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We prove a homological mirror symmetry result for maximally degenerating fam­

ilies of hypersurfaces in (C∗)n (B­model) and their mirror toric Landau­Ginzburg

A­models. The main technical ingredient of our construction is a “fiberwise

wrapped” version of the Fukaya category of a toric Landau­Ginzburg model. With

the definition in hand, we construct a fibered admissible Lagrangian submanifold

whose fiberwise wrapped Floer cohomology is isomorphic to the ring of regular

functions of the hypersurface. It follows that the derived category of coherent

sheaves of the hypersurface quasi­embeds into the fiberwise wrapped Fukaya cat­

egory of the mirror. We also discuss an extension to complete intersections.
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1 Introduction

The range of settings in which mirror symmetry is expected to hold has steadily

expanded since the mirror conjectures were first formulated for projective Calabi­Yau

varieties, and there are now candidate mirror constructions in a wide range of settings.

Outside of the Calabi­Yau setting, the mirrors are in general Landau­Ginzburg models,

i.e. pairs (Y,W) where Y is a quasi­projective variety and W ∈ O(Y) is a regular

function (the superpotential).

We focus on the case of hypersurfaces in (C∗)n (or rather hypersurfaces defined over

the non­archimedean Novikov field K = Λ, which arise from maximally degenerating

families of hypersurfaces near the tropical limit). These have mirror Landau­Ginzburg

models which consist of a noncompact toric Calabi­Yau variety Y of dimension n+ 1,

equipped with a superpotential W which is a toric monomial vanishing to order 1

on each irreducible toric divisor of Y . The construction is summarized in Section

2, following the description given in [AAK] which arrives at these mirrors from

the perspective of SYZ mirror symmetry; see also [HV, Cl, CLL, GKR] for other

viewpoints.

To be specific, consider a degenerating family of complex hypersurfaces defined by a

Laurent polynomial of the form

(1–1) f =
∑

α∈PZ

aαt2πν(α)xα,

where PZ is a finite subset of Zn , the exponents ν(α) ∈ R are assumed to satisfy a

convexity condition which ensures that Equation (1–1) is a sufficiently generic degen­

eration, and the coefficients aα are complex numbers in the simplest situations, but

will in general be given by elements of Λ of vanishing valuation (see Section 2). The

space Y which we associate to these data is the Kähler toric variety determined by the

polytope

(1–2) ∆Y = {(ξ, η)| η ≥ ϕ(ξ)} ⊂ Rn ⊕ R,

where the piecewise linear function ϕ : Rn → R is the tropicalization of f ,

ϕ(ξ) = max
α∈PZ

{〈α, ξ〉 − ν(α)},

and the superpotential W = −z(0,...,0,1) is (up to sign) the toric monomial associated to

the last coordinate of the ambient space Rn ⊕ R in Equation (1–2). The regular

fibers of W : Y → C are isomorphic to (C∗)n , while the unique singular fiber

Z = W−1(0) =
⋃

α Zα is a union of toric varieties (the irreducible toric divisors

of Y , which are in one­to­one correspondence with the monomials appearing in f ).



Homological mirror symmetry for hypersurfaces in (C∗)n 3

In the simplest example, the hypersurface H is the higher­dimensional pair of pants

{(x1, . . . , xn) | 1 + x1 + · · ·+ xn = 0} ⊂ (C∗)n

with mirror the Landau­Ginzburg model (Y = Cn+1,W = −z1 . . . zn+1), whose sin­

gular fiber is the union of the coordinate hyperplanes in Cn+1 ; however in most cases

Y is not affine and depends on the choice of degeneration.

In one direction, homological mirror symmetry predicts that the wrapped Fukaya cate­

gory of a hypersurface H ⊂ (C∗)n is equivalent to the derived category of singularities

of the mirror Landau­Ginzburg model, Db
sg(Y,W) = DbCoh(Z)/Perf(Z). This was

first verified for the wrapped Fukaya categories of open Riemann surfaces in (C∗)2

and the derived categories of singularities of their mirror Landau­Ginzburg models

[AAEKO, Lee]; see also [LP1], where the algebraic side is rather the derived category

of coherent sheaves of a stacky nodal curve (equivalent to the Landau­Ginzburg model

(Y,W) via Orlov’s derived Knörrer periodicity). In higher dimensions, the result was

first verified for higher­dimensional pairs of pants in [GN] and [LP2]; in the first of

these, the wrapped Fukaya category is replaced by the category of wrapped microlocal

sheaves, but the two were subsequently shown to be equivalent by Ganatra­Pardon­

Shende [GPS3]). Finally, the case of general hypersurfaces in (C∗)n was established

by Gammage and Shende [GS], also using wrapped microlocal sheaves.

Here we consider the other direction of mirror symmetry, comparing coherent sheaves

on the family of hypersurfaces Ht defined by f to a suitable version of the Fukaya

category of the Landau­Ginzburg model (Y,W), where Y is equipped with a suitable

toric Kähler form in the class [ωY ] ∈ H2(Y,R) determined by the polytope ∆Y , and

also a bulk deformation class (or B­field) b ∈ H2(Y,Λ≥0) (the subscript ≥ 0 indicates

that we only consider elements of non­negative valuation). This direction has been

much less studied; in fact, at the start of our project there wasn’t even yet a candidate

definition for the appropriate Fukaya category, because the initial formulation required

that Y be affine and that W have isolated non­degenerate singularities [Se2].

1.1 Fiberwise wrapped Fukaya categories

The first step in our approach is to define the fiberwise wrapped Fukaya category

W(Y,W) of a toric Landau­Ginzburg model. The objects of W(Y,W) are properly

embedded Lagrangian submanifolds L ⊂ Y which satisfy two different types of geo­

metric requirements: (1) in the base direction, we require that L is fibered at infinity,

i.e. that outside of a compact subset of C the image of L under W : Y → C is a
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union of embedded arcs, which are further required to be disjoint from the negative

real axis and along which the distance from the origin increases strictly; (2) we require

L to be fiberwise “flat” at infinity with respect to a weakly plurisubharmonic fiberwise

“height” function h : Y → [0,∞), i.e. the restriction of dch to L is required to vanish

outside of a bounded subset of each fiber of W . We call such Lagrangians admissible;

see Definition 3.5. The Lagrangians we consider are also required to be tautologically

unobstructed (in the sense of not bounding any holomorphic disc with respect to a

prescribed almost complex structure), and are equipped with the grading data and local

systems needed to construct Floer complexes.

Morphism spaces in W(Y,W) are defined as direct limits of Floer complexes for the

images of admissible Lagrangians under a suitable geometric flow, which combines

(1) in the base direction, admissible isotopies acting on the complex plane by positive

rotations without crossing the negative real axis (as in the more familiar setting of

Fukaya categories of Lefschetz fibrations), and (2) in the fiber direction, the flow of a

Hamiltonian H : Y → R which preserves the fibers of W and whose restriction to each

fiber is a linear­growth wrapping Hamiltonian (hence the name “fiberwise wrapped”).

The details of the construction are given in Section 3.

In the toric case, the fiberwise behavior of our admissible Lagrangians is enforced by

fixing a collection of monomials zv ∈ O(Y) and open subsets Cv of Y , and requiring

arg(zv) to be locally constant over L ∩ Cv . This amounts to a fiberwise version of the

notion of monomial admissibility considered in Andrew Hanlon’s thesis [Ha]; in fact,

even though we treat the monomial W separately, the condition we impose in the base

direction could also be reformulated in the language of monomial admissibility.

Since our Lagrangians are required to be both fibered with respect to W : Y → C

and fiberwise monomially admissible within the fibers, our setup requires symplectic

parallel transport between smooth fibers of W to be compatible with monomial ad­

missibility. This compatibility is easy to achieve for parallel transport along radial

lines in the complex plane by using elementary toric geometry (or by directly impos­

ing monomial admissibility in the total space Y ). However, the explicit calculation

of Floer complexes and differentials at the heart of our verification of homological

mirror symmetry requires us to consider Lagrangians that are everywhere fibered over

U­shaped arcs in the complex plane. Achieving fiberwise monomial admissibility for

such Lagrangians requires some extra care in the choice of the toric Kähler form ωY

on Y within the given cohomology class; see Section 4 for details.

Remark 1.1 The several years elapsed since our results were first announced have

brought forth key advances and new viewpoints on Fukaya categories of Landau­

Ginzburg models which suggest other possible approaches.
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For example, partially wrapped Floer theory for Liouville domains with stops [Sy1]

and sectors [GPS1] has led to considerable progress in the exact setting. However it

is not clear that viewing (Y,W) as a non­exact sector would yield any simplification

to our setup and main calculation, as the alternative description in terms of wrapped

microlocal sheaves used by Nadler in the case of higher­dimensional pairs of pants

[Na] would not be applicable outside of the exact setting, and direct calculation by

counting holomorphic discs would likely be no easier than the approach taken here.

Monomial admissibility, as used by Hanlon to revisit mirror symmetry for toric varieties

[Ha], is much more directly suited to our goals, and in fact we use this viewpoint

to constrain the fiberwise behavior of our Lagrangians and to arrive at a maximum

principle. Defining W(Y,W) directly in the language of monomial admissibility

(adding W itself to the list of monomials zv whose arguments we constrain at infinity)

would be fairly straightforward, but the explicit calculation of Floer cohomology

would likely still require the Lagrangian to be everywhere fibered with respect to the

projection W : Y → C (not just near infinity), making the setup essentially identical

to that considered here.

One can alternatively attempt to replace monomial admissibility with a variant of

Groman’s formulation for Floer theory on open manifolds ,[ג] adapted to the setting

of Landau­Ginzburg models. Early drafts of this text pursued a related approach based

on geometric estimates on parallel transport and monotonicity type arguments, but the

relevant estimates turned out to be quite challenging.

1.2 A Floer cohomology calculation

The main protagonist of our argument is a specific admissible Lagrangian L0 in the toric

Landau­Ginzburg model (Y,W), which is expected to generate the fiberwise wrapped

Fukaya category.

Consider a Laurent polynomial f ∈ K[x±1
1 , . . . , x±1

n ] defining a maximally degenerat­

ing family of hypersurfaces Ht as above, and let (Y,W) be the toric Landau­Ginzburg

model constructed in Section 2, equipped with the toric Kähler form ωY constructed in

Section 4 and a bulk deformation1
b ∈ H2(Y,Λ≥0). Since the fiber W−1(−1) ⊂ Y is

isomorphic to (C∗)n , it contains a distinguished Lagrangian ℓ0 = (R+)n along which

1In the literature, one usually considers bulk classes of strictly positive valuation; the 0­

valuation part of b corresponds to (a logarithm) of what is sometimes called a background

class, which in our case is valued in C∗ , but is usually considered with Z2 coefficients, and

modifies Floer theory by changing the sign contributions of discs.
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the toric monomials zv are all real positive. The parallel transport of ℓ0 over a U­shaped

arc in the complex plane connecting −1 to +∞ around the origin yields an admissible

Lagrangian submanifold L0 in (Y,W). Our main result is:

Theorem 1.2 For a suitable choice of bulk deformation class b ∈ H2(Y,Λ≥0), the

fiberwise wrapped Floer cohomology ring HW∗(L0, L0) is isomorphic to the quotient

K[x±1
1 , . . . , x±1

n ]/(f ) of the ring of Laurent polynomials by the ideal generated by f ,

the defining equation of the family of hypersurfaces Ht .

Remark 1.3 We refer the reader to Remark 5.31 for a discussion of the relation­

ship between the bulk class appearing in the statement of the above theorem and the

expression of the mirror map in terms of Gromov­Witten theory.

