the coordinate hyperplanes in C"*!; however in most cases
Y is not affine and depends on the choice of degeneration.

In one direction, homological mirror symmetry predicts that the wrapped Fukaya cate-
gory of a hypersurface H C (C*)" is equivalent to the derived category of singularities
of the mirror Landau-Ginzburg model, ng(Y , W) = DPCoh(2) /Perf(Z). This was
first verified for the wrapped Fukaya categories of open Riemann surfaces in (C*)?
and the derived categories of singularities of their mirror Landau-Ginzburg models
[AAEKO, Lee]; see also [LP1], where the algebraic side is rather the derived category
of coherent sheaves of a stacky nodal curve (equivalent to the Landau-Ginzburg model
(Y, W) via Orlov’s derived Knorrer periodicity). In higher dimensions, the result was
first verified for higher-dimensional pairs of pants in [GN] and [LP2]; in the first of
these, the wrapped Fukaya category is replaced by the category of wrapped microlocal
sheaves, but the two were subsequently shown to be equivalent by Ganatra-Pardon-
Shende [GPS3]). Finally, the case of general hypersurfaces in (C*)" was established
by Gammage and Shende [GS], also using wrapped microlocal sheaves.

Here we consider the other direction of mirror symmetry, comparing coherent sheaves
on the family of hypersurfaces H; defined by f to a suitable version of the Fukaya
category of the Landau-Ginzburg model (Y, W), where Y is equipped with a suitable
toric Kéhler form in the class [wy] € H*(Y,R) determined by the polytope Ay, and
also a bulk deformation class (or B-field) b € H*(Y, A>o) (the subscript > 0 indicates
that we only consider elements of non-negative valuation). This direction has been
much less studied; in fact, at the start of our project there wasn’t even yet a candidate
definition for the appropriate Fukaya category, because the initial formulation required
that Y be affine and that W have isolated non-degenerate singularities [Se2].

1.1 Fiberwise wrapped Fukaya categories

The first step in our approach is to define the fiberwise wrapped Fukaya category
W(Y, W) of a toric Landau-Ginzburg model. The objects of W(Y, W) are properly
embedded Lagrangian submanifolds L C Y which satisfy two different types of geo-
metric requirements: (1) in the base direction, we require that L is fibered at infinity,
i.e. that outside of a compact subset of C the image of L under W : ¥ — C is a
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union of embedded arcs, which are further required to be disjoint from the negative
real axis and along which the distance from the origin increases strictly; (2) we require
L to be fiberwise “flat” at infinity with respect to a weakly plurisubharmonic fiberwise
“height” function & : Y — [0, 00), i.e. the restriction of d“h to L is required to vanish
outside of a bounded subset of each fiber of W. We call such Lagrangians admissible;
see Definition 3.5. The Lagrangians we consider are also required to be tautologically
unobstructed (in the sense of not bounding any holomorphic disc with respect to a
prescribed almost complex structure), and are equipped with the grading data and local
systems needed to construct Floer complexes.

Morphism spaces in W(Y, W) are defined as direct limits of Floer complexes for the
images of admissible Lagrangians under a suitable geometric flow, which combines
(1) in the base direction, admissible isotopies acting on the complex plane by positive
rotations without crossing the negative real axis (as in the more familiar setting of
Fukaya categories of Lefschetz fibrations), and (2) in the fiber direction, the flow of a
Hamiltonian H : Y — R which preserves the fibers of W and whose restriction to each
fiber is a linear-growth wrapping Hamiltonian (hence the name “fiberwise wrapped”).
The details of the construction are given in Section 3.

In the toric case, the fiberwise behavior of our admissible Lagrangians is enforced by
fixing a collection of monomials z¥ € O(Y) and open subsets Cy of Y, and requiring
arg(z¥) to be locally constant over L N Cy. This amounts to a fiberwise version of the
notion of monomial admissibility considered in Andrew Hanlon’s thesis [Ha]; in fact,
even though we treat the monomial W separately, the condition we impose in the base
direction could also be reformulated in the language of monomial admissibility.

Since our Lagrangians are required to be both fibered with respect to W : ¥ — C
and fiberwise monomially admissible within the fibers, our setup requires symplectic
parallel transport between smooth fibers of W to be compatible with monomial ad-
missibility. This compatibility is easy to achieve for parallel transport along radial
lines in the complex plane by using elementary toric geometry (or by directly impos-
ing monomial admissibility in the total space Y). However, the explicit calculation
of Floer complexes and differentials at the heart of our verification of homological
mirror symmetry requires us to consider Lagrangians that are everywhere fibered over
U-shaped arcs in the complex plane. Achieving fiberwise monomial admissibility for
such Lagrangians requires some extra care in the choice of the toric Kihler form wy
on Y within the given cohomology class; see Section 4 for details.

Remark 1.1 The several years elapsed since our results were first announced have
brought forth key advances and new viewpoints on Fukaya categories of Landau-
Ginzburg models which suggest other possible approaches.
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For example, partially wrapped Floer theory for Liouville domains with stops [Sy1]
and sectors [GPS1] has led to considerable progress in the exact setting. However it
is not clear that viewing (Y, W) as a non-exact sector would yield any simplification
to our setup and main calculation, as the alternative description in terms of wrapped
microlocal sheaves used by Nadler in the case of higher-dimensional pairs of pants
[Na] would not be applicable outside of the exact setting, and direct calculation by
counting holomorphic discs would likely be no easier than the approach taken here.

Monomial admissibility, as used by Hanlon to revisit mirror symmetry for toric varieties
[Ha], is much more directly suited to our goals, and in fact we use this viewpoint
to constrain the fiberwise behavior of our Lagrangians and to arrive at a maximum
principle. Defining W(Y, W) directly in the language of monomial admissibility
(adding W itself to the list of monomials z¥ whose arguments we constrain at infinity)
would be fairly straightforward, but the explicit calculation of Floer cohomology
would likely still require the Lagrangian to be everywhere fibered with respect to the
projection W : Y — C (not just near infinity), making the setup essentially identical
to that considered here.

One can alternatively attempt to replace monomial admissibility with a variant of
Groman’s formulation for Floer theory on open manifolds [J], adapted to the setting
of Landau-Ginzburg models. Early drafts of this text pursued a related approach based
on geometric estimates on parallel transport and monotonicity type arguments, but the
relevant estimates turned out to be quite challenging.

1.2 A Floer cohomology calculation

The main protagonist of our argument is a specific admissible Lagrangian L in the toric
Landau-Ginzburg model (Y, W), which is expected to generate the fiberwise wrapped
Fukaya category.

Consider a Laurent polynomial f € K[xfl, ..., X1 defining a maximally degenerat-
ing family of hypersurfaces H; as above, and let (Y, W) be the toric Landau-Ginzburg
model constructed in Section 2, equipped with the toric Kéhler form wy constructed in
Section 4 and a bulk deformation' b € H*(Y, A>¢). Since the fiber W=!(—1) C Y is

isomorphic to (C*)", it contains a distinguished Lagrangian ¢y = (R1)" along which

'In the literature, one usually considers bulk classes of strictly positive valuation; the O-
valuation part of b corresponds to (a logarithm) of what is sometimes called a background
class, which in our case is valued in C*, but is usually considered with Z, coefficients, and
modifies Floer theory by changing the sign contributions of discs.
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the toric monomials z¥ are all real positive. The parallel transport of ¢y over a U-shaped
arc in the complex plane connecting —1 to +o00 around the origin yields an admissible
Lagrangian submanifold Ly in (Y, W). Our main result is:

Theorem 1.2 For a suitable choice of bulk deformation class b € H*(Y, A>o), the
fiberwise wrapped Floer cohomology ring HW*(Ly, Lo) is isomorphic to the quotient
K[xlil, ..., XF11/(f) of the ring of Laurent polynomials by the ideal generated by f,
the defining equation of the family of hypersurfaces H;.

Remark 1.3 We refer the reader to Remark 5.31 for a discussion of the relation-
ship between the bulk class appearing in the statement of the above theorem and the
expression of the mirror map in terms of Gromov-Witten theory.

In other terms, HW™*(Lo,Lo) is isomorphic to the ring of functions of the non-
archimedean hypersurface H defined by f over K:

(1-3)  HW*(Lo,Lo) ~ KIx{™, ..., xF'1/(f) = HO(H, O) = Hom(Oz, O3).

Since this ring is supported in degree 0, it is intrinsically formal, so we conclude that
the Floer algebra W*(Lg, Lo) is Ao equivalent to the ring of functions on . On the
other hand, since H is affine, its derived category is generated by the structure sheaf
0%, and by mapping a twisted complex built from copies of Oy to the corresponding
twisted complex built from Ly inside W(Y, W), we arrive at:

Corollary 1.4 The derived category of coherent sheaves of H admits a tully faithful
quasi-embedding into W(Y, W).

One can then return from the non-archimedean setting to the complex hypersurfaces
H, by observing that, when f is of the form (1-1) with a,, € C*, the outcome of our
calculation is manifestly convergent over complex numbers and we can treat ¢ as an
actual parameter rather than a formal variable.

The calculation of HW*(Ly, Ly) involves counts of holomorphic sections of the fi-
bration W : ¥ — C over domains in the complex plane, with boundary in fibered
Lagrangians, and the argument is essentially within the realm of the “Seidel TQFT”
[Se2] even though W is not a Lefschetz fibration; see Section 5. Our approach is
concrete and explicit, but a more conceptual interpretation can be given in terms of the
Orlov cup functor; see below.
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Remark 1.5 The object Ly is expected to generate the category W(Y, W), which
would imply that the embedding of Corollary 1.4 is an equivalence. Stop removal
(wrapping past the negative real axis in the base direction) yields an acceleration functor
from W(Y, W) to a suitable version of the wrapped Fukaya category of Y, under which
Ly maps to the zero object (cf. [AS]). The stop removal results of [Syl, GPS1] (to the
extent that they hold in our setup) should imply that WW(Y) is precisely the quotient of
W(Y, W) by the full subcategory generated by Ly. The generation statement is then
equivalent to the vanishing of W(Y). This argument can be made precise in the case of
the pair of pants, where ¥ = C"*! is a subcritical Liouville manifold and its wrapped
Fukaya category vanishes. However, given that a complete argument in the general
case where Y is not exact would involve several pieces of machinery that have not yet
been developed in that setting, we do not investigate this question further in this paper.

1.3 A functorial perspective

The fiberwise wrapped Fukaya category is the target of a functor
U: W(CH) — W(Y, W)

(the Orlov cup functor), which is given on objects by parallel transport of admissible
Lagrangian submanifolds of W~!(—1) ~ (C*)" along a U-shaped arc in the complex
plane, and on morphisms by observing that the portions of the fiberwise wrapped Floer
complexes which live in the fiber over —1 are closed under all A, -operations. In this
language, the computation at the heart of the proof of Theorem 1.2 gives a commutative
diagram of functors

Perf((K*)™) Perf(H)
(1-4) W((C*)" WY, W)

where the restriction functor i* and the cup functor U intertwine mirror symmetry for
the ambient torus (K*)" and the hypersurface H. The core of our argument amounts
to a verification of this statement for the structure sheaves on the algebraic side, and
the admissible Lagrangians ¢y = (R4)" and Ly = U¥y on the symplectic side.

To continue further in this direction, the functor U has an adjoint functor N :
WY, W) — Perf W((C*)") (“restriction to the fiber at +00”’), under which a fibered
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Lagrangian L = U/{ maps to a twisted complex built from the fiberwise Lagrangians
at the two ends of the U-shaped arc, with a connecting differential sg which counts
holomorphic sections of W : ¥ — C bounded by L over the region enclosed by the
U-shaped arc. After choosing a suitable identification of the fiber near +oo with (C*)",
we find that the image of ¢ under the composite functor NU is isomorphic to a cone

SO
AUL~ {M—‘(z) —%z},
I is the clockwise monodromy of the fibration W around the origin, acting

'~ id), and Y is a count

where 1~
on the wrapped Fukaya category of the fiber (in our case p~
of sections. This is part of an exact triangle of functors

nu

acting on W((C*)"), originating in Seidel’s work [Sel] on Dehn twists, and which
has been the subject of some recent work (cf. [AG], [ASm, Appendix A], and [Sy2,
Theorem 1.3]).

Our calculation of the fiberwise wrapped Floer complex of Ly = U{y can then be
rewritten as

0
W(Y7W)(U€(), Uly) ~ W(C*)n by, NU L) ~ CODC{HW*(&), ufl(fo)) i) HW* (), 50)}

which, after verifying that the section-counting natural transformation sgo amounts to
multiplication by the Laurent polynomial f, corresponds on the algebraic side to

Homy (Oz, Op) = Homggeop (O, iyi*O) =~ cOne{Hom(O, 0) -1 Hom(0, O)}.

1.4 Complete intersections and compactifications

Our results admit extensions in at least two directions. The first one, which we briefly
discuss in Section 6, concerns complete intersections. The mirror of a codimension
k complete intersection in (C*)" (or rather, of a family of complete intersections
degenerating to a tropical limit) is a Calabi-Yau toric Kédhler manifold Y of complex
dimension n + k, equipped with a superpotential which is a sum of k toric monomials
Wi, ..., Wi € O(Y); taken together these determine a holomorphic map W : ¥ — C*k,
whose fibers over (C*)* are again isomorphic to (C*)" [AAK, Section 11]. We then
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define a version of the fiberwise wrapped Fukaya category W(Y, W) whose objects
are Lagrangian submanifolds which are simultaneously admissible for each of the
projections Wi, ..., Wy; the morphisms are direct limits of Floer complexes under a
combination of admissible isotopies acting on each factor of C* by positive rotations
without crossing the negative real axis and wrapping in the fibers of W. The key object
Ly under consideration is now obtained by parallel transport of (R)" C (C*)" over a
product of U-shaped arcs inside C*. By an argument similar to our main calculation,
its fiberwise wrapped Floer complex is isomorphic to the Koszul resolution of the ring
of functions of the complete intersection; the upshot is that the obvious analogues of
Theorem 1.2 and Corollary 1.4 continue to hold in this setting. See Section 6 and
Theorem 6.7.

Another extension is to hypersurfaces (and complete intersections) in toric varieties.
Namely, a Laurent polynomial of the form (1-1) defines not only hypersurfaces in (C*)”"
or (K*)" but also (partial) compactifications in suitable toric varieties or stacks — for
example, the projective toric variety or stack V whose moment polytope is the convex
hull of P7. Following [AAK], the mirror to H C V is the same Calabi-Yau toric
variety Y as in our main construction, now equipped with a superpotential W which
is the sum of the previously encountered monomial Wy = —z®++0:1) and extra terms
consisting of one monomial for each of the irreducible toric divisors of V. The latter
turn out to be exactly the collection of monomials z¥ we consider in Definition 4.14.
Consequently, we can define the Fukaya category F(Y, W) by considering exactly the
same admissible Lagrangian submanifolds of Y as in the construction of W(Y, Wy):
namely, Lagrangians which are fibered at infinity with respect to Wy : ¥ — C,
and within the fibers of Wy, monomially admissible for the collection of monomials
z'.
the argument of each monomial z¥ within a small bounded interval, rather than by
an unbounded amount of fiberwise wrapping. Starting from monomially admissible
Lagrangian sections £, ¢ C (C*)" such as those considered in [Ha], which are mirrors

However, we now consider colimits under perturbations which only increase

to line bundles £, £’ on the toric variety V, we now find an isomorphism

Hom .y y,(UC, U’y ~ Cone{Hom;(((C*)m{Zv})(E, p i) = Homz(cxy (v (4, E’)}.

After checking that the action of the monodromy z~! on monomially admissible

Lagrangian sections is mirror to the functor — ® O(—H) and that the natural transfor-
mation s : u~' — id still corresponds to multiplication by the defining section f of

H, this corresponds on the algebraic side to the isomorphism

Homy(L 7, Eiﬁ) ~ Cone{HomV(E, L' @ O(—H)) 7, Homy(L, 5/)}-
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This in turn implies cohomology-level mirror symmetry statements for restrictions
of ample line bundles (compare with [Ca] which establishes analogous results in a
different setting). A more detailed account of this will appear elsewhere [AA].

1.5 Related works

In the time elapsed since our results were first announced, at least two papers have ap-
peared establishing conceptually similar homological mirror symmetry results relating
coherent sheaves on hypersurfaces to the symplectic geometry of mirror Landau-
Ginzburg models.

On one hand, Nadler introduced the category of wrapped microlocal sheaves and gave
an explicit computation for the Landau-Ginzburg model (C", z; . . . z,,), which is mirror
to the (n — 2)-dimensional pair of pants [Na]. (Wrapped microlocal sheaves were
subsequently shown by [GPS3] to be equivalent to the Fukaya category of the corre-
sponding Liouville sector.) Nadler’s paper showcases the remarkable computational
power of microlocal sheaves in the exact setting, and also identifies structural properties
which are closely related to those described in § 1.3 above.

On the other hand, Cannizzo’s thesis work [Ca] considers the case of a genus 2 curve
embedded in a principally polarized abelian surface (its Jacobian) and the mirror
Landau-Ginzburg model. The approach is fairly similar to ours, but avoids the need
to discuss fiberwise admissibility because the mirror is proper (the generic fibers are
T*). However, the monodromy is topologically non-trivial, and involves a twist mirror
to the defining section of the genus 2 curve, so that the objects of interest are a
sequence of admissible Lagrangians mirror to powers of the canonical bundle of the
genus 2 curve (somewhat similarly to the toric variety case outlined above). Another
notable difference with our setting is that, despite the non-exact nature of the mirror
and the presence of rational curves in the zero fiber, no bulk deformation is required
as the instanton corrections only result in a rescaling of the section-counting natural
transformation [Ca].

Plan of the paper

The first part of this paper is concerned with the definition of the fiberwise wrapped
Fukaya category W(Y, W). After reviewing the construction of the Landau-Ginzburg
model (Y, W) in Section 2, we develop the foundations of fiberwise wrapped Fukaya
categories in Section 3, while Section 4 is devoted to the construction of the appropriate
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toric Kdhler form and verification of the required geometric properties. The heart of
the paper is then Section 5, which is devoted to the calculation of the fiberwise wrapped
Floer cohomology of Ly and the proof of Theorem 1.2. Finally, in Section 6 we briefly
discuss the extension to complete intersections and prove Theorem 6.7.
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2 The mirror Landau-Ginzburg model

2.1 The main construction

Consider a Laurent polynomial

2-1) f= Z anx®,

aeZr

with complex coefficients, and denote by
2-2) H=f"'0)cCY
the corresponding hypersurface.

The construction of a mirror for H depends on a choice of degeneration; we specifically
consider a maximal degeneration to a tropical limit, and assume that the corresponding
tropical variety is smooth in the sense we explain now.
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Let P denote the Newton polytope of f, and Py its integral points. For simplicity, we
assume that the interior of P is non-empty (i.e., P has positive volume); otherwise we
can always reduce to this case by splitting off some C* factors.

A tropically smooth maximal degeneration of H is induced by the choice of a strictly
convex piecewise linear function

(2-3) v: PR

whose domains of linearity determine a subdivision P of P into standard integral
simplices, i.e. simplices that are equivalent by an integral affine transformation to the
simplex spanned by the origin and the unit coordinate vectors in Z"; this condition
ensures that the mirror toric variety we construct below is smooth. The corresponding
degeneration is then

(2-4) fo=> aal™ ",

a€EPy
We can associate to f;, either a family of hypersurfaces parametrised by ¢+ € C, or
a variety H over the Novikov field K = A of power series in the formal variable
t with real exponents. The second point of view is more natural for the purpose of
proving the well-definedness and invariance of the Fukaya category, and providing
clear formulations of homological mirror symmetry.

Denote by ¢: R" — R the tropicalisation of f,,, i.e. the piecewise linear function

(2-5) ¢(§) = max{{a,{) — v(a)|a € Pz}.
Let Y be the (noncompact) Kéhler toric manifold defined by the moment polytope
(2-6) Ay ={¢En eR"@R|n = ¢}

The polytope Ay determines a Kahler class [wy] € H*(Y ,R). In §4, we shall specify
an explicit Kéhler form wy, obtained by Hamiltonian reduction from a vector space,
which will be particularly well-adapted to our Floer-theoretic constructions.

Dually, Y can also be described by the fan
(2-7) Yy =Rso- (P x {1}) CR" =R" @R,

whose rays are generated by the integer vectors (—a, 1), o € Pz, and which is
obtained as the union of the cones on polyhedra appearing in the subdivision P. Since
we have assumed that this subdivision is maximal, all such cones are simplicial, and
since the simplices are further assumed to be congruent to the standard one, it follows
that Y is a smooth toric manifold. It is in fact a smooth toric Calabi-Yau, since the
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o=E§+5&-1

(-2,0,1) (-1,0,1) (0,0,1)

=262
as=(2,0)

p=0
a1 =(0,0)

Figure 1: Constructing the mirror: f(xj,xp) =14+ x; +x + 27 x1x0 + t4“x%

defining equation of its toric anticanonical divisor is a regular function (see below); in
particular its canonical bundle is trivial, i.e. ¢1(¥) = 0, which will allow us to introduce
Z-gradings in Floer theory (and also simplify our discussion of sphere bubbling).

Denote by z(®+0D € O(Y) the toric monomial with weight (0, ..., 0, 1), and equip
Y with the superpotential

(2-8) w=—-0-0D.y .

The toric Landau-Ginzburg model (Y, W) has been constructed as a candidate mirror
to H from various perspectives; see in particular [AAK, Theorem 1.4].

The level set W—1(0) is the union of the toric divisors in ¥ (each with multiplicity
one), while the other level sets of W are smooth and isomorphic to (C*)". (The fact
that the toric anticanonical divisor is defined by a regular function, namely W, verifies
the above claim that Y is Calabi-Yau).

Example 2.1 As a running example to illustrate the construction, we consider the
Laurent polynomial f(x;,x2) =1+ x; +x3 + 2 x1x0 + t47rx% (which defines a degen-
erating family of genus O curves with 5 punctures in (C*)?). The tropicalization of f
is given by (&1, &) = max{0,&;, &, & + & — 1,2€ — 2}. The domains of linearity
of ¢, which also correspond to the facets of the polytope Ay “seen from above”, are
depicted on Figure 1, along with the fan Xy, whose generators (—a, 1), a € Pz, give
the primitive (inward) normal vectors to the facets of Ay.

2.2 Construction as a Hamiltonian reduction

We have a surjective map

(2-9) ' 57" 7
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which assigns to a lattice point « € P the pair (—a, 1); the kernel is a lattice which
we denote M.

We shall consider the reduction of CPZ (equipped with a suitable toric Kihler form,
described in §4.1) by the Hamiltonian action of the torus

(2-10) Ty =M ® (R/Z) C Tz,
Fixing a regular value A\ for the moment map
(2-11) p: C2 — Hom(M,R) = M},

the quotient 1~ (\)/ T}, inherits a canonical symplectic form wy . By the Kempf-Ness
theorem, this quotient can be naturally identified with the quotient of an open subset
of CP2 by a complex torus, and the symplectic form w) is Kihler with respect to
the induced complex structure. Thus, p~!'(\)/Ty is naturally equipped with a toric
Kéhler form (induced by that constructed in §4.1 on CPz); see also [Gul].

We now explain how the choice of level set A corresponds to the integral affine function
in Equation (2-3). Dualizing (2-9) we obtain a short exact sequence

(2-12) 0— R Ly RP2 Ty a0,

where the first map is given explicitly by

(2-13) i€y &) = (= 8) +1) gep,

Viewing the piecewise linear function v : P — R as an element of RFZ, we set
A = m(v).

Then the image of the moment map for the action of T"+! ~ TFZ /Ty, on = (\)/Ty
is the intersection of 7~!()\) with the non-negative orthant in R, i.e. the set of all
(¢,m) € R = R" @ R such that all the components of i(¢,7) 4 v are non-negative.
Comparing with (2-6), this moment polytope is precisely Ay.

This yields a Hamiltonian quotient description of Y equipped with the toric Kihler
form wy. Moreover, the function

(2-14) Wo=-]] _, 2t C*=C
a€Py,

descends to the toric potential W : ¥ — C. (Note that both are toric monomials
vanishing to order 1 on each toric divisor). Setting N = |Pz|, we can thus view the
Landau-Ginzburg model (Y, W) as a Hamiltonian reduction (by Tj,) of the “standard”
Landau-Ginzburg model (CV, Wy = — vaz 1 Z0)-
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Example 2.2 In Example 2.1, the kernel of the map (2-9), i.e. the space of linear
relations among the (—q;, 1) (the generators of the fan Yy, shown on Figure 1 right)
is a rank 2 lattice M, spanned by elements corresponding to the linear relations o; —
ay — a3+ aq =0 and o — 23 + as = 0 among the elements of Pz. Thus, we can
realize the toric 3-fold Y as the quotient of C° by a 2-dimensional torus Tj; whose
generators act with weights (1, —1,—1,1,0) and (1,—-2,0,0,1). The moment map
of the Ty;-action is obtained from that of the standard action of T3 by the projection
Tty -y phs) = (U1 — p2 — 3 + fa, p1 — 2p2 + ps), where (py, . . ., us) take values
in the standard moment polytope of C, i.e. the non-negative orthant (however, since
the toric Kihler form on C> we will construct in Section 4.1 differs from the standard
one, it will not be the case that y; = %\zi|2).

Setting A = 7w(v) = (1,2), we find that ;fl()\) C C° is the set of points whose
moment map coordinates for the T> action satisfy

(2-15) pr — p2 — p3 + pa = land py — 2pp + ps = 2.

The moment polytope of the toric variety ~'(\)/Ty, is then the intersection of the
non-negative orthant with the affine subspace determined by (2—15), which is identified
with Ay = {(£1,&,m) € R? | > ¢(£1,£)} via the affine embedding

5(51752777)4‘1/:(77777_51#7—52777_51 _£2+1777_2§1 +2)

Remark 2.3 There is a uniform way of producing all the examples that we consider
from a universal construction: (CV, W) is mirror to an (N — 2)-dimensional pair of
pants, i.e. the intersection of the hyperplane Xo+- - - +Xy—1 = 0 with the open stratum
(K*M=! in P¥=!. The embedding of (K*)" into the open stratum of P(K’%) defined
by

2nv(a) o

(xl,...,x,,)n—>(aat X )aEPZ

defines an algebraic subtorus, whose intersection with the pair of pants is the hypersur-
face . Thus, the mirror pairs we consider can be viewed as “reductions” of the mirror
pair consisting of the (N — 2)-dimensional pair of pants and the Landau-Ginzburg
model (CV, Wo): namely, H is the intersection of the pair of pants with an algebraic
subtorus, while its mirror (Y, W) is the quotient of (CV, Wy) by the complementary
subtorus.

However, the graph of the projection ;~!(\) — Y, viewed as a Lagrangian corre-
spondence in CV x Y, bounds non-trivial families of holomorphic discs; this causes a
discrepancy between moduli spaces of discs in ¥ with boundary on given Lagrangian
submanifolds of ¥, and moduli spaces of discs in CV with boundary on the lifts of these
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Lagrangians to 1~ '(\). The instanton corrections that arise out of this are responsible
for the presence of the bulk deformation class b € H(Y, A>o) in the statement of
Theorem 1.2, as we shall see in Section 5.

3 The Fukaya category of a Landau-Ginzburg model

3.1 Landau-Ginzburg models

Let (Y, w) be a symplectic manifold, and
(3-1) wW:Y—=C

a map which is a symplectic fibration outside a compact subset of C. We shall
define a Fukaya category associated to the pair (¥, W), subject to additional auxiliary
choices: (i) a compatible almost complex structure J making W holomorphic outside
a compact subset of C, (ii) a continuous function 2: Y — [0, c0) which is weakly
J-plurisubharmonic, (iii) a non-negative wrapping Hamiltonian

(3-2) H:Y >R,

and (iv) a closed subset Y C Y, whose intersection with every fiber of W is a
(compact) sublevel set of /; more precisely, we take Y™ to be the set of points where
h < r(JW]), where r(|W|) is a non-decreasing function of |W|, constant over [0, Ro]
for some Ry.

We require these data to be compatible as follows:
(1) The restrictions of 4 and H to every fiber of W are proper.

(2) The Hamiltonian flow of H preserves the fibers of W, and outside of Y it
preserves the level sets of A:

(3-3) dW(Xy) =0, and dh(Xy) = 0 outside Y™.