In other terms, HW∗(L0, L0) is isomorphic to the ring of functions of the non­

archimedean hypersurface H defined by f over K:

(1–3) HW∗(L0, L0) ≃ K[x±1
1 , . . . , x±1

n ]/(f ) ≃ H0(H,OH) = Hom(OH,OH).

Since this ring is supported in degree 0, it is intrinsically formal, so we conclude that

the Floer algebra W∗(L0, L0) is A∞ equivalent to the ring of functions on H . On the

other hand, since H is affine, its derived category is generated by the structure sheaf

OH , and by mapping a twisted complex built from copies of OH to the corresponding

twisted complex built from L0 inside W(Y,W), we arrive at:

Corollary 1.4 The derived category of coherent sheaves of H admits a fully faithful

quasi­embedding into W(Y,W).

One can then return from the non­archimedean setting to the complex hypersurfaces

Ht by observing that, when f is of the form (1–1) with aα ∈ C∗ , the outcome of our

calculation is manifestly convergent over complex numbers and we can treat t as an

actual parameter rather than a formal variable.

The calculation of HW∗(L0, L0) involves counts of holomorphic sections of the fi­

bration W : Y → C over domains in the complex plane, with boundary in fibered

Lagrangians, and the argument is essentially within the realm of the “Seidel TQFT”

[Se2] even though W is not a Lefschetz fibration; see Section 5. Our approach is

concrete and explicit, but a more conceptual interpretation can be given in terms of the

Orlov cup functor; see below.
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Remark 1.5 The object L0 is expected to generate the category W(Y,W), which

would imply that the embedding of Corollary 1.4 is an equivalence. Stop removal

(wrapping past the negative real axis in the base direction) yields an acceleration functor

fromW(Y,W) to a suitable version of the wrapped Fukaya category of Y , under which

L0 maps to the zero object (cf. [AS]). The stop removal results of [Sy1, GPS1] (to the

extent that they hold in our setup) should imply that W(Y) is precisely the quotient of

W(Y,W) by the full subcategory generated by L0 . The generation statement is then

equivalent to the vanishing ofW(Y). This argument can be made precise in the case of

the pair of pants, where Y = Cn+1 is a subcritical Liouville manifold and its wrapped

Fukaya category vanishes. However, given that a complete argument in the general

case where Y is not exact would involve several pieces of machinery that have not yet

been developed in that setting, we do not investigate this question further in this paper.

1.3 A functorial perspective

The fiberwise wrapped Fukaya category is the target of a functor

∪ :W((C∗)n)→W(Y,W)

(the Orlov cup functor), which is given on objects by parallel transport of admissible

Lagrangian submanifolds of W−1(−1) ≃ (C∗)n along a U­shaped arc in the complex

plane, and on morphisms by observing that the portions of the fiberwise wrapped Floer

complexes which live in the fiber over −1 are closed under all A∞ ­operations. In this

language, the computation at the heart of the proof of Theorem 1.2 gives a commutative

diagram of functors

(1–4)

Perf((K∗)n) Perf(H)

W((C∗)n) W(Y,W)

≃

i∗

∪

where the restriction functor i∗ and the cup functor ∪ intertwine mirror symmetry for

the ambient torus (K∗)n and the hypersurface H . The core of our argument amounts

to a verification of this statement for the structure sheaves on the algebraic side, and

the admissible Lagrangians ℓ0 = (R+)n and L0 = ∪ℓ0 on the symplectic side.

To continue further in this direction, the functor ∪ has an adjoint functor ∩ :

W(Y,W) → PerfW((C∗)n) (“restriction to the fiber at +∞”), under which a fibered
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Lagrangian L = ∪ℓ maps to a twisted complex built from the fiberwise Lagrangians

at the two ends of the U­shaped arc, with a connecting differential s0
ℓ which counts

holomorphic sections of W : Y → C bounded by L over the region enclosed by the

U­shaped arc. After choosing a suitable identification of the fiber near +∞ with (C∗)n ,

we find that the image of ℓ under the composite functor ∩∪ is isomorphic to a cone

∩ ∪ ℓ ≃
{

µ−1(ℓ)
s0
ℓ−→ ℓ

}

,

where µ−1 is the clockwise monodromy of the fibration W around the origin, acting

on the wrapped Fukaya category of the fiber (in our case µ−1 ≃ id), and s0
ℓ is a count

of sections. This is part of an exact triangle of functors

µ−1 id

∩ ∪

[1]

s

acting on W((C∗)n), originating in Seidel’s work [Se1] on Dehn twists, and which

has been the subject of some recent work (cf. [AG], [ASm, Appendix A], and [Sy2,

Theorem 1.3]).

Our calculation of the fiberwise wrapped Floer complex of L0 = ∪ℓ0 can then be

rewritten as

W(Y,W)(∪ℓ0,∪ℓ0) ≃ W(C∗)n(ℓ0,∩∪ ℓ0) ≃ Cone
{

HW∗(ℓ0, µ
−1(ℓ0))

s0
ℓ0−→ HW∗(ℓ0, ℓ0)

}

which, after verifying that the section­counting natural transformation s0
ℓ0

amounts to

multiplication by the Laurent polynomial f , corresponds on the algebraic side to

HomH(OH,OH) ≃ Hom(K∗)n(O, i∗i∗O) ≃ Cone
{

Hom(O,O)
f
−→ Hom(O,O)

}

.

1.4 Complete intersections and compactifications

Our results admit extensions in at least two directions. The first one, which we briefly

discuss in Section 6, concerns complete intersections. The mirror of a codimension

k complete intersection in (C∗)n (or rather, of a family of complete intersections

degenerating to a tropical limit) is a Calabi­Yau toric Kähler manifold Y of complex

dimension n + k , equipped with a superpotential which is a sum of k toric monomials

W1, . . . ,Wk ∈ O(Y); taken together these determine a holomorphic map W : Y → Ck ,

whose fibers over (C∗)k are again isomorphic to (C∗)n [AAK, Section 11]. We then



Homological mirror symmetry for hypersurfaces in (C∗)n 9

define a version of the fiberwise wrapped Fukaya category W(Y,W) whose objects

are Lagrangian submanifolds which are simultaneously admissible for each of the

projections W1, . . . ,Wk ; the morphisms are direct limits of Floer complexes under a

combination of admissible isotopies acting on each factor of Ck by positive rotations

without crossing the negative real axis and wrapping in the fibers of W. The key object

L0 under consideration is now obtained by parallel transport of (R+)n ⊂ (C∗)n over a

product of U­shaped arcs inside Ck . By an argument similar to our main calculation,

its fiberwise wrapped Floer complex is isomorphic to the Koszul resolution of the ring

of functions of the complete intersection; the upshot is that the obvious analogues of

Theorem 1.2 and Corollary 1.4 continue to hold in this setting. See Section 6 and

Theorem 6.7.

Another extension is to hypersurfaces (and complete intersections) in toric varieties.

Namely, a Laurent polynomial of the form (1–1) defines not only hypersurfaces in (C∗)n

or (K∗)n but also (partial) compactifications in suitable toric varieties or stacks – for

example, the projective toric variety or stack V whose moment polytope is the convex

hull of PZ . Following [AAK], the mirror to H ⊂ V is the same Calabi­Yau toric

variety Y as in our main construction, now equipped with a superpotential W which

is the sum of the previously encountered monomial W0 = −z(0,...,0,1) and extra terms

consisting of one monomial for each of the irreducible toric divisors of V . The latter

turn out to be exactly the collection of monomials zv we consider in Definition 4.14.

Consequently, we can define the Fukaya category F(Y,W) by considering exactly the

same admissible Lagrangian submanifolds of Y as in the construction of W(Y,W0):

namely, Lagrangians which are fibered at infinity with respect to W0 : Y → C,

and within the fibers of W0 , monomially admissible for the collection of monomials

zv . However, we now consider colimits under perturbations which only increase

the argument of each monomial zv within a small bounded interval, rather than by

an unbounded amount of fiberwise wrapping. Starting from monomially admissible

Lagrangian sections ℓ, ℓ′ ⊂ (C∗)n such as those considered in [Ha], which are mirrors

to line bundles L,L′ on the toric variety V , we now find an isomorphism

HomF (Y,W)(∪ℓ,∪ℓ
′) ≃ Cone

{

HomF ((C∗)n,{zv})(ℓ, µ
−1(ℓ′))

s
−→ HomF ((C∗)n,{zv})(ℓ, ℓ

′)
}

.

After checking that the action of the monodromy µ−1 on monomially admissible

Lagrangian sections is mirror to the functor −⊗O(−H) and that the natural transfor­

mation s : µ−1 → id still corresponds to multiplication by the defining section f of

H , this corresponds on the algebraic side to the isomorphism

HomH(L|H,L
′
|H

) ≃ Cone
{

HomV (L,L′ ⊗O(−H))
f
−→ HomV (L,L′)

}

.
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This in turn implies cohomology­level mirror symmetry statements for restrictions

of ample line bundles (compare with [Ca] which establishes analogous results in a

different setting). A more detailed account of this will appear elsewhere [AA].

1.5 Related works

In the time elapsed since our results were first announced, at least two papers have ap­

peared establishing conceptually similar homological mirror symmetry results relating

coherent sheaves on hypersurfaces to the symplectic geometry of mirror Landau­

Ginzburg models.

On one hand, Nadler introduced the category of wrapped microlocal sheaves and gave

an explicit computation for the Landau­Ginzburg model (Cn, z1 . . . zn), which is mirror

to the (n − 2)­dimensional pair of pants [Na]. (Wrapped microlocal sheaves were

subsequently shown by [GPS3] to be equivalent to the Fukaya category of the corre­

sponding Liouville sector.) Nadler’s paper showcases the remarkable computational

power of microlocal sheaves in the exact setting, and also identifies structural properties

which are closely related to those described in §1.3 above.

On the other hand, Cannizzo’s thesis work [Ca] considers the case of a genus 2 curve

embedded in a principally polarized abelian surface (its Jacobian) and the mirror

Landau­Ginzburg model. The approach is fairly similar to ours, but avoids the need

to discuss fiberwise admissibility because the mirror is proper (the generic fibers are

T4 ). However, the monodromy is topologically non­trivial, and involves a twist mirror

to the defining section of the genus 2 curve, so that the objects of interest are a

sequence of admissible Lagrangians mirror to powers of the canonical bundle of the

genus 2 curve (somewhat similarly to the toric variety case outlined above). Another

notable difference with our setting is that, despite the non­exact nature of the mirror

and the presence of rational curves in the zero fiber, no bulk deformation is required

as the instanton corrections only result in a rescaling of the section­counting natural

transformation [Ca].

Plan of the paper

The first part of this paper is concerned with the definition of the fiberwise wrapped

Fukaya category W(Y,W). After reviewing the construction of the Landau­Ginzburg

model (Y,W) in Section 2, we develop the foundations of fiberwise wrapped Fukaya

categories in Section 3, while Section 4 is devoted to the construction of the appropriate
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toric Kähler form and verification of the required geometric properties. The heart of

the paper is then Section 5, which is devoted to the calculation of the fiberwise wrapped

Floer cohomology of L0 and the proof of Theorem 1.2. Finally, in Section 6 we briefly

discuss the extension to complete intersections and prove Theorem 6.7.
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2 The mirror Landau­Ginzburg model

2.1 The main construction

Consider a Laurent polynomial

(2–1) f =
∑

α∈Zn

aαxα,

with complex coefficients, and denote by

(2–2) H = f−1(0) ⊂ (C∗)n

the corresponding hypersurface.

The construction of a mirror for H depends on a choice of degeneration; we specifically

consider a maximal degeneration to a tropical limit, and assume that the corresponding

tropical variety is smooth in the sense we explain now.
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Let P denote the Newton polytope of f , and PZ its integral points. For simplicity, we

assume that the interior of P is non­empty (i.e., P has positive volume); otherwise we

can always reduce to this case by splitting off some C∗ factors.

A tropically smooth maximal degeneration of H is induced by the choice of a strictly

convex piecewise linear function

(2–3) ν : P→ R

whose domains of linearity determine a subdivision P of P into standard integral

simplices, i.e. simplices that are equivalent by an integral affine transformation to the

simplex spanned by the origin and the unit coordinate vectors in Zn ; this condition

ensures that the mirror toric variety we construct below is smooth. The corresponding

degeneration is then

(2–4) fν =
∑

α∈PZ

aαt2πν(α)xα.

We can associate to fν either a family of hypersurfaces parametrised by t ∈ C, or

a variety H over the Novikov field K = Λ of power series in the formal variable

t with real exponents. The second point of view is more natural for the purpose of

proving the well­definedness and invariance of the Fukaya category, and providing

clear formulations of homological mirror symmetry.

Denote by ϕ : Rn → R the tropicalisation of fν , i.e. the piecewise linear function

(2–5) ϕ(ξ) = max{〈α, ξ〉 − ν(α) |α ∈ PZ}.

Let Y be the (noncompact) Kähler toric manifold defined by the moment polytope

(2–6) ∆Y = {(ξ, η) ∈ Rn ⊕ R | η ≥ ϕ(ξ)}.

The polytope ∆Y determines a Kähler class [ωY ] ∈ H2(Y,R). In §4, we shall specify

an explicit Kähler form ωY , obtained by Hamiltonian reduction from a vector space,

which will be particularly well­adapted to our Floer­theoretic constructions.

Dually, Y can also be described by the fan

(2–7) ΣY = R≥0 · (P × {1}) ⊆ Rn+1
= Rn ⊕ R,

whose rays are generated by the integer vectors (−α, 1), α ∈ PZ , and which is

obtained as the union of the cones on polyhedra appearing in the subdivision P . Since

we have assumed that this subdivision is maximal, all such cones are simplicial, and

since the simplices are further assumed to be congruent to the standard one, it follows

that Y is a smooth toric manifold. It is in fact a smooth toric Calabi­Yau, since the
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α1 =(0,0)

ϕ = 0

α3 =(0,1)

ϕ = ξ2

α2 =(1,0)

ϕ = ξ1

α5 =(2,0)

ϕ = 2ξ1−2

α4 =(1,1)

ϕ = ξ1+ξ2−1

(0,0,1)(­1,0,1)(­2,0,1)

(0,­1,1)(­1,­1,1)

Figure 1: Constructing the mirror: f (x1, x2) = 1 + x1 + x2 + t2πx1x2 + t4πx2
1

defining equation of its toric anticanonical divisor is a regular function (see below); in

particular its canonical bundle is trivial, i.e. c1(Y) = 0, which will allow us to introduce

Z­gradings in Floer theory (and also simplify our discussion of sphere bubbling).

Denote by z(0,...,0,1) ∈ O(Y) the toric monomial with weight (0, . . . , 0, 1), and equip

Y with the superpotential

(2–8) W = −z(0,...,0,1) : Y → C.

The toric Landau­Ginzburg model (Y,W) has been constructed as a candidate mirror

to H from various perspectives; see in particular [AAK, Theorem 1.4].

The level set W−1(0) is the union of the toric divisors in Y (each with multiplicity

one), while the other level sets of W are smooth and isomorphic to (C∗)n . (The fact

that the toric anticanonical divisor is defined by a regular function, namely W , verifies

the above claim that Y is Calabi­Yau).

Example 2.1 As a running example to illustrate the construction, we consider the

Laurent polynomial f (x1, x2) = 1 + x1 + x2 + t2πx1x2 + t4πx2
1 (which defines a degen­

erating family of genus 0 curves with 5 punctures in (C∗)2 ). The tropicalization of f

is given by ϕ(ξ1, ξ2) = max{0, ξ1, ξ2, ξ1 + ξ2 − 1, 2ξ1 − 2}. The domains of linearity

of ϕ, which also correspond to the facets of the polytope ∆Y “seen from above”, are

depicted on Figure 1, along with the fan ΣY , whose generators (−α, 1), α ∈ PZ , give

the primitive (inward) normal vectors to the facets of ∆Y .

2.2 Construction as a Hamiltonian reduction

We have a surjective map

(2–9) ZPZ → Zn ⊕ Z
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which assigns to a lattice point α ∈ P the pair (−α, 1); the kernel is a lattice which

we denote M .

We shall consider the reduction of CPZ (equipped with a suitable toric Kähler form,

described in §4.1) by the Hamiltonian action of the torus

(2–10) TM = M ⊗ (R/Z) ⊂ TPZ .

Fixing a regular value λ for the moment map

(2–11) µ : CPZ → Hom(M,R) = M∗
R,

the quotient µ−1(λ)/TM inherits a canonical symplectic form ωλ . By the Kempf­Ness

theorem, this quotient can be naturally identified with the quotient of an open subset

of CPZ by a complex torus, and the symplectic form ωλ is Kähler with respect to

the induced complex structure. Thus, µ−1(λ)/TM is naturally equipped with a toric

Kähler form (induced by that constructed in §4.1 on CPZ ); see also [Gu].

We now explain how the choice of level set λ corresponds to the integral affine function

in Equation (2–3). Dualizing (2–9) we obtain a short exact sequence

(2–12) 0→ Rn+1 i
−→ RPZ

π
−→ M∗

R → 0,

where the first map is given explicitly by

(2–13) i(ξ1, . . . , ξn, η) =
(

−〈α, ξ〉+ η
)

α∈PZ.

Viewing the piecewise linear function ν : P→ R as an element of RPZ , we set

λ = π(ν).

Then the image of the moment map for the action of Tn+1 ≃ TPZ/TM on µ−1(λ)/TM

is the intersection of π−1(λ) with the non­negative orthant in RPZ , i.e. the set of all

(ξ, η) ∈ Rn+1 = Rn ⊕R such that all the components of i(ξ, η) + ν are non­negative.

Comparing with (2–6), this moment polytope is precisely ∆Y .

This yields a Hamiltonian quotient description of Y equipped with the toric Kähler

form ωY . Moreover, the function

(2–14) W0 = −
∏

α∈PZ

zα : CPZ → C

descends to the toric potential W : Y → C. (Note that both are toric monomials

vanishing to order 1 on each toric divisor). Setting N = |PZ|, we can thus view the

Landau­Ginzburg model (Y,W) as a Hamiltonian reduction (by TM ) of the “standard”

Landau­Ginzburg model (CN ,W0 = −
∏N

i=1 zi).
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Example 2.2 In Example 2.1, the kernel of the map (2–9), i.e. the space of linear

relations among the (−αi, 1) (the generators of the fan ΣY , shown on Figure 1 right)

is a rank 2 lattice M , spanned by elements corresponding to the linear relations α1 −

α2 − α3 + α4 = 0 and α1 − 2α2 + α5 = 0 among the elements of PZ . Thus, we can

realize the toric 3­fold Y as the quotient of C5 by a 2­dimensional torus TM whose

generators act with weights (1,−1,−1, 1, 0) and (1,−2, 0, 0, 1). The moment map

of the TM ­action is obtained from that of the standard action of T5 by the projection

π(µ1, . . . , µ5) = (µ1 − µ2 − µ3 + µ4, µ1 − 2µ2 + µ5), where (µ1, . . . , µ5) take values

in the standard moment polytope of C5 , i.e. the non­negative orthant (however, since

the toric Kähler form on C5 we will construct in Section 4.1 differs from the standard

one, it will not be the case that µi =
1
2
|zi|

2 ).

Setting λ = π(ν) = (1, 2), we find that µ−1(λ) ⊂ C5 is the set of points whose

moment map coordinates for the T5 action satisfy

(2–15) µ1 − µ2 − µ3 + µ4 = 1 and µ1 − 2µ2 + µ5 = 2.

The moment polytope of the toric variety µ−1(λ)/TM is then the intersection of the

non­negative orthant with the affine subspace determined by (2–15), which is identified

with ∆Y = {(ξ1, ξ2, η) ∈ R3 | η ≥ ϕ(ξ1, ξ2)} via the affine embedding

i(ξ1, ξ2, η) + ν = (η, η − ξ1, η − ξ2, η − ξ1 − ξ2 + 1, η − 2ξ1 + 2).

Remark 2.3 There is a uniform way of producing all the examples that we consider

from a universal construction: (CN ,W0) is mirror to an (N − 2)­dimensional pair of

pants, i.e. the intersection of the hyperplane X0+ · · ·+XN−1 = 0 with the open stratum

(K∗)N−1 in PN−1 . The embedding of (K∗)n into the open stratum of P(KPZ) defined

by

(x1, . . . , xn) 7→
(

aαt2πν(α)xα
)

α∈PZ

defines an algebraic subtorus, whose intersection with the pair of pants is the hypersur­

face H . Thus, the mirror pairs we consider can be viewed as “reductions” of the mirror

pair consisting of the (N − 2)­dimensional pair of pants and the Landau­Ginzburg

model (CN ,W0): namely, H is the intersection of the pair of pants with an algebraic

subtorus, while its mirror (Y,W) is the quotient of (CN ,W0) by the complementary

subtorus.

However, the graph of the projection µ−1(λ) → Y , viewed as a Lagrangian corre­

spondence in CN × Y , bounds non­trivial families of holomorphic discs; this causes a

discrepancy between moduli spaces of discs in Y with boundary on given Lagrangian

submanifolds of Y , and moduli spaces of discs in CN with boundary on the lifts of these
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Lagrangians to µ−1(λ). The instanton corrections that arise out of this are responsible

for the presence of the bulk deformation class b ∈ H2(Y,Λ≥0) in the statement of

Theorem 1.2, as we shall see in Section 5.

3 The Fukaya category of a Landau­Ginzburg model

3.1 Landau­Ginzburg models

Let (Y, ω) be a symplectic manifold, and

(3–1) W : Y → C

a map which is a symplectic fibration outside a compact subset of C. We shall

define a Fukaya category associated to the pair (Y,W), subject to additional auxiliary

choices: (i) a compatible almost complex structure J making W holomorphic outside

a compact subset of C, (ii) a continuous function h : Y → [0,∞) which is weakly

J ­plurisubharmonic, (iii) a non­negative wrapping Hamiltonian

(3–2) H : Y → R,

and (iv) a closed subset Y in ⊂ Y , whose intersection with every fiber of W is a

(compact) sublevel set of h; more precisely, we take Y in to be the set of points where

h ≤ r(|W|), where r(|W|) is a non­decreasing function of |W|, constant over [0,R0]

for some R0 .

We require these data to be compatible as follows:

(1) The restrictions of h and H to every fiber of W are proper.

(2) The Hamiltonian flow of H preserves the fibers of W, and outside of Y in it

preserves the level sets of h:

(3–3) dW(XH) = 0, and dh(XH) = 0 outside Y in.

Also, horizontal parallel transport preserves H everywhere, as well as h outside

of Y in . By this we mean that, if ξ# is the horizontal lift of a vector on C, then

(3–4) dH(ξ#) = 0, and dh(ξ#) = 0 outside Y in.

This in turn guarantees that horizontal parallel transport is well­defined (except

at critical points) despite the non­compactness of the fibers, since horizontal lifts

are contained in the level sets of H which is fiberwise proper.
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(3) Outside of Y in , the 1­form dch = −dh◦J vanishes on the symplectic orthogonal

to the fibers of W , i.e. if ξ# is the horizontal lift of a vector on C, we have

(3–5) dch(ξ#) = 0.