Also, horizontal parallel transport preserves H everywhere, as well as & outside
of Y, By this we mean that, if f# is the horizontal lift of a vector on C, then

(34) dH(E" =0, and dh(€") = 0 outside Y.

This in turn guarantees that horizontal parallel transport is well-defined (except
at critical points) despite the non-compactness of the fibers, since horizontal lifts
are contained in the level sets of H which is fiberwise proper.
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(3) Outside of Y™, the 1-form d°h = —dhoJ vanishes on the symplectic orthogonal
to the fibers of W, i.e. if " is the horizontal lift of a vector on C, we have

(3-5) d°h(E™ = 0.

Moreover, d°h is preserved by (i) parallel transport and (ii) the Hamiltonian flow
Xy, i.e. the Lie derivative with respect to Xy and to the horizontal pullback of a
vector field & on C both vanish:

(3-6) Lxyd°h = Ledh = 0.
(4) The function h grows along —JXy outside of Y™, i.e.
3-7) 0 < d°h(Xp).

Remark 3.1 Condition (2) essentially states that W, H and & Poisson commute
outside of Y. Moreover, the fact that W is holomorphic outside of a compact subset
implies that the horizontal subspace is J-invariant, and hence the vanishings of dh and
d“h on the horizontal distribution are equivalent to each other. On the other hand,
the condition Ly, d°h = 0 is particularly strong, and is analogous to considering only
linear Hamiltonians in the situation of a manifold with contact boundary.

Remark 3.2 By the Cartan formula, given (3-5) the condition L¢+d“h = 0 is equiva-
lent to requiring that tz+dd“h = 0 for every horizontal vector &t

Remark 3.3 In our main examples, the requirements concerning the behavior of &
along the horizontal distribution (dh(&*) = d°h(&*) = 0, ££#d"h = 0) only hold
outside of Y U W~1(A’), where A’ is a small neighborhood of crit(W) = {0} in the
complex plane. We will see that this weakening of the assumptions is not problematic
as long as the Lagrangians we consider remain outside of W~!(A’) and the isotopies
of the complex plane whose lifts we consider are supported outside of A’.

Definition 3.4 An admissible arc is a properly embedded arc ~y : [0, 00) — C that is
disjoint from the critical values of W and from the negative real axis, and along which
distance from the origin is strictly increasing outside of the disc of radius Ry.

Definition 3.5 An admissible Lagrangian with respect to the above data is a properly
embedded Lagrangian L C Y such that (i) the image W(L) C C agrees outside of a
compact subset /A with a finite union of admissible arcs which do not reenter A ; and
(ii) the restriction of d°h to L vanishes outside of Y.
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The main examples we consider below are in fact fibered over properly embedded arcs
in C which avoid the critical values of W and are asymptotic to radial straight lines at
infinity. In this case we can take A to be a single base point on the arc.

Given an admissible Lagrangian L C Y and an isotopy p' of the complex plane,
pointwise preserving A U crit(W) (or the slightly larger set A U A’) and setwise
preserving the negative real axis, there exists a unique Lagrangian isotopy, which we
denote by p'(L), with the following properties: (i) p/(L) = L in W~'(A), and (ii)
outside of W1(A), p'(L) fibers over the collection of arcs which is the image of W(L)
under p’. We say that the lifted isotopy p’(L) is admissible if the images of the arcs
under p' are admissible. The Lagrangian p’(L) can be constructed by intersecting L

with W—!(A) and parallel transporting its boundary along the images of the arcs under
t

o
Remark 3.6 If the symplectic connection on W : ¥ — C has vanishing curvature
outside of A then p' can be directly constructed as the horizontal lift of the isotopy of
the base. However, the geometric models required for our applications do not naturally
satisfy this condition.

Lemma 3.7 The set of admissible Lagrangians is invariant under compositions of
(i) Hamiltonian isotopies supported in Y™ that preserve the fibers of W outside of a
compact subset, (ii) the Hamiltonian flow of H, and (iii) admissible lifted isotopies
p'(L) as defined above.

Proof The first statement is obvious from the definition. The Hamiltonian flow of
H preserves admissibility because we have required that dW(Xy) = 0, so that the
projection to the base is preserved, and Lyx,d°h = 0, so that d“h vanishes on a
Lagrangian if and only if it vanishes on its image under the flow. The third statement
follows from the observation that parallel transport along an admissible arc preserves
Y™ and preserves the vanishing of d°h outside Y™ by (3-5) and (3-6). O

We also note that admissible lifted isotopies commute with the Hamiltonian flow of H,
so the two operations can be performed in either order.

It will be useful for us to have a more explicit description of lifted admissible isotopies
as Hamiltonian flows.

Lemma 3.8 Given an admissible arc v : [0,00) — C and a vector field v on the
complex plane which vanishes at y(0) and generates an admissible isotopy of arcs
v = p'(y), we define a Hamiltonian K., € C®(W~1(,),R) by:
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* K., =0 everywhere in the fiber W_l(%(O)),

* the derivative of K., ;, along the horizontal lift of -y is
(3-8) Ky 10(51) = w9,
where V¥ is the horizontal lift of v.
Denote by 1) the Hamiltonian flow generated by (an arbitrary extension of) K. ; , .

Then, for any point p € W~1(7(0)), ' maps the horizontal lift of  through p to the
horizontal lift of ~y; through p. In particular, if L is an admissible Lagrangian which
fibers over ~y, then ' (L) = p'(L).

Moreover, at every point of w1 (7;) which lies outside of Y’ in ' the Hamiltonian vector
field X, ;,, generated by K. ;, satisfies

(3-9) dh(X, ) = d°h(Xy,,) =0 and x. ,,ddh = 0.

.
Remark 3.9 The ambiguity in extending K, ;, to a neighborhood of W—1(,) affects
X,y by a multiple of 4#, which does not affect the conclusions of the lemma, but
implies that the isotopy ' that we construct does not in general lift the isotopy p,
in the sense that the W o )’ = p,. By appropriately choosing the extension of the
Hamiltonian, we may arrange to have such a lift for a fixed point p € W~!((0)), but
the curvature of the symplectic connection on W : ¥ — C prevents the existence of a
lift simultaneously for all p.

We note for future reference that K, ;, can be extended to a smooth Hamiltonian
whose support is contained in a small neighborhood of W~!(v;) and such that the
corresponding vector field satisfies (3-9) everywhere outside of Y. The simplest way
to do this is to foliate a neighborhood of +y in the complex plane by a family of admissible
arcs 7, 7 € (=70, 79), and consider a Hamiltonian which equals x (1)K, ;, over the
preimage of p'(y7), where x(7) is a cut-off function with compact support.

Proof of Lemma 3.8 Since (3-8) can be rewritten as w(§7,X,,,) = w(3,v"), the
vector field X ;, — v# is symplectically orthogonal to +, hence tangent to W=1(v;).
It follows that the flow 1)’ maps W—(y) to W—1(~,).

Since ' is a Hamiltonian diffeomorphism, it maps Lagrangian submanifolds of ¥
which fiber over ~ to Lagrangian submanifolds which fiber over ~;. Moreover, since v
vanishes at x = (0), the Hamiltonian K, ;, and its first derivative both vanish along
W~1(x), hence X5y = 0 everywhere in W~I(x). In particular, given a Lagrangian
¢ C W™(), ¥ maps the parallel transport of ¢ over + to the parallel transport of ¢
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over ;. Now consider two small Lagrangian discs ¢y, ¢, C W~1(x) which intersect
transversely at a given point p. The parallel transports of ¢; and ¢, over y intersect
cleanly along the horizontal lift of 4 through p, and are mapped by ' to the parallel
transports of ¢; and ¢, over ~;, which intersect along the horizontal lift of 7, through
p. Thus, ¥" maps horizontal lifts of + to horizontal lifts of ~;.

In order to prove (3-9), we consider the map u : W=l(x) x [0, 00) x [0, 1] — Y such
that u(p, s, ) is the point of W~!(v,(s)) obtained by parallel transport of p over 7;. In
other terms, u(p,0,0) = p, and dyu = 5.

Since the flow " maps u({p} x [0, 00) x {0}) to u({p} x [0, 00) x {t}) for all p, the
vector field X, lies in the span of d;u and dsu. On the other hand, d,u = 5} lies in
the kernel of d“h and dd°h by (3-5) and (3-6).

The 2-form u*dd®h vanishes on Oy, so it can be written in the form
w*ddh = dt N\ a(s, 1) + B(s, 1)

where a(s, f) and (s, 1) are forms on W—!(x). Since d,u = 0 whenever s = 0, we
find that «(0,t) = 0, and 5(0,¢) = ddchlw—l(*) is independent of . On the other hand,
u*dd°h is closed, so necessarily « and 8 are independent of s, i.e. a(s,) = 0 and
B(s,t) = Py = dd hyy-1(,y. We conclude that the span of Oy and O lies in the kernel
of u*dd‘h, and hence X, ;, lies in the kernel of dd‘h.

Similarly, u*d“h vanishes on 0y, so it can be written in the form
u d°h = f(s,t)dt + n(s, 1)

for n(s,r) a 1-form on W=l(%). Using again the fact that J,u = 0 for s = 0, we find
that £(0,7) = 0 and n(0, ¢) is independent of . Moveover, since u*dd“h vanishes on
the span of J; and 0;, we have J;f = 0, so that f(s,#) = 0. This in turn implies that
u*dh vanishes on the span of J; and 9;, and hence d°h(X, ;,) = 0.

Finally, the vanishing of dh(X,;,) is a direct consequence of the assumption that
horizontal parallel transport preserves the levels of 4 outside of Y. O

3.2 Maximum principle and energy estimates

Our construction of the Fukaya category of a Landau-Ginzburg model involves not only
structure maps for Lagrangian Floer theory with boundary on admissible Lagrangians,
but also natural morphisms and continuation maps associated to certain isotopies of
admissible Lagrangians. In this section we establish the results needed to prove
compactness of the corresponding moduli spaces.
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Let X be the complement of finitely many boundary marked points on a compact
Riemann surface with boundary, and A a moving family of admissible Lagrangian
boundary conditions on X, i.e. a smoothly varying family of admissible Lagrangian
submanifolds of Y, constant near the ends of each component of 0¥. The manner in
which A varies along the boundary of 3 can be described by a compactly supported
1-form on 0% with values in vector fields.

We assume that A varies along each boundary component by a combination of (i) a
multiple of the flow of the wrapping Hamiltonian H, namely Xy ® n for n a 1-form
on 0%, and (ii) the lift of an admissible isotopy of the complex plane supported away
from A U A/, where A’ D crit(W) (cf. Remark 3.3). We note that Lemma 3.7 asserts
the invariance of the class of admissible Lagrangians under this class of isotopies. We
shall impose the following (semi)-positivity assumption on the isotopy:

* In the fiber direction, we require:
(3-10)
The total fiberwise wrapping is non-positive, i.e. / n <0.
ox
* In the base direction, denote by I' the family of admissible arcs in the complex
plane to which A projects outside of A. We assume:
(3-11)
There exists an isotopy p’ of the complex plane rel. A U A’, and a function

T € C*(3%,R) which is constant near the punctures, such that along each
component of 0¥ the arcs p”(I') vary by an admissible isotopy that moves
in the clockwise direction outside of a compact set.
For example, if I' only moves in the clockwise direction outside of a compact set (or
does not move at all) then we can take the isotopy p’ to be trivial, and 7 = 0.

Condition (3—10) implies the existence of a 1-form « on 3 with the following two
properties:

(3-12) « 1s sub-closed, i.e., doa < 0;

(3-13) Qjpx, > 1 pointwise along 9.

(As is customary for Floer theory, ogs; and da should also be compactly supported).
For instance, if 7 is pointwise non-positive, then we can take oo = 0.

We consider maps u: ¥ — Y with boundary conditions given by A (i.e., u(z) € A,
for all z € 9X) and subject to a convergence condition (see (3—16) below), satisfying
the perturbed pseudo-holomorphic curve equation

(3-14) (du—Xp®a+ ) edn)® =0,
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where &' is the vector field on the complex plane which generates the isotopy p' in
(3-11), and (£")* is its horizontal lift to Y. The expression (3—14) takes values in the
space of (0, 1)-forms on > with values in u*TY, i.e. complex antilinear maps from 7%
to u*TY. (We only need to consider smooth maps, but as usual in Lagrangian Floer
theory, the functional analysis setup involves an extension to a space of maps of suitable
Sobolev regularity; see e.g. [Se2, Chapter 8].) We will also consider modifications
of this equation by further adding a compactly supported inhomogeneous perturbation
term for transversality purposes.

The inhomogeneous term Xy ® « in (3-14) is the same type of Hamiltonian pertur-
bation that commonly appears in the construction of continuation maps (and other
operations) in (ordinary or wrapped) Lagrangian Floer theory, and the term (¢7)* @ dr
plays a similar role in the horizontal direction. In the presence of moving boundary
conditions, one frequently requires that the restriction of the inhomogeneous perturba-
tion term to 0% generates the isotopy by which A varies, see e.g. [Se2, Section 8k].
However, when the variation of A is pointwise non-positive everywhere along 9% the
maximum principle readily holds without the need for inhomogeneous terms; our setup
encompasses both cases.

The vanishing of &' inside A’ ensures that, even if the compatibility of & with the hor-
izontal distribution is relaxed over W—!(A’) as in Remark 3.3, the quantities dh((f’)#),
d°h((¢"*) and L(eryrddh still vanish identically outside of ¥ in

We only ever consider finite energy solutions to (3—14), in the sense that the geometric
energy

(3-15) Egeom(u) := / |du — Xp @ a + (€7 @ dr|* dvols,
P

is finite. The norm in the above integral is taken with respect to the metric induced
by w and J on Y, and any j-compatible metric on X (the integrand is conformally
invariant). By the usual decay estimates for solutions of Floer’s equation on strips, this
is equivalent to the condition that

near each puncture of ¥, u converges to a generator of the appropriate Floer
complex (i.e., when the perturbation term is compactly supported over 3,
an intersection point between the boundary conditions A on either side of
the puncture).

(3-16)

Proposition 3.10 Assuming (3—11), solutions to (3—14) satisty the maximum princi-
ple with respect to the quantity |p™ o W| (outside of a compact subset of C).
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Proof Outside of a compact subset of C, W is J-holomorphic, so w = W o u solves
the perturbed Cauchy-Riemann equation

(3-17) (dw + £ @ dr)™ = 0.

Hence, w = p” ow : ¥ — C solves an unperturbed Cauchy-Riemann equation with
respect to the domain-dependent complex structure (p”),j on the complex plane:

(3-18) (AdW)yr) ;= 0,
and the maximum principle holds at interior points. Along 0% we use a variant
of the maximum principle with Neumann boundary conditions. Namely, pick local

coordinates z = s + it which locally identify 3 with the upper half-plane. If |#| has a
local maximum, then necessarily

Oslw| =0 and 0;|w| < 0.

It follows that O, arg(w) > 0, since otherwise 0,w would point clockwise from O,w,
contradicting (3—18).

On the other hand, recall that the boundary conditions for w are given by the family of
admissible arcs p” (I'), along which the distance from the origin is strictly increasing.
Thus, at a boundary maximum, 0w points counterclockwise from the tangent vector
to p”(I'). This contradicts the assumption (3—11), and we conclude that |w| has no
local maxima. d

Proposition 3.11 Solutions to (3—14) satisfy the maximum principle with respect to
h (outside of Y").

Proof The argument is similar to other instances of the maximum principle in Floer
theory: since & is weakly plurisubharmonic, its values along a holomorphic curve
satisfy the maximum principle at interior points, and also at the boundary under the
assumption that d°h vanishes there; the conditions (3-5)—(3—7), which govern the
behavior of d°h along the directions of the inhomogeneous terms appearing in (3—14),
ensure that the maximum principle continues to hold for solutions of the perturbed
Cauchy-Riemann equation, as we now show by an explicit calculation.

We begin by showing that the maximum principle for o u holds at interior points. Let
Z = x + iy be coordinates near a point in . Since 4 is weakly plurisubharmonic, we
have
(3-19)
0 < dd°h(0uu — Xp@a(Dy) + Oyt - (€7, T (D = Xp@ D) + 057 - (€7)))
= dd°h(Ou — Xu@a(0y) + 07 - (€, yu — Xp@au(0y) + Oy - (€)H))
= (u*(a’a’ch) —aAu* (LXHddch) +dr A u*(L(gf)#ddch) (Ox, Oy).
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By the Cartan formula, we have
(3-20) d(tx,d°h) = —ux,dd°h + Lx,dh,

where the second term vanishes by assumption (3-6), whereas (g-yddh = 0 by
Remark 3.2, so we conclude that

(3-21) 0 < u*(ddh) — d (u*d°h(Xp)) A «,

where the right hand side is considered as a 2-form on ¥. The Leibniz rule implies
that

(3-22) dw*d*h(Xp) - @) = d (u*d°h(Xp)) A a + u*d°h(Xp) - do,
so we derive the inequality:
(3-23) 0 < u*(dd°h) — d(u*d°h(Xg) - o) + u*d°h(Xg) - do.
The assumptions that 0 < d°h(Xy) and that « is subclosed imply that
(3-24) 0 < u*(ddh) — d(u*dh(Xp) - @).
We claim that the right hand side is the Laplacian of 4 o u. Indeed, since dh(Xy) =
dh((€7)*) = 0 and d°h((€7)*) = 0 by assumption, we compute that
d(hou)=—dhoduoj
= —dho (duoj— Xy ®aoj+ () ®droj)
(3-25) = —dho (Jodu—JXy ® o+ JE) @ dr)
= " dh) — u*dh(Xp) - @ + u"dh(E)) - dr
=u*(d°h) — u*d°h(Xy) - a.
Hence,
(3-26) dd‘(h o u) = u*(ddh) — dWw*d°h(Xp) - @),
and comparing with (3—24), we conclude that
(3-27) dd‘(hou) > 0.
Thus, the maximum principle holds at interior points.

Along 0% we use the maximum principle with Neumann boundary conditions. For
this, we need to check that, in local coordinates z = s + it which locally identify
Y. with the upper half-plane, the inequality d(h o u)(0;) > 0 holds, or equivalently,
d®(h o u)(0s) < 0. We have computed above that

(3-28) d°(hou) =u*(dh) — u*d°h(Xp) - «,
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and we now need to check that the restriction of this 1-form to 9% is everywhere
non-positive.

The vanishing of d°h on each admissible Lagrangian A, by Definition 3.5, and on the
vector fields which generate lifted admissible isotopies, by Lemma 3.8, imply that the
only contribution to ”Taz (d°h) comes from the fiberwise wrapping term Xy ® n in the
moving boundary condition, so

d(hou) gy = u"dh(Xy) - n — u'dh(Xn) - a)p5.

The non-positivity of this quantity is now immediate, since d“2(Xy) > 0 and ajps. > 7
pointwise by assumption. a

Remark 3.12 In our setting, rather than being smooth, z will be given by the maximum
of a finite collection of smooth plurisubharmonic functions &y, where for each v the
1-form d°hy satisfies all the required properties wherever hy achieves the maximum
(i.e., hy = h) outside of Y. The above argument gives the maximum principle for all
hy which achieve the maximum, and hence a fortiori for 7 = max{hy}.

The next result asserts the existence of a bound of the geometric energy of solutions to
(3—14): such a bound is necessary to appeal to any version of Gromov’s compactness
theorem, and requires fixing a homotopy class S of maps from (32,0%) to (Y, A)
with fixed asymptotic conditions, given by generators of the Floer complexes, at the
punctures of Y. The key point is that Propositions 3.10 and 3.11 provide maximum
principles for the solutions of (3—14) in both base and fiber directions, so that solutions
which converge to given generators at the punctures of ¥ remain within a fixed compact
subset of Y. It thus suffices to bound the difference between the topological and
geometric energy for solutions to a perturbed Cauchy-Riemann equation with image
lying in a bounded region; this goes back all the way to Gromov’s original paper [I'p]
which established compactness for perturbed equations, and is standard for Hamiltonian
perturbations. We nonetheless provide a detailed proof because of the (non-standard)
appearance of the horizontal lift in our equation.

Proposition 3.13 There is a constant E,,,(3) so that all solutions u to (3—14) in the
homotopy class (8 satisty the a priori bound

(3-29) Egeom(u) < Emax(5)

Proof Let z = x + iy be coordinates near a point of . Since du — Xy ® o+ (£7)* dr
is complex linear with respect to j and J, the integrand in (3-29) is equal to

w (Ot — X ®@a(dy) + Ox (€, Oyt — Xu®a(dy) + Oy (€)F) .
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Since Xy is tangent to the fibers of W and (€7)* is horizontal, w(Xy, (£7)*) = 0, and
SO

(3-30) Egeom(u) = / w'w —a Aut(ix,w) +dT AU (yerpw).
b

This quantity is not invariant under deformations of the map u relative to the boundary
condition A. On the other hand, the variation of A along the boundary of ¥ is described
by a vector field valued 1-form on 0% of the form

XH®77+XK®19a

where K is a family of Hamiltonians (dependent on the point of 0X) generating the
lifted isotopy, as in Lemma 3.8. Then the variation of [i, u*w along a vector field v
(tangent to A at the boundary) is equal to

/ w(v,asu)ds:/ w(v,XH)n+w(v,XK)79:/ dH(v)n + dK(v) 9,
) ) 0%

so the topological energy

(3-31) Eop([u]) = / uw —/ u*H-n —/ u*K -
b ox ox

depends only on the relative homotopy class [«] of the map u.

Returning to Equation (3-30), Stokes’ theorem expresses the second term as

/—aAu*(LXHw):—/u*dH/\a:—/ u*H-oz—f—/u*H'da.
by by ox b

Putting this together with Equation (3-31), we conclude that

(3-32) Egeom(u) = Etop([u]) + /

uw'H-(n— aqppx) + / u*H - do
ox %

+ / wK -9+ / dr A u*(ygry w).
% b

The first two integrals in the right-hand side of (3—32) are non-positive, since H > 0
by assumption and « is required to satisfy (3—12) and (3-13).

The existence of a compact subset 2 C Y which a priori contains the image of u (as
a consequence of Propositions 3.10 and 3.11) provides a bound for the last two terms
as follows: The third integral can be bounded by (supq, |K|)[|¥]|1(9x:), which depends
only on the size of {2 and the geometric bounds on the lifted isotopy of the boundary
condition A within the compact subset €). Finally, the last integral can be rewritten as

(3-33) / dr A (yerypw o du) = / dr A (yerpw o (du— Xy @ o+ (€)Y @ dr)) .
by b))
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Since the vector field £7 vanishes at the critical values of W, the norm of its horizontal
lift (¢7)* is bounded everywhere in €2, and we can bound (3-33) by

(Sgp EDH) lldr 2y ldu — X @ @ + (€D @ dr || 2s-

Combining these bounds, we find that
(3-34) Egeon() < Enop([)) + (sup [K]) [9llzs + (sup|(€7)"]) a7l 2 Egeom() /.

This implies a bound on Eg,,,(u) in terms of the other quantities appearing in (3-34).
O

Remark 3.14 Proposition 3.13 continues to hold if (3—14) is further modified by a
compactly supported (hence uniformly bounded) inhomogeneous perturbation term.

Remark 3.15 In the next sections we will define Floer-theoretic operations in terms
of certain moduli spaces of solutions to (compactly supported perturbations of) (3—14).
In each case we will make specific choices for the parameters o and 7, but we note
that, since the set of allowable choices is contractible hence connected, the operations
we define are independent of these up to homotopy. Likewise for other auxiliary data
such as compactly supported inhomogeneous perturbation terms or deformations of
the almost complex structure.

3.3 Definition of the directed category

We fix a collection L of admissible Lagrangians in Y, for which the subset A appearing
in Definition 3.5 is always the same, and whose images in C agree near infinity with
a fixed finite collection of radial straight lines. (In our case A will be the single point
{—=1}). Also fix a subset A’ D crit(W) (in our case A’ will be a small disc centered
at the origin).

Let p be an autonomous flow on C which fixes AUA’ and the negative real axis, maps
radial lines to radial lines away from a compact set, and moves all radial lines other
than the negative real axis in the counterclockwise direction. This isotopy preserves
the admissibility of the arcs over which the objects of L fiber outside of A. We define

(3-35) L) := ¢'p'(L),

where ¢’ is the flow of the wrapping Hamiltonian H, and p' is the lifted admissible iso-
topy generated by p. Since ¢' and p' commute, we can think of this as an autonomous
flow on Y, in particular (L(1))(¢) = L(t + 7).
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By construction, the admissible arcs over which L(r + A\) and L'(¢) fiber outside of
A are asymptotic to different straight lines for all but finitely many values of \. We
will essentially require that, in the fiberwise direction, these Lagrangians also go to
infinity in different directions for generic A, so that their intersections are contained in
a compact subset. More precisely, we assume:
there exists an open (or Baire) dense set U C R such that, for all L and L’
(3-36) inL and A € U, L(\) N L' is contained in a compact subset of Y (the same
then holds for L(t + \) N L'(¢) for all t € R).
(In our case it will be possible to choose the compact subset in (3—36) to be independent
of L, L’ and )\, but there is no reason to require this in general.)

In addition, we impose the following conditions on elements L € L:

(3-37) forallt € R, L(¢) does not bound any (unperturbed) holomorphic discs;
338 L is equipped with a spin structure and with a grading (i.e., after choosing a
(3-38) holomorphic volume form €2 on Y, a lift of the phase map arg(2;) to R).

Condition (3-37), which may be replaced by unobstructedness, ensures that Floer ho-
mology is well-defined; while (3—38) ensures that it is Z-graded and can be constructed
over a field of characteristic zero.

We will also on occasion equip Lagrangians in L. with local systems; since this will
only come up in specific places, we omit local systems from the notation for now.

Lemma 3.16 There are arbitrarily small values of ¢ > 0 such that, for each pair of

Lagrangians Ly, Ly € L, and for all integers ko # ki,

(3-39) the images of Lo(eko) and Li(eky) under W are asymptotic to different radial
straight lines in C, and Lo(ekg) N Li(eky) is compact.

Proof After removing a finite set of values # from the set U in Condition (3—36) we
can assume that for A € U the images of L(z + ) and L'(f) under W are asymptotic to
different radial straight lines in C. Now the desired properties hold whenever ¢ lies in
the intersection of the sets k~! - U C R, for all positive integers k. This is a countable
intersection of Baire sets and hence dense as well. a

Choose 0 < ¢ such that Condition (3-39) holds for all pairs of objects.
We construct a directed category O with objects L¥ := L(—ek) for all k € Z and
L € L, whose morphisms are
CF*(Lo(—€ko), Li(—€ky)) if ko < ki
(3-40)  OWLL, L ={K-id if ko= ky and Lo = L

0 otherwise.
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The A, structure is obtained by counting solutions to pseudo-holomorphic curve
equations (for suitable J, see Remark 3.18) with compactly supported inhomogeneous
perturbation terms (when the integers ko, k1, ... form a strictly increasing sequence; in
all other cases the structure maps are defined tautologically). The compactly supported
perturbations are used to achieve transversality, and are chosen in a consistent manner
(cf. e.g. [Se2]). Since we work over the Novikov field, the count of solutions in each
homotopy class is weighted by (topological) energy (as well as the bulk deformation
class, and holonomies of local systems along the boundary of the disc when applicable).

The key compactness property required for this construction is a direct consequence of
the maximum principle:

Lemma 3.17 Given any sequence of Lagrangians Ly, . ..,L, € L. and integers ky <
ki < --- < k,, there exists a bounded subset of Y which contains the images of all
J -holomorphic discs with boundary on Lyo(—eko) U - - - U L.(—¢k,). The same property
also holds in the presence of a compactly supported inhomogeneous perturbation.

Proof This follows immediately from Propositions 3.10 and 3.11, in the special case
where the Lagrangian boundary condition remains constant along each component of
0% and there are no perturbation terms. a

Remark 3.18 Disc bubbling is excluded by assumption (3—37), but sphere bubbling
can happen in our setting, so the regularity of the moduli spaces we consider is not
immediate.