Moreover, dch is preserved by (i) parallel transport and (ii) the Hamiltonian flow

XH , i.e. the Lie derivative with respect to XH and to the horizontal pullback of a

vector field ξ on C both vanish:

(3–6) LXH
dch = Lξ#dch = 0.

(4) The function h grows along −JXH outside of Y in , i.e.

(3–7) 0 ≤ dch(XH).

Remark 3.1 Condition (2) essentially states that W , H and h Poisson commute

outside of Y in . Moreover, the fact that W is holomorphic outside of a compact subset

implies that the horizontal subspace is J ­invariant, and hence the vanishings of dh and

dch on the horizontal distribution are equivalent to each other. On the other hand,

the condition LXH
dch = 0 is particularly strong, and is analogous to considering only

linear Hamiltonians in the situation of a manifold with contact boundary.

Remark 3.2 By the Cartan formula, given (3–5) the condition Lξ#dch = 0 is equiva­

lent to requiring that ιξ#ddch = 0 for every horizontal vector ξ# .

Remark 3.3 In our main examples, the requirements concerning the behavior of h

along the horizontal distribution (dh(ξ#) = dch(ξ#) = 0, Lξ#dch = 0) only hold

outside of Y in ∪W−1(∆′), where ∆′ is a small neighborhood of crit(W) = {0} in the

complex plane. We will see that this weakening of the assumptions is not problematic

as long as the Lagrangians we consider remain outside of W−1(∆′) and the isotopies

of the complex plane whose lifts we consider are supported outside of ∆′ .

Definition 3.4 An admissible arc is a properly embedded arc γ : [0,∞)→ C that is

disjoint from the critical values of W and from the negative real axis, and along which

distance from the origin is strictly increasing outside of the disc of radius R0 .

Definition 3.5 An admissible Lagrangian with respect to the above data is a properly

embedded Lagrangian L ⊂ Y such that (i) the image W(L) ⊂ C agrees outside of a

compact subset ∆ with a finite union of admissible arcs which do not reenter ∆; and

(ii) the restriction of dch to L vanishes outside of Y in .



18 Mohammed Abouzaid and Denis Auroux

The main examples we consider below are in fact fibered over properly embedded arcs

in C which avoid the critical values of W and are asymptotic to radial straight lines at

infinity. In this case we can take ∆ to be a single base point on the arc.

Given an admissible Lagrangian L ⊂ Y and an isotopy ρt of the complex plane,

pointwise preserving ∆ ∪ crit(W) (or the slightly larger set ∆ ∪ ∆′ ) and setwise

preserving the negative real axis, there exists a unique Lagrangian isotopy, which we

denote by ρt(L), with the following properties: (i) ρt(L) = L in W−1(∆), and (ii)

outside of W−1(∆), ρt(L) fibers over the collection of arcs which is the image of W(L)

under ρt . We say that the lifted isotopy ρt(L) is admissible if the images of the arcs

under ρt are admissible. The Lagrangian ρt(L) can be constructed by intersecting L

with W−1(∆) and parallel transporting its boundary along the images of the arcs under

ρt .

Remark 3.6 If the symplectic connection on W : Y → C has vanishing curvature

outside of ∆ then ρt can be directly constructed as the horizontal lift of the isotopy of

the base. However, the geometric models required for our applications do not naturally

satisfy this condition.

Lemma 3.7 The set of admissible Lagrangians is invariant under compositions of

(i) Hamiltonian isotopies supported in Y in that preserve the fibers of W outside of a

compact subset, (ii) the Hamiltonian flow of H , and (iii) admissible lifted isotopies

ρt(L) as defined above.

Proof The first statement is obvious from the definition. The Hamiltonian flow of

H preserves admissibility because we have required that dW(XH) = 0, so that the

projection to the base is preserved, and LXH
dch = 0, so that dch vanishes on a

Lagrangian if and only if it vanishes on its image under the flow. The third statement

follows from the observation that parallel transport along an admissible arc preserves

Y in and preserves the vanishing of dch outside Y in by (3–5) and (3–6).

We also note that admissible lifted isotopies commute with the Hamiltonian flow of H ,

so the two operations can be performed in either order.

It will be useful for us to have a more explicit description of lifted admissible isotopies

as Hamiltonian flows.

Lemma 3.8 Given an admissible arc γ : [0,∞) → C and a vector field v on the

complex plane which vanishes at γ(0) and generates an admissible isotopy of arcs

γt = ρt(γ), we define a Hamiltonian Kγ,t,v ∈ C∞(W−1(γt),R) by:
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• Kγ,t,v = 0 everywhere in the fiber W−1(γt(0)),

• the derivative of Kγ,t,v along the horizontal lift of γt is

(3–8) dKγ,t,v(γ̇#
t ) = ω(γ̇#

t , v
#),

where v# is the horizontal lift of v.

Denote by ψt the Hamiltonian flow generated by (an arbitrary extension of) Kγ,t,v .

Then, for any point p ∈ W−1(γ(0)), ψt maps the horizontal lift of γ through p to the

horizontal lift of γt through p. In particular, if L is an admissible Lagrangian which

fibers over γ , then ψt(L) = ρt(L).

Moreover, at every point of W−1(γt) which lies outside of Y in , the Hamiltonian vector

field Xγ,t,v generated by Kγ,t,v satisfies

(3–9) dh(Xγ,t,v) = dch(Xγ,t,v) = 0 and ιXγ,t,vddch = 0.

Remark 3.9 The ambiguity in extending Kγ,t,v to a neighborhood of W−1(γt) affects

Xγ,t,v by a multiple of γ̇#
t , which does not affect the conclusions of the lemma, but

implies that the isotopy ψt that we construct does not in general lift the isotopy ρt

in the sense that the W ◦ ψt = ρt . By appropriately choosing the extension of the

Hamiltonian, we may arrange to have such a lift for a fixed point p ∈ W−1(γ(0)), but

the curvature of the symplectic connection on W : Y → C prevents the existence of a

lift simultaneously for all p.

We note for future reference that Kγ,t,v can be extended to a smooth Hamiltonian

whose support is contained in a small neighborhood of W−1(γt) and such that the

corresponding vector field satisfies (3–9) everywhere outside of Y in . The simplest way

to do this is to foliate a neighborhood of γ in the complex plane by a family of admissible

arcs γτ , τ ∈ (−τ0, τ0), and consider a Hamiltonian which equals χ(τ )Kγτ ,t,v over the

preimage of ρt(γτ ), where χ(τ ) is a cut­off function with compact support.

Proof of Lemma 3.8 Since (3–8) can be rewritten as ω(γ̇#
t ,Xγ,t,v) = ω(γ̇#

t , v
#), the

vector field Xγ,t,v − v# is symplectically orthogonal to γ̇#
t , hence tangent to W−1(γt).

It follows that the flow ψt maps W−1(γ) to W−1(γt).

Since ψt is a Hamiltonian diffeomorphism, it maps Lagrangian submanifolds of Y

which fiber over γ to Lagrangian submanifolds which fiber over γt . Moreover, since v

vanishes at ∗ = γ(0), the Hamiltonian Kγ,t,v and its first derivative both vanish along

W−1(∗), hence Xγ,t,v = 0 everywhere in W−1(∗). In particular, given a Lagrangian

ℓ ⊂ W−1(∗), ψt maps the parallel transport of ℓ over γ to the parallel transport of ℓ
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over γt . Now consider two small Lagrangian discs ℓ1, ℓ2 ⊂ W−1(∗) which intersect

transversely at a given point p. The parallel transports of ℓ1 and ℓ2 over γ intersect

cleanly along the horizontal lift of γ through p, and are mapped by ψt to the parallel

transports of ℓ1 and ℓ2 over γt , which intersect along the horizontal lift of γt through

p. Thus, ψt maps horizontal lifts of γ to horizontal lifts of γt .

In order to prove (3–9), we consider the map u : W−1(∗)× [0,∞)× [0, t0]→ Y such

that u(p, s, t) is the point of W−1(γt(s)) obtained by parallel transport of p over γt . In

other terms, u(p, 0, 0) = p, and ∂su = γ̇#
t .

Since the flow ψt maps u({p}× [0,∞)×{0}) to u({p}× [0,∞)×{t}) for all p, the

vector field Xγ,t,v lies in the span of ∂tu and ∂su. On the other hand, ∂su = γ̇#
t lies in

the kernel of dch and ddch by (3–5) and (3–6).

The 2­form u∗ddch vanishes on ∂s , so it can be written in the form

u∗ddch = dt ∧ α(s, t) + β(s, t)

where α(s, t) and β(s, t) are forms on W−1(∗). Since ∂tu = 0 whenever s = 0, we

find that α(0, t) ≡ 0, and β(0, t) = ddch|W−1(∗) is independent of t . On the other hand,

u∗ddch is closed, so necessarily α and β are independent of s, i.e. α(s, t) ≡ 0 and

β(s, t) ≡ β0 = ddch|W−1(∗) . We conclude that the span of ∂s and ∂t lies in the kernel

of u∗ddch, and hence Xγ,t,v lies in the kernel of ddch.

Similarly, u∗dch vanishes on ∂s , so it can be written in the form

u∗dch = f (s, t) dt + η(s, t)

for η(s, t) a 1­form on W−1(∗). Using again the fact that ∂tu = 0 for s = 0, we find

that f (0, t) ≡ 0 and η(0, t) is independent of t . Moveover, since u∗ddch vanishes on

the span of ∂s and ∂t , we have ∂sf = 0, so that f (s, t) ≡ 0. This in turn implies that

u∗dch vanishes on the span of ∂s and ∂t , and hence dch(Xγ,t,v) = 0.

Finally, the vanishing of dh(Xγ,t,v) is a direct consequence of the assumption that

horizontal parallel transport preserves the levels of h outside of Y in .

3.2 Maximum principle and energy estimates

Our construction of the Fukaya category of a Landau­Ginzburg model involves not only

structure maps for Lagrangian Floer theory with boundary on admissible Lagrangians,

but also natural morphisms and continuation maps associated to certain isotopies of

admissible Lagrangians. In this section we establish the results needed to prove

compactness of the corresponding moduli spaces.
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Let Σ be the complement of finitely many boundary marked points on a compact

Riemann surface with boundary, and Λ a moving family of admissible Lagrangian

boundary conditions on Σ, i.e. a smoothly varying family of admissible Lagrangian

submanifolds of Y , constant near the ends of each component of ∂Σ. The manner in

which Λ varies along the boundary of Σ can be described by a compactly supported

1­form on ∂Σ with values in vector fields.

We assume that Λ varies along each boundary component by a combination of (i) a

multiple of the flow of the wrapping Hamiltonian H , namely XH ⊗ η for η a 1­form

on ∂Σ, and (ii) the lift of an admissible isotopy of the complex plane supported away

from ∆ ∪∆′ , where ∆′ ⊃ crit(W) (cf. Remark 3.3). We note that Lemma 3.7 asserts

the invariance of the class of admissible Lagrangians under this class of isotopies. We

shall impose the following (semi)­positivity assumption on the isotopy:

• In the fiber direction, we require:

(3–10)

The total fiberwise wrapping is non­positive, i.e.

∫

∂Σ
η ≤ 0.

• In the base direction, denote by Γ the family of admissible arcs in the complex

plane to which Λ projects outside of ∆. We assume:

(3–11)
There exists an isotopy ρt of the complex plane rel. ∆∪∆′ , and a function

τ ∈ C∞(Σ,R) which is constant near the punctures, such that along each

component of ∂Σ the arcs ρτ (Γ) vary by an admissible isotopy that moves

in the clockwise direction outside of a compact set.