To deal with sphere bubbling, we assume that J is chosen generically within a suit-
able class of compatible almost-complex structures, so that simple J-holomorphic
spheres are regular, and evaluation maps at interior points for somewhere injective J-
holomorphic curves are mutually transverse (see [McS, Theorem 3.4.1] for the closed
case; the argument works similarly for discs). For our main example the standard
complex structure is not regular, but all holomorphic spheres lie inside W~1(0), so it is
enough to perturb J in a neighborhood of W~!(0) (or, in fact, its intersection with the
bounded subset provided by Lemma 3.17, so that the conditions we have set in Section
3.1 on the geometry at infinity are not affected).

With this understood, bubbling of simple J-holomorphic spheres is a real codimension
2 phenomenon, and does not affect our ability to count solutions to Floer’s equations
in zero-dimensional moduli spaces, or to compare counts of solutions by considering
one-dimensional moduli spaces. Moreover, since c1(¥Y) = 0 we need not worry about
multiply covered sphere bubbles either. Indeed, regularity for simple spheres implies
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that for generic J the union of the images of all pseudo-holomorphic spheres in Y has
real codimension 4. By transversality of evaluation maps, it is therefore disjoint from
the images of holomorphic discs (or solutions to Floer’s equation) in (a fixed countable
collection of) zero- or one-dimensional moduli spaces.

3.4 Quasi-units and continuation maps

The next ingredient in the construction of the fiberwise wrapped category W(Y, W) is
a distinguished collection of morphisms

(3-41) e € HFO(LF, LM
forall L € L and k € Z, called quasi-units.

The quasi-unit e;; is the image of the identity in H°(L) under a PSS-type homo-
morphism from H*(L) to HF(LF, L**!) which can be constructed exactly as in [Al]
(see below for the specific case at hand); note however that the reverse map from
HF(LF, L1y to H*(L) is not well-defined in our setting, as it involves Floer data
for which the analytic estimates of §3.2 do not hold. (Nonetheless, given that our
Lagrangians do not bound any holomorphic discs, the PSS map often turns out to be
an isomorphism for small enough €, under additional geometric assumptions which
ensure that L**! is contained within a Weinstein tubular neighborhood of L*; this is
e.g. the case in our main example, by Proposition 5.11.)

Chain-level quasi-units can be constructed by counting solutions to a Cauchy-Riemann
equation with moving boundary condition, whose domain 3. is a disc with a single
boundary puncture which we consider as an output, and where the boundary condition
A is given by the isotopy L' = L(—et), t € [k, k + 1] (parametrized using some choice
of monotonically increasing smooth function from 0% to [k, k + 1] which is constant
near the ends). Since the isotopy along 0% moves the complex plane in the clockwise
direction and wraps fiberwise in the negative direction only, we can apply the results
of Section 3.2, with &« = 0 and 7 = 0, to control the behavior of solutions. We denote
again by

(3-42) er € CFUL(—ek), L(—e(k + 1)) = OLF, L)

the chain-level quasi-unit constructed in this manner. While e;x depends on auxiliary
choices (e.g., of a function from 9% to [k, k + 1]), the chain-level quasi-units con-
structed using different choices only differ by an explicit homotopy, and can be used
interchangeably.
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Let Z denote the collection of all such morphisms. The fiberwise wrapped category
W(Y, W) is the localisation of O with respect to these morphisms (i.e., the quotient of
O by the cones of the morphisms in Z, in the sense of Lyubashenko-Ovsienko [LOJ;
see also [GPS1, §3.1.3], as well as Section 3.5 below):

(3-43) WY, W) :=2"10.

We shall use a concrete model of the morphisms in W(Y, W), introduced in the
next section, in which they are expressed as homotopy colimits (i.e., direct limits) of
morphism spaces in O. In order to compute these morphism spaces explicitly in terms
of Floer theory, we shall introduce continuation maps

(3-44) Fpy 0 OWS. ) = 0™ ™.

These are defined by counting solutions to a perturbed Cauchy-Riemann equation,
with domain > = R x [0, 1], and where the boundary conditions are given by Ao =
Li™Y = Lo(—e(k + x(s))) along R x {0} and A,y = {7 = Li(—e( + x(s))
along R x {1}. Here x : R — [0, 1] is a monotonically decreasing smooth function,
constant near the ends, so that the boundary conditions are (L, L]i) at the input end
s — +00, and (L](‘)H,Ljfrl) at the output end s — —o0.

We use the setup of Section 3.2, with a fiberwise wrapping perturbation given by
a = —ex'(s)ds (so that da = 0 and aj9x = 1), and a horizontal perturbation given by
the autonomous flow p and 7 = ex(s) (so p” exactly cancels the horizontal isotopy of
the boundary condition). Propositions 3.10, 3.11, and 3.13 then imply that the counts
of index 0 solutions to (3—14) (weighted by topological energy) can be used to define

FLé:L'G .

Despite the slight differences in technical setup, these continuation maps have all the
usual properties of continuation maps associated to symplectic isotopies in Lagrangian
Floer theory: they are quasi-isomorphisms, and extend to an A, -functor F' : O — O
which acts on objects by L¥ — L¥1. Since we shall not need these properties, we
omit the proofs.

Lemma 3.19 The quasi-units are natural with respect to continuation maps, in the
sense that both triangles in the diagram
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j J+1 j j
i i L L L L
o L/lm/l 1 1 1

k+1 D —
C L
st Lo Lo &t
k+1 0 0 0
LOJF L](; \D
Lk
Bt D A B 2
. P
Cy .

Jt+1 J
L L

I Léer Lot

Lt ~
k+1
LO
k+1
LO

Figure 2: A homotopy between p*(e,; ,-) and F(u*(., eLlé))'
1

/-1’2(61/; 5 )

O, 1) oWk, It

2 2
% (.’eLlé) FL" % ("eUé)

J
O’Ll

(3-45) OWLE, ) - ows, Lt
1% (eLJ; ; )

are commutative up to homotopy.

Proof We start with the upper triangle, i.e. the homotopy between F(1%(-, erk )) and

uz(eL,i ,-). The argument relies on comparing a series of moduli spaces of perturbed
holomorphic curves, presented pictorially on Figure 2, where the thick edges corre-
spond to regions where the Lagrangian boundary condition is moving and the shaded
areas correspond to the support of the inhomogeneous perturbation terms in (3—14).

The main protagonists in the homotopy are a family of perturbed holomorphic strips
with domain > = R x [0, 1], depicted on the right-hand side of Figure 2. Fix two
disjoint compact intervals /1,1, C R, with I; to the left of I, as well as two smooth
monotonic functions xp, x2 : R — [0, 1], such that y; equals 1 to the left of /; and
0 to its right, while x» equals O to the left of I, and 1 to its right; we arrange that
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the “profiles” of these functions are identical to those used in the construction of the
continuation maps and quasi-units. Also fix a parameter p € [0, 1], and define

kp(s) = k+p+ (1 —p)xi(s) + (1 — p)xa(s),
Jo(&) =j+ p+ (1 —p)xi(s) — pxa(s).

Along R x {0} we consider the moving boundary condition Ag; = L](;p(s), while

along R x {1} we use A, = L]f(s). While the boundary condition A always
moves in the negative direction as s decreases (j, is a monotonic function of s), the
boundary condition A s moves in the positive direction over /;. Accordingly, we set
a=—e(l —p)x|(s)ds, and 7 = e(1 — p)xi(s), for the perturbation terms in (3—14).

By Section 3.2 the solutions to (3—14) with these boundary conditions and perturbations
satisfy maximum principles and energy estimates, so we can define operations

4 i
Dy 1, OLETL ) — Ok L

by counting rigid (index 0) solutions. These operations are chain maps, since the
ends of the moduli spaces of index 1 solutions for fixed I, I, p are in bijection with
the broken trajectories which contribute to 0 o ®;, 1, , and ®;, 1, , 0 J; and they are
all homotopic to each other, with explicit homotopies given by counts of index —1
solutions that may arise as the parameters Iy, I, p vary, as can be seen by considering
the ends of moduli spaces of index 0 solutions for a one-parameter family of choices
of 11,15, p. (These are standard arguments in Lagrangian Floer theory, so we omit the
details; see e.g. [Au, §2], [Se2, §17], [Al], etc. for similar proofs.)

For p = 0, the boundary conditions and perturbations near /; are identical to those
used to define the continuation map, while along I x {0} the boundary condition Ag
varies from L§ to L{™! (top-right diagram in Figure 2). Moving I; towards —oo and
shrinking I, to a point then causes the solutions to converge to limit configurations
consisting of (typically) three components (upper-left diagram in Figure 2). The “main”
component is an unperturbed holomorphic disc with two inputs, corresponding to the
Floer product 2, while at s = —co we have a strip with moving boundary conditions
and inhomogeneous perturbations, corresponding to the continuation map F, and the
rescaling limit near I, x {0} gives a half-plane with a moving boundary condition
which corresponds to the quasi-unit. Thus, the operations @, ;, , are homotopic to
F(i2(e10)).

On the other hand, for p = 1, there are no perturbations near I, and along I x {1} the
boundary condition A;, varies from LJi to Lﬂ“. Shrinking I, to a point then causes
a holomorphic half-plane with moving boundary condition to break off (lower-left
diagram in Figure 2), showing that ®;, ;, , is also homotopic to /‘z(eLj ,).
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j+1 J+1 J
1 le . . . - Ll L
L’l/ :) L,/l+1 le+p o L’f/
Cr — — G
I+
7N 1 L5 L \:)

Lk L

Figure 3: A homotopy between p*(e,; ,-) and p*(F(-), eLﬁ)'
1

The commutativity up to homotopy of the lower triangle in (3—45) is proved in exactly
the same manner, by considering a family of perturbed holomorphic strips depicted
in Figure 3. The construction is identical, except that the roles of the two regions
Iy and I, are now reversed. By considering the limit configurations as p becomes 0
or 1 while the left-most interval is degenerated to a point and the right-most interval
escapes towards s = +oo0, this yields a homotopy between 1i*(e x -) (Figure 3 left)

and p>(F(-), ey (Figure 3 right). m|

Remark 3.20 Lemma 3.19 can be strengthened to show that the quasi-units form the
leading order term of a natural transformation e from the identity to the A -functor
F. The next (order 1) term in the natural transformation is precisely the homotopy
between 12 (F(-), eLzé) and /ﬁ(ele, -) that arises in the proof of Lemma 3.19, i.e. it can
be defined by counting index —1 solutions that come up in the family of perturbed
Cauchy-Riemann equations depicted in Figure 3. The construction of the higher order
terms of the natural transformation is technically more involved, and we do not discuss
it here since we will not be needing it.

Since the localization at all quasi-units amounts to making the natural transformation e
invertible up to homotopy, the localized category W(Y, W) is also sometimes denoted
Ole™'1; this notation is also suggestive of the fact that the localization effectively
enlarges morphism spaces by inverting all quasi-units (up to homotopy).

Remark 3.21 Itis natural to ask to what extent the category W(Y, W) depends on the
choice of the collection of Lagrangians L. and on the parameter ¢ (the time step with
respect to which we consider quasi-units). Here we do not address the first question,
which relates to the existence of generation criteria for W(Y, W); we simply assume
that we have a collection L satisfying the required hypotheses, and if this collection is
too small the category we construct might only be a subcategory of the one we would
obtain from a larger collection of objects.
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On the other hand, the algebraic properties of quasi-units imply that the choice of the
parameter € does not affect the outcome of our construction. The key observation is
that we can define quasi-units ey € HFO(L(!"), L(r)) for all ¥ > t such that
L(f) N L(z) is contained in a compact subset of Y, and an argument similar to the proof
of Lemma 3.19 shows that, for // > ¢ > r, these satisfy

CL(")—L(1) " L")~ L(t") = €L(")—L(1)

(in cohomology, or up to homotopy). Assume that L(¢'), L(¢) are both objects of O for
some ¢’ > t, and let n be such that ne > ¢ — . Since er(+ne)—L( is the product of the
quasi-units ey ke)—sLi+k—1)e) for 1 < k < n,itis a quasi-isomorphismin the localized
category, hence admits a quasi-inverse fi)—r(ne); similarly for ey —ne), whose
quasi-inverse we denote by f7—ne)— 1. Then in H°W we have

ery—Li) * (CLitno—Lt) " JLw—La+ne) = 1drp and
(L@t —no— L") * €Lt)—Lt'—ne) * eL@)y—Le = i,

giving left and right inverses for ez up to homotopy and proving that it is
a quasi-isomorphism. Hence, localizing with respect to quasi-units for a fixed step
size € actually inverts all quasi-units; and L(r) and L(¢') are quasi-isomorphic in the
localized category whenever they belong to the set of objects. This implies that up to
quasi-equivalence the category we construct does not depend on the choice of ¢.

3.5 Fiberwise wrapped category via colimits

Our goal in this section is to construct the fiberwise wrapped Fukaya category as
a subcategory of the category of modules over . This approach is adapted from
unpublished work [AS] of the first author with Seidel, where the starting point is the
more abstract formalism of localisation of categories, and the point of view which we
take here is used as a computational tool.

The basic idea is that we seek an A, -category where morphism spaces between
Lagrangians are taken after passing to a limit with respect to positive wrapping. We
implement this by assigning to each Lagrangian L an object of the category of modules
over O given as a homotopy colimit (or direct limit)
(3-46) Y1~ = hocolim YV«

k—+

oo

where Vji is the Yoneda module

(3-47) X — OX, L5
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and the connecting maps Y+ — V;x+1 are given by composition with the quasi-units
erx. We take as model for the homotopy colimit the mapping telescope

(3-48) Cone (@ Y — P yLk>
k=0 k=0

where the arrow is the direct sum of the differences id — e;x.

We write W for the full subcategory of modules over O with these objects, i.e. objects
are admissible Lagrangians in L, and morphisms between Ly and L; given by

(3-49) W(Lo,L1) = Homo(Vpee, Vo)
The first computation we need is:

Lemma 3.22 There is a natural quasi-isomorphism

(3-50) holim hocolim O(L, L) — W(Lo, Ly).

k—oo  j—oo

Proof The cone of the complex
o oo

(3-51) Homo (€D Vs, Vi) — Homo (€D Vs, Vipe),
k=0 k=0

maps quasi-isomorphically to the space of morphisms from Ve to YVpeo, and is
isomorphic to the cone of the map

oo oo

(3-52) [[HomoYVy, Vige) = [ [ Homo Wy, Vize),

k=0 k=0
which is a model for
(3-53) ho%im Homp O}L’(; s Vo).
On the other hand, the Yoneda map induces a quasi-isomorphism
(3-54) hocolim (’)(L'(‘), L/1) — hocolim Homo(Vyx, V) = Homo(Vyx, Viee).

J—oo j—oo 0 1 0 1

The desired map follows by composition. a
The next result reduces the computation of morphisms in W to a direct limit:

Lemma 3.23 For all Ly, L, and k, the map
(3-55) Homo (Y1, Vige) — Homo(Vpg, Vige)

induced by multiplication by quasi-units is a quasi-isomorphism.
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Proof The Yoneda Lemma reduces the problem to the statement that the map

(3-56) hocolim O(LEH 1)) — h(}g)()l(i}m OWws, )

J—00

induces an isomorphism on cohomology. Since direct limits commute with passing to
cohomology, it suffices to show that the map of cohomology groups

(3-57) colim HF*(LE™, L)) — colim HF*(L, L))

Jj—o0 Jj—o0
is an isomorphism, where we use the fact that the morphisms in O are given by Floer
cochains whenever j is sufficiently large. We claim that the continuation maps from

Equation (3—44) provide an inverse. Indeed, by taking the cohomology of Diagram
(3—-45) we obtain a commutative diagram

iey,)

HF' (LK 1) HF* (LS L

2 2
1% ('76L6) FLk 19 ('76L6)

j
O’Ll

(3-58) HF*(L§, I})

HF*(LE, .

lu’z(eLlia )
In this diagram the horizontal maps are those used to define the direct limits, while the
vertical maps assemble into the map (3-57).

To show that (3-57) is injective, note that every element of the left hand side is
represented by an element of HF *(LSH , Lji) for some j. The above diagram implies
that the image of this element in HF* (LSH,LJEH) agrees with the image under our
proposed inverse (the continuation map F 79y ) of its image under the map of direct
limits (3—57). By definition of the direct limit, this implies that the continuation map
is a left inverse to (3—57), and injectivity follows.

Considering the composition in the other order yields surjectivity: every element of
the right hand side of (3—-57) is represented by an element of HF* (LK , Lji) for some j,
whose image in HF™* (LK, L]ﬁl) is also the image under (3—57) of its image under the
continuation map, so the continuation map is a right inverse. |

Corollary 3.24 For each pair L’(‘) and L, of objects of O, there is a natural isomorphism

(3-59) colim HF* (LK, L)) — HW(Ly, Ly).

J—00
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Proof The above Lemma implies that bonding maps in the inverse system appearing
in Equation (3-50) are quasi-isomorphisms. In particular, the Mittag-Leffler condition
is satisfied,” and for each integer k the projection map
(3-60) holim hocolim O(LE, L)) — hocolim O(LE, )

Jj—o0

—00  j—00

induces an isomorphism on cohomology. Inverting this map, and composing with the
one induced by Equation (3—50) on cohomology yields the desired isomorphism. O

Remark 3.25 The most straightforward way to compare our construction with the
approach of [AS] is to consider the localisation functor from O-modules to Ole™'1-
modules. By the universal property of localisation, the images of the Yoneda objects
L¥ are equivalent, hence the image of the colimit J; under localisation is equivalent
to these Yoneda modules. Lemma 3.23 can be restated as the fact that the modules
Vi lie in the e-local subcategory of O-modules, which is quasi-isomorphic to the
category of O[e~!]-modules. We therefore conclude that the category generated by
the modules )V;- is equivalent to the localisation of O, which is the point of view
taken by [AS].

4 Kabhler forms and admissibility

In this section, we study the geometry of parallel transport in toric Landau-Ginzburg
models, and construct suitable Kihler forms for which fiberwise monomial admissibility
is preserved by parallel transport; we then show that the technical assumptions we have
made in the previous Section follow from this property.

Definition 4.1 A fiberwise monomial subdivision for the toric Landau-Ginzburg
model W : Y — C consists of a finite collection of toric monomials z¥, v € V C 7"+,
weights d(v) € Z~, open subsets Cy C Y, and a closed subset €} C Y, such that:

(1) ¥ e O) forallv € V, and 7z — (z")yey defines a proper map ¥ — cvI;
(2) the restriction of W to () is a proper map;
3) QUUyep Cy =7

2An inverse system A; < Ay < Az + ... is said to satisfy the Mittag-Leffler condition if
for each k, there exists j > k such that, for all i > j, the maps A; — Ay and A; — Ay have the
same image; this condition implies vanishing of the first derived functor of the inverse limit,
and that inverse limits are well-behaved with respect to cohomology (see e.g. [We, Definition
3.5.6]).



Homological mirror symmetry for hypersurfaces in (C*)" 39

(4) forz € Y\ Q,if [7%|/4V0) = max{|Y|'/4V) v € V} then z € Cy,.

Definition 4.2 Given a fiberwise monomial subdivision, a Lagrangian submanifold
¢ C W=l(c) = (C*)" is monomially admissible with phase angles {py,v € V} if,
outside of the compact subset W~1(c) N Q, arg(z¥) = v at every point of £ N Cy.

A Lagrangian submanifold L C Y is fiberwise monomially admissible with phase
angles {y} if, outside of 2, arg(z") = ¢y at every point of LN Cy.

Example 4.3 We can define a fiberwise monomial subdivision for the toric Landau-
Ginzburg model (CN, Wy = — [1z)) as follows (the construction below will be a slight
modification of this example). Take the collection of monomials to be the coordinate
functions zj, 1 <j < N (i.e., the exponent vectors v; are the standard basis of ZV);
take d(v;) = 1 for all j, and let Cy, be the set of points of C¥ where |z > K [W,|!/¥
for some constant K > 1, and Q = CV \ |J Gy, = {z € CV | max(|z|) < K [W,|'/¥}.
Condition (2) holds since the coordinates of points of  are bounded by K |Wy|'/V,
and condition (4) holds since if |z;| = max(|z1],.. ., |zn|) > K |Wo|'/" then z € Cy,- A
Lagrangian submanifold L C CV is then fiberwise monomially admissible with phase
angles ¢, ...,y if, at every point of L where |zj| > K|W,|'/V, arg(z)) = ¢;. For
instance, the real positive locus (R )V satisfies this condition with all phase angles
equal to zero. We shall see below how to build more interesting examples under the
assumption that the toric Kihler form on CV is chosen suitably; see Section 4.1.

The notions of monomial subdivision and monomial admissibility for Lagrangians in
(C*)" already appear in Andrew Hanlon’s thesis [Ha]. One technical difference is
that we consider a fiberwise version of monomial admissibility and its compatibility
with parallel transport between the fibers of W. The more important difference is
philosophical: we use monomial admissibility merely as a technical tool to ensure the
flatness condition of Definition 3.5 (ii), rather than as a geometric way of restricting
the fiberwise wrapping by introducing additional stops (though we will do so in the
sequel [AA] for mirrors of hypersurfaces in toric varieties).

4.1 A toric Kéhler form on CV

We first consider the case of CV equipped with a complete toric Kihler form w = dd“®
(for a TN -invariant Kihler potential ®) and the superpotential Wy = — [1z. Writing
7 = exp(p; + i6;), we have

w=dd® =) 0°® dp;i A db;.
— 8Piapj
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In particular, w is a Kihler form if and only if the potential is a strictly convex function
of the p coordinates, i.e. the Hessian matrix ¥ = (9°®/9p;0p));; is positive definite.
The moment map ;& = (i1, ..., uy) : C¥ — RV is given by the partial derivatives
of ®:

pj = 9%/ 0p;.

The horizontal distribution, i.e. the symplectic orthogonal to the level sets of Wy, is
spanned (over C) by the Hamiltonian vector field generated by log |Wy| = > pj. We
can express d log [Wp| as a linear combination of the differentials of the moment maps,

4-1) dlog|Wo| = dp; = Ndw;, where (Ar,..., ) =T"'(1,....1).
j j

Angular parallel transport (i.e., along circles centered at the origin in the base of the
fibration given by Wy) is then given by rotating each coordinate at a rate proportional
to ), so that the horizontal lifts of the angular and radial vector fields are given by

> )‘jagj and (ra,)# _ —i(ag)# _ > /\jap/‘

2N 2N
One checks that the quantities p1; — j1; are conserved by parallel transport, as expected
(since parallel transport is equivariant with respect to the standard Hamiltonian TV ! -
action on the fibers of Wy).

4-2) (99" =

Example 4.4 For the standard Kéhler form on CV, with potential ® = §{Y" |z|> =
13" €%, the moment map is given by 11; = 3|/, and W is diagonal with entries ||,
so that \; = |z;| 72, and (9p)* = ﬁ,l” >~ |zj|~20g,. Thus, when |zj| — oo for |Wo|
fixed, the rate of change of arg(z;) under angular parallel transport tends to zero. This in
turn implies that a weaker form of asymptotic admissibility (only requiring arguments
of monomials to converge to prescribed limit values at infinity) is preserved under
parallel transport, and it should be possible to carry out the whole construction using
the standard Kéhler form. However, the stronger admissibility requirement that we
impose is necessary for the maximum principle of Proposition 3.11; thus we will need to
ensure that arg(z;) remains strictly constant (rather than approximately constant) under
parallel transport, and this in turn motivates the introduction of a different Kéhler form.

Our choice of Kihler form involves smooth approximations of the maximum function:

Definition 4.5 Given a constant § > 0, denote by M : R> — R a smooth convex
function such that:

(1) M(u,v) = max(u,v) whenever |u—v| > 9;
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2) Mu+a,v+a)=Mu,v)+a forall u,v,a € R; and
3) M(u,v)y =M, u).

These conditions imply that M is monotonically increasing with either variable, and

oM oM
max(u,v) < M(u,v) < max(u,v) + 6, Ogag 1, and ogggl.

We then define M : ]Rzzo — R>¢ by

MU,V) = expM(logU,logV) forU,V >0,
M(U,0) = M(©0,U) = U,
and note that M is continuous, smooth everywhere except at the origin, and M(U, V) =

max(U, V) whenever U/V & (¢7°,¢°).

In fact, the second condition above implies that M is determined by a smoothing, near
the origin, of the absolute value function on R.

Definition 4.6 Choosing some small € > 0, we equip CV with w = dd‘®, where

N N
(4-3) ® = ZM<5=HM(|Zi’27 |z,-]2)) i[>
i=1

J=1
J#

Remark 4.7 The only purpose of taking M(e, ...) is that otherwise w would be
degenerate (and non-smooth) along the coordinate axes. In fact,

2
[Tt 5> Tmastal b > gy > WP~
J#i J#i Y
so we have the simpler expression
N
(4-4) ¢ = Z(H M|z, !Zj|2)> lzz|*>  whenever |Wp|* > (ee®)FT.

=1 jti
Since we will only consider Lagrangian submanifolds which stay away from the preim-
age of a small disc under W, choosing ¢ and § sufficiently small we can always work
with the simpler formula (4—4) to study the geometry of admissible Lagrangians.

Lemma 4.8 w is a toric Kihler form on CV .



42 Mohammed Abouzaid and Denis Auroux

Proof & is obviously T" -invariant, and we will momentarily check that outside of
the coordinate axes it is strictly convex as a function of the variables p; = log|z|.
Meanwhile, smoothness and non-degeneracy of the Hessian near z; = 0 follow from
the observation that the coefficient /1 (g, ...) in the i-th term of (4-3) is bounded below
by € > 0.

To prove the strict convexity of ® outside of the coordinate axes, we observe that each
term in the sum (4-3) is log-convex as a function of p; = log |z, i.e. its logarithm is
convex. Indeed, using the convexity of M and the fact that the composition of a convex
monotonically increasing function with a convex function is itself convex, we find that

Giprs- oo on) = M (loge, > M2pi,20)) +2p:
J#i
is a convex function. Since the exponential function is strictly increasing and strictly
convex, we conclude that

Di(p1,..., py) = PP — M(E, 1T #z1, \Zj|2)> il
J#
is a convex function, and that its Hessian is non-degenerate on all tangent vectors which
are transverse to the level sets of ;, i.e. d>®;(v,v) > 0 whenever dy;(v) # 0.

Thus, in order to conclude that & = > ®; is strictly convex, it suffices to show that
dpy, . ..,doy are everywhere linearly independent. Equivalently, we need to show
that the matrix A with entries a; = J¢;/0pj is invertible. For simplicity we only do
this in the region where ; = Z#i M2p;,2p;) + 2p;; in light of Remark 4.7 this is the
only case of genuine interest to us.

Let A = A + AT, with entries &; = a;; + a;; = 9pi/0p; + Op;/0p;i. For i # j, it
follows from property (2) of Definition 4.5 that

aj = M1, 2p) + M 2pi, 2p)) = 2.

Meanwhile, a; = 2 d¢;/0p; > 4. Thus, given any non-zero vector v € RV,
N 2
<v,f\v> = Z &ijv,-vj =2 (Z Vl'> + Z(&ii —-2) Vi2 > 0,
ij=1 i i
and it follows that (v,Av) = 1(v,Av) is positive as well, which implies that A is
invertible, and hence @ is strictly convex. |

The key feature of the Kéhler form w which makes it possible for fibered Lagrangians
to be fiberwise monomially admissible is that all “large” coordinates are preserved
under parallel transport. We first make the notion of “large” coordinate more precise:
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Definition 4.9 A partition {1,...,N} = K UJ into two non-empty subsets is called
a §-gap at a point (z1, . ..,zy) € CV ifinf {|z;|%, i € J} > e’ sup {|z|*, i € K}. We
say that z; lies above a 0 -gap if there exists a 6-gap {1,... ,N} = KUJ withj € J.

Lemma 4.10 If |z,| > e*™ D% |Wo|U/N | or if |z,| > 2®~D9 min |z|, then z, lies
above a J -gap.

Proof Assume z; does not lie above any J-gap. Then listing all |z;|*> in decreasing
order, the entry just after |z¢|> (if there is one) is bounded below by e~%|z/|?, the next
one is bounded below by e~2°|z|?, and so on, whereas the entries preceding |z,|?
are bounded below by |z¢|?>. Thus, we conclude that min |z;|> > e~ ®~D|z,|?, and
Wol? =TTV, |zi]> > e_%N(N_l)‘5|zg]2N. Taking the square root, resp. the 2N -th root
of both sides of these inequalities, we obtain a contradiction. a

Lemma 4.11 Assume that |Wy|> > (ae‘s)% , and that zy lies above a d-gap. Then
the coordinate zy is (locally) invariant under parallel transport.

Before giving the proof, we provide some intuition by briefly considering the case
N = 2: when |z3]> > €°|z1|?, our Kihler potential is ® = |z1|?|z2]? + |z2|*, and w is
locally a product Kihler form when expressed in the coordinates (W, z2), which readily
implies that parallel transport for Wy preserves z,. Alternatively, the first component
of the moment map is p; = ®/dp; = 2|Wp|?, as is also the case more generally
whenever z; is the smallest coordinate and separated from z, . . ., zy by a §-gap. Since
dlog |Wy| is proportional to dy, comparing (4—1) and (4-2) we conclude that only z;
varies along the horizontal distribution, while z5, ..., zy are preserved. (However, as
parallel transport towards |Wy| — oo proceeds by varying z; while z, ..., zy remain
fixed, eventually |z;| becomes large enough to “close” the d-gap and the statement no
longer holds). The argument in the general case is less explicit but similarly involves
the vanishing of certain coefficients in (4—1).

Proof Let{l,...,N} = KUJ bea d-gap with ¢ € J. Recall that the Kihler potential
is given by (4-4), i.e. = vazl e?’, where p; = Zj#iM(Z,oi, 2pj) + 2p;. Property
(1) of Definition 4.5 implies that, for i € J and k € K, d¢;/Jpr = 0, whereas for

i€ KandjeJ, 0p;/0pj=2. Thus, for k € K and j € J,

Pe L[ By 8(,08@) D
4-5 Uy = = Lo ) e =y 2T e
= K Opope = <8pj0pk dpj Ipi ; Api

which is independent of j. We denote this quantity by cy.
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Next, property (2) of Definition 4.5 implies that for all i we have fozl 0pi/0pm = 2N,
and for i € K we have ), 0¢i/0pm = 2N — 2|J| = 2|K]|. Thus,

0P 0
o = 2 g = 2K e
Pm i,mEK i€k

mekK

Differentiating with respect to py for k € K, we find that

0
|K’ Z Wk = Z 28?]2 et = Ck.

mekK iek

(4-6)

The non-degeneracy of w implies that the symmetric matrix ¥ is positive definite, and
in particular its restriction W to the coordinates labelled by elements of K is also
non-degenerate. For k € K, denote by \; the components of (\I!|K)*1(1, R B S WX
by definition Zke x Vi = 1 forall i € K. Averaging over i € K and using (4-6),
we also have Zkek ¢y = 1. Thus, using (4-5) we find that

> Wyh=1 foralli=1,...,N

kek
Setting \; = 0 for j € J, we conclude that that U1, ) = (\,..., ), de.
(A1, - .., Aw) are the coefficients which appear in (4—1) and (4-2).

For j € J, the vanishing of )\; implies that the j-th components of (Op)* and (r0,)* are
zero, and thus, parallel transport preserves z;. This is in particular true for j = £. O

We conclude this section with some estimates for the moment map, which will be

used to establish the analogue of Lemma 4.11 for Kihler forms obtained from w by

symplectic reduction. Since the formula for the moment map is obviously equivariant

under permutation of the variables, it suffices to consider the case where |z;| < |z2| <
- < awl-

Lemma 4.12 Assume that |Wy|*> > (5e5)%, and that |z;| < |zo] < --- < aw].
Then:
1 O0<m Spo<--- <.
K
G [y 2l

2

< 4Ne*Nd forall 1 <j < N.

1
(3) (2N) e *5(“1)2” <l o oy N5(“’) forall 1 <k <j<N.
Hk |2k ] M
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Proof Recall that, by (4-4), ® = > e? with ; = > _.,; M(2p;,2p;) + 2p;. Thus,

&pl , OM(2p;, 2p)) ) ) .
4—7 j Pi — - Pi @, 2 b, X
(4-7) ;8[)] g o (¥ + ) + 2¢¥

We first establish the inequality (1). For j < k, we have |zj| < |z by assumption,
and using the monotonicity of M we immediately deduce that ¢; < ¢r. Moreover, for
i & {j, k},the convexity of M implies that 0 < OM(2p;,2p;)/0p; < OM(2pi, 2pk)/Opk,
and hence
OMQ2p;,2p)) (€ + ) < OM(2pi, 2py)
Ipj Ipx
Meanwhile, properties (2)(3) of Definition 4.5 and the convexity of M imply that
8M(2pj, Zpk)/apj < 1 < 8M(2pj, 2pk)/apk, SO
OM(2p;, 2pk) (€ 4+ %) 4 269 < OM(2p;, 2px)
dpj Opk
Combining these inequalities we conclude that p; < i, which proves (1).

(6501 + e‘Pk)'

(€¥ + eP*) + 2%k,

To establish (2), we first observe that, for i; < iy, |z,|* < M(|z;,|?, |2,,]%) < €°|z;,|%.
Therefore,
7 [ |zl < e = (HM(\ZJZ, \Zj!2)> 5> < Ml ] T il
i>j i i>j

Since p; > 2 ¥ by (4-7), the lower bound on e¥/ immediately yields the lower bound
in (2). Meanwhile, to obtain an upper bound on p; we observe that in the sum (4-7)
the terms corresponding to i such that |z;|> > €°|zj| vanish identically, since for such
i we have M(2p;,2p;) = 2p;. Otherwise, the inequality 2p; < 2p; + ¢ implies that
i < pj + N6. Meanwhile, OM(2p;,2p;)/0p; < 2. Thus,

;<D 2eF +e7) + 267 < 2N + 2N — D) e < aNe™ 5[Y ] |ail*

i#] i>j
2pi<2p;+0

This establishes the upper bound in (2). Finally, (3) is a direct consequence of (2) using
the observation that

2j 2 2k Jj—1 2j—2
<|z,-\) - [P T el <|z,|> I 5 _ <|z,-|>’
2| EA R AN 1 D e TN

which in turn implies that

. 1
(IZJ\ZJHZ i el ) hal <|z,|fH, S !z,|2>z

|2k |2 Hi:k+1 |zi? |z | Hi:k—H |zi?

=Tl =
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4.2 Symplectic reduction and monomial admissibility

Recall that the toric variety Y described in §2 is the symplectic reduction of CFz by
a subtorus Ty C T?Z, ie. ¥ = u~'(\)/Ty, and the superpotential Wy € O(CFz)
descends to W € O(Y). We equip CP2 with the toric Kihler form constructed in the
previous section, and the reduced space Y with the induced toric Kihler form.

Our goal in this section is to show that symplectic reduction preserves the compatibility
of parallel transport with fiberwise monomial admissibility, i.e. to establish an analogue
of Lemma 4.11 for symplectic parallel transport between the fibers of W : ¥ — C.
Our starting point is the observation that “parallel transport commutes with reduction”:

Lemma 4.13 The horizontal vector fields (0g)* and (r0,)* described by (4—2), which
span the symplectic orthogonal to the fibers of Wy : CP2 — C, are Ty, -equivariant and
tangent to 11~ '()\). Their images under the projection from p~'(\) to u='(\) /Ty = Y
span the symplectic orthogonal to the fibers of W : Y — C with respect to the reduced
Kihler form, and in fact they are the horizontal lifts to Y of 0y and r0,. O

To take advantage of this property, we need a criterion to determine when a Ty, -invariant
monomial on CPZ involves only coordinates to which Lemma 4.11 applies.

Recall that the moment polytope Ay of Y, given by (2-6), arises as the intersection
of an affine linear subspace of R’z (expressing the condition yz = \) with the non-
negative orthant (the moment polytope for C"2). Embedding Ay into R”Z in this way,
the coordinate hyperplanes correspond to the facets of Ay, and the ambient coordinates
(i.e., the components of the moment map for C” ) are given by the affine distances to the
facets of Ay. Thus, in terms of the description (2-6), the point (£,7) € Ay C R"® R
corresponds to a T"*!-orbit in ¥ whose preimage in = '(\) C CFZ is the TFZ-orbit
whose moment map coordinates (ftq)acp, are given by

(4-8) po =1 — (@, &) + () for all o € Py.

Given a vector v = (¥,V%) € Z" & Z, the toric monomial z¥ defines a regular function
on Y if and only it pairs non-negatively with the inward normal vector to each facet of
AY , 1.€.

(4-9) Vvoi=(—a,1)-v=2""—a-¥>0 forallac Py.

The monomial z¥ vanishes to order v* along the toric divisor of Y corresponding to

« € Pz. Moreover, the monomial ] . P, %0 € O(CP2) is invariant under the Ty, -
action and descends to z¥ € O(Y) under reduction. With a slight abuse of notation, we
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will therefore write

(4-10) =1 ="

a€EPy
The vectors v satisfying (4-9) are the integer points of a polyhedral convex cone,
whose extremal rays are in one-to-one correspondence with the facets of P.

Definition 4.14 Given a facet of the polytope P with primitive outward normal vector
V, contained in the affine hyperplane (V,-) =1°, the corresponding extremal vector is
v = (¥,W); we denote the set of these vectors by V.

The elements of V' can be characterized equivalently as the primitive inward normal
vectors to the n-dimensional cones which lie on the boundary of the fan Yy, or as the
primitive tangent vectors to the unbounded edges of the moment polytope Ay.

For v € V we denote by Ay the set of all « € Py which lie on the corresponding facet
0, or equivalently, the quantity v* defined by
(4-9) vanishes. These correspond exactly to the facets of Ay to which v is parallel.

of P, i.e. those o for which o - v = V/

Given a small positive constant v > 0 and v = (¥,v°) € V', we define

(4-11) Svy ={ € R" [, §) — (@) < (&) — 7[[&]l Vo € P2\ Av},

where || - || is an arbitrary norm (e.g. the Euclidean norm) on R”". In other terms,
recalling that p(§) = max{(c, ) — v(®) | @ € Pz}, Sy, is the set of points where the
maximum is achieved by some a € Ay, and no o € Ay comes close to the maximum.
We also define Cy, C Y to be the inverse image of Sy, x R under the moment map.

Denote by A, the polyhedral subset of R” where « achieves the maximum in ¢
(which is also the projection to R" of the corresponding facet of Ay). Then Sy, is a
retract of (J,,¢ 4, Da, obtained by removing those points which are too close (within
distance of the order of v||£]|) to some other A, . Thus, for sufficiently small ~ the
subsets Sy ~, v € V cover the complement of a compact subset of R".

Example 4.15 Consider f(x,x) = 1 4+x; +x2 + 7 x1x0 + t‘“’x% (as in Example 2.1)
and its tropicalization ¢(&;, &) = max{0,&1,&2,&1 + & — 1,2€ — 2}. The convex
hull P of Pz = {(0,0), (1,0), (0, 1), (1, 1), (2,0)} is a trapezoid with primitive outward
normal vectors v = (0, —1), v, = (1,1), 3 = (0, 1), and v4 = (—1,0), and we find
that V consists of the four elements v; = (0, —1,0), v, = (1,1,2), v3 = (0,1, 1), and
v4 = (—1,0,0), which are indeed the tangent vectors to the unbounded edges of the
moment polytope Ay = {(&1,&2,m) |1 > ¢(&1,&)}, shown “from above” on Figure
4,
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/
alz(oao) // SV1,"/

Figure 4: The extremal vectors v € V and the regions Sy ., for f(x1,x) = 1 +x; + x +
£27x1x2 + 1*"x} (cf. Example 4.15).

For vi = (0,—1,0), the elements of Pz which lie on the facet of P with outward
normal vector Vi = (0, —1) are oy = (0,0), ap = (1,0), and a5 = (2,0), whereas
Pz \ Ay, consists of az = (0,1) and ay = (1, 1), so

Svim = {6 = (1,6 €R*[ & < (&) —7ll¢] and & + & — 1 < (&) — (€]}

is the set of points where the two terms & and & + & — 1 are sufficiently far from
achieving the maximum in @(£1,&,); see Figure 4. This is a retract of the region
Aq, UA,, UA,, where the maximum is achieved by one of the three other terms.
Similarly for the other regions Sy, - . |

For ¢ € C*, the fiber W—'(¢) of W : Y — C is T”-invariant, and its image under the
moment map is the graph {(£,n) € R*®R |n = f.(£)} of a piecewise smooth function
fo : R" = R (with f.(&) > p(€) everywhere). We now show that, outside of a bounded
subset of W~!(c) (whose size depends on c), the monomial z¥ is locally preserved by
parallel transport at all points of Cy .

Proposition 4.16 Let z € W~ !(c) N Cyy C Y for some v € V and v > 0, with
moment map coordinates (£,7), £ € Sy~. Assume that |c[> > (ee®YN/™=D and
€] > R = R(c,v) := 8N2eNNV+3I9~=1|¢|2 (where N = |Pyz|, and ¢ and § are the
same constants as in Section 4.1). Then the monomial 7¥ € O(Y) is locally invariant
under parallel transport.

Example 4.17 Continuing with Example 4.15, consider the case of vi = (0, —1,0),
for which the quantities v* defined by (4-9) are 0,0, 1, 1,0 for a1, . . . , a5 respectively.
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Thus, z"' € O(Y) arises by toric reduction from the monomial z3z4 € O(CF%), whichis
indeed invariant under the action of the 2-dimensional torus T, described in Example
2.2. By Lemma 4.11, the monomial z3z4 is invariant under parallel transport for
Wp : CPz — C wherever z3 and z4 lie above a §-gap. The main ingredient of the proof
is therefore to prove that such a gap exists whenever £ € Sy, , and ||£]| is sufficiently
large; the key point being that, by (4-8), when § € Sy, , the moment map coordinates
Has and fi,, are bounded below by min(uq,) + ||€]|-

Proof Denote by (zo)acp, the coordinates of aliftof z € ¥ to u‘l()\) C CPz, and let
ap € Pz be such that £ € A,,. Then by (4-8) the smallest moment map coordinate is
min(ftg) = Loy = 1 — P&) = fe(§) — ¢(§). On the other hand, Lemma 4.12 (2) gives
a bound on the ratio between i, and |Wo(z)|> = |c|*. We conclude that

(4-12) 2/c* < pay = £e) — 9(&) < AN |cf.

On the other hand, since £ € Sy 4 and [|£|| > R, for all o ¢ A, we have

o = fe(©) = (0, €) + (@) = prog +7[[€]l = YR = 8NZNTN0ef > aNeM T
Hence, by Lemma 4.12 (3),

1
‘ZOI‘ Z (2N)7je—§ (/Jza>2N Z e(N71)5/2
|Za | Hag

By Lemma 4.10, we conclude that z, lies above a §-gap for all ¢ Ay. Hence, by
Lemma 4.11 the coordinates z, (« & Ay) are locally invariant under parallel transport
in CPz. Using the fact that the exponents v in (4-10) vanish for all @ € Ay (by
definition of Ay) and the compatibility of parallel transport with reduction (Lemma
4.13), we conclude that z¥ is locally preserved under parallel transport in Y. |

Finally, we show that, at every point where ||£]| is sufficiently large, Proposition 4.16
applies to the largest (in a suitably renormalized sense) among the monomials z',
v € V. More precisely, for v € V and v* as in (4-9), we set
(4-13) vy =y "

Q’EPZ
Proposition 4.18 There exist positive constants o and Ky, depending only on the
polytope Ay (and on N, ¢, §) with the following property. Let z € W™(c) C Y be
a point with moment map coordinates (¢,7), where |c|> > (ee®)V/™N=1D and ||£|| >
Ko|c|?. Let v € V be such that

‘Zvoll/d(vo) _ max{\zv\l/d(v) lveV)

Then £ € Sy, , and z € Cy ;.
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Proof Let (zo)acp, be alift of z € ¥ to u~'(\) C CPZ. Recall from (4-12) that
the smallest moment map coordinate /i, corresponds to oy € Pz such that { € A,
and /1o, is bounded by 4Ne?¥°|c|>. On the other hand, let a; € Pz be such that
|za,| = max{|zo|, @ € Pz}, or equivalently, i, = max{u,, a € Pz}. By (4-8),
Hay — Moy = (a0 — a1,€) + v(ag) — v(a), so there exist positive constants ¢y, ¢2
depending only on Ay such that

(4-14) fey < oy + 1]l + c2.

On the other hand, since P is assumed to have non-empty interior, the quantity
max{{a—d/, ), a,a’ € Pz} is bounded below by a positive constant times ||£]|, and
there are positive constants ¢}, c5 depending only on Ay such that

(4-15) Ly > Hao + €1 ]€]l = 5.

Assume that { € Sy for some v € V and > 0. Then for all o ¢ Ay we have

(4-16) fa = fe(§) — (@, &) + (@) = pay +7I€]-

Thus, assuming some lower bound on ||&]|| (e.g. ||| > 1), the upper bound on i,
implies the existence of a constant ¢3 > 0 (still depending only on Ay) such that, for
all @ & Ay, fto > €37[tq, - Using Lemma 4.12 (3), this in turn yields the inequality
(4-17) 2ol = @N)"2e NP2 12 1 forall o & A,

Taking a weighted geometric mean (and recalling that v* = 0 for a € Ay), we get:

(4-18) 2] 1/d(v) > (2N)71/267N6C;/271/2 2o |-

Conversely, if £ € Sy, then (o, §) — v(a) > @(&) — v||£|| for some « & Ay, hence

Ha :fc(g) - <Oé,£> +v(a) < Hagy + 7”5”

When [|€]| is sufficiently large, namely ||£]| > max(2c)/c}, 4Ne*N0y~1|c|?), we have
fta < 2v/|€]| and pa, > 3c}||€]|. Therefore, po < ciyfia,, where ¢y = 4(c)~L.
Using Lemma 4.12 (3), this in turn yields the inequality

(4-19) 2ol < @N)/2V O ()Y 2, .

Since a ¢ Ay, by definition the exponent v* of z, in the expression for z" is at least
1. Since the other coordinates which appear in the expression for z¥ are all bounded
by |za,|, we obtain:

1
(4_20) ‘ZV‘I/d(V) S e(;/d(V) (2NC/3’7)W(V) |Za1 |
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With the necessary estimates in hand, we now proceed with the proof. First, there
exists 1 > 0 depending only on Ay such that the subsets Sy, cover all but a
bounded subset of R”, i.e. for some constant K| > 0 (depending only on Ay), every
point with ||£|| > K belongs to some Sy -, . Thus, whenever ||{|| > K;, the estimate
(4-18) implies that

(4-21)  max{[z|"V|veV} > (2N)*l/ze*N‘Scé/Z’y]l/2 max{|za|, @ € Pz}.
Let D = {d(v), v € V} (a finite set of positive integers). We now choose 7 so that
(4-22) SNy P < 2N) T 2e N2 foralld € D,
and Ky so that

Ko > 4Ne®™ gt and  Ko(ee®)V/ N > max(Ky, 2¢h /c)).
Assume |c|> > (ee®)N/ V=D and ||€|| > Kolc|?, and let vy be such that |z¥0|!/4Y0) =
max{|z¥['/4W | v € V}. If € & Sy, ~, - then (4-20) and (4-22) give

|gY0| /A0 < gB/dVo) (2Nc’3*yo)m max{|za|, @ € Pz}

< (2N)*1/2e’N5c;/2711/2 max{|za|, @ € Pz},

which contradicts (4-21). Thus § € Sy, 4,, or equivalently, z € Cy, 5, O

Propositions 4.16 and 4.18 imply the following:

Corollary 4.19 The extremal monomials z¥, v € V introduced in Definition 4.14, the
weights d(v) defined in (4-13), the open subsets Cy = Cy ,, and the closed subset
Q= {zeY||¢| <Kymax(1,|W|*)}, where K}, = max(8N2eNN+39~ =1 Ky, define
a fiberwise monomial subdivision on the toric Landau-Ginzburg model (Y, W, w).

Moreover, with respect to this subdivision, fiberwise monomial admissibility (with
fixed phase angles) is preserved by parallel transport between the fibers of W over any
path v : [0,1] — C such that |y(0)|* > (eeHN/N=D and |v(¢)| is non-decreasing.

Proof The fact that the collection of extremal monomials (z¥)ycy defines a proper
map is a classical fact of toric geometry, but can also be seen directly from the lower
bound (4-21). Properties (2) and (3) of Definition 4.1 are clear from the construction,
and property (4) follows from Proposition 4.18.

When |W|? > (ee®)V /(N=D Proposition 4.16 implies that z" is invariant under parallel
transport at every point of Cy which lies outside of 2. Thus, the property that
arg(z¥) = y is preserved under parallel transport. The reason why we require |y(2)]
to be non-decreasing with respect to 7 is to ensure that Cy \ (Cy N(2) is preserved under
parallel transport (using the fact that £ is preserved under parallel transport). a
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4.3 The wrapping Hamiltonian

We now define a Hamiltonian H : ¥ — R whose flow preserves both the fibers
of W and monomial admissibility within them. This Hamiltonian is constructed by
reduction from the case of CV. The construction involves a smooth approximation of
the minimum function, conceptually similar to Definition 4.5 but with N variables.

Definition 4.20 Given a constant ' > 0, denote by m : R¥ — R a smooth concave
function with the following properties:

(1) letting I = {i|u; < min(uy, . ..,uy)+ 0"}, locally m(uy, ... ,uy) depends only
on (uj)ier, and if I = {ip} then m(uy, ..., uy) = uj, = min(uy, ..., uy);

2) mui+a,...,uy+a)=muy,...,uy)+a foralla € R;

(3) m is symmetric, i.e. m(Uq(1), - - - , Usn)) = M(U1, ..., uy) forall o € Gy.

These conditions imply that m is monotonically increasing in all variables, and

min(ug, ...,uy) — 8 < m(uy,...,uy) < min(ug, ..., uy).

For instance, for ' > N§ we can take
muy, ... uy) = — 57 ogeay M=oy, M(..., M(—topy—1), —Uow)) - - - ).

Denoting pp, ...,y the moment map coordinates for the chosen toric Kéhler form
on CV, the Hamiltonian we consider is

N
(4-23) Ho =" pi— Nm(ui, ..., ).
i=1
Setting N = |Pz| and viewing Y as a symplectic reduction of CFZ, recall that the
moment map coordinates /i, ..., uy descend to functions (£t )aep, On the moment
polytope Ay, given by (4-8). We then define the Hamiltonian H on Y via reduction:

Definition 4.21 Given a point of Y with moment map coordinates (§,m) € Ay, set
o =1 — (a,&) + v(a) forall o € Py as before. Then we define H : Y — R by

(4-24) H=Y" pia = |Pzlm{pa}acr,).
aePy
Proposition 4.22 H only depends on the moment map coordinates ({1, ... ,&,), and

as a function of these variables it is proper, convex, and grows linearly at infinity. In
particular, the flow of H preserves the fibers of W, and the restriction of H to every
fiber of W is proper.
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Proof Clearly H is a function of the moment map coordinates (£; . ..,&,,n). Since
Opie,/On = 1 for all a € Py, property (2) of Definition 4.20 implies that 0H/0n = 0,
i.e. H only depends on ({1, . .., &,). This in turns implies that X is everywhere in the
linear span of the generators of the T"-action and preserves the fibers of W.

Since the coordinates p,, are affine linear functions of (&1, ...,&,,n), the convexity
of H as a function of these variables (and hence of (£, ...,&,;)) follows from the
concavity of m. Meanwhile, the properness of H follows from our assumption that P
has non-empty interior, which yields the lower bound (4-15) on max{, } —min{ 4 };
the linear growth is manifest. ad

Proposition 4.23 The flow of H preserves monomial admissibility with respect to the
fiberwise monomial subdivision of Corollary 4.19. More precisely, if { C W~(c) is
monomially admissible with phase angles {yy, v € V}, then its image under the time
t flow is monomially admissible at infinity with phase angles {@y + td(v), v € V},
where d(v) € Z is given by (4-13).

Proof On CV, the Hamiltonian H, defined by (4-23) is a function of the moment
map coordinates pp,...,uy. Letting I = {i|w; < min(uy,...,uy) + 0’} as in
Definition 4.20 (1), we observe that OHy/Ou; = 1 for all i ¢ I. Thus, the flow of Hy
rotates the coordinates z; uniformly at unit speed for all i ¢ I. Moreover, this flow
is Tys-equivariant, preserves p~'(\) C CV, and descends to ¥ = p~'(\)/Ty as the
Hamiltonian flow generated by H.

Using the same notations as in the previous section, fix v € V', and consider a point
of Cy = Cy,, C Y with moment map coordinates (¢,7) such that [|£]| > ~;'¢'.
(Choosing ¢ sufficiently small in Definition 4.20, we can ensure that every point
outside of () satisfies this inequality.) Denote 1o, = min{p, }. By (4-16), for o & Ay
we have o > pag + W&l > oy + ¢'. Thus, m({fia}acp,) only depends on
(Ma)aea, » and the flow generated by H rotates all the other coordinates (z,, o & Ay) at
unit speed. Recalling that z¥ = Ha sz with v* = 0 whenever o € Ay, we conclude
that the flow of Xy rotates z¥ uniformly at a rate of ) v* = d(v) at every point of
Cy which lies outside of 2. The result follows. O

Remark 4.24 Essentially any Hamiltonian satisfying the conditions of Proposition
4.22 and Proposition 4.23 (possibly with different values of the phase shifts d(v), as
long as these remain positive) would be equally suitable for our purposes; see e.g.
Hanlon’s work [Ha] for another construction. The Hamiltonian of Definition 4.21 is
particularly natural from the perspective of symplectic reduction from CV to Y, but
the category W(Y, W) is, up to equivalence, independent of the choice, as will be clear
from the arguments in Section 5.
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5 Computation of fiberwise wrapped Floer cohomology

5.1 Geometric setup

We now fix the geometric data needed for our construction of the admissible Lagrangian
Ly € W(Y, W), besides the Kihler forms and wrapping Hamiltonians defined in Section
4, and check that the various conditions imposed in Section 3 are satisfied.

Let (Y, W = —z00.D) be the Landau-Ginzburg model constructed in Section 2,
equipped with the toric Kihler form w which is the result of symplectic reduction by
Ty of the Kihler form on CPZ introduced in Definition 4.6. Let V C Z"*! be the set
of extremal vectors of Definition 4.14, d(v) the positive integers given by (4-13), and
the subsets Cy and €2 of Y as in Corollary 4.19. We consider the height function

(5-1) h = max{hy, vEe V}:Y —[0,00), where hy = |ZV|1/d(v)7
and the wrapping Hamiltonian H introduced in Definition 4.21.

We fix a properly embedded U-shaped arc ~yp : R — C such that v(0) = —1; |yo(s)|
passes through a minimum at s = 0 and increases monotonically as a function of |s|;

arg 7o(s) increases monotonically as a function of s; arg~y(s) = 8y for s < 0 and

argyo(s) = 2m — 6o for s > 0, for some positive angle 0 < 6y < 5. (Thus, o

intersects the negative real axis transversely at —1, remains at distance at least 1 from
the origin, and outside of a compact subset it coincides with the rays e*®R )

Given a monomially admissible Lagrangian submanifold £ ¢ W~!(—1) = (C*)" (in
the sense of Definition 4.2), with all phase angles equal to zero, we denote by L = U¥{
the fibered Lagrangian submanifold of Y obtained from ¢ by parallel transport in
the fibers of W over the arc vp. It follows from Corollary 4.19 that L is fiberwise
monomially admissible, with all phase angles equal to zero. We will in particular
consider the case where ¢ = / is the real positive locus of W~!(—1), i.e. the set of
points where all toric monomials are real positive and 7! = 1, and denote its
parallel transport by Ly = U{j.

As in Section 3.3, we choose an autonomous flow p’ in the complex plane which
fixes the negative real axis pointwise as well as a small neighborhood of the origin,
specifically the disc A’ of radius (e¢?)M/@N=2) (in particular p' fixes the points —1
and 0), maps radial lines to radial lines outside of a compact subset, and moves all
radial lines other than the negative real axis in the counterclockwise direction. We will
furthermore assume that the flow rotates the tangent vector to o at —1 (the imaginary
axis) counterclockwise, so that
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(1) for t+# 0, v = p'(70) intersects ~yo transversely at —1,

(2) v N~y ={-1} for |t] € (0,10), where fg is the value of ¢ for which p’ pushes
the ray e "R past ¢®R_ , and

(3) for |t| > 19, 70 and 7, intersect transversely in exactly two points (—1 and one
other intersection).