For example, if Γ only moves in the clockwise direction outside of a compact set (or

does not move at all) then we can take the isotopy ρt to be trivial, and τ ≡ 0.

Condition (3–10) implies the existence of a 1­form α on Σ with the following two

properties:

(3–12) α is sub­closed, i.e., dα ≤ 0;

(3–13) α|∂Σ ≥ η pointwise along ∂Σ.

(As is customary for Floer theory, α|∂Σ and dα should also be compactly supported).

For instance, if η is pointwise non­positive, then we can take α ≡ 0.

We consider maps u : Σ → Y with boundary conditions given by Λ (i.e., u(z) ∈ Λz

for all z ∈ ∂Σ) and subject to a convergence condition (see (3–16) below), satisfying

the perturbed pseudo­holomorphic curve equation

(3–14) (du− XH ⊗ α+ (ξτ )# ⊗ dτ )0,1
= 0,
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where ξt is the vector field on the complex plane which generates the isotopy ρt in

(3–11), and (ξt)# is its horizontal lift to Y . The expression (3–14) takes values in the

space of (0, 1)­forms on Σ with values in u∗TY , i.e. complex antilinear maps from TΣ

to u∗TY . (We only need to consider smooth maps, but as usual in Lagrangian Floer

theory, the functional analysis setup involves an extension to a space of maps of suitable

Sobolev regularity; see e.g. [Se2, Chapter 8].) We will also consider modifications

of this equation by further adding a compactly supported inhomogeneous perturbation

term for transversality purposes.

The inhomogeneous term XH ⊗ α in (3–14) is the same type of Hamiltonian pertur­

bation that commonly appears in the construction of continuation maps (and other

operations) in (ordinary or wrapped) Lagrangian Floer theory, and the term (ξτ )#⊗ dτ

plays a similar role in the horizontal direction. In the presence of moving boundary

conditions, one frequently requires that the restriction of the inhomogeneous perturba­

tion term to ∂Σ generates the isotopy by which Λ varies, see e.g. [Se2, Section 8k].

However, when the variation of Λ is pointwise non­positive everywhere along ∂Σ the

maximum principle readily holds without the need for inhomogeneous terms; our setup

encompasses both cases.

The vanishing of ξt inside ∆′ ensures that, even if the compatibility of h with the hor­

izontal distribution is relaxed over W−1(∆′) as in Remark 3.3, the quantities dh((ξt)#),

dch((ξt)#) and ι(ξt)#ddch still vanish identically outside of Y in .

We only ever consider finite energy solutions to (3–14), in the sense that the geometric

energy

(3–15) Egeom(u) :=

∫

Σ

|du− XH ⊗ α+ (ξτ )# ⊗ dτ |2 dvolΣ

is finite. The norm in the above integral is taken with respect to the metric induced

by ω and J on Y , and any j­compatible metric on Σ (the integrand is conformally

invariant). By the usual decay estimates for solutions of Floer’s equation on strips, this

is equivalent to the condition that

(3–16)

near each puncture of Σ, u converges to a generator of the appropriate Floer

complex (i.e., when the perturbation term is compactly supported over Σ,

an intersection point between the boundary conditions Λ on either side of

the puncture).

Proposition 3.10 Assuming (3–11), solutions to (3–14) satisfy the maximum princi­

ple with respect to the quantity |ρτ ◦W| (outside of a compact subset of C).
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Proof Outside of a compact subset of C, W is J ­holomorphic, so w = W ◦ u solves

the perturbed Cauchy­Riemann equation

(3–17) (dw + ξτ ⊗ dτ )0,1
= 0.

Hence, w̃ = ρτ ◦ w : Σ → C solves an unperturbed Cauchy­Riemann equation with

respect to the domain­dependent complex structure (ρτ )∗j on the complex plane:

(3–18) (dw̃)
0,1
(ρτ )∗j = 0,

and the maximum principle holds at interior points. Along ∂Σ we use a variant

of the maximum principle with Neumann boundary conditions. Namely, pick local

coordinates z = s + it which locally identify Σ with the upper half­plane. If |w̃| has a

local maximum, then necessarily

∂s|w̃| = 0 and ∂t|w̃| < 0.

It follows that ∂s arg(w̃) > 0, since otherwise ∂tw̃ would point clockwise from ∂sw̃,

contradicting (3–18).

On the other hand, recall that the boundary conditions for w̃ are given by the family of

admissible arcs ρτ (Γ), along which the distance from the origin is strictly increasing.

Thus, at a boundary maximum, ∂sw̃ points counterclockwise from the tangent vector

to ρτ (Γ). This contradicts the assumption (3–11), and we conclude that |w̃| has no

local maxima.

Proposition 3.11 Solutions to (3–14) satisfy the maximum principle with respect to

h (outside of Y in ).

Proof The argument is similar to other instances of the maximum principle in Floer

theory: since h is weakly plurisubharmonic, its values along a holomorphic curve

satisfy the maximum principle at interior points, and also at the boundary under the

assumption that dch vanishes there; the conditions (3–5)–(3–7), which govern the

behavior of dch along the directions of the inhomogeneous terms appearing in (3–14),

ensure that the maximum principle continues to hold for solutions of the perturbed

Cauchy­Riemann equation, as we now show by an explicit calculation.

We begin by showing that the maximum principle for h◦u holds at interior points. Let

z = x + iy be coordinates near a point in Σ. Since h is weakly plurisubharmonic, we

have

0 ≤ ddch
(

∂xu− XH⊗α(∂x) + ∂xτ · (ξ
τ )#, J

(

∂xu− XH⊗α(∂x) + ∂xτ · (ξ
τ )#
))

(3–19)

= ddch
(

∂xu− XH⊗α(∂x) + ∂xτ · (ξ
τ )#, ∂yu− XH⊗α(∂y) + ∂yτ · (ξ

τ )#)
)

=
(

u∗(ddch)− α ∧ u∗
(

ιXH
ddch

)

+ dτ ∧ u∗(ι(ξτ )#ddch
)

(∂x, ∂y).
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By the Cartan formula, we have

(3–20) d(ιXH
dch) = −ιXH

ddch + LXH
dch,

where the second term vanishes by assumption (3–6), whereas ι(ξτ )#ddch = 0 by

Remark 3.2, so we conclude that

(3–21) 0 ≤ u∗(ddch)− d
(

u∗dch(XH)
)

∧ α,

where the right hand side is considered as a 2­form on Σ. The Leibniz rule implies

that

(3–22) d(u∗dch(XH) · α) = d
(

u∗dch(XH)
)

∧ α+ u∗dch(XH) · dα,

so we derive the inequality:

(3–23) 0 ≤ u∗(ddch)− d(u∗dch(XH) · α) + u∗dch(XH) · dα.

The assumptions that 0 ≤ dch(XH) and that α is subclosed imply that

(3–24) 0 ≤ u∗(ddch)− d(u∗dch(XH) · α).

We claim that the right hand side is the Laplacian of h ◦ u. Indeed, since dh(XH) =

dh((ξτ )#) = 0 and dch((ξτ )#) = 0 by assumption, we compute that

dc(h ◦ u) = −dh ◦ du ◦ j

= −dh ◦
(

du ◦ j− XH ⊗ α ◦ j + (ξτ )# ⊗ dτ ◦ j
)

= −dh ◦
(

J ◦ du− JXH ⊗ α+ J(ξτ )# ⊗ dτ
)

(3–25)

= u∗(dch)− u∗dch(XH) · α+ u∗dch((ξτ )#) · dτ

= u∗(dch)− u∗dch(XH) · α.

Hence,

(3–26) ddc(h ◦ u) = u∗(ddch)− d(u∗dch(XH) · α),

and comparing with (3–24), we conclude that

(3–27) ddc(h ◦ u) ≥ 0.

Thus, the maximum principle holds at interior points.

Along ∂Σ we use the maximum principle with Neumann boundary conditions. For

this, we need to check that, in local coordinates z = s + it which locally identify

Σ with the upper half­plane, the inequality d(h ◦ u)(∂t) ≥ 0 holds, or equivalently,

dc(h ◦ u)(∂s) ≤ 0. We have computed above that

(3–28) dc(h ◦ u) = u∗(dch)− u∗dch(XH) · α,
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and we now need to check that the restriction of this 1­form to ∂Σ is everywhere

non­positive.

The vanishing of dch on each admissible Lagrangian Λs , by Definition 3.5, and on the

vector fields which generate lifted admissible isotopies, by Lemma 3.8, imply that the

only contribution to u∗|∂Σ(dch) comes from the fiberwise wrapping term XH ⊗ η in the

moving boundary condition, so

dc(h ◦ u)|∂Σ = u∗dch(XH) · η − u∗dch(XH) · α|∂Σ.

The non­positivity of this quantity is now immediate, since dch(XH) ≥ 0 and α|∂Σ ≥ η

pointwise by assumption.

Remark 3.12 In our setting, rather than being smooth, h will be given by the maximum

of a finite collection of smooth plurisubharmonic functions hv , where for each v the

1­form dchv satisfies all the required properties wherever hv achieves the maximum

(i.e., hv = h) outside of Y in . The above argument gives the maximum principle for all

hv which achieve the maximum, and hence a fortiori for h = max{hv}.

The next result asserts the existence of a bound of the geometric energy of solutions to

(3–14): such a bound is necessary to appeal to any version of Gromov’s compactness

theorem, and requires fixing a homotopy class β of maps from (Σ, ∂Σ) to (Y,Λ)

with fixed asymptotic conditions, given by generators of the Floer complexes, at the

punctures of Σ. The key point is that Propositions 3.10 and 3.11 provide maximum

principles for the solutions of (3–14) in both base and fiber directions, so that solutions

which converge to given generators at the punctures of Σ remain within a fixed compact

subset of Y . It thus suffices to bound the difference between the topological and

geometric energy for solutions to a perturbed Cauchy­Riemann equation with image

lying in a bounded region; this goes back all the way to Gromov’s original paper [Γp]

which established compactness for perturbed equations, and is standard for Hamiltonian

perturbations. We nonetheless provide a detailed proof because of the (non­standard)

appearance of the horizontal lift in our equation.

Proposition 3.13 There is a constant Emax(β) so that all solutions u to (3–14) in the

homotopy class β satisfy the a priori bound

(3–29) Egeom(u) ≤ Emax(β)

Proof Let z = x+ iy be coordinates near a point of Σ. Since du−XH⊗α+ (ξτ )# dτ

is complex linear with respect to j and J , the integrand in (3–29) is equal to

ω
(

∂xu− XH⊗α(∂x) + ∂xτ (ξτ )#, ∂yu− XH⊗α(∂y) + ∂yτ (ξτ )#
)

.
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Since XH is tangent to the fibers of W and (ξτ )# is horizontal, ω(XH, (ξ
τ )#) = 0, and

so

(3–30) Egeom(u) =

∫

Σ

u∗ω − α ∧ u∗(ιXH
ω) + dτ ∧ u∗(ι(ξτ )#ω).

This quantity is not invariant under deformations of the map u relative to the boundary

condition Λ. On the other hand, the variation of Λ along the boundary of Σ is described

by a vector field valued 1­form on ∂Σ of the form

XH ⊗ η + XK ⊗ ϑ,

where K is a family of Hamiltonians (dependent on the point of ∂Σ) generating the

lifted isotopy, as in Lemma 3.8. Then the variation of
∫

Σ
u∗ω along a vector field v

(tangent to Λ at the boundary) is equal to
∫

∂Σ
ω(v, ∂su) ds =

∫

∂Σ
ω(v,XH) η + ω(v,XK)ϑ =

∫

∂Σ
dH(v) η + dK(v)ϑ,

so the topological energy

(3–31) Etop([u]) =

∫

Σ

u∗ω −

∫

∂Σ
u∗H · η −

∫

∂Σ
u∗K · ϑ

depends only on the relative homotopy class [u] of the map u.

Returning to Equation (3–30), Stokes’ theorem expresses the second term as
∫

Σ

−α ∧ u∗(ιXH
ω) = −

∫

Σ

u∗dH ∧ α = −

∫

∂Σ
u∗H · α+

∫

Σ

u∗H · dα.

Putting this together with Equation (3–31), we conclude that

(3–32) Egeom(u) = Etop([u]) +

∫

∂Σ
u∗H · (η − α|∂Σ) +

∫

Σ

u∗H · dα

+

∫

∂Σ
u∗K · ϑ+

∫

Σ

dτ ∧ u∗(ι(ξτ )# ω).

The first two integrals in the right­hand side of (3–32) are non­positive, since H ≥ 0

by assumption and α is required to satisfy (3–12) and (3–13).

The existence of a compact subset Ω ⊂ Y which a priori contains the image of u (as

a consequence of Propositions 3.10 and 3.11) provides a bound for the last two terms

as follows: The third integral can be bounded by (supΩ |K|)‖ϑ‖L1(∂Σ) , which depends

only on the size of Ω and the geometric bounds on the lifted isotopy of the boundary

condition Λ within the compact subset Ω. Finally, the last integral can be rewritten as

(3–33)

∫

Σ

dτ ∧
(

ι(ξτ )#ω ◦ du
)

=

∫

Σ

dτ ∧
(

ι(ξτ )#ω ◦ (du− XH ⊗ α+ (ξτ )# ⊗ dτ )
)

.
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Since the vector field ξτ vanishes at the critical values of W , the norm of its horizontal

lift (ξτ )# is bounded everywhere in Ω, and we can bound (3–33) by
(

sup
Ω

|(ξτ )#|
)

‖dτ‖L2(Σ) ‖du− XH ⊗ α+ (ξτ )# ⊗ dτ‖L2(Σ).

Combining these bounds, we find that

(3–34) Egeom(u) ≤ Etop([u]) +
(

sup
Ω

|K|
)

‖ϑ‖L1 +
(

sup
Ω

|(ξτ )#|
)

‖dτ‖L2Egeom(u)1/2.

This implies a bound on Egeom(u) in terms of the other quantities appearing in (3–34).

Remark 3.14 Proposition 3.13 continues to hold if (3–14) is further modified by a

compactly supported (hence uniformly bounded) inhomogeneous perturbation term.

Remark 3.15 In the next sections we will define Floer­theoretic operations in terms

of certain moduli spaces of solutions to (compactly supported perturbations of) (3–14).

In each case we will make specific choices for the parameters α and τ , but we note

that, since the set of allowable choices is contractible hence connected, the operations

we define are independent of these up to homotopy. Likewise for other auxiliary data

such as compactly supported inhomogeneous perturbation terms or deformations of

the almost complex structure.

3.3 Definition of the directed category

We fix a collection L of admissible Lagrangians in Y , for which the subset ∆ appearing

in Definition 3.5 is always the same, and whose images in C agree near infinity with

a fixed finite collection of radial straight lines. (In our case ∆ will be the single point

{−1}). Also fix a subset ∆′ ⊃ crit(W) (in our case ∆′ will be a small disc centered

at the origin).

Let ρ be an autonomous flow on C which fixes ∆∪∆′ and the negative real axis, maps

radial lines to radial lines away from a compact set, and moves all radial lines other

than the negative real axis in the counterclockwise direction. This isotopy preserves

the admissibility of the arcs over which the objects of L fiber outside of ∆. We define

(3–35) L(t) := φtρt(L),

where φt is the flow of the wrapping Hamiltonian H , and ρt is the lifted admissible iso­

topy generated by ρ. Since φt and ρt commute, we can think of this as an autonomous

flow on Y , in particular (L(t))(t′) = L(t + t′).
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By construction, the admissible arcs over which L(t + λ) and L′(t) fiber outside of

∆ are asymptotic to different straight lines for all but finitely many values of λ. We

will essentially require that, in the fiberwise direction, these Lagrangians also go to

infinity in different directions for generic λ, so that their intersections are contained in

a compact subset. More precisely, we assume:

(3–36)

there exists an open (or Baire) dense set U ⊂ R such that, for all L and L′

in L and λ ∈ U , L(λ)∩ L′ is contained in a compact subset of Y (the same

then holds for L(t + λ) ∩ L′(t) for all t ∈ R).

(In our case it will be possible to choose the compact subset in (3–36) to be independent

of L , L′ and λ, but there is no reason to require this in general.)

In addition, we impose the following conditions on elements L ∈ L:

for all t ∈ R, L(t) does not bound any (unperturbed) holomorphic discs;(3–37)

L is equipped with a spin structure and with a grading (i.e., after choosing a

holomorphic volume form Ω on Y , a lift of the phase map arg(Ω|L) to R).
(3–38)

Condition (3–37), which may be replaced by unobstructedness, ensures that Floer ho­

mology is well­defined; while (3–38) ensures that it is Z­graded and can be constructed

over a field of characteristic zero.

We will also on occasion equip Lagrangians in L with local systems; since this will

only come up in specific places, we omit local systems from the notation for now.

Lemma 3.16 There are arbitrarily small values of ǫ > 0 such that, for each pair of

Lagrangians L0, L1 ∈ L, and for all integers k0 6= k1 ,

(3–39)
the images of L0(ǫk0) and L1(ǫk1) under W are asymptotic to different radial

straight lines in C, and L0(ǫk0) ∩ L1(ǫk1) is compact.

Proof After removing a finite set of values u from the set U in Condition (3–36) we

can assume that for λ ∈ U the images of L(t+λ) and L′(t) under W are asymptotic to

different radial straight lines in C. Now the desired properties hold whenever ǫ lies in

the intersection of the sets k−1 ·U ⊂ R, for all positive integers k . This is a countable

intersection of Baire sets and hence dense as well.

Choose 0 < ǫ such that Condition (3–39) holds for all pairs of objects.

We construct a directed category O with objects Lk := L(−ǫk) for all k ∈ Z and

L ∈ L, whose morphisms are

(3–40) O(L
k0

0 , L
k1

1 ) ≡















CF∗(L0(−ǫk0), L1(−ǫk1)) if k0 < k1

K · id if k0 = k1 and L0 = L1

0 otherwise.
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The A∞ structure is obtained by counting solutions to pseudo­holomorphic curve

equations (for suitable J , see Remark 3.18) with compactly supported inhomogeneous

perturbation terms (when the integers k0, k1, . . . form a strictly increasing sequence; in

all other cases the structure maps are defined tautologically). The compactly supported

perturbations are used to achieve transversality, and are chosen in a consistent manner

(cf. e.g. [Se2]). Since we work over the Novikov field, the count of solutions in each

homotopy class is weighted by (topological) energy (as well as the bulk deformation

class, and holonomies of local systems along the boundary of the disc when applicable).

The key compactness property required for this construction is a direct consequence of

the maximum principle:

Lemma 3.17 Given any sequence of Lagrangians L0, . . . , Lr ∈ L and integers k0 <

k1 < · · · < kr , there exists a bounded subset of Y which contains the images of all

J ­holomorphic discs with boundary on L0(−ǫk0)∪ · · · ∪ Lr(−ǫkr). The same property

also holds in the presence of a compactly supported inhomogeneous perturbation.

Proof This follows immediately from Propositions 3.10 and 3.11, in the special case

where the Lagrangian boundary condition remains constant along each component of

∂Σ and there are no perturbation terms.

Remark 3.18 Disc bubbling is excluded by assumption (3–37), but sphere bubbling

can happen in our setting, so the regularity of the moduli spaces we consider is not

immediate.

To deal with sphere bubbling, we assume that J is chosen generically within a suit­

able class of compatible almost­complex structures, so that simple J ­holomorphic

spheres are regular, and evaluation maps at interior points for somewhere injective J ­

holomorphic curves are mutually transverse (see [McS, Theorem 3.4.1] for the closed

case; the argument works similarly for discs). For our main example the standard

complex structure is not regular, but all holomorphic spheres lie inside W−1(0), so it is

enough to perturb J in a neighborhood of W−1(0) (or, in fact, its intersection with the

bounded subset provided by Lemma 3.17, so that the conditions we have set in Section

3.1 on the geometry at infinity are not affected).

With this understood, bubbling of simple J ­holomorphic spheres is a real codimension

2 phenomenon, and does not affect our ability to count solutions to Floer’s equations

in zero­dimensional moduli spaces, or to compare counts of solutions by considering

one­dimensional moduli spaces. Moreover, since c1(Y) = 0 we need not worry about

multiply covered sphere bubbles either. Indeed, regularity for simple spheres implies
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that for generic J the union of the images of all pseudo­holomorphic spheres in Y has

real codimension 4. By transversality of evaluation maps, it is therefore disjoint from

the images of holomorphic discs (or solutions to Floer’s equation) in (a fixed countable

collection of) zero­ or one­dimensional moduli spaces.

3.4 Quasi­units and continuation maps

The next ingredient in the construction of the fiberwise wrapped category W(Y,W) is

a distinguished collection of morphisms

(3–41) eLk ∈ HF0(Lk, Lk+1)

for all L ∈ L and k ∈ Z, called quasi­units.

The quasi­unit eLk is the image of the identity in H0(L) under a PSS­type homo­

morphism from H∗(L) to HF(Lk, Lk+1) which can be constructed exactly as in [Al]

(see below for the specific case at hand); note however that the reverse map from

HF(Lk, Lk+1) to H∗(L) is not well­defined in our setting, as it involves Floer data

for which the analytic estimates of §3.2 do not hold. (Nonetheless, given that our

Lagrangians do not bound any holomorphic discs, the PSS map often turns out to be

an isomorphism for small enough ǫ, under additional geometric assumptions which

ensure that Lk+1 is contained within a Weinstein tubular neighborhood of Lk ; this is

e.g. the case in our main example, by Proposition 5.11.)

Chain­level quasi­units can be constructed by counting solutions to a Cauchy­Riemann

equation with moving boundary condition, whose domain Σ is a disc with a single

boundary puncture which we consider as an output, and where the boundary condition

Λ is given by the isotopy Lt = L(−ǫt), t ∈ [k, k + 1] (parametrized using some choice

of monotonically increasing smooth function from ∂Σ to [k, k + 1] which is constant

near the ends). Since the isotopy along ∂Σ moves the complex plane in the clockwise

direction and wraps fiberwise in the negative direction only, we can apply the results

of Section 3.2, with α ≡ 0 and τ ≡ 0, to control the behavior of solutions. We denote

again by

(3–42) eLk ∈ CF0(L(−ǫk), L(−ǫ(k + 1))) = O(Lk, Lk+1)

the chain­level quasi­unit constructed in this manner. While eLk depends on auxiliary

choices (e.g., of a function from ∂Σ to [k, k + 1]), the chain­level quasi­units con­

structed using different choices only differ by an explicit homotopy, and can be used

interchangeably.
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Let Z denote the collection of all such morphisms. The fiberwise wrapped category

W(Y,W) is the localisation of O with respect to these morphisms (i.e., the quotient of

O by the cones of the morphisms in Z , in the sense of Lyubashenko­Ovsienko [LO];

see also [GPS1, §3.1.3], as well as Section 3.5 below):

(3–43) W(Y,W) := Z−1O.