(These requirements on 7o My, are natural and easy to achieve given the other require-
ments on p’; see Figure 5).

Since the arcs -y, are strictly radial outside of a bounded subset, their mutual inter-
sections, and the bounded polygonal regions they delimit in the complex plane are all
contained within a bounded subset, say the disc of radius Ry. For R € R>¢, let 7(R) be
the maximum of % on the compact subset 2 N {|W| < max(R,Ro)} of Y. Then risa
non-decreasing function, constant over [0, Rp], and we take the closed subset Y’ ncy
appearing in Section 3.1 to be the set of points of ¥ where & < r(|W]). This ensures
that Y™ contains .

Finally, we take the almost-complex structure J to be the standard complex structure
of Y outside of the bounded subset

(5-2) Y"n{|w| < ¢}

for some € < 1 (smaller than the radius of A’), and a generic small perturbation of the
standard complex structure inside that subset. This ensures that simple J-holomorphic
spheres which intersect this subset are regular, and evaluation maps for rigid somewhere
injective discs and spheres are mutually transverse, as explained in Remark 3.18.

Proposition 5.1 The above geometric data on Y satisfy the requirements listed in
Section 3.1, and the Lagrangian submanifolds Lo(t) = ¢'p'(Ly) are admissible in the
sense of Definition 3.5.

Proof We start with the geometric conditions in Section 3.1. First, the properness of
h = max{|z"|"/¥V} follows from that of the map (z')yey : ¥ — CVI (item (1) in
Definition 4.1). Next, we have already seen in Proposition 4.22 that H is proper on
every fiber of W, and its Hamiltonian flow preserves the fibers of W,i.e. dW(Xy) = 0.
Thus, H Poisson commutes with the real and imaginary parts of W, whose Hamiltonian
vector fields span the horizontal distribution; it follows that dH vanishes on horizontal
vector fields. Moreover, since H is a function of the moment map coordinates only, Xy
is in the span of the vector fields generating the toric action, hence its flow preserves
the norms of all toric monomials, and so dh(Xy) = 0.



56 Mohammed Abouzaid and Denis Auroux

Ve (' >0)
Y0

S~ v (t<0)

Figure 5: The Lagrangians Ly and Ly(t) = ¢'p'(Lo) (¢t < 0).

Next we consider the behavior of £ along the horizontal distribution — or more pre-
cisely, by Remark 3.12, the behavior of the term(s) Ay that achieve the maximum in
h = max{hy}. By Proposition 4.16, for each v € V, and at every point of Cy which
lies outside of Y™ U W~!(A’), the monomial z" is invariant under parallel transport.
Therefore, dhy = ﬁv)hvd log |z¥| and d°hy = ﬁhvdarg(zv) both vanish on hori-
zontal vectors, and their Lie derivatives along horizontal vector fields also vanish. It
then follows from Proposition 4.18 that, everywhere outside of Y U W~!(A’), these

properties hold for any Ay that achieves the maximum in 4 = max{hy}.

Finally, Proposition 4.23 implies that the flow of Xy rotates z' uniformly at a rate
of d(v) at every point of Cy which lies outside of Y in  Therefore, dhy(Xy) = 0,
d°hy(Xg) = ﬁhvdarg(zv)(XH) = hy > 0, and Lx,(d°hy) = 0. As before, these
properties hold everywhere in Y\ Y for any Ay that achieves the maximum in /. This
completes the verification of the requirements listed in Section 3.1.

Next we prove the admissibility of Ly in the sense of Definition 3.5. The construc-
tion of the U-shaped arc =y ensures that its two halves connecting —1 to infinity
are admissible arcs in the sense of Definition 3.4. The monomial admissibility of
lo = (RL)" € W~I(=1) and the compatibility of parallel transport with fiberwise
monomial admissibility (Corollary 4.19) imply that Ly is fiberwise monomially ad-
missible; therefore, arg(z¥) vanishes identically on the portion of Ly which lies in

Cy \ (Cy N Y™, which in turn implies the vanishing of dhy = ﬁhvd arg(z¥). It
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follows that the restriction of d°h to Ly vanishes outside of Y (wherever 4 is differ-
entiable, and otherwise in the sense of Remark 3.12).

Since Lo(t) = ¢'p'(Lo) is obtained from the admissible Lagrangian L by the admissible
lifted isotopy p' and the flow of the wrapping Hamiltonian H, it is also admissible by
Lemma 3.7. (Alternatively, £o(1) = ¢'({y) C W~(—1) is monomially admissible by
Proposition 4.23, and the two portions of the arc v; = p’(7p) connecting —1 to infinity
are admissible in the sense of Definition 3.4; since Ly(f) is obtained by parallel transport
of ¢y(t) over ~, its admissibility follows from the same argument as above.) O

5.2 The Floer complex CF*(Lo(t), Ly(t))

Recall that Ly(¢) is fibered over -y, and fiberwise monomially admissible with phase
angles @y = d(v)t (by Proposition 4.23). Thus, the asymptotic directions of the
noncompact ends of Ly(z) and Lo(#’) are disjoint whenever ¢ —r € U = R\ ({%zp} U
%Z), where we denote by dj the least common multiple of the positive integers dy,
v € V. Since the arcs ~; are strictly radial outside of the disc of radius Ry, and
monomial admissibility precludes the existence of intersections outside of Y when
the phase angles are distinct, for ¢ — ¢ € U all the intersections of Ly(¢) and Lo(?') lie
within the compact subset Y N {|W| < Ro}.

The intersections of Lo(f) and Lo(¢') are concentrated in the fibers of W above the
intersection points of ; and v,; we will now see that Lagrangian Floer theory for
these submanifolds can be expressed in terms of the fiberwise Floer complexes in those
fibers and counts of holomorphic sections of W : ¥ — C over regions of the complex
plane delimited by the arcs ~y; and -y, .

Because our construction of the wrapping Hamiltonian does not guarantee that Lo(¢")
and Lo(¢) intersect transversely, we will allow ourselves to modify our Lagrangians
by small Hamiltonian isotopies supported inside Y (and preserving the fibers of W,
so that admissibility is not affected) in order to achieve transversality of intersections;
we will see in the next sections that our main calculation reduces to a cohomology-
level argument, so we do not specify the exact choice of perturbation involved in the
definition of the Floer complex.

For / —t € Ry N U, we denote by Cy(t,t) the portion of the Floer complex
CF*(Lo('), Lo(t)) generated by intersection points which lie in the fiber wl(=1),
i.e. the Floer complex of the monomially admissible Lagrangian submanifolds £o(¢') =
gb’,(éo) and (o(1) = ¢'(Lp) inside W—!(—1) ~ (C*)" (possibly after a small compactly
supported perturbation to achieve transversality). We similarly denote by C;(¢, 1) the
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portion of the Floer complex generated by intersection points which lie in the fiber
above the other intersection point ¢y, of v, and ; for ¥ —t > 1; this amounts to
the Floer complex of the monomially admissible Lagrangian submanifolds ¢_(#') and
04.(¢) of W_l(c,/’,) obtained by parallel transport of £o(¢') and £y(¢) along the portions
of vy and ~; which run from —1 to ¢y, (clockwise on ~;, and counterclockwise on
~v¢). For ' —t < ty we set Cy(¢',1) = 0.

The choice of a grading (for instance the usual one) on ¢y = (R)" C (C*)" and on the
arc 7p in the complex plane induces a grading on the admissible Lagrangian Lg, and
also, by following the various isotopies, on the monomially admissible Lagrangians
{o(t) and their images under parallel transport, as well as Lo(f). We view Cy(?, ) and
C (7, ) as the Floer complexes of the monomially admissible Lagrangian submanifolds
Lo(t), Lo(t) (resp. (1), L4(1)) of W~!(—1) and W~ !(cy ,), with the grading induced
by that of £y ; in the case of Cy(7, ) this coincides with the grading of CF*(Ly(t'), Lo(2)),
but in the case of C;(7, 1) the grading in CF*(Ly(¢'), Lo(?)) is one less than the fiberwise
degree, due to the phase angles of the arcs 7;,y» at ¢y ; differing by an amount in the
interval (7, 27) for ¢ — t > to (see Figure 5). Thus,

CF*(Lo(t'), Lo(1) = Co(f',) ® C1(7, 0[]

(5-3) _ JCF @), b)) ® CF* (L), Lx)[1] (' — 1> 19)
CF*(Lo(?), Lo(1)) O<f—1<1)

Because the almost-complex structure J coincides with the standard one outside of the
subset Y N {|W| < ¢} introduced in (5-2), J-holomorphic curves satisfy the open
mapping principle with respect to the projection W : ¥ — C and intersect positively
with the fibers of W outside of the disc of radius €. (However this fails near the origin.)
This implies immediately that J-holomorphic discs with boundary on a union of fibered
Lagrangian submanifolds (disjoint from the region where |W| < ¢) are either contained
in the fibers of W, or behave (away from the zero fiber) like sections or multisections
of W : Y — C over regions of the complex plane delimited by the arcs over which
the Lagrangians fiber. By abuse of terminology, we call such J-holomorphic discs
“sections” when their intersection number with the fibers is one, even though they need
not be genuine sections over the disc of radius e.

The fibers of W outside of the origin are isomorphic to (C*)", and the monomially
admissible Lagrangians ¢o(¢) and their images under parallel transport do not bound
any holomorphic discs inside the fibers of W (e.g. because they are contractible and
hence exact). It follows that Ly(¢) does not bound any J-holomorphic discs.

Moreover, our choice of J ensures that we can also avoid sphere bubbling by arguing
as in Remark 3.18. Since the intersections of Ly(#') and Ly() lie within the region of
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Y where |W| < Ry and & < r(Ryp), the maximum principles for W and A (Propositions
3.10 and 3.11) imply that the J-holomorphic discs contributing to the Floer differential
(and later on, to continuation maps or product operations) also remain within Y™ N
{|W] < Rp}. Since the fibers of W away from the origin are aspherical, the only
possible sphere bubbles are configurations contained in the region where |W| < €, at
least one component of which must pass within Y N {|W| < €}. The choice of a
generic perturbation of the standard complex structure within this subset ensures that
the underlying simple spheres are disjoint from all J-holomorphic discs in the 0- or
1-dimensional moduli spaces we consider, and hence that no sphere bubbles can form.

We can now state and prove the main result of this section, which describes the structure
of the Floer differential on CF*(Lo(t"), Ly(?)).

Proposition 5.2 For 0 < ¢ —t < ty, the Floer complex CF*(Ly(t'), Lo(?)) in Y is
isomorphic to the Floer complex CF*({y(t'), £o(1)) in W—1(—1) ~ (C*)".

Fort —t > ty, CF*(Lo(t"), Lo(?)) is isomorphic to the mapping cone

(5-4)  CF*(b(), bo(®) & CF*((_ (¢, L ()], a:<% %>

where the diagonal entries are the Floer differentials on the fiberwise Floer complexes,
and the off-diagonal term

(5-5) s =89 4t CFH(U_(1), £4(1) = CF*(bo(l"), Lo(1))

is a chain map defined by a (weighted) count of J -holomorphic sectionsof W : Y — C
over the bounded region of the complex plane delimited by ~, and ~y, (cf. Figure 5).

Proof The open mapping principle implies that the J-holomorphic discs that con-
tribute to the Floer differential on CF*(Lo(t’), Ly(¢)) are either contained within the
fibers of W, or (for ¥/ —t > () sections of W over the bounded region of the complex
plane delimited by 7; and . The contributions of discs contained within W—1(—1)
and W_l(c,/J) correspond exactly to the Floer differentials on the fiberwise Floer
complexes Co(t',1) = CF*(ly(?), lo(t)) and Ci(f',1) = CF*({_({'), £, (1)), while the
sections contribute the off-diagonal term s. The fact that s is a chain map follows
directly from the vanishing of the square of the Floer differential. |

It follows that the Floer cohomology group HF*(Lo(t"), Lo(2)) is isomorphic to HF*(£y('), £o(1))
for 0 < ¢/ —t < 1y, while for ¢ — ¢ > 1y it is determined by the map induced by s on
cohomology, which we again denote by

(5-6) s =89 0 HF (U (1), £1.(8) — HF*(4o(1)), £o(1)).
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Even though the Floer complexes and the chain map (5-5) depend on the choices
made in the construction, the maps constructed from different choices are related by
homotopies, so that the cohomology-level map (5-6) is independent of choices.

Indeed, deformations of Floer data among the set of choices which satisfy our tech-
nical requirements (e.g. compactly supported fiberwise Hamiltonian isotopies, mod-
ifications of J near W—!(0), or even admissible isotopies of the arcs ~;, 7 which
preserve transversality at all times) induce continuation quasi-isomorphisms on the
Floer complexes (5—4). In every instance, by considering the projection W : ¥ — C
one shows that continuation trajectories, just like contributions to the Floer differential,
can map generators in W‘l(ct/,t) to generators in W~=1(—1) but not vice-versa. Thus,
our continuation homomorphisms are upper-triangular with respect to the decomposi-
tion (5-4) and induce quasi-isomorphisms on the summands Cy = CF*({y(1'), o(1))
and C; = CF*({_(¢'), ¢+ (1)). Denoting by Cy and C; the two summands in (5-4)
with respect to one set of choices, and Cj, and C the two summands for the other set
of choices, we obtain a diagram

§

C Co
fi X Jo
et Cp —— G
S

where fo,f1,h are the components of the continuation homomorphism, and fy :
(Co, Do) — (C}), 9)) and fi : (C1,01) — (C, 0}) are quasi-isomorphisms.

The fact that the continuation homomorphism is a chain map implies that
foos+hody =5 ofi +08)oh.

Therefore fyos and 5" of; are homotopic, and so the cohomology level maps induced by
s and s’ coincide under the isomorphisms H*(Cy, 0,) ~ H*(C}, 0)) and H*(Cy, 9p) =~
H*(C{), 9) induced by f; and fy. In this sense, the map (5-6) is independent of the
choices made in the construction and invariant under admissible isotopies.

To put this in proper context, the map s is part of the “Seidel TQFT” (cf. [Se2])
associated to the symplectic fibration W : ¥ — C. As a general principle, counts
of J-holomorphic sections over given domains in the complex plane with boundary
on given fibered Lagrangian submanifolds give rise to maps between the respective
fiberwise Floer complexes which are independent of choices up to homotopy and
satisfy algebraic relations that can be understood in terms of gluing axioms (we shall
not elaborate on the latter point here; see [Se2] for details).
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5.3 Floer cohomology for monomially admissible Lagrangians in (C*)"

To proceed further, we need to discuss Floer theory for monomially admissible La-
grangian submanifolds in the fibers of W, which we identify with (C*)" by considering
the toric monomials zi, . .., z, on the open stratum of Y whose weights correspond to
first n basis vectors. (So, for each v = (¥,W) = (vi, ..., v,,v’) € V, the monomial z¥
restricts to W—1(c) as (—c)"oz¥1 ...z;"). The material in this section closely parallels
Hanlon’s work [Ha, Section 3.4].

The moment map for the standard T"-action on W~!(c) ~ (C*)" is given by the
first n coordinates (&1,...,&,) of the moment map of Y, and for each v € V the
intersection of Cy with W~!(¢) is the inverse image under the moment map of the
subset Sy = Sy, C R" defined by (4-11) (for an appropriate value of the constant
~ > 0, matching that used for Cy at the beginning of §5.1).

We consider Lagrangian submanifolds of (C*)" which are sections over the moment
map projection; any such Lagrangian is the graph of the differential of a function
K = K(&) : R" — R, i.e. the arguments arg(z;) = 0; are determined as functions of
the moment map variables (1, ...,&,) by 0 = 0K/0¢;. (For a given Lagrangian, K
is unique up to an affine function whose gradient is 27 times an integer vector.) The
monomial admissibility condition can then be expressed in terms of the gradient of K:
the graph ¢ = T'yx C W~!(c) ~ (C*)" is monomially admissible with phase angles
{©v} if and only if, outside of a compact subset,

(5-8)  (VK(©),V) = oy — vV arg(—c) mod 27Z VE € Sy, Vv =) e V.

Definition 5.3 The slope of the monomially admissible Lagrangian section ¢ = I'yg
is the tuple o(K) = (oy(K))yey € RV, where oy(K) = (VK(E), Vs, -

When K is a convex function, we associate to its slope o = o(K) the polytope

(5-9) P(o) = {u € R"| (u,v) < oy ¥v =) e V}.

Recall that the vectors V appearing in (5-9) are the primitive normal vectors to the
facets of the Newton polytope P associated to the Laurent polynomial f (cf. Definition
4.14). Given any vertex o € Pz of P, the subsets Sy associated to the various facets
of P which meet at o have a non-empty and unbounded intersection U, (comprising
most of the region of R"” where « achieves the maximum in the tropicalization of f,
cf. Figure 4). Over U,, the value of VK is fully constrained by the slope o = o(K),
since (VK,V) = oy whenever v is the normal vector to a facet of P containing «.
This corresponds to the equality case in the inequalities (5-9) for a maximal collection
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of linearly independent V, i.e. a vertex of the polytope P(c). From this and standard
facts about convex functions we deduce:

Lemma 5.4 If K is convex with slope o, then P(o) is a convex polytope with the
same normal vectors and normal fan as P, and the range of values taken by the gradient
VK is exactly P(o).

Example 5.5 The monomially admissible section {o(f) = ¢'(g) C W~1(—1) is the
graph of d(tH), so by Proposition 4.23 and (5-8) its slope is

(5-10) oo(n) == o(tH) = (oy(tH))vey = (td(V))vey.

Moreover, for /' —t > ty, parallel transport of £y(r) and fo(f') from W= (=1) to
W*I(ct/,,) along the relevant portions of +; and v, preserves the phase angles ¢y =
td(v), so by (5-8) the monomially admissible Lagrangian sections ¢_(#') and ¢.(¢) in
W_](c,/7,) have slopes

(5-11) oy = (dwv)— " (arg(cy )+ m)yey and
(5-12) o () = (tdv)—V°(arg(cy ) — T)vev,

where we take arg(cy ;) € (—m,m); the values of arg(—cy ;) in these two formulas
differ by 27 because we consider parallel transport from —1 to ¢y, clockwise around
the origin for ¢, (¢) and counterclockwise for £_(¢').

Let ¢ and ¢ be two monomially admissible Lagrangian sections, expressed as the
graphs of dK and dK’. If the slopes of K and K’ differ by amounts that aren’t multiples
of 27, then the intersections of ¢ and ¢’ remain within a compact subset of (C*)", and
their Floer cohomology is well-defined. We claim that HF*(¢', £) only depends on the
slopes. (As we shall see in the argument below, this is an instance of the invariance
of Floer cohomology under Hamiltonian isotopies which preserve admissibility and
disjointness at infinity, and follows from the existence of well-defined continuation
maps; see [GPS1, Lemma 3.21] for the analogous result in the setting of Liouville
sectors.)

Proposition 5.6 Let { = T'yx and ¢/ = Tyx be two monomially admissible La-
grangian sections, with slopes o(K) = o and o(K') = o', and assume that oy — o), &
277 ¥v € V. Then HF*(¢',¢) only depends on the slopes o and ¢’ of K and K'.
Moreover, if K’ — K is convex then the Floer cohomology is concentrated in degree
zero and

0 ~
(5-13) HF'({', 0) = @ K - 9,.
PEP(c’'—o)NQTZ)"
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Proof First we prove invariance. Given any two Hamiltonians Ky, K| with o(Ky) =
0(K1) = o, the convex combinations K; = (1 — s)Kg + sK; also have slope o, and the
graphs ¢; = I'jk, are monomially admissible Lagrangian sections. Similarly, given
Kj, K} with 0(Kpy) = o(K}) = o', we set K] = (1 — 5)K{ + sK| and £ = Tggr. We
then define continuation maps

Py - CF*(€6,€()) — CF*(KI ,61) and (I)]O : CF*(EII,&) — CF*(Eé),fo)

by counting index zero J-holomorphic strips u# : R x [0, 1] — (C*)" with moving
boundary conditions given by £, (for s a suitable function of the real coordinate) along
R x 0 and ¢, along R x 1.

Since the slopes of K; — Ky and Ki - K(’) are all zero, the Hamiltonian vector fields
X = Xk,—k, and X' = Xk1 k! (which generate the isotopies of the moving boundary
conditions ¢; and /) satisfy d°h(X) = d°h(X’) = 0 outside of a compact subset
(where we recall that # = max{hy} = max{|z*|'/4™}). More precisely, the vanishing
of (V(K; — Ky),V) and (V(K| — K{)),V) implies the invariance of the monomial z"
under the flows of X and X’ at all points of Cy N W~1(c) which lie outside of Y™, and
hence the vanishing of d“hy(X) = ﬁhvd arg(z¥)(X) and d°hy(X).

This in turn implies that J-holomorphic strips with moving boundary conditions ¢
and ¢;, satisfy the maximum principle with respect to the proper function % outside of a
compact subset of (C*)", and hence that the continuation maps ®¢; and ®( are well-
defined. The argument is similar to the last part of the proof of Proposition 3.11: the
vanishing of d°h on the tangent spaces to the monomially admissible Lagrangians £y, £,
and on the vector fields X and X’ along which these boundary conditions move implies
that the restriction of d°(hou) to the boundary of the strip R x [0, 1] vanishes identically
(outside of #~'(Y™)), and the result then follows from the maximum principle with
Neumann boundary conditions.

The usual argument for Floer continuation maps then shows that ®g; and @ are
chain maps, and that ®g; o ®1 and P19 o $¢; are homotopic to identity; it follows that
HF*(€6, EQ) >~ HF*(EII y 61)

We now turn to the second part of the statement. Assume that K’ — K is convex,
and observe that the generators of CF*(¢’, ) correspond to points where dK’ and dK
differ by an integer multiple of 27, i.e. V(K' — K) € (2nZ)". By Lemma 5.4, the
set of possible values of V(K' — K) is P(¢' — o). For each p € P(c/ — o) N 27Z)",
the function K'(§) — K(§) — (p,&) is convex; up to a small perturbation (preserving
convexity) we can assume that its critical points are non-degenerate. Convexity then
ensures that the critical point (guaranteed to exist by Lemma 5.4) is unique and a
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minimum, so that it contributes a single generator to CF°(¢', £), which (up to a suitable
rescaling, see below) we denote by ¥,,. Taking the direct sum over all p, we find that
the Floer complex CF*(¢',{) = span{0,, p € P(¢' — 0) N (2wZ)"} is concentrated in
degree zero, which in turn implies the vanishing of the Floer differential, and (5-13)
follows. i

As a general convention, we rescale all generators of the Floer complexes for mono-
mially admissible Lagrangian sections by their action (suitably defined, see below),
using the exactness of these Lagrangians to eliminate geometrically irrelevant powers
of the Novikov variable and ensure that continuation isomorphisms map generators
to generators. In the setting of Proposition 5.6, given ¢ = I'yx and ¢/ = Ty with
K’ — K convex and p € P(o’ — o) N (2nZ)", and denoting by &, the critical point of
K'—K—{(p, ), we define the action of this intersection point to be the associated critical
value of K’ —K — (p, -), and the generator we denote by 4, is actually X' €)=K&) = (&)
times the standard generator associated to the intersection point. (Of note: our basis
depends not only on the Lagrangians ¢ and ¢’ but also on the normalizations of K and
K’ different choices yield differently scaled bases, which can be related explicitly by
isomorphisms mapping each generator to a power of ¢ times a generator.)

Proposition 5.7 Let ¢ = Ty, ¢/ = T'ygr, and ¢" = T g be three monomially
admissible Lagrangian sections, such that none of the pairwise differences of their
slopes o,0’, 0" is a multiple of 27. Assume moreover that K" — K’ and K’ — K are
convex. Then for any p € P(c' —o)N(2nZ)" and p’ € P(c” — o’')N (2w Z)", the Floer
product of ¥, € HF'(¢', ¢) and Uy € HF (0" ") is given by

(5-14) Oy -0y =0y € HF'(L", 0).

Proof Welift ¢, ¢’ ¢" to the universal cover T*R" of (C*)" by considering the graphs
7,7 and 7" of d(K + (p,-)), dK’', and d(K" — (p',-)) respectively. By construction,
the generator ¥, lifts to an intersection point of 7 and 7', and similarly ¥,y lifts to an
intersection of / with /. Thus, any holomorphic disc in (C*)" contributing to the
Floer product of 1, and ¥,/ lifts to a disc in the universal cover with boundary on 7,7
and 7. Tt follows that the output of the disc corresponds to an intersection of ¢ with
7", i.e. a critical point of K” — K — (p +p',-); hence ¥, - ¥,/ is a multiple of 9, .

Denote by §,, &, and §,;,; € R" the critical points of the convex functions
K —K—{(p,-),K'"—K —(p,-),and K" — K — (p+p', -) respectively. By Stokes’
theorem, the symplectic area of any holomorphic triangle contributing to the coefficient
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of ¥4, in ¥, - ¥, is equal to the difference of the actions of the input and output
generators, i.e.

(5-15) (K”(ngrp’) — K(&pipr) — p +p,a §p+p/>)
— (K'(&) — K(&) — (p, &) — (K"(§) — K'(§) — (P, &)

Thus, since our chosen bases of the Floer complexes are already rescaled by action,
the powers of ¢ cancel out and each holomorphic disc contributes £1.

It remains to show that the overall count of discs is +1. Since our calculation is at the
level of Floer cohomology, the count we consider is homotopy invariant and we can
deform the Lagrangian submanifolds 7, # and #” to simplify the problem. We use the
same trick as [Ha, Proposition 3.22], and replace K and K” by modified functions K
and K" such that

K' —K) &) =K —K/(E+&) and (K" —K')E) = (K" — K)(E+&y).

This modification ensures that K’ — K and K” — K’ remain convex and have the same
slopes at infinity as K’ — K and K” — K, but the critical points of K’ — K — {(p,-)
and K” — K’ — (p',-) now lie at the origin; considering their sum, the critical point of
K" — K — (p+p',-) also lies at the origin. (A note of caution: modifying K’ — K
and K” — K’ by translations in the £ coordinate in this manner doesn’t quite preserve
monomial admissibility, as the control over arg(z") is now achieved over a slightly
smaller subset of (C*)"; since the collection of these modified subsets still covers the
complement of a compact subset, this does not affect in any significant manner the
maximum principle arguments we use to control holomorphic curves.) Thus we have
reduced the problem to the case where 7, 7 and 7" all intersect (transversely) in a
single point (near which they are the graphs of the differentials of functions whose
differences have non-degenerate minima). The formula (5-15) now shows that any
holomorphic disc contributing to the Floer product must have area zero, i.e. the only
contribution is from the constant map. By linearization and reduction to a product
setting, the constant disc is easily checked to be regular and contribute +1 to the count
(using the preferred trivializations of the orientation lines at even degree generators
and the sign conventions from [Se2, Section 13c]). O

Next, we consider continuation elements (quasi-units) for the action of the wrapping
Hamiltonian H on monomially admissible Lagrangian sections in W—!(—1) ~ (C*)".
Recall that H is proper and convex by Proposition 4.22; to simplify normalizations,
we assume that its minimum value is zero (otherwise the formula below should be
corrected by a factor of (7 ™inH),
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Proposition 5.8 Let ¢/ = [';x be a monomially admissible Lagrangian section in
(C*", and ¢! = ¢™(¢) = Tyk+rm) its image under the time T flow of the wrapping
Hamiltonian H for T > 0 chosen so that T7d(v) & 2nZ ¥Yv € V. Then the quasi-unit
e=epy € HFY({', 0) is the generator e = )y corresponding to the minimum of H .

Proof As in Section 3.4 (now working in (C*)" rather than in Y'), the quasi-unit ey ¢
is defined by counting solutions to a Cauchy-Riemann equation whose domain X is a
disc with a single output boundary puncture, with moving boundary condition along
0% given by the images by ¢ under the flow generated by H. Such a disc lifts to the
universal cover T7*R” as a disc whose output marked point maps to an intersection of
the graphs of dK and d(K + T7H); it follows that e is a multiple of ¥.

The count of solutions to the Cauchy-Riemann equation is homotopy invariant, so
we modify the setting slightly from Section 3.4 in order to make it apparent that the
only contribution is from the constant solution at the point of ¢ where H reaches its
minimum. Denote by 7 the 1-form on 0% (vanishing near the puncture) such that the
variation of the boundary condition along 0% is induced by the flow of Xy ® 1. Then
we consider the perturbed Cauchy-Riemann equation

(5-16) (du — Xy @ ) =0,

where « is a sub-closed 1-form on X (da < 0) which vanishes in the output strip-like
end and satisfies «jpx = 7).

As in [Ab, Appendix B], the geometric energy
Egeo(u) = / ldu — Xp ® aHZ = / wow —u"(dH) N o
X b
of a solution to (5-16) and the topological energy

Erop(u) = / u'w —du* (H)a) = Egeo(u) — / u*(H)do
by by

satisfy 0 < Egeo(1) < Ejp(u) (since H > 0 and da < 0). Denoting by s a coordinate
along 0% and by #(s) the function such that the boundary condition at s is given
by qﬁ’“)(ﬁ) = I'k14su (so 1(s) decreases from 7 to zero along the boundary, and its
differential coincides with 7), Stokes’ theorem gives

Eop(u) = / —W*(dK)+t(s)u*(dH)) —u*(H)n = / —d(u* K +t(s)u*H) = 7 Hyyy,
ox ox

where H,,, is the value of H at the output marked point, i.e. zero. Thus any solution
has vanishing geometric and topological energies, i.e. it is a constant map at the point
where H reaches its minimum. Moreover, the constant map is regular (using the fact
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that its index equals the degree of the output generator, i.e. zero, and the linearized
Cauchy-Riemann operator is injective since essentially the same argument as above
shows that the energy of any element of the kernel must be zero); thus the count
of solutions is 1. Since the sign is independent of ¢ and 7, it follows from the
multiplicativity of quasi-units (e, o = ey - ep o, see e.g. [Ha, Proposition 3.15]) that
the sign is 41, and thus e = 9. m|

Finally, we consider the Floer theory of admissible sections with Lagrangian tori, which
will allow us in the next part to reduce Floer-theoretic computations involving non-

compact Lagrangians to computations involving only tori. Given x = (x1,...,X,) €
(K*)*, we denote by t, the Lagrangian torus {{} x T" consisting of those points of
(C*)" whose moment map coordinates satisfy & = —ﬁval(x,-) foralli =1,...,n,

equipped with a rank one unitary local system over K whose holonomy y; around
the i-th S! factor satisfies x; = Fzﬁéiyfl. Given a Lagrangian section ¢ = 'y,
the Floer complex CF*(¢,t,) has rank one, and we denote by ¢, a suitably rescaled
generator: namely, we define ¢, to be rX© times the element of the local system at the
intersection point (£, dK(£)) obtained by parallel transport of a fixed element at (&, 0)
from the origin to dK (&) along t,.

Proposition 5.9 Let { = T'yx and ¢/ = Ty be two monomially admissible La-
grangian sections, whose slopes o and o’ do not differ by a multiple of 27 and such
that K’ — K is convex, and let t, be the Lagrangian torus with local system associated
to the point x € (K*)" as above. For p € P(¢’ — o) N (2wZ)", the Floer product of the
generators ¥, € HF'(¢', () and e, € HF°({, t,) is given by

(5-17) ey Uy =P gl

where p = p/2n € 7", ¥’ = [[ A" € K*, and &, is the generator of HF({',t,)
rescaled in the same manner as €.

Proof The argument is similar to the proof of Proposition 5.7. We lift ¢ and ¢’ to
T*R" by considering the graphs / and 7' of d(K + (p,-)) and dK’, which intersect
at a lift of 1J,, and lift t, to the cotangent fiber at { = —ﬁval(x). Any holomorphic
disc contributing to the Floer product of ¥, and ¢, lifts to 7*R", and its symplectic
area can be calculated by integrating d(K’ — K — (p, -)) from &, to £, where &, is the
critical point of K’ — K — (p, -), which gives

(K'(©) — K(©) — (p,€)) — (K'(§) — K(&) — (P, &))-

The contribution to the Floer product also involves a holonomy factor, given by the
ratio between the parallel transport of ¢, along t, from (£, dK(§) + p) to (§,dK’(£))
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and ¢/.. Given the above choices of normalizations of the generators ¥,, ., and &',
we find that the contribution of each holomorphic disc to the coefficient of €/ in the
product of €, and ¥, is, up to sign, %€ times the holonomy of t, along a closed
loop whose lift to the universal cover runs from (&, dK(¢) + p) to (£,dK(&)). This
loop represents the homotopy class —p € Z" ~ m(T"); hence, the holonomy can be
expressed as y 7, and one ends up with

t_<p’£> y_[_J — xp‘

It only remains to show that the signed count of holomorphic discs contributing to the
Floer product of €, and 9, is +1. Since this count is invariant under deformations, it
does not depend on the value of £ (the position of the cotangent fiber), and it suffices
to determine it for a particular value of §. We take § = §,, when all three intersection
points coincide and the only contribution is from the constant map, which is regular
and contributes +1. O

5.4 Floer products on HF*(Ly(t'), Ly(1))

We now return to our main topic, namely the calculation of the Floer cohomology
HF*(Lo(?'), Lo(t)) for ¢ >t and its product operations. As seen in Example 5.5, the
slopes of the monomially admissible Lagrangian sections £o(z'), £o(t) C W=1(—1) and
0_(t),+(t) C W™ l(cp,) (for £ — t > tp) are given by (5-10)~(5-12).

Definition 5.10 For 7 > 0, we define
(5-18) o0(T) = (TdW)yey and o1(1) = (1d(V) — 2 )yey

and denote by Py(7), P1(T) the corresponding polytopes defined by (5-9).

Since H is convex by Proposition 4.22, the results of Section 5.3 apply to the pair
(Lo(t'), Lo(r)) whenever ¢ — ¢t > 0. However, because the clockwise monodromy of
W : Y — C does not act by a convex Hamiltonian, there is no similar guarantee for
the pair (/_(¢'), £, (r)); nonetheless, o1(7) is the slope of a convex Hamiltonian for
7 = ' —t sufficiently large (larger than some constant ¢; > fy), so Propositions 5.6-5.9
apply to the Floer cohomology HF*(¢_(¢'), ¢, (t)) whenever ' —t > 1.

Proposition 5.11 For 7 =1 —t € (0,1) N U, the Floer complex CF*(Ly(t'), Lo(1))
is concentrated in degree zero, the Floer differential vanishes, and

(5-19)  HF'Lo(!), Lo@) ~ HF(b(!), o) = P K- 9,7,
PEPy(t' —)NQTZ)"



Homological mirror symmetry for hypersurfaces in (C*)" 69

where the generators 19;_” correspond to the intersections of £y(f') and (y(t) inside
W—1(—1), rescaled by action as explained in Section 5.3.

Fort =1 —t € (t;,00) N U, the Floer cohomology HF*(Lo('), Ly(t)) is isomorphic
to the cohomology of the complex

(5-20) {HFO(E_(I’), 04 (1) = HF(Go(?), eo(r»} ~

{ & wgvs @ wo

pEP (' —HNQ2TZ)* pEPY({t' —)NQ2TZL)"

where the generators Cf,'_” (in degree —1) and 19;,/ ! (in degree zero) correspond to
intersections of ¢_(t") and ¢ (t) inside W_l(c,/J) and to intersections of {y(') and
lo(t) inside W= (—1), rescaled by action within the fibers of W; and s = Sgo,t’,t is
defined by a weighted count of J-holomorphic sections of W : Y — C over the
bounded region of the complex plane delimited by -y, and -y, .

Proof This follows immediately from Propositions 5.2 and 5.6. a

Remark 5.12 There are two ways to understand the complex (5-20) and its relation
to the Floer complex CF*(Lo(t'), Lo(t)) for ¢/ —t > t;.

(1) Perturbing Ly(#') or Lo(f) by an admissible Hamiltonian isotopy (preserving the
fibers of W, and preserving fiberwise monomial admissibility) if necessary, we can
assume that (suitably perturbed versions of) the monomially admissible Lagrangian
sections ¢_(¢') and ¢, (¢) differ by a convex Hamiltonian. After such a perturbation,
both of the Floer complexes CF*({_(¢'), £4.(t)) and CF*({o(t'), £o(1)) are concentrated
in degree 0 and their differentials vanish, so that CF*(Ly(t'), Ly(?)) is given by (5-20).

(2) Alternatively, consider the filtration 0 C CF*({o(t'), Lo(t)) C CF*(Lo(t), Lo(1)),
which is compatible with the Floer differential and products, as any holomorphic disc
contributes in a manner that decreases the filtration index by its intersection number
with the fibers of W near the origin.®> This filtration gives rise to a spectral sequence
computing HF*(Lo(t), Lo(t)), in which the second page (after taking the cohomology of
the portion of the differential which preserves the filtration index, i.e. the contributions
of holomorphic discs contained in the fibers of W) is precisely (5-20).

*Reinterpreting Floer generators as Hamiltonian chords on Ly, their filtration index is their
intersection number with the preimage under W of the real positive axis, making this an instance
of the filtration associated to a stop (and its removal) in partially wrapped Floer theory [Sy1].
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Definition 5.13 We call the complex (5-20) (or (5-19) for ' —t € (0, ty)) the vertical
Floer complex of Ly(f') and Lo(?), and denote it by CF?,,,(Lo(t'), Lo(t)).

The vertical Floer complex carries a Floer product operation
(5-2D) CFon(Lo(?), Lo(1)) @ CFy,, (Lo(t"), Lo(t")) — CFy,,,(Lo(t"), Lo(1))

for ’ > ' > t; this can be understood either as the chain-level product ;> after suitable
fiberwise perturbations, or as an induced product on the second page of the spectral
sequence computing the Floer cohomology (using the fact that the product operation
is compatible with the filtration). It follows from the algebraic properties of the Floer
product that this operation is associative and satisfies the Leibniz rule with respect to
the section-counting differential s.

Proposition 5.14 Assume " >+t > t,and ¢ —t,/" — 1,/ — 1 € U, and label the
generators as in Proposition 5.11. Then the Floer product (5-21) is given by:

e forp € Po(f — )N Q7ZY" and p' € Po(t" — ') N 2rZ)",

9h 9 = 9 e HE(Go("), Lo(0);

e whent —t>t,forp e P\({ —t)N2nZ)" and p' € Po(t" — )N 2rZ)",

G Iy = o G € HEY(U- (), £20),

where Cy_,p, is a nonzero constant (independent of p and p’);
e whent" —1 > 1, forp € Py(f — )N Q2rZ)" and p’ € P\({" — )N 2nZ)",
07 G = Cr gy G € HFY(E- (1), £4(1)),
where Cy y_,; is a nonzero constant (independent of p and r');

/ " / / / 14t
* whent —t>ty and (" —1¢ > 1, forall p and p', ¢; 7" - (;, 7" =0.

Proof Since the projection W : ¥ — C is holomorphic away from a neighborhood of
the zero fiber, it follows from the open mapping principle and from degree constraints
that all the holomorphic discs contributing to the Floer product are either contained in
the fiber W—!(—1) or sections over a triangular region of the complex plane delimited
by the arcs v, vy and -y, (see Figure 5).

When both inputs lie in W~!(—1), the output must also lie in W—!(—1) for degree
reasons, and the only contributions come from discs contained inside W—!(—1). Given
the relative positions of the tangent lines to 7., vy and -, at —1, the base of the
fibration W : ¥ — C doesn’t contribute anything to the index of the Cauchy-Riemann
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operator, so the product operation agrees with the product on the Floer complexes of
the monomially admissible sections £(7”), £o(#') and £o(f) within W—1(—1) ~ (C*)".
Hence, using the same normalization of the generators as in Section 5.3, it follows

e =t gt =t _ gt —t
from Proposition 5.7 that ¥/}, 0,7 =10,

Next we consider the case where one input lies in W*I(C,IJ) (with #/ — ¢ > 1) and the
other one is in W—1(—1). The output then necessarily lies in W_l(c,//J) for degree
reasons, and the contributions to the Floer product come from holomorphic sections
over the triangle 7;»_,y , delimited by ~,/, 7y and ~; with vertices at —1, ¢y, and
¢ . Since we are considering cohomology-level operations on the fiberwise Floer
complexes, the count we consider is homotopy invariant under deformations; it is in
fact one of the operations of the cohomology-level “Seidel TQFT” [Se2] associated
to the fibration W : ¥ — C (in a fairly simple case, since the region over which
we count sections does not contain the critical value 0). Thus, we can simplify the
counting problem either by trivializing the fibration and deforming the symplectic and
complex structures to product ones over 7/ _,y,, or more simply, by deforming the
arc -y, (without crossing the origin) by a compactly-supported isotopy in order to bring
the intersection points ¢y, and ¢, ; to —1 and shrink the triangular region 7,y ; to
a single point. After this deformation, we are once again reduced to a calculation of
the Floer product for the admissible Lagrangian sections within a fiber of W, as the
horizontal direction does not contribute to the index of the Cauchy-Riemann operator.
Since the slopes of the relevant admissible Lagrangian sections differ by o (¢ — r) at
one input and by oo(z” — ') at the other, it follows again from Proposition 5.7 that, for
all p € Pi( — )N Q2rZ)" and p’ € Py(t’ — ') N (2wZ)", the product of CI’;H’ and
;/Jlr;’,’ up to a scaling factor (some power of the Novikov parameter)
coming from the amount of symplectic area swept in the deformation to a single fiber.

" /.
U5, 7" is equal to

Next we show that, when all the generators are normalized by action within the fibers of
W, the coefficient of ;’j;,’ in the product of CI’,’_" and 29;; ;=" depends only on ¢, 7t
but not on p and p’. Let K, : R” — R (resp. K., K”) be such that the intersection
of Lo(t) (resp. Lo(t'), Lo(t")) with W~!(c) is the graph of dK, (resp. dK’,dK") for
each ¢ € ~, (resp. vy, ). Normalizing K,.,K/,K! suitably, we can ensure that
they vanish at £ = 0, and that a holomorphic section u of W: Y — C over Ty,
which contributes to the product of C;,/%’ and 791’;/9" lifts to the universal cover of
W‘1(7;u_>,/,,) as a section with boundary values on the graphs of dK. + p, dK_., and
dK] — p’ for each ¢ € 0Ty _,y,. With this understood, the holomorphic section u

represents the same relative homology class as the chain obtained by adding together:

(1) the “zero section” of W over T;»_,y ;, consisting of the points with moment map
coordinates ¢ = 0 and angular coordinates 6; = arg(z;) = 0 in each fiber;
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(2) overeachedge of 7,7,y , apathineach fiber W), ce 0Ty 4, connecting
the zero section to the boundary value u(c) of the holomorphic section u by
running first along ¢ = 0 from the origin to dK.(0) + p, dK.(0), or dK(0) —p’,
and then along the graph of dK, + p, dK/., or dK!! — p’ from £ = 0 in a straight
line to the £-coordinate of u(c);

(3) over each vertex of Ty»_yy, achainin W=1(c) (¢ € {—1, ¢y, ¢, }) which lies
over a straight line path from £ = 0 to the &-coordinate of u(c), and for each
&-value runs in a straight line from dK/(¢) to dK!'(¢) — p’ (for ¢ = —1), resp.
dK (&) + p to dKi(§) (¢ = cp ), tesp. dKc(§) + p to dKJ(§) — p' (¢ = cpry).

Denote by A,y ; the symplectic area of the first part of our chain (the “zero section”),
which manifestly does not depend on p and p’. The second portion of our chain (over
the edges of 7,y ;) runs partly along the Lagrangians obtained by parallel transport of
the torus {£ = 0} over 74, vy, ¥, , and partly along the Lagrangians Lo(7), Lo(t"), Lo(t"),
so its symplectic area vanishes. Finally, the third piece (over the vertices) contributes at
each vertex an area equal to the fiberwise action of the corresponding Floer generator,
given that we have normalized the Hamiltonians K., K/, K/ so that they vanishat £ = 0.
For instance, the portion which lies in W_l(c,/J), over the path from 0 to § = &, and
between the graphs of dK, + p and dK., has symplectic area given by the integral of
dK| —dK.—p from zero to &,, i.e. (K.(§,) — K.(&p) — (P, &p)) — (KL(0) — K.(0)), which
coincides with the fiberwise action for the generator C[’,/_" within W‘l(cm) since the
last term vanishes. Similarly at the two other vertices. Because a rescaling by action
is built into the definition of our Floer generators, this implies that the coefficient of

" 1 / " /.
IIH’;}/ in the pI'OdllCt C;; -t 79;)/ —" is Ctllg)tl,t = tAt”%t’,t .

The case of the product 19;' -t C;’,'_”/ is handled by exactly the same argument,
deforming the problem from a count of sections over a triangular region of the complex
plane to a fiberwise Floer product and appealing to Proposition 5.7. Finally, the product
of two degree —1 generators vanishes for degree reasons. m|

For x = (x1,...,x,) € (K*)" and t € R, we denote by 7 (¢) the admissible Lagrangian
with local system obtained by parallel transport over the arc ~; of the Lagrangian torus
with local system t, introduced in Section 5.3. To be more specific, we fix a T"-
equivariant structure on the local system of t,, i.e. a family of isomorphisms between
the local system and its pullbacks under rotations by elements of 7". (This can be
done e.g. by thinking of the local system as a trivial complex line bundle equipped with
a translation-invariant connection.) With this understood, t, is invariant under both
parallel transport between the fibers of W and the action of the wrapping Hamiltonian,
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and the restriction of 7,(¢) to the fiber of W over any point of ~, can be identified (as
a Lagrangian submanifold with local system) with t,.

For ¢ —t > 19, Lyo(f') and T,(¢) intersect transversely once in W~1(=1) and once
in W=(cy ,); we denote by e~ ¢ HF(Uy(1'), t,) and 1" =" € HFO(_(/), %) the
corresponding Floer generators, rescaled by action as in Section 5.3. We now consider
the Floer product

(5-22) CFyop(Lo(t), Te(1)) @ CF, (Lo(t"), Lo(1) — CFy,,(Lo(t"), T(1)).

Proposition 5.15 For? —t > 1y, CF*

vert

(Lo(1), To(t)) = CF*(Lo(t), Ty(1)) is given by

X

(5-23) {K ot S K sﬁﬁf},

where the generators 17;'_" (in degree —1) and s;' ! (in degree zero) correspond to
intersections of {_(t') and lo(?') with t, inside W~ '(c, ;) and W='(—1) respectively,
rescaled by action, and sy is defined by a weighted count of J-holomorphic sections
of W : Y — C over the bounded region of the complex plane delimited by ~; and ~, .

Moreover, givent’ >t >t with t' — t > 1y, the Floer product (5-22) is given by:
e forp =2mp € Py(t" — )N 2Ly,

e = el e HF'(lo(!"), ) and

X

00, 70 = Cemoy A 7€ HFY(E- (1), 1),

X
o ifmoreover " — 1t > 1, then for p = 2wp € P1({" — )N Q2nZ)",

TG = Cepr ol il T € HFO(U_(1), 1)

! 1 /
and n, " - ¢, 7" = 0.

Here Ceyr_spy and Ceyn y_y, are non-zero constants which depend on 1”7t and
possibly on & = —ival(x) but not on p.

Proof The proof is identical to that of Proposition 5.14, except after reduction to a
Floer product within the fiber of W we now appeal to Proposition 5.9. The other
difference with our previous argument is that the scaling constant Cg¢v_,y, is now
determined by the symplectic area of a reference section of W over 7Tv_,y; whose
edge along v, lies at the £-value of t,,i.e. £ = —ival(x), rather than at £ = 0, hence
it generally depends on &; similarly for Ce.p ;. ad

Our next result concerns the quasi-units induced by continuation:
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Proposition 5.16 For ' > ¢, the quasi-unit ¢ 7' € HF(Ly(f"), Ly(t)) is given by
ol =t — 9t

o
Proof 1t suffices to prove the result for ¢ — ¢ € (0, 1), as the general case follows
using the multiplicative property of quasi-units (¢’ 7' = e’ ™. ¢! = for ¢’ > 1 > 1)
and Proposition 5.14.

Recall that the quasi-unit is defined by counting solutions to a Cauchy-Riemann equa-
tion whose domain X is a disc with a single output boundary puncture, with moving
boundary condition given by the Lagrangians Ly(7) for T varying between ¢ and 7.
Along 93, the boundary condition is obtained from the flow of Xx ®7 for some 1-form
1 on 0% and some Hamiltonian K, namely the sum of a Hamiltonian generating the
admissible lifted isotopy p”, cf. Lemma 3.8, which we assume to be supported over a
neighborhood V of UTGW,] v, and the wrapping Hamiltonian H. The restriction of
K to Lo(7) is proper and achieves its minimum at the point of W~!(—1) where H has
its minimum; we normalize K so that this minimum value is zero.

As in the proof of Proposition 5.8, we consider solutions to the perturbed Cauchy-
Riemann equation (du — Xg ® a)! = 0, and « is a sub-closed 1-form on ¥ whose
restriction to 0% agrees with n. Solutions to this equation satisfy the open mapping
principle with respect to the projection W : ¥ — C everywhere outside of V (where
Xk is not purely vertical) and a neighborhood of the origin (where W isn’t necessarily
J-holomorphic); this implies that solutions remain within W~=1(V), where the Kihler
form is exact and the same energy argument as in the proof of Proposition 5.8 shows
that the only solution is the constant map at the point of W—!(—1) where H reaches
its minimum. It follows that e’ ="' = 196 -t O

5.5 The Floer differential

Propositions 5.11-5.16 give all the information needed to determine the fiberwise
wrapped Floer cohomology HW*(Ly, Lo) and its ring structure, except for one key
piece of data: the differential of the complex (5-20), i.e. the section-counting map
s =8y g, HFO_ (1), L4(8) — HF({o(1'), £o(1)). We will first show that this map
is given by multiplication with a Laurent polynomial, then show that this polynomial
also controls the section-counting map for the parallel transport of the tori t,.

Fix ty >¢_ with ty —t_ > t1, and for p = 27p € Py(ty — t—) N (27wZ)"*, denote by
¢; € K the coefficients such that

(5-24) A (e B Z cp 0y
p
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Lemma 5.17 Forall Y >t suchthatt —t > t; and all p' € P\(f — 1) N\ 277Z)",
(5-25) S (G =CE 0> e
P

where C(7', 1) is a nonzero constant depending only on t and t'. Moreover, if ¢; # 0
then p € Py.

Proof The compatibility of the Floer product with the differential (i.e. the Leibniz
rule), together with the product formulas of Proposition 5.14, implies that

0 t'—t 't st
(5-26) Sfo,t/»f(gpl ) 19!72 =Gy Sfo " f(CPIJer)

forall (/ > ¢ >y with? —t > 11, p1 € P1({ —0)NQR7Z)", pr € Po(!’' —1)NQRTZ)";
and

=t 0 " —t' " —t
(5—27) 19[)]% Sf() " t’(cpzﬁ ) = C[” =t SZ() " I(CpH?pz)

forall (" > 1 > ) with"—¢ > t;, p € Po( —)NQR7Z)", p € P1({' —1)NQRTZ)".

We now deduce the lemma from these two identities. First, choose #/ > max(¢, ;)
such that P(¢' — t) C Po(f" — t). It follows from (5-26) for (' >t >t ), p;1 =0
and p, = p’ that, for all p’ € Py(f — 1) N 2aZ)" C Po(t" — 1) N 277",

=ty c! Ty—1_ "=ty 1 "=t
ZO 't (C )= t”—)t+ r— SZO ty o (C ) 19;;/ - Ct”~>t+ . 1917+p

p

Next, considering (5-27) for either (¢’ > t_ > 1) or (" >t > t_), with p; = 0 and
p2 = p’ again, yields

S (S = ¢, z)z 50t

for all p’ € Pi({ — 1) N (2wZ)", where C(’, 1) equals Ct,,
or C;, byt Cyr 4 if t > t_. This is precisely (5-25), except with " everywhere
instead of ¢'. Finally, we use (5-26), now for (t/ > ¢ > 1), py = p’,and p, =0, to

conclude that

C,l, L ift <t

ity r— ~>t

0 t'—t " t—t
S0 (G = Crsr s CA",1) Y cp 0y 0,
p

which is the desired result.

Moreover, the final step of the calculation implies that p + p’ € Po(¢' — ) N (27 Z)" for
all p = 2mp such that ¢; # 0 and for all p’ € P;(f' — )N (27Z)". Recall that Po(r' — 1)
is defined by the inequalities

(5-28) (7,-) < (¢ —dv)
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for all v = (¥,v°) € V, while P{(¢ — ¢) is defined by
(5-29) W, < (" = pdv) —2m?°

for all v € V, and P is defined by the inequalities (v,-) < V0 forall v € V (cf.
Definition 4.14). For every v € V), we can choose ¢ and ¢ such that P,(f — )N (2w Z)"
contains some p’ which realizes the equality in (5-29). Thus, since p + p’ satisfies
(5-28) whenever cp # 0, it follows that (p,V) < 2mP, ie. (p,v) <10, whenever
¢p # 0. Since this holds for all v € V, it follows that p € PN Z" = Py. a

Lemma 5.17 implies that the coefficients ¢; € K (p € Pyz) suffice to determine the
fiberwise wrapped Floer cohomology of Ly. More explicitly:

Proposition 5.18 Let g(x) = Zp cpxl_’ € K[xlil, .. ,x,jfl], and assume that g is not
identically zero. Then HW*(Ly, Ly) is isomorphic to the quotient K[xfl, . ,x,;—Ll] /(g)
of the ring of Laurent polynomials by the ideal generated by g.

Proof By Corollary 3.24, we can calculate HWW*(Ly, Lo) as a colimit of Floer coho-
mology groups HF*(Lo('), Lo(¢)) for ¢/ — t — oo. For /' —t > t;, we use Proposition
5.11 and Lemma 5.17 to identify CF;,,,(Lo(t"), Lo(r)) with a subcomplex of the chain
complex

(5-30) K, .o 5 Rl x]

where in degree 0 we identify 19; ! with the monomial x” forall p € Po(t —H)NQ7Z)",
and in degree —1 we identify C[’,/H’ with C(¢, 1) x? forall p € Pi(f — )N (2w Z)", and
the subcomplex corresponds to those Laurent polynomials whose Newton polytopes

. . . 1 1
are contained inside 5—Po(¢' — 1) resp. 5-P1(f' —1).

It follows from Proposition 5.14 that, with these identifications, the product operations
on these Floer complexes are given by multiplication of Laurent polynomials; and
Proposition 5.16 implies that the continuation maps as ¢ — 7 increases to infinity are
given by inclusion. Thus, the naive limit of the complexes (5-20) as ¢/ —t — oo is
given by (5-30).

Since by assumption g is not zero, multiplication by g is injective, and the cohomology
of (5-20) is concentrated in degree zero; specifically, HF*(Lo(t'), Lo()) is the quotient
of the space of Laurent polynomials whose Newton polytope is contained in ﬁPo(t’ —1)
by the subspace of those which are g times a Laurent polynomial with Newton polytope
contained in 5-P;(# — f). Taking the colimit under inclusion maps as ' — t — oo,
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we conclude that HW*(Ly, Ly) is also concentrated in degree zero, and we have an
isomorphism of K-vector spaces
HW (Lo, Lo) =~ KIx, . %1/ (9)-

This isomorphism is compatible with the ring structure, since by Proposition 5.14 the
Floer product operation corresponds to multiplication of Laurent polynomials. |

Given Proposition 5.18, the proof of Theorem 1.2 reduces to the determination of
the Laurent polynomial g. More precisely, we need to show that, after equipping
Y with a suitable bulk deformation class, g can be assumed to coincide with the
Laurent polynomial f defining the hypersurface H up to an overall scaling factor. To
this end, we first reinterpret g as a count of holomorphic sections with boundary on
the objects T,(¢) obtained by parallel transport of product tori with rank one local
systems. Recalling the calculation of the vertical Floer complex CF?,, (Lo(1"), Tx(1))
from Proposition 5.15, we have:

Proposition 5.19 For /' —t > t,, and for x € (K*)", the differential on the complex
CF(Lo(?), T(0)) is given by

sunf ) = Ce(f, D g,
where Ce(7', ) is a nonzero constant depending only on t, ¢, and § = —ﬁval(x).

Proof For 1’ > ¢ + 11, the compatibility of the Floer product (5-22) with the differ-
entials on the vertical Floer complexes implies that

11 !
Sx(nt ~>t) Ct 't 77; —t Sgo,t”,t(c(t) —t ) —0.