We shall use a concrete model of the morphisms in W(Y,W), introduced in the

next section, in which they are expressed as homotopy colimits (i.e., direct limits) of

morphism spaces in O . In order to compute these morphism spaces explicitly in terms

of Floer theory, we shall introduce continuation maps

(3–44) F
Lk

0
,Lj

1
: O(Lk

0, L
j
1)→ O(Lk+1

0 , Lj+1
1 ).

These are defined by counting solutions to a perturbed Cauchy­Riemann equation,

with domain Σ = R× [0, 1], and where the boundary conditions are given by Λs,0 =

L
k+χ(s)
0 = L0(−ǫ(k + χ(s))) along R × {0} and Λs,1 = L

j+χ(s)
1 = L1(−ǫ(j + χ(s)))

along R× {1}. Here χ : R→ [0, 1] is a monotonically decreasing smooth function,

constant near the ends, so that the boundary conditions are (Lk
0, L

j
1) at the input end

s→ +∞, and (Lk+1
0 , Lj+1

1 ) at the output end s→ −∞.

We use the setup of Section 3.2, with a fiberwise wrapping perturbation given by

α = −ǫχ′(s) ds (so that dα = 0 and α|∂Σ = η ), and a horizontal perturbation given by

the autonomous flow ρ and τ = ǫχ(s) (so ρτ exactly cancels the horizontal isotopy of

the boundary condition). Propositions 3.10, 3.11, and 3.13 then imply that the counts

of index 0 solutions to (3–14) (weighted by topological energy) can be used to define

F
Lk

0
,Lj

1
.

Despite the slight differences in technical setup, these continuation maps have all the

usual properties of continuation maps associated to symplectic isotopies in Lagrangian

Floer theory: they are quasi­isomorphisms, and extend to an A∞ ­functor F : O → O

which acts on objects by Lk 7→ Lk+1 . Since we shall not need these properties, we

omit the proofs.

Lemma 3.19 The quasi­units are natural with respect to continuation maps, in the

sense that both triangles in the diagram
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L
j+1
1 L

j
1

Lk+1
0 Lk

0

L
j
1

Lk+1
0

Lk
0

Lk+1
0

L
j+1
1

Lk
0

L
j
1

Lk+1
0

L
j
1

I1 I2

Lk+1
0

L
j+1
1

L
k+ρ

0

L
j+ρ

1

Lk+1
0

L
j
1

I1 I2

Lk+1
0

L
j+1
1 L

j
1

L
j+1
1

L
j+1
1

Lk+1
0

Lk+1
0

L
j
1

Figure 2: A homotopy between µ2(e
L

j
1

, ·) and F(µ2(·, eLk
0
)).

(3–45)

O(Lk+1
0 , Lj

1) O(Lk+1
0 , Lj+1

1 )

O(Lk
0, L

j
1) O(Lk

0, L
j+1
1 )

F
Lk

0
,Lj

1

µ2(·, eLk
0
)

µ2(e
L

j

1
, ·)

µ2(e
L

j

1
, ·)

µ2(·, eLk
0
)

are commutative up to homotopy.

Proof We start with the upper triangle, i.e. the homotopy between F(µ2(·, eLk
0
)) and

µ2(e
L

j

1
, ·). The argument relies on comparing a series of moduli spaces of perturbed

holomorphic curves, presented pictorially on Figure 2, where the thick edges corre­

spond to regions where the Lagrangian boundary condition is moving and the shaded

areas correspond to the support of the inhomogeneous perturbation terms in (3–14).

The main protagonists in the homotopy are a family of perturbed holomorphic strips

with domain Σ = R × [0, 1], depicted on the right­hand side of Figure 2. Fix two

disjoint compact intervals I1, I2 ⊂ R, with I1 to the left of I2 , as well as two smooth

monotonic functions χ1, χ2 : R → [0, 1], such that χ1 equals 1 to the left of I1 and

0 to its right, while χ2 equals 0 to the left of I2 and 1 to its right; we arrange that
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the “profiles” of these functions are identical to those used in the construction of the

continuation maps and quasi­units. Also fix a parameter ρ ∈ [0, 1], and define

kρ(s) = k + ρ+ (1− ρ)χ1(s) + (1− ρ)χ2(s),

jρ(s) = j + ρ+ (1− ρ)χ1(s)− ρχ2(s).

Along R × {0} we consider the moving boundary condition Λ0,s = L
kρ(s)

0 , while

along R × {1} we use Λ1,s = L
jρ(s)

1 . While the boundary condition Λ1,s always

moves in the negative direction as s decreases (jρ is a monotonic function of s), the

boundary condition Λ0,s moves in the positive direction over I1 . Accordingly, we set

α = −ǫ(1− ρ)χ′
1(s) ds, and τ = ǫ(1− ρ)χ1(s), for the perturbation terms in (3–14).

By Section 3.2 the solutions to (3–14) with these boundary conditions and perturbations

satisfy maximum principles and energy estimates, so we can define operations

ΦI1,I2,ρ : O(Lk+1
0 , Lj

1)→ O(Lk+1
0 , Lj+1

1 )

by counting rigid (index 0) solutions. These operations are chain maps, since the

ends of the moduli spaces of index 1 solutions for fixed I1, I2, ρ are in bijection with

the broken trajectories which contribute to ∂ ◦ ΦI1,I2,ρ and ΦI1,I2,ρ ◦ ∂ ; and they are

all homotopic to each other, with explicit homotopies given by counts of index −1

solutions that may arise as the parameters I1, I2, ρ vary, as can be seen by considering

the ends of moduli spaces of index 0 solutions for a one­parameter family of choices

of I1, I2, ρ. (These are standard arguments in Lagrangian Floer theory, so we omit the

details; see e.g. [Au, §2], [Se2, §17], [Al], etc. for similar proofs.)

For ρ = 0, the boundary conditions and perturbations near I1 are identical to those

used to define the continuation map, while along I2×{0} the boundary condition Λ0,s

varies from Lk
0 to Lk+1

0 (top­right diagram in Figure 2). Moving I1 towards −∞ and

shrinking I2 to a point then causes the solutions to converge to limit configurations

consisting of (typically) three components (upper­left diagram in Figure 2). The “main”

component is an unperturbed holomorphic disc with two inputs, corresponding to the

Floer product µ2 , while at s = −∞ we have a strip with moving boundary conditions

and inhomogeneous perturbations, corresponding to the continuation map F , and the

rescaling limit near I2 × {0} gives a half­plane with a moving boundary condition

which corresponds to the quasi­unit. Thus, the operations ΦI1,I2,ρ are homotopic to

F(µ2(·, eLk
0
)).

On the other hand, for ρ = 1, there are no perturbations near I1 , and along I2×{1} the

boundary condition Λ1,s varies from L
j
1 to L

j+1
1 . Shrinking I2 to a point then causes

a holomorphic half­plane with moving boundary condition to break off (lower­left

diagram in Figure 2), showing that ΦI1,I2,ρ is also homotopic to µ2(e
L

j

1
, ·).
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Figure 3: A homotopy between µ2(e
L

j
1

, ·) and µ2(F(·), eLk
0
).

The commutativity up to homotopy of the lower triangle in (3–45) is proved in exactly

the same manner, by considering a family of perturbed holomorphic strips depicted

in Figure 3. The construction is identical, except that the roles of the two regions

I1 and I2 are now reversed. By considering the limit configurations as ρ becomes 0

or 1 while the left­most interval is degenerated to a point and the right­most interval

escapes towards s = +∞, this yields a homotopy between µ2(e
L

j

1
, ·) (Figure 3 left)

and µ2(F(·), eLk
0
) (Figure 3 right).

Remark 3.20 Lemma 3.19 can be strengthened to show that the quasi­units form the

leading order term of a natural transformation e from the identity to the A∞ ­functor

F . The next (order 1) term in the natural transformation is precisely the homotopy

between µ2(F(·), eLk
0
) and µ2(e

L
j

1
, ·) that arises in the proof of Lemma 3.19, i.e. it can

be defined by counting index −1 solutions that come up in the family of perturbed

Cauchy­Riemann equations depicted in Figure 3. The construction of the higher order

terms of the natural transformation is technically more involved, and we do not discuss

it here since we will not be needing it.

Since the localization at all quasi­units amounts to making the natural transformation e

invertible up to homotopy, the localized category W(Y,W) is also sometimes denoted

O[e−1]; this notation is also suggestive of the fact that the localization effectively

enlarges morphism spaces by inverting all quasi­units (up to homotopy).

Remark 3.21 It is natural to ask to what extent the categoryW(Y,W) depends on the

choice of the collection of Lagrangians L and on the parameter ǫ (the time step with

respect to which we consider quasi­units). Here we do not address the first question,

which relates to the existence of generation criteria for W(Y,W); we simply assume

that we have a collection L satisfying the required hypotheses, and if this collection is

too small the category we construct might only be a subcategory of the one we would

obtain from a larger collection of objects.
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On the other hand, the algebraic properties of quasi­units imply that the choice of the

parameter ǫ does not affect the outcome of our construction. The key observation is

that we can define quasi­units eL(t′)→L(t) ∈ HF0(L(t′), L(t)) for all t′ > t such that

L(t′)∩L(t) is contained in a compact subset of Y , and an argument similar to the proof

of Lemma 3.19 shows that, for t′′ > t′ > t , these satisfy

eL(t′)→L(t) · eL(t′′)→L(t′) = eL(t′′)→L(t)

(in cohomology, or up to homotopy). Assume that L(t′), L(t) are both objects of O for

some t′ > t , and let n be such that nǫ > t′− t . Since eL(t+nǫ)→L(t) is the product of the

quasi­units eL(t+kǫ)→L(t+(k−1)ǫ) for 1 ≤ k ≤ n, it is a quasi­isomorphism in the localized

category, hence admits a quasi­inverse fL(t)→L(t+nǫ) ; similarly for eL(t′)→L(t′−nǫ) , whose

quasi­inverse we denote by fL(t′−nǫ)→L(t′) . Then in H0W we have

eL(t′)→L(t) · (eL(t+nǫ)→L(t′) · fL(t)→L(t+nǫ)) = idL(t) and

(fL(t′−nǫ)→L(t′) · eL(t)→L(t′−nǫ)) · eL(t′)→L(t) = idL(t′),

giving left and right inverses for eL(t′)→L(t) up to homotopy and proving that it is

a quasi­isomorphism. Hence, localizing with respect to quasi­units for a fixed step

size ǫ actually inverts all quasi­units; and L(t) and L(t′) are quasi­isomorphic in the

localized category whenever they belong to the set of objects. This implies that up to

quasi­equivalence the category we construct does not depend on the choice of ǫ.

3.5 Fiberwise wrapped category via colimits

Our goal in this section is to construct the fiberwise wrapped Fukaya category as

a subcategory of the category of modules over O . This approach is adapted from

unpublished work [AS] of the first author with Seidel, where the starting point is the

more abstract formalism of localisation of categories, and the point of view which we

take here is used as a computational tool.

The basic idea is that we seek an A∞ ­category where morphism spaces between

Lagrangians are taken after passing to a limit with respect to positive wrapping. We

implement this by assigning to each Lagrangian L an object of the category of modules

over O given as a homotopy colimit (or direct limit)

(3–46) YL∞ ≡ hocolim
k→+∞

YLk

where YLk is the Yoneda module

(3–47) X 7→ O(X, Lk)
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and the connecting maps YLk → YLk+1 are given by composition with the quasi­units

eLk . We take as model for the homotopy colimit the mapping telescope

(3–48) Cone

(

∞
⊕

k=0

YLk →
∞
⊕

k=0

YLk

)

where the arrow is the direct sum of the differences id− eLk .

We writeW for the full subcategory of modules over O with these objects, i.e. objects

are admissible Lagrangians in L, and morphisms between L0 and L1 given by

(3–49) W(L0, L1) ≡ HomO(YL∞
0
,YL∞

1
)

The first computation we need is:

Lemma 3.22 There is a natural quasi­isomorphism

(3–50) holim
k→∞

hocolim
j→∞

O(Lk
0, L

j
1)→W(L0, L1).

Proof The cone of the complex

(3–51) HomO(

∞
⊕

k=0

YLk
0
,YL∞

1
)→ HomO(

∞
⊕

k=0

YLk
0
,YL∞

1
),

maps quasi­isomorphically to the space of morphisms from YL∞
0

to YL∞
1

, and is

isomorphic to the cone of the map

(3–52)

∞
∏

k=0

HomO(YLk
0
,YL∞

1
)→

∞
∏

k=0

HomO(YLk
0
,YL∞

1
),

which is a model for

(3–53) holim
k

HomO(YLk
0
,YL∞

1
).

On the other hand, the Yoneda map induces a quasi­isomorphism

(3–54) hocolim
j→∞

O(Lk
0, L

j
1)→ hocolim

j→∞
HomO(YLk

0
,Y

L
j

1
) ∼= HomO(YLk

0
,YL∞

1
).

The desired map follows by composition.

The next result reduces the computation of morphisms in W to a direct limit:

Lemma 3.23 For all L0 , L1 and k , the map

(3–55) HomO(Y
L

k+1
0
,YL∞

1
)→ HomO(YLk

0
,YL∞

1
)

induced by multiplication by quasi­units is a quasi­isomorphism.
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Proof The Yoneda Lemma reduces the problem to the statement that the map

(3–56) hocolim
j→∞

O(Lk+1
0 , Lj

1)→ hocolim
j→∞

O(Lk
0, L

j
1)

induces an isomorphism on cohomology. Since direct limits commute with passing to

cohomology, it suffices to show that the map of cohomology groups

(3–57) colim
j→∞

HF∗(Lk+1
0 , Lj

1)→ colim
j→∞

HF∗(Lk
0, L

j
1)

is an isomorphism, where we use the fact that the morphisms in O are given by Floer

cochains whenever j is sufficiently large. We claim that the continuation maps from

Equation (3–44) provide an inverse. Indeed, by taking the cohomology of Diagram

(3–45) we obtain a commutative diagram

(3–58)

HF∗(Lk+1
0 , Lj

1) HF∗(Lk+1
0 , Lj+1

1 )

HF∗(Lk
0, L

j
1) HF∗(Lk

0, L
j+1
1 ).

F
Lk

0
,Lj

1

µ2(·, eLk
0
)

µ2(e
L

j

1
, ·)

µ2(e
L

j

1
, ·)

µ2(·, eLk
0
)

In this diagram the horizontal maps are those used to define the direct limits, while the

vertical maps assemble into the map (3–57).

To show that (3–57) is injective, note that every element of the left hand side is

represented by an element of HF∗(Lk+1
0 , Lj

1) for some j. The above diagram implies

that the image of this element in HF∗(Lk+1
0 , Lj+1

1 ) agrees with the image under our

proposed inverse (the continuation map F
Lk

0
,Lj

1
) of its image under the map of direct

limits (3–57). By definition of the direct limit, this implies that the continuation map

is a left inverse to (3–57), and injectivity follows.

Considering the composition in the other order yields surjectivity: every element of

the right hand side of (3–57) is represented by an element of HF∗(Lk
0, L

j
1) for some j,

whose image in HF∗(Lk
0, L

j+1
1 ) is also the image under (3–57) of its image under the

continuation map, so the continuation map is a right inverse.

Corollary 3.24 For each pair Lk
0 and L1 of objects ofO , there is a natural isomorphism

(3–59) colim
j→∞

HF∗(Lk
0, L

j
1)→ HW(L0, L1).
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Proof The above Lemma implies that bonding maps in the inverse system appearing

in Equation (3–50) are quasi­isomorphisms. In particular, the Mittag­Leffler condition

is satisfied,2 and for each integer k the projection map

(3–60) holim
k→∞

hocolim
j→∞

O(Lk
0, L

j
1)→ hocolim

j→∞
O(Lk

0, L
j
1)

induces an isomorphism on cohomology. Inverting this map, and composing with the

one induced by Equation (3–50) on cohomology yields the desired isomorphism.

Remark 3.25 The most straightforward way to compare our construction with the

approach of [AS] is to consider the localisation functor from O ­modules to O[e−1]­

modules. By the universal property of localisation, the images of the Yoneda objects

Lk are equivalent, hence the image of the colimit YL∞ under localisation is equivalent

to these Yoneda modules. Lemma 3.23 can be restated as the fact that the modules

YL∞ lie in the e­local subcategory of O ­modules, which is quasi­isomorphic to the

category of O[e−1]­modules. We therefore conclude that the category generated by

the modules YL∞ is equivalent to the localisation of O , which is the point of view

taken by [AS].

4 Kähler forms and admissibility

In this section, we study the geometry of parallel transport in toric Landau­Ginzburg

models, and construct suitable Kähler forms for which fiberwise monomial admissibility

is preserved by parallel transport; we then show that the technical assumptions we have

made in the previous Section follow from this property.

Definition 4.1 A fiberwise monomial subdivision for the toric Landau­Ginzburg

model W : Y → C consists of a finite collection of toric monomials zv , v ∈ V ⊂ Zn+1 ,

weights d(v) ∈ Z>0 , open subsets Cv ⊂ Y , and a closed subset Ω ⊂ Y , such that:

(1) zv ∈ O(Y) for all v ∈ V , and z 7→ (zv)v∈V defines a proper map Y → C|V| ;

(2) the restriction of W to Ω is a proper map;

(3) Ω ∪
⋃

v∈V Cv = Y ;

2An inverse system A1 ← A2 ← A3 ← . . . is said to satisfy the Mittag­Leffler condition if

for each k , there exists j > k such that, for all i > j , the maps Ai → Ak and Aj → Ak have the

same image; this condition implies vanishing of the first derived functor of the inverse limit,

and that inverse limits are well­behaved with respect to cohomology (see e.g. [We, Definition

3.5.6]).
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(4) for z ∈ Y \ Ω, if |zv0 |1/d(v0) = max{|zv|1/d(v), v ∈ V} then z ∈ Cv0
.

Definition 4.2 Given a fiberwise monomial subdivision, a Lagrangian submanifold

ℓ ⊂ W−1(c) ∼= (C∗)n is monomially admissible with phase angles {ϕv, v ∈ V} if,

outside of the compact subset W−1(c) ∩ Ω, arg(zv) = ϕv at every point of ℓ ∩ Cv .

A Lagrangian submanifold L ⊂ Y is fiberwise monomially admissible with phase

angles {ϕv} if, outside of Ω, arg(zv) = ϕv at every point of L ∩ Cv .

Example 4.3 We can define a fiberwise monomial subdivision for the toric Landau­

Ginzburg model (CN ,W0 = −
∏

zj) as follows (the construction below will be a slight

modification of this example). Take the collection of monomials to be the coordinate

functions zj , 1 ≤ j ≤ N (i.e., the exponent vectors vj are the standard basis of ZN );

take d(vj) = 1 for all j, and let Cvj
be the set of points of CN where |zj| > K |W0|

1/N

for some constant K > 1, and Ω = CN \
⋃

Cvj
= {z ∈ CN | max(|zj|) ≤ K |W0|

1/N}.

Condition (2) holds since the coordinates of points of Ω are bounded by K |W0|
1/N ,

and condition (4) holds since if |zj| = max(|z1|, . . . , |zN |) > K |W0|
1/N then z ∈ Cvj

. A

Lagrangian submanifold L ⊂ CN is then fiberwise monomially admissible with phase

angles ϕ1, . . . , ϕN if, at every point of L where |zj| > K|W0|
1/N , arg(zj) = ϕj . For

instance, the real positive locus (R+)N satisfies this condition with all phase angles

equal to zero. We shall see below how to build more interesting examples under the

assumption that the toric Kähler form on CN is chosen suitably; see Section 4.1.

The notions of monomial subdivision and monomial admissibility for Lagrangians in

(C∗)n already appear in Andrew Hanlon’s thesis [Ha]. One technical difference is

that we consider a fiberwise version of monomial admissibility and its compatibility

with parallel transport between the fibers of W . The more important difference is

philosophical: we use monomial admissibility merely as a technical tool to ensure the

flatness condition of Definition 3.5 (ii), rather than as a geometric way of restricting

the fiberwise wrapping by introducing additional stops (though we will do so in the

sequel [AA] for mirrors of hypersurfaces in toric varieties).

4.1 A toric Kähler form on CN

We first consider the case of CN equipped with a complete toric Kähler form ω = ddcΦ

(for a TN ­invariant Kähler potential Φ) and the superpotential W0 = −
∏

zj . Writing

zj = exp(ρj + iθj), we have

ω = ddc
Φ =

∑

i,j

∂2Φ

∂ρi∂ρj

dρi ∧ dθj.
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In particular, ω is a Kähler form if and only if the potential is a strictly convex function

of the ρ coordinates, i.e. the Hessian matrix Ψ = (∂2Φ/∂ρi∂ρj)ij is positive definite.

The moment map µ = (µ1, . . . , µN) : CN → RN is given by the partial derivatives

of Φ:

µj = ∂Φ/∂ρj.

The horizontal distribution, i.e. the symplectic orthogonal to the level sets of W0 , is

spanned (over C) by the Hamiltonian vector field generated by log |W0| =
∑

ρj . We

can express d log |W0| as a linear combination of the differentials of the moment maps,

(4–1) d log |W0| =
∑

j

dρj =
∑

j

λjdµj, where (λ1, . . . , λN) = Ψ
−1(1, . . . , 1).

Angular parallel transport (i.e., along circles centered at the origin in the base of the

fibration given by W0 ) is then given by rotating each coordinate at a rate proportional

to λi , so that the horizontal lifts of the angular and radial vector fields are given by

(4–2) (∂θ)#
=

∑

λj∂θj
∑

λj

and (r∂r)
#
= −i(∂θ)#

=

∑

λj∂ρj
∑

λj

.

One checks that the quantities µj − µi are conserved by parallel transport, as expected

(since parallel transport is equivariant with respect to the standard Hamiltonian TN−1 ­

action on the fibers of W0 ).

Example 4.4 For the standard Kähler form on CN , with potential Φ = 1
4

∑

|zj|
2 =

1
4

∑

e2ρj , the moment map is given by µj =
1
2
|zj|

2 , and Ψ is diagonal with entries |zj|
2 ,

so that λj = |zj|
−2 , and (∂θ)# = 1∑

|zj|−2

∑

|zj|
−2∂θj

. Thus, when |zj| → ∞ for |W0|

fixed, the rate of change of arg(zj) under angular parallel transport tends to zero. This in

turn implies that a weaker form of asymptotic admissibility (only requiring arguments

of monomials to converge to prescribed limit values at infinity) is preserved under

parallel transport, and it should be possible to carry out the whole construction using

the standard Kähler form. However, the stronger admissibility requirement that we

impose is necessary for the maximum principle of Proposition 3.11; thus we will need to

ensure that arg(zj) remains strictly constant (rather than approximately constant) under

parallel transport, and this in turn motivates the introduction of a different Kähler form.

Our choice of Kähler form involves smooth approximations of the maximum function:

Definition 4.5 Given a constant δ > 0, denote by M : R2 → R a smooth convex

function such that:

(1) M(u, v) = max(u, v) whenever |u− v| ≥ δ ;
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(2) M(u + a, v + a