Using Lemma 5.17 and Proposition 5.15, this yields:
m#”)G%’—aWUEZ%M%’W%’—aﬂﬁcwqmgm%”f

Since s.(r)" ") is a multiple of 5’ =, comparing with the formula for /=" - ¢f'
given by Proposition 5.15 we conclude that

5ol ") = Cpr yyy CA' 1) Cer s 81V €L,
The result follows, setting Ct,, st Ct", 1) Cp_yp = Ce(t',1). |

Remark 5.20 Another way to prove Proposition 5.19, still using the Leibniz rule,
Lemma 5.17, and Proposition 5.15, is to argue that, for // > ¢ > ¢t with ¢/ — ¢ > 11,

*)Z‘) — C—l

& —t

_ Cg_tu t/_n // /) ZCP t—t 19’ "=t C{(l”,l‘) g(x) 6; —>t.

t//

sx(y

tl/

Sx(€t —t Ct =y ) _ C— Et —t S@O o t/(C()

A)t/)
&'t —t
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Next we consider the Floer complex CF?,, (T(t"), Ti(2)) for # —t > ty. The Lagrangian
submanifolds (with local systems) 7,(¢') and T,(¢) obtained by parallel transport of
t, over the arcs v, and ~y, intersect cleanly along tori within the fibers W~!(—1) and
W‘l(ctzy,), rather than transversely, so the definition of their Floer complex requires a
bit of care. One approach is to use a small Hamiltonian perturbation to achieve transver-
sality within the fibers of W; another approach that is better suited to computations is
to use a “Morse-Bott” model. Namely, we choose a Morse function on the n-torus,
and consider holomorphic discs with boundary in T\(¢') U T\(f) together with Morse
flow lines (within a component of Ty(#') N Ty(¢)) from the boundary marked points of
the disc to critical points of the Morse function; see for example Section 4 of [Sh] (with
the difference that we only use Morse theory within the fibers of W, while in the base
direction we have usual strip-like ends). Equivalently, instead of involving Morse flow
lines, one could simply require the boundary marked points of the holomorphic discs
to lie on the stable or unstable manifolds of the Morse critical points.

Regardless of the chosen approach, the Floer complex is built from two copies of the
fiberwise Floer complex CF*(t,, {,), corresponding to generators and Floer trajectories
which lie entirely within each of the two fibers W™ '(—1) and w—! (cr 1), together with
a connecting differential which counts J-holomorphic sections of W : ¥ — C over
the region delimited by ~; and ~, (with the usual caveat regarding our use of the
word “section” since J differs from the standard complex structure near W—'(0)), with
boundary on t,, and satisfying incidence conditions at —1 and at ¢, ;.

As before, we denote by CF:,,,(T.(1"), Ty(r)) the “vertical Floer complex” obtained by
taking the cohomology with respect to the contributions to the Floer differential which
lie entirely within a fiber of W. Since t, C (C*)" does not bound any holomorphic
discs, the Floer differential on CF*({,, t,) only involves a classical part, and reduces to
the usual cohomology of 7" (with coefficients in endomorphisms of the local system,

which are canonically isomorphic to the ground field K). We claim:

Proposition 5.21 For ¢ —t > ty, and for x € (K*)", the vertical Floer complex
CF?, (T(t), T\(2)) is given by

(5-31) {H*(T”,K) N H*(T",K)},

where the connecting differential s, defined by a weighted count of J-holomorphic
sections of W : Y — C over the region delimited by ~; and -y, with incidence
conditions on cyclesin t, at —1 and ¢y ;, is given by multiplication by C’g(t’, Hegx) eK
for some non-zero constant Cé(t’ ,1) depending only on ¢, and £ = —ﬁval(x).
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The first part of the statement is clear from the above description of the Floer complex
CF*(T\(t"), Tx(1)); the remaining part, namely showing that the differential s, is given
by multiplication by g(x), relies on an algebraic argument similar to the proof of
Proposition 5.19 using the Leibniz rule. Thus, we first need to establish a couple of
lemmas (analogous to Propositions 5.14 and 5.15), before providing the proof.

We denote respectively by 6° " and 177" the elements which correspond to 1 €
HY(T",KK) in the left and right summands of (5-31); given o € H*(T",K), the
corresponding elements of the left and right summands of (5-31) are denoted by
a6 and o177, With this notation, we have:

Lemma 5.22 Assuming t' —t >ty and ' — ¢ > 1y, the Floer product
CFyo(Tu(1), Ti(1)) ® CFy,, (To(t"), To(t')) — CFy (To(t"), To(1))
is as follows: for all o, o/ € H*(T",K),

@17 @107 = (@—a)1l ™,
(@0 (@' 157" = Copryp (@ —a)ot ™,
(@157 (@87 7") = Cenyy(a—a)ot ™,
(@™ (@ 8"y = 0

where Cé;t,,_”,,t, Cé;t,,J,_n € K* depend only on 1,1, ¢’ and £ = —ﬁval(x).

Proof The proof is essentially the same as for Proposition 5.14: by considering the
projection under W : Y — C, we find that the only holomorphic discs contributing
to the Floer product are either contained in W~1(—1), or sections over one of the
two triangular regions delimited by ~,#, v and ~,; in the latter case, we use a
deformation argument to shrink the triangular region to a single point and reduce to
a count within the fiber of W. Either way, things reduce to the Floer product on
HF*(t;,t,) >~ H*(T",K), which coincides with the ordinary cup product since there
are no non-constant holomorphic discs in (C*)" with boundary on t,. As in the
proof of Proposition 5.14, the constant factors Cé;t,, v, and Cé;t,,J, Lt
symplectic area of a reference section (now chosen to lie at the same &-value as &,
ie. & =— ﬁval(x)) over the appropriate triangular region of the complex plane, which
turns out to coincide with the amount of area swept in the deformation used to reduce
to a single fiber. m|

account for the

Lemma 5.23 Assumet —t >ty and " — ¢’ > ty. The Floer product

CFyo(To(?), To(D) @ CFy,, (Lo(t"), Tx(t)) — CFy, (Lo(t"), Tx(1))
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vanishes identically on elements of the form (o 107") or (a 6L ") whenever « is a
cohomology class of positive degree, whereas

vt 1"t 1t =t st st
1x - = Cf;t”,l’—)t My s lx * &y =& y
=t "=t _ t—t =t 1=t
6)( “Ex =Ceamary My s 5)6 “ Ty = O,
where Cg;t”at’,t’ Cg;t”,t’%t € K* depend only on t,¢',¢" and £ = —ﬁval(x).

Proof The argument is again similar, reducing to the calculation of Floer products
within the fiber W—!(—1) ~ (C*)", specifically the product

HF" (t, t0) @ HF*(o(1"), t) — HF"(bo(t"), o).

The vanishing for elements of HF*(t,, t,) ~ H*(T", K) of positive degree then follows
from the fact that HF*(£y(¢"), t,) has rank one and is concentrated in a single degree;
whereas 1 € HY(T", K) ~ HF(t,, t,) acts by identity by cohomological unitality. O

Proof of Proposition 5.21 Given ¢, with ¥ —t > 1y, choose ¢’ sothat / > 1 +1,.
The compatibility of Floer products and differentials on vertical Floer complexes (the
Leibniz rule) implies that

5007l T = 8T s ) =0,

which using Proposition 5.19 and Lemma 5.23 yields:

sx(O8 )l 7 = Ce(? 1) g () 8 € 7 = Clin Ly, Ced 1) gl
Using again Lemma 5.23 (and degree constraints), it follows that

55007 = Cap sy Clrr Cel” 1) g0 1.
Setting Cé(t’, = Cg;;,l,,,ﬁt lel;t”ﬁt’,t Ce(1",7'), we rewrite this as
5u(@071) = Cet' D g0 157

whenever ' — t > fy, which is the desired result for the generators of HY(T", K).

To extend the result to higher degree cohomology classes, we use the product formulas
of Lemma 5.22: given ¢’ > t + 1y, and choosing " > ' + 1y, the Leibniz rule implies
that

sx(@ 807y 0 7 = (@8l - s (8L ) = Celd” 1) g(x) (8L ) - 1

= Cloryy, Cel” 1) g(0) (@ 0L ™),
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and hence
5:(@ 801y = Chor yyy Chn yp Celt”, 1) () (@ 1577) = C(?', 1) g() (1571,

where the identity Cé(t’ D) = C’Eg,l,ﬁ, e Cé;t,, oy ,Cé(t” ,t') follows from considering

the special case o = 1. |

Given Propositions 5.18 and 5.21, the remaining step in the proof of Theorem 1.2 is a
direct calculation of the differential in (5-31), with the aim of showing that the Laurent
polynomials f and g agree up to a constant scaling factor.

5.6 Holomorphic sections of W with boundary on product tori

We now turn to the problem of explicitly determining the differential on the complex
(5-31), i.e. counting J-holomorphic sections of W : ¥ — C over the region delimited
by vy and ~y,, with boundary in the product torus t, in each fiber. (In this section we
use ¢ and ¢’ instead of ¢ and 7’ to avoid notation conflicts with the Novikov parameter).

By Proposition 5.21, the differential s, is given by multiplication by some element
of K; thus it is enough to determine the image of the generator of H(T" K) (or
equivalently, that of H*(T",K)); this amounts to counting J-holomorphic sections
whose boundary passes through some prescribed input point in W—!'(—1) (or output
point in W_l(c,uJI) if we consider H" rather than HY; or in fact a point anywhere on
the Lagrangian boundary condition, as the end result does not depend on this choice).

While our definitions involve a perturbation of the standard complex structure Jy
near W~1(0) in order to achieve regularity of moduli spaces, actually counting discs
in practice requires one to consider the limit as J converges to the (non-regular)
standard complex structure Jy. Under this limit, the J-holomorphic discs contributing
to the differential s, converge either to holomorphic discs (holomorphic sections of
W : Y — C), or to stable configurations consisting of a holomorphic disc (a section
of W) together with one or more rational curves contained inside the singular fiber
W~1(0). (This is a standard instance of Gromov compactness for a C> -convergent
sequence of almost-complex structures, cf. [McS, Theorem 5.3.1] for the closed case;
as usual when considering sections, it follows from positivity of intersection of the
non-vertical components with the fibers of W that any bubbles arising in the limit must
be contained in a fiber of W, hence in W~1(0).) Thus, the first step is to understand
moduli spaces of holomorphic sections of W bounded by T (f") U T(¢').
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Proposition 5.24 For /" — ¢ > 1y and x € (K*)", the homotopy classes of holo-
morphic sections of W : Y — C with boundary on T,(f") U Ty(f') are in one-to-one
correspondence with the elements of Pyz. For each such class, the moduli space of
sections consists of a single orbit under the action of T", and the count of sections
through any given point of t, C W~!(—1) is equal to one.

Proof Denote by S the region of the complex plane delimited by ~,» and ~,. Since
S contains the origin, a holomorphic section of W : ¥ — C over S has intersection
number one with Z = W—1(0) = Uq Za, which is the union of the irreducible toric
divisors of Y. Hence it must intersect exactly one of these, say Z, for some o € Py,
and be disjoint from Z, for all o/ # «. For fixed «, we are thus reduced to studying
holomorphic discs contained in Y, = Y \ U,/ 40 Zos » the partial compactification of
the open stratum of the toric variety Y obtained by adding the open stratum of Z,, .

Y, is biholomorphic to C x (C*)", and we choose such an identification where the first
coordinate is given by W = —7(0:-0.D "and the remaining coordinates (zi,...,2,) €
(C*)" are given by toric monomials, in such a way that product tori in the fibers W~ (c),
¢ € 08 correspond to standard product tori in {c} x (C*)".

We parametrize holomorphic sections of W)y, : Y, — C over S by the first coordinate
(i.e., W), so that the domain is S, and we are reduced to finding holomorphic maps
S = (C*", wr (z1(w), ..., z,(w)) which satisfy the appropriate boundary conditions
over JS. Specifically, our boundary condition is given by product tori in (C*)", i.e.
the value of |z;| is prescribed at every point of the boundary. We claim that solutions,
if they exist, are unique up to the action of 7" on (C*)" by rotations. Indeed, if
Zi,Zi + S — C* are both holomorphic and |z;(w)| = |Zi(w)| for all w € JS, then the
ratio Z;(w)/z;(w) defines a holomorphic map from S to C*, taking values in the unit
circle along 0S; the open mapping principle thus implies that it is constant, i.e. there
exists ¢ € S' such that zZilw) = ez;(w) for all w € S. Thus the moduli space of
sections in the given class consists of at most one 7" -orbit.

One approach to prove existence is to use complex analysis. For each i € {1,...,n},
the boundary condition prescribes the value of log |z;| = Re(log z;) at every point of OS.
Using the Riemann mapping theorem to identify S with the unit disc, it is a classical
result of Schwarz that, up to a pure imaginary additive constant, there exists a unique
analytic function logz; : int(S) — C (given by the Schwarz integral formula) whose
real part has a continuous extension and takes the prescribed values at the boundary of
S (see e.g. [Ahl, §4.6.3-4.6.4]). Because the given real boundary condition along the
unit circle is Holder continuous (even after pullback from S to the disc, see e.g. [Po,
Chapter 3]), the imaginary part Im(log z;) (the harmonic conjugate of Re(log z;)) also
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has a (Holder) continuous extension to the boundary, given by the Hilbert transform of
the real part [Gar, Theorem III.1.3]. Exponentiating, we arrive at the desired mapping
z; + § — C*, and conclude that, up to the action of 7" by rotation of the coordinates
of (C*)", there is a unique continuous map w — (z;(w),...,z,(w)) from S to (C*)"
which is holomorphic over the interior of § and satisfies the given boundary conditions.

An alternative approach to existence is to use the invariance of the count of holomorphic
sections of W upon deforming the given boundary condition to a product one, given
by the same torus (in terms of the coordinates z;) in all the fibers of W over 9S; i.e.
we modify the problem so that the prescribed value of |z;| is the same at every point
of 08, rather than possibly varying from one point to another. (This can viewed either
as deforming the totally real boundary condition being imposed on the sections of W,
or as keeping the same Lagrangian boundary condition but modifying the coordinates
and the complex structure on Y, by rescaling each of zj, ..., z, by an amount which
varies smoothly over S.) After this deformation, one is led to look for holomorphic
maps from S to (C*)" such that |z;| is equal to a fixed constant at every point of 0S:
in other terms, holomorphic discs (parametrized by S) in (C*)" with boundary on a
fixed product torus. By the maximum principle, the only solutions are constant maps,
and these are regular. Thus, in the deformed setting, the moduli space of sections
consists of precisely one 7" -orbit, and the count of holomorphic sections through a
given point is equal to one. Because of the homotopy invariance of Floer-theoretic
section-counting invariants under deformations, it follows that the moduli space of
sections for our initial problem is also non-empty, consisting of a single 7" -orbit, and
the count of sections through a given point is equal to one. O

Remark 5.25 The argument can be simplified if we assume that £ = —ival(x) lies
in the intersection of n of the subsets Sy ., v € V defined by (4-11); since non-empty
such intersections always exist, and our comparison of f and g only requires us to
determine the differential s, for x of arbitrary fixed valuation, this simpler setting
would in fact suffice for our purposes. When ¢ lies in the intersection of n of the
Sy~ » by Proposition 4.16 we can choose the toric monomials zi, ..., z, in the above
argument in such a way that they are all invariant under parallel transport along 0S at
all points of t,. This implies that the radii |z;| of the boundary tori remain constant
all along OS (i.e., the boundary condition consists of the same product torus in (C*)"
over each point of JS); we can then directly classify the holomorphic sections without
appealing to complex analysis nor to a deformation argument.

Each of the families of holomorphic sections identified in Proposition 5.24, representing
a relative homology class [D,] € Hy(Y, T (") U Ty(¢')), contributes to the Floer
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differential on CF,

e

(T, Ti(1)) with a weight

Jpagw

(5-32) weight([D,]) = ¢ hol([0D,]) exp(f[Da] b) € A>o.

In this formula, hol([0D,]) denotes the holonomy of the local system along the bound-
ary of D, which requires some clarification. Since the local systems on 7,(¢') and
T,(¢") are isomorphic over T, (#')NT,(¢") (canonically over W~!(—1), and in a preferred
manner up to a constant factor over W‘l(ctu’t/) using the 7" -equivariant structure of
t,), they can be glued into a local system on the portion of T,(¢') U T,.(f") which fibers
over OS. Noting that this subset of T (') U Ty(f") can be deformed isotopically to a
product torus in Y, we choose the gluing at W*I(c,u,t/) in such a way that the holonomy
of the local system along a loop which deforms to an orbit of the last S'-factor of the
toric action (with moment map 7) is equal to identity. (Meanwhile, the holonomies
along the first n circle factors, within the fibers of W, coincide with those of t,.) With
this choice in hand, we define hol([0D,]) to be the holonomy of the local system on
T(f') U Ty(¢") along the boundary of D,,. Also, we denote by b a representative of
the bulk deformation class which is supported near W—1(0) (so its pairing with [D,]
is well defined). Specifically, we choose the bulk deformation to be of the form

(5-33) b= badz,

a€EPy
where the constants b, € A>( are coefficients to be determined later, and dz, is a
representative of the cohomology class Poincaré dual to the divisor Z,,, supported in a
small neighborhood of Z,. Since [D,] has intersection number one with Z, and zero
with the other components of W—1(0), we find that exp( f[D&] b) = exp(by).

Proposition 5.26 Forall /" >t + ty, a € Pz, and x € (K*)", there exists a nonzero
constant K¢ (1", ') depending only on t',¢" and { = —%val(x) such that the weight of
a holomorphic section of W : Y — C bounded by Ty(¢") U T(') and representing the
class [D,] is given by

(5-34) weight([Dy]) = Ke(?”, 1) 2™ Ox* exp(by).

Proof The portion of T(f") U T(f) which fibers over S can be deformed by an
isotopy into a product torus in ¥ (by deforming S to a disc), so Ha(Y, T(f") U Ty (1)) ~
Ho(Y,T"1) ~ ZPz (where the latter isomorphism follows from standard facts in
toric geometry). Concretely, this means that relative homology classes are uniquely
determined by their algebraic intersection numbers with each of the toric divisors Z,, .

Let a1, oy € Pz be two lattice points which are connected by an edge in the subdivision
‘P of P determined by the tropicalization of the Laurent polynomial f (see Section 2),
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i.e. such that the toric divisors Z,,,Z,, C Y intersect along an (n — 1)-dimensional
toric stratum Z,,,. In terms of the moment polytope Ay, Z,, o, corresponds to the
codimension 2 stratum of points (£, 7) where «; and a; both achieve the maximum
in the piecewise linear polynomial ¢, and

(5-35) n= @€ = (ar,§) —via) = (@,§) — v(w).

The stabilizer of the 7" !-action on Y along Z,,,, is the subtorus spanned by the
weights (—aq, 1) and (—ap, 1) (the generators of the two rays of the fan Xy which
span the cone corresponding to Z,, ,,, or equivalently, the normal vectors to the
face (5-35) of Ay). Thus, we can define a 2-chain D,,q, in Y, with boundary
in T (") U T(f'), by considering a path in the complex plane which connects some
wi € 0S to the origin, and in every fiber of W over this path, a suitably chosen orbit
of the S'-action with weight (a; — o, 0). We take these S'-orbits to lie at moment
map values which start at £} = —ﬁval(x) over w; € 0S (so that the boundary of our
2-chain lies in Ty (") U Ty(')), and end at a point (£y, 79) which satisfies (5-35) over
the origin (whence the S!-orbit collapses to a point by our above observation on the
stabilizer along Z,,q, ).

By comparing intersection numbers with the toric divisors of Y, we find that, for
a suitable choice of orientation, [Dy,q,] = [Da,] — [Dq,]. Thus, since the weight
formula (5-32) is manifestly multiplicative, we conclude that

(5-36) weight([D,,]) = weight([Dg,a,]) - weight([Dq, ]).

On the other hand, the weight of D, 4, can be calculated explicitly. Parametrizing
this disc by a map u : D> — Y and using polar coordinates p (along the path in the
moment polytope Ay) and @ (along the S!-orbits), and observing that w(-, Ggu) =
d({a — ap, £)) by definition of the moment map, we have

/ w= / / (@i, Ogu) dp dB = 2 / Bp((n—as, Ep)) dp = 2l —n, €1—Eo).

‘XI‘XZ

Since & satisfies (5-35), (a] — an, &) = v(ag) — v(ay), SO
/ w = (ap — oy, val(x)) + 2mv(ay) — 2mv(ay).

Denoting by y = (y1,...,y,) the holonomies of the local system of t, along the
various circle factors, the holonomy along the boundary of D, 4, is given by y*' ™2,
Recalling that x; = r*)y—1 'we conclude that the weight of Dy, q, is

(5-37wveight([Dg a,]) = Yy loa—au val(x)+2mv(an)—2mv(on) exp(ba, — ba,)

Pl t27w(o¢z)—27ru(a1) eXp(baz _ ba])-
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In light of (5-36), and using connectedness of the 1-skeleton of the subdivision P (i.e.,
any two elements of Pz can be connected via a sequence of elements of Py such that
the above calculation can be applied to consecutive terms in the sequence), this implies
that for fixed ¢, #’, x, the weight of D,, is proportional to

(5-38) X2 exp(by).

This is basically the desired formula (5-34), except we have not yet shown that the
scaling constant depends only on the valuation of x (and 7', ") rather than on x itself.

To show the constant only depends on & (and 7, ¢”), we observe that for fixed £ =
—ﬁval(x), the only role played by x is in determining the holonomy of the local
system. Recalling that T,("") U T\(¢') (after restriction to S is isotopic to a product
torus t, x ' ~ 7"+ in Y, and noting that the boundary of D, represents the class
(—a, 1) in (T U Te(1)) ~ m(T"T1) ~ 7"+ we find that hol([0D,]) = y~ ¢,
so that the dependence of the weight of D, on x is indeed as in (5-38), and the
scaling factor K¢(r”,1') does not depend on the holonomy, i.e. it depends only on
&= —ﬁval(x) and not on x itself. O

We now return to the problem of counting J-holomorphic sections of W : ¥ — C with
boundary on T,(¢") U T,(f"). As previously noted, when J converges to the standard
complex structure Jy, the J-holomorphic discs contributing to the differential (5-31)
limit to stable curves consisting of a holomorphic disc, representing one of the classes
[D.] for some a € Pz (by Proposition 5.24), and a (possibly empty) configuration
of rational curves contained in Z = W~!(0), representing some homology class 3 €
H>(Y) (with [w] - 8 > 0 whenever § # 0).

Definition 5.27 For fixed ¢',1’, &, and for each o € Pz and 3 € H(Y), we denote
by n. g the (signed) count of J -holomorphic sections of W (for generic J close to Jy)
whose relative homology class in Hy(Y, T,(f') U T(¢")) is equal to [D,] + 3, passing
through a generic point of t, C W~!(—1).

By considering the limit as J — Jy and using the classification of holomorphic discs
in Proposition 5.24, we see that every J-holomorphic section under consideration is in
one of these homology classes, n,0 = 1 forall « € Pz, and n, g3 = 0 forall 3 # 0
such that [w] - 8 < 0.

Remark 5.28 The invariance of counts of holomorphic sections under deformations
of the Lagrangian boundary condition implies that n, g is independent of ', ' (as
long as ¢/ — ¢ > 1y) and &; hence the notation. However, our argument does not
depend on it, so we will not elaborate further.
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Since the weight of a section in the class [D,] + 3 is given by
weight([Da] + ) = weight([Da]) 1“7 exp((b] - §),

we arrive at:

Proposition 5.29 The Laurent polynomial g of Propositions 5.18-5.21 satisfies
(5-39)
CL", 1) 8() = Ke(?',1) 3 ™ @xexp(ba) (14 D oo exp((b]- 9)).

aEPy BEH,(Y)
[w]-B>0

Proof This follows directly from a comparison of the weighted counts of sections
which determine the differential on (5-31) (the coefficient of 1;”%/ in sx((SJ’C"H’/)) as
given by Proposition 5.21 and by direct calculation of o, Ma,B weight([Do]+6). O

Corollary 5.30 There exists a constant C € K* such that

(5-40) g0 =C > AT Ox%exp(ba) (14 D ras t“1 exp(lb] - B)).

OCEPZ ﬁEHz(Y)
[w]-5>0

Proof The key point is that, for any £ € R", the coefficients of a Laurent polynomial
in K[xf—q, - ,xfl] are determined by its evaluation at points x € (K*)" with fixed
valuation val(x) = —27¢. Thus, comparing the left- and right-hand sides of (5-39)
for fixed &,7”,¢ we find that g(x) and the Laurent polynomial appearing in the right-
hand side coincide up to a constant factor. Incidentally, this also implies that the ratio
C’g(t’ ", 1)/Ke(t", 1) is a genuine constant independent of #', /" and &, and that the power
series appearing as coefficients in the right-hand side are independent of ¢, 7’ and £ (in
general this is slightly weaker than asserting that the n, g themselves are independent
of these choices.) O

Remark 5.31 The power series in the right-hand side of (5-40) are also exactly those
which appear in expressions for the instanton-corrected superpotential for product tori
in the toric Calabi-Yau variety Y (cf. e.g. [AAK] and [CLL]), and more explicitly in
terms of Gromov-Witten invariants in [CLT], where these quantities are also interpreted
as correction terms in the mirror map for the toric variety Y. Indeed, deforming (a
subset of) Ty(#') U Tx(¢") to a product torus in Y it is apparent that the enumerative
geometry problems we consider here and those discussed in [AAK, CLL, CLT] are
equivalent.
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Example 5.32 Let f(x) = *"x ! +1+x,s0 H = f~!(0) consists of two points. Then
Pz = {—1,0,1}, ©(§) = max(—§ — 1,0,&), and Y is isomorphic to the total space
of O(=2) — CP'. In this example, the term in (5—40) corresponding to o = 0 (i.e.,
discs in Y which intersect the zero section (C}P’l) includes a non-trivial contribution
from § = [CP!], with No—ocpl; = 1, whereas all the other nq 5 are zero (cf. e.g.
[CLL, Example 5.3.1]). Hence, g(x) is proportional to

1
eb_|t27rx—1 +eb0(1 +t27re[h]-[(CIP’ ]) +eb|x’

which matches f(x) when by = b_; = 0 and €%(1 + ?"¢~2%) = 1. See also [CLL,
§5.3] for examples where infinitely many n, g are non-zero. On the other hand, the
coefficients n, g all vanish when every rational curve in Y is contained in a toric
stratum of complex codimension at least two.

Finally, we observe that, as in the above example, it is always possible by a suitable
choice of the bulk deformation class [b] € H*(Y, A>o) to ensure that the right-hand
side of (5—40) matches the Laurent polynomial f used to define the hypersurface H.

Proposition 5.33 Given any collection of unitary (i.e., valuation zero) elements a,, €
K* for all « € Py, there exists a unique collection of unitary elements e’ € K*,
« € Py, such that

(5-41) & (143 naptel®) —a, foralla € Py,

BEH(Y)
[w]-B>0

Proof We can solve for ¢’ order by order. Namely, the series Y- ;5 nq, g1 el®12
consist of terms whose valuations are positive and bounded below by some constant
A > 0 (by Gromov compactness, the symplectic areas of the rational curves which
can appear in these expressions form a discrete set). Thus, (5—41) implies that e’ =
a, mod . Moreover, once e is determined mod #¥* for some N € N and for all
a € Py, the power series appearing in the left-hand side of (5-41) are determined mod
fNHDX “and thus (5-41) determines e®» mod NP forall a € Py. O

Proof of Theorem 1.2 We equip Y with the bulk deformation class b = " b,dz,,
where the coefficients b, are determined by Proposition 5.33 so that the expression
(5—40) agrees with the Laurent polynomial f in (1-1) up to scaling by a nonzero
constant. The result then follows from Proposition 5.18 and Corollary 5.30. a
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6 Complete intersections

6.1 Geometric setup

In this section we describe the geometric setup for extending Theorem 1.2 to complete
intersections in (C*)". Consider k£ Laurent polynomials
(6-1) fi= )0 aa ™% €Kl x ', 1<i<k,

aGP,',Z
where the finite subsets P;7 C Z", the exponents v;(«) € R, and the coefficients
a; . ensure that the hypersurfaces H; = £71(0) satisfy the same “tropical smoothness”
conditions as in Section 2, and additionally we assume that the tropical hypersurfaces
associated to the tropicalizations

(6-2) @i(&) = max{(a, &) — vi(a)|a € Pz}

are in generic position relative to each other (i.e., all intersections between strata
are transverse). Following [AAK, Section 11], we define Y to be the Kéhler toric
(n + k)-fold defined by the moment polytope

(6-3) Ay ={&n1, . .,m) ERTOR | > 0O Vi=1,...,k}.

Dually, Y is also described by a fan ¥y C R" @ R¥, whose rays are generated by
the integer vectors (—a, ¢;) forall 1 <i < k and o € P; 7, where ey, ..., e is the
standard basis of Z.

For 1 < i < k, we define W; : Y — C to be the negative of the toric monomial
with weight (0,¢;) = (0,...,0,1,0,...,0) (where the 1 is in the (n + i)-th position).
(Thus, the zero set of W; is the union of the toric divisors of Y corresponding to
the rays of Xy generated by (—a,e;), a € P;7z, or equivalently, to the facets of
Ay on which 7; = ¢;(€).) The candidate mirror to the complete intersection H =
Hy N ---N Hy is then the Landau-Ginzburg model (Y, W) + - - - + W}); however, our
version of the (fiberwise wrapped) Fukaya category of this Landau-Ginzburg model
will involve Lagrangian submanifolds which are simultaneously admissible for each of
the projections Wy, ..., Wy. Accordingly, we view our kK monomials as the components
of a (toric) map
W=W,...,Wp):Y—Ck

We call (Y, W) the toric Landau-Ginzburg mirror to the complete intersection H
determined by the Laurent polynomials (f1, ..., fi).

In the course of our argument, we will also consider mirrors of partial intersections
determined by a subset of the Laurent polynomials fi,...,f;. Given any subset
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I C {l,...,k}, denote by W; = (W)ie; : ¥ — Cll the projection of W onto
the subset of coordinates associated to I. We also write I = {1,...,k}—1 for the
complement of /.

Proposition 6.1 Given any c¢; € (C*=II the submanifold Y; = W 1(c7) cY
equipped with the restriction of Wy is isomorphic (as a toric Kihler manifold together
with an |I|-tuple of monomials) to the toric Landau-Ginzburg mirror of the complete
intersection determined by (f;)ic; .

For I = (), this says that the fiber of W over a point of (C*)* is isomorphic to (C*)".

Proof Algebraically, W; : ¥ — CkI'is a dominant toric morphism, induced by
the morphism of fans from Xy to the fan of C*~!'l induced by the linear map from
R"” & RF to R¥ Il given by projection to the (n + i)-th coordinates for all i € I
(we call these the components indexed by I). Thus, the fibers of Wy over the points
of the open dense orbit (C*)*~!'I are all isomorphic, and described by the fiber of the
morphism of fans over the trivial cone {0}, i.e. the intersection of Xy with the subspace
R*®R! ¢ R*@R¥; or, dually, the projection of Ay from R” ®RF onto R” @R/ given
by forgetting the components 7; for i € I. This agrees exactly with the toric variety Y;
obtained by applying our construction to the complete intersection determined by the
Laurent polynomials f; for i € I. Moreover, it is clear that the monomials W; for i € [
restrict from Y to Y7 in the expected manner (the toric weights match after forgetting
the components indexed by the elements of T).

Symplectically, we observe that the moment map 7 : ¥ — R” x R! for the action of
T" x T! (the subtorus which preserves the fibers of W7) is obtained from the moment
map 4 of the T" K -action on Y by forgetting the components indexed by the elements
of I. The image of y; is therefore

Ay ={E& mieD | mi = wi© Vie I} CR" @R

Moreover, W7 maps every stratum of ¥ on which ((C*)7 acts freely (i.e., the strata
where 7; > ;(€) Vi € I) onto the open stratum (C*)k_‘l |5 this implies that every such
stratum intersects W{ 1(07). In particular, W{ ! (¢) contains points in strata which map
to the vertices of Ay|; under py, as well as strata which map to its unbounded edges.
By convexity of the moment map image (and given that there are no other toric fixed
points, hence no additional vertices), this implies that the restriction of 17 to Wz~ 1((:7)
is surjective onto Ay|;. Thus the Kahler form on the generic fiber of W7 has moment
polytope equal to Ayy;, as expected. a
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Example 6.2 One case where the geometry of (Y, W) is particularly simple is when
H is a product of hypersurfaces in (C*)", i =1,...,k,i.e. each Laurent polynomial f;
involves a different subset of the coordinates xj, . .., x, (n = >_ n;). Inthis case, ¥ ends
up being the product of the mirrors we associate to each hypersurface £;-1(0) C (C*)",
with Wy, ..., W the (pullbacks of the) respective superpotentials. In general Y is not
a product, but the above considerations nonetheless make it possible to argue in terms
of subsets of the collection {fi,...,f}.

We can also describe the toric Kdhler manifold Y in terms of toric reduction, as we
have done in § 2.2 for the case of hypersurfaces. We start from the product Hle Chiz,
equipped with the product of the toric Kihler forms described in §4.1. Denote by M
the kernel of the surjective map

(6-4) [, 2P — 70 ¢ ZF
which maps the generator corresponding to o € P; 7 to the element (—c, ;) of Z"®Zk,

and by Ty = M ® (R/Z) the corresponding subtorus of [] Tz, Dualizing (6-4) we
have a short exact sequence

0 — R 5 TR T My — 0,
where the first map is given by
e G110 = (00 )+ ) e iy

Viewing the exponents v;(a) in (6-1) as an element (vq,...,1,) of HRP iz we
consider the reduction of [] CPiz by Ty at the level A = (v, . .., 14), and observe
that

P /T = Y,

since the moment polytope for the action of T ~ (] T*+2) /T, on the reduced space
is the intersection of 7~ '(\) = Im(:) + (v, ..., ) with the non-negative orthant in
I1 RPiz  which is naturally identified with Ay.

The toric Kéhler manifold Y, its Kéhler form wy, and W = (W,..., W;) are thus
obtained by Hamiltonian reduction from the product of the spaces CFiz for i =
1,...,k, each equipped with the toric Kéhler form of §4.1 and the functions Wy; =
_HaePi,z Zia : CPiz — C. (More precisely: the pullback of Wy; to []CFiz is
Ty, -invariant and descends to W; : Y — C.)

This description of (Y, W) as a reduction of the product of k£ “standard” Landau-
Ginzburg models (CFiz, Wo,;) corresponds to viewing H as the intersection of an
n-dimensional algebraic subtorus of the open stratum of HLI P(K?iz) with a product
of (|P;z| — 2)-dimensional pairs of pants, as in Remark 2.3.
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6.2 The fiberwise wrapped Fukaya category of (Y, W)

The construction of the partially wrapped Fukaya category W(Y, W) parallels that
introduced in Section 3, except we now consider properly embedded Lagrangian sub-
manifolds of ¥ whose image under each of the projections W; : Y — C agrees outside
of a compact subset with a finite union of admissible arcs in the complex planes; in
fact, we shall only consider Lagrangians which fiber over product of U-shaped arcs
(the same arcs +y; as in our main construction) with respectto W : Y — Ck.

As before, we control the behavior of holomorphic curves by equipping Y with a
compatible almost-complex structure J making each of Wy, ..., Wi holomorphic out-
side of a neighborhood of the zero fiber (as before, J will be taken to agree with the
standard complex structure of ¥ except for a small perturbation near | J, W;~ 1(0)), and
by choosing a continuous weakly plurisubharmonic function 4 : ¥ — [0, co) which is
proper on the fibers of W; in addition, we fix a non-negative wrapping Hamiltonian
H : Y — R. The functions H and & are required to satisfy the same conditions as in
Section 3 with respect to each of Wy, ..., Wy, i.e. with respect to the whole horizontal
distribution given by the symplectic orthogonals to the fibers of W : ¥ — C¥, thus
ensuring that the maximum principle estimates of § 3 (with respect to / and to the var-
ious |W;|) continue to hold. Specific choices of 4 and H satisfying these requirements
are given below.

6.2.1 Parallel transport preserves fiberwise monomial admissibility

The function A is again defined as the maximum of the (rescaled) norms of certain
monomials z¥ € O(Y) for v in a set of “extremal” vectors V' (primitive integer vectors
parallel to the unbounded edges of Ay),

(6-5) h = max{|z"|'/°"), v € V},

where §(v) is defined below in (6-8). As in the case of hypersurfaces, the key point
which ensures that 4 has all the required properties is that, at every point outside of a
bounded subset of each fiber of W, any monomial z¥ which achieves the maximum in
(6-5) is invariant under parallel transport between the fibers of W (Propositions 6.3 and
6.4 below). This property, which amounts to a compatibility of fiberwise monomial
admissibility with parallel transport, is proved similarly to the arguments in Section
4.2.

Given a vector v = (v,v!0, ... V0 € Z" @ Z*, the toric monomial z' defines a
regular function on Y if and only

6-6) Vi=(—a,e) v=v"—a-¥>0 foralll <i<kanda € P;z.
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In fact z¥ vanishes to order v along the toric divisor of ¥ which corresponds to the
ray (—a, e;) of the fan >Xy. Next we observe that the monomial

k
[T IJ <o e o(e™)

i=1 acP;y
is invariant under the action of Ty, and descends to z¥ € O(Y) under reduction.

For v € Z"** satisfying (6-6), i € {1,...,k}, and v > 0 small, we define a subset
Sy,iy of R" asin (4—11), namely we set

(6-7) Sy,iy = {6 € R" | (e, &) —vi() < @i(§)—~]|€|| Yo € P; 7 such that Voo > 0}.

The exact same argument as in the proof of Proposition 4.16 then shows:

Proposition 6.3 Given v € Z"+* satisfying (6-6) and i € {1, ...k}, the monomial
Z¥ € O(Y) is locally invariant under parallel transport between the fibers of the map
W; : Y — C at every point z € Y whose moment map coordinates (§,n) satisty
& € Sy,i~ as well as lower bounds on |W;(z)| and on ||£|| as in Proposition 4.16. O

The first consequence, setting v = (0, ¢;) and observing that S, = R" for all
i # j, is that W; = —z(%¢) is invariant under parallel transport in the direction of W; for
all i # j. (Inspection of the argument shows that in this case no restriction on |W;(z)| or
on ||| is needed: the point is that the lift of W; to [] C"iZ only involves the variables
Zj,a» all of which are preserved under parallel transport for the i-th component.) This
ensures that the parallel transports along the different factors in the base of the fibration
W : Y — C¥ commute with each other, and that the parallel transport of a Lagrangian
in a fiber of W over a product of arcs in C¥ is well-defined.

Next, to each v € Z", we associate an element of Z"T* as follows: set v/0 =
max{a -V, o € Pz}, and v = (¥,v10,... 1&0). Denote by Ay, the setof o € Pi 7
which achieve the maximum in the definition of v, or equivalently, those « for which
Vi@ as defined by (6-6) is zero. Denoting by A, ; the polyhedral subset of R” where
« achieves the maximum in (;, we observe that Sy ;- is nonempty (for sufficiently
small ~) and is a retract of Uae A A,,; obtained by removing those points which are
too close to some other A,/ ;, o € Ay ;. We also note that the A, ; appearing in this
union are those which are unbounded in the direction of v. Given this, we define V to
be the set of all v obtained by this process from some vV € Z" which is the primitive
outward normal vector to any facet of the Newton polytope P; of any of the Laurent
polynomials f;, 1 < i < k. Equivalently and much more concisely, the elements of V
are the primitive tangent vectors to the unbounded edges of Ay.
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For v € V and V'@ as in (6-6), we set

k
(6-8) o(v) = Z dzl;‘;_), where d;(v) = Z v and N; = |Pi 7).

i=1 a€P;

For sufficiently small v > 0, and forall v € V, Sy, = ﬂf: 1 Sv,iy 1S non-empty (it
is a retract of the union of those regions of R"” delimited by the union of the tropical
hypersurfaces of ¢y, ..., ¢ which are unbounded in the direction of V), and the union
Uyey Sv,y covers the complement of a compact subset in R”. We have the following
analogue of Proposition 4.18:

Proposition 6.4 There exist positive constants vy and Ky such that, at every point
z € Y with [Wi(z)]> > (ee®)Y/®Ni=D i and whose moment map coordinates (£, 1)
satisty ||€|| > Ko|W(z)|?, if vo € V achieves the maximum in (6-5) then & € Svo,70 -

Proof Consider a point z € Y and its lift (z; o) € p~'(\) c J]CPiz. For each i,
let ajo,;1 € P;z correspond to the smallest, resp. largest |zi.o| (or equivalently,
moment map coordinate ;) of all o € P;7. By Lemma 4.12 (2), up to bounded
constant factors, fi;q,, ~ |Wi(z)|?, while isoy ~ |Zic |2Ni
in terms of ||£|| as in the proof of Proposition 4.18, we find that 1; o,, ~ [|¢|| and hence
|2isai, | ~[|€]]"/®Y) up to a bounded factor whenever [|€]| > [Wi(z)|*.

. Bounding (1 0, — i

We now proceed as in the proof of Proposition 4.18: if £ € Sy, then |z; o| satisfies a
lower bound (4-17) by a constant multiple of |z; o, |~ [[£[|'/®") forall o € P;7,— Ay,
(the constant depends on ). Hence, |z¥| has a lower bound by a constant multiple
of [|¢]|Z="""/2Ni = ||£||°™) (where the constant again depends on 7). Applying this
for some fixed v = 1 > 0 such that | J,,, Sy, covers the complement of a compact
subset in R”, we find that A(z) = max{|z¥|'/™), v € V} is bounded from below by a
constant c(y;) times ||€|| (still assuming that [|£]| > [W|?).

Conversely, if £ € Sy, for v > 0 (now chosen much smaller than ~y;) then there
exists some i and o € P;z — Ajy; such that |z; | satisfies the upper bound (4-19),
which implies that |z¥| is bounded by a constant times v'/?V times ||£]|°™ . Choosing
v = 7o sufficiently small (so that 7(1)/ (@Ni9™) is much smaller than c(71)), this implies

that |z¥|'/°®) cannot achieve the maximum in (6-5). i

Propositions 6.3 and 6.4 imply that 4 = max{|z¥|'/%"), v € V} is invariant under par-
allel transport between the fibers of W outside of a compact subset of each fiber. This
in turn implies, first, that perturbed holomorphic curves satisfy maximum principles
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with respect to |[W| and £ as in Propositions 3.10-3.11, and second, that we can con-
struct admissible Lagrangian submanifolds of Y by parallel transport of (monomially
admissible) Lagrangian submanifolds of the fiber of W (i.e., (C*)") over products of
admissible arcs.

6.2.2 The wrapping Hamiltonian

We define the wrapping Hamiltonian H : ¥ — R as in Section 4.3: the moment
map coordinates of [] C”% descend to real-valued functions p;, on Y (i = 1,...,k,
a € P;7), given by

i = M — (0, &) + vi(@).
We then define H : ¥ — R by

k
(6-9) H=3(>" st~ 1Pzl mpalace.))
i=1 a€Piz
where m is a smooth approximation of the minimum function as in Definition 4.20.
Propositions 4.22 and 4.23 carry over with essentially the same proofs. To summarize:

Proposition 6.5 The wrapping Hamiltonian H only depends on ({y,. . .,&,), and as
a function of these coordinates it is proper and convex. The flow generated by H
preserves the fibers of W, and within each fiber it preserves monomial admissibility
with respect to the collection of monomials z¥, v € V: if £ C W~!(c) is monomially
admissible with phase angles arg(z¥') = ¢y, v € V, then its image under the time
t flow is monomially admissible at infinity with phase angles ¢y + td(v), where

d(v) = Y di(v) = S v, O

6.2.3 The fiberwise wrapped category

As in Section 3 we first associate to (Y, W) a directed category whose objects are a
given collection of admissible Lagrangian submanifolds of Y, whose images under
each of the projections Wy, ..., Wy agree near infinity with some fixed collection of
radial straight lines in the complex plane, and their images under an autonomous flow
L(t) = ¢'p'(L), where p' is the lifted admissible isotopy generated by applying the
same autonomous flow p as in §3.3 to each factor of C¥, and ¢’ is the flow generated
by the wrapping Hamiltonian H. This geometric setup gives rise to quasi-units and
continuation maps with the exact same properties as in Section 3.4, and we again define
W(Y, W) to be the localization of the directed category with respect to the quasi-units.
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Remark 6.6 Our construction of W(Y, W) is rather ad hoc, but it can be recast in
the language of monomial admissibility on Y, using the collection of toric monomials
{z¥, ve VIU{Ww,..., Wi}. Indeed, our conditions on objects of W(Y, W) require
each of these monomials to have locally constant argument (equal to a prescribed
phase angle, or a pair of possible phase angles in the case of W;) over each end
of the Lagrangian within a suitable subset of Y; and the flow we consider has the
effect of increasing the phase angles within the interval (—7, ) for each W;, and
in an unbounded manner for z¥ (i.e., we have removed the “stops” that monomial
admissibility would normally place at each arg(z") = 7).

Even though the appropriate notions have yet to be developed outside of the Liouville
setting, one also expects that monomial admissibility can be recast in the language
of stops in the sense of [GPS2] (see [HH] for an instance of this), or even better,
wrapped Floer theory on a (non-exact) sector with sectorial corners, in the spirit of
[GPS2, Section 12]. A rough candidate for the appropriate sector with corners is the
subset of Y consisting of those points where Re (W;) > —R foralli = 1,... k, for
some R > 0; however, making the collection of hypersurfaces {Re (W;) = —R},
i =1,...,k sectorial requires a modification of the Kéhler form on Y.

6.3 The main theorem

As in Section 5.1, we fix a properly embedded U-shaped admissible arc vy in the com-
plex plane which crosses the real axis at —1, and consider the admissible Lagrangian
submanifold Ly C Y obtained by parallel transport over g X - - - X 79 C CF of the real
positive locus ¢y = (R4)" in Wl(—1,...,—1) = (C*".

Theorem 6.7 For a suitable choice of bulk deformation class b € H*(Y, A>o), the
fiberwise wrapped Floer cohomology ring HW*(Ly, L) is isomorphic to the quotient
K[xftl, o, X /(A .. fo), e the ring of functions of the complete intersection
H. Hence, the derived category of coherent sheaves of H admits a fully faithful
quasi-embedding into W(Y, W).

As in Section 5, the main step to calculate the fiberwise wrapped Floer cohomology
HW*(Ly, L) is to determine the Floer complex of Ly(¢') and Ly(t) = ¢'p'(Lo) for ¢ —t
sufficiently positive. We start by observing that L(¢) is obtained from £o(r) = ¢'(¢y)
by parallel transport over ; X - - - X ; (Where 7, = p'(70) as in Section 5). Thus, for
! —t > 1y, the intersections of Lo(¢) and Lo(7) lie in the fibers of W above the 2F
points (cy,...,cx) € C* where each ¢; belongs to v, Ny = {—1, ¢y}
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For I C {1,...,k} we denote by c; € C* the point with coordinates ¢; = —1 if i ¢ I
and ¢; = ¢y, if i € I. We then find that, for ¢/ — 1 > 1,
(6-10) CF (Lo}, Lot) = €D G, Il

IC{1,....k}

where Ci(7,1) = CF*({;_(1),¢; (1)) is the Floer complex of the fiberwise La-
grangians obtained by intersecting Lo(#') and Lo(f) with W~!(c;), and the grading
shift by |I| comes from considering the grading contributions of the phase angles of
the arcs -, and 7, in the various factors of C*. Moreover, by considering intersection
numbers of holomorphic discs with fibers of W (outside a small neighborhood of the
coordinate planes), we find that the Floer differential maps each summand C;(7, r) of
(6-10) to the span of the Cy(¢',1) for I’ C I.

Thus, the complex (6-10) carries a natural filtration (by |I|); we can proceed as in
Section 5 and calculate HF*(Ly(¢'), Lo(t)) as the cohomology of a “vertical Floer
complex” built from the fiberwise Floer cohomology groups

H*(C((f', 1)) = HF" (£, (1), £1,4.(1)),

together with the maps from H*(Cy(¢', 1)) to H*(Cy/(¢, 1)) for I' C I induced by the
relevant portions of the Floer differential on (6-10) (i.e., discs which are not contained
within the fibers of W).

Observing that for each v = (V, O R0y the restriction of the monomial Z¥ to
W ler, ..., ) ~ (CH" is given by Hile(—ci)vl’0 zYl ...z,", the same calculation as
in Example 5.5 shows that the monomially admissible Lagrangian sections ¢; _(¢') and
{14 (1) in W-1(¢)) have slopes

o1-(t) = (fdv) = (i) (argler,) + ), and
o4+ = (td(v)—(Zie,v"’o)(arg(c,@,)—W))VeV‘

Because H is convex, for ¢/ — ¢ sufficiently large (larger than some constant #; > 1)

(6-11) o/l —1) =01 () — o1 (1) = (( =) d(V) =273 "°) oy,

is the slope of a convex Hamiltonian for all I C {1,...,k}, so that the results of
Section 5.3 apply to the Floer cohomology groups HF*(¢; _(#'), ¢; +(¢)). In particular,
these cohomology groups are concentrated in degree zero; since the differential on
the vertical Floer complex has degree 1, the only non-zero connecting maps are those
which take H(Cy(¢, 1)) to H(Cy/(¢', 1)) for I' C I, |I'| = |I| — 1. Writing I = I' U{i},
we denote by s;; the relevant portion of the differential.

Next, we recall that for ¥ — ¢ > #; and I C {1,...,k}, HFO({; _(¢),{; +(t)) has a

. o« . / .
basis consisting of action-rescaled Floer generators (] p_) !, whose elements are indexed
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by the points of P;(t' — t) N (2wZ)", where P;(f' — t) is the polytope associated to the
slope o;(f' — 1) by (5-9). For I = () we also use the notation 191’,/ -l = Cg;” . Hence:

Proposition 6.8 Fort —t > t|, the Floer cohomology HF*(Ly(t'), Ly(2)) is isomorphic
to the cohomology of the vertical Floer complex
(6-12)
CFl (Lo), Lo®) = P HF M) 0.0~ @ K-,
Ic{l,...,k} IC{1,...,k}
pEP({' —HNQ2TZ)"

where the generators C]t/,? ! (in degree —|I|) correspond to intersections in W~!(c;),

rescaled by action within the fiber; together with a differential which is a sum of maps
st HF (U, (1), £ 4 (1) = HF(Uy (1), Ly (1)
forall I =T1'U{i} C {l,...,k}.

Since the projections Wy, ..., Wy : Y — C are holomorphic outside of a small neigh-
borhood of the origin, the open mapping principle implies that any J-holomorphic disc
which contributes to the portion of the Floer differential mapping C;(¢, 1) to Cp(?, 1)
(I' C I) is contained within a single fiber of W; (over either —1 or ¢y ;) whenever
i€l ori¢l,whileforieI—1T itisa section (except possibly near the origin) of
W; : Y — C over the bounded region delimited by v, and ;.

Thus, in the case at hand, the contributions to the differentials s;; correspond to
holomorphic discs which are contained in a level set of Wz = (W))j; : ¥ — C1. By
Proposition 6.1, this fiber Y;, equipped with the restriction of W;, is isomorphic to the
mirror of the hypersurface H; = fi_l(O) considered in our main argument. Moreover,
the restrictions of Ly(#) and Ly(¢) to (Y;, W;) are exactly the same sort of fibered
admissible Lagrangians we have considered in Section 5 — even though for I’ # ()
the relevant fiberwise monomially admissible Lagrangian sections differ from those
previously considered by the monodromy of W; around the origin for i’ € I’, as is
manifest from the expression (6—11) for the slopes o;(¢' —t) and o/ (f —r). Despite this
minor difference, the core calculation of Section 5 applies to this setting, and implies:

Proposition 6.9 Forall I =I' U {i} C {1,...,k}, the differential
st t HF (U, (1), £1,4.(0) — HF (U (1), £y (1))
is, up to a nonzero multiplicative constant Cy (¢, 1) € K*, given by multiplication by a
Laurent polynomial gi(x) = 3 ;cp, , cip € KIx', ..., xF'] with the same Newton
polytope as f;. Namely, for p’ € P;i(f' — ) N 2w Z)",
S1,i(C1[:,7t) = Cri(7,1) Z Cip CII;;/ZFQW,-,-
PEPiz,
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Moreover, equipping Y with a bulk deformationclass b =), > p., 0z, , where
the 4z, , are Poincaré dual to the irreducible toric divisors of ¥ and the coefficients
bi« € A>o are determined as in Proposition 5.33, ensures that g; = f; for all i.

Thus, denoting by K[(xi*')]p the subspace of K[(x;*')] consisting of Laurent polyno-
mials whose Newton polytope is contained in ﬁP, we have:

Proposition 6.10 For a suitable choice of bulk deformation class b € H*(Y, A>o),
for ¢’ —t > t; the Floer cohomology group HF*(Ly(t'), Lo(?)) is concentrated in degree
zero and isomorphic (as a vector space), via 191’,/ !+ X, to the quotient

6-13) KI5 DIpow—n [ AKIEG ey a—n + -+ KK Dby ) -

The Floer product
(6-14) CF;,

vert

(Lo(7"), Lo(t")) ® CFyop(Lo(t)), Lo(1)) — CFy,,(Lo(t"), Lo(t))

can be determined as in Section 5, by observing that any contributing J-holomorphic
disc projects under W; : Y — C to either a single point or a triangular region of the
complex plane delimited by v, v and -y, (not enclosing the origin), and reducing to
a calculation within the fiber of W. This yields an analogue of Proposition 5.14:

Proposition 6.11 For?’ — ¢ >t and ¢’ — t > t1, the product (6-14) is given by

(6—15) C;/_)t ) }//TH/ _ CI,J,t”,t’,t C;U7fp+p/ ifINng = @7
bk 0 ifINJ #0,

forall I,J C {1,...,k}, p € Pi(f' — )N Q2nZ)", p' € P;(/" — )N 27Z)", where
Cyy v+ Is a non-zero constant. In particular, for I = J = () we have

(6-16) 9 = 9

It follows from (6-16) that the cohomology-level product structure corresponds to
multiplication of Laurent polynomials on the quotient spaces (6—13).

Finally, the quasi-unit ¢" " € HFO(Lo(¢'), Lo(r)) is again given by e’ 7' = 196/_”, by
the same argument as in Proposition 5.16. Thus, computing HW(Ly, Lo) as a colimit

of the Floer cohomology groups HF*(Ly(t'), Ly(¢)) as ¢ — t — oo amounts to taking
the colimit of (6—13) under the naive inclusion maps, and we arrive at

HW(LO7L0) ~ K[-x?ﬂ? CIEa Jxrjzzl]/(fla o 7fk)7

which completes the proof of Theorem 6.7.
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Remark 6.12 It is not a coincidence that the structure of the vertical Floer complex
(6-12) matches that of the Koszul complex which resolves i,Og. This can be un-
derstood using the same perspective as in Section 1.3, given the interpretation of the
Landau-Ginzburg models (Y;, Wy), I C {1,...,k} provided by Proposition 6.1 and
observing that for I = I’ LU {i} the categories W(Y;, W;) and W(Y;,, Wy) are related
to each other by cap and cup functors which correspond under mirror symmetry to the
inclusion and restriction functors between the derived categories of H; = [, /i ' (0)
and Hy .

Remark 6.13 The object Ly is expected to generate VW (Y, W), which would imply
that the embedding of Theorem 6.7 is an equivalence. The argument should proceed
by induction on k, using stop removal. Namely, for I = I’ L{i} it should follow from a
suitable stop removal result (for the stop at W; — —oo) that W(Y;, W) is the quotient
of W(Y;, W) by the image of the cup functor from W(Y;, Wy). On the other hand,
the category W(Y;, Wy/) is expected to be trivial for I’ a strict subset of I; at least,
SYZ mirror symmetry suggests that (Y7, W) admits a B-side Landau-Ginzburg mirror
whose superpotential has no critical points [AAK], which implies the triviality of its
derived category of singularities. Thus, one expects that W(Y;, W) is generated by
the image under the cup functor of a generator of W(Y;/, Wy); the result then follows
by induction on k.
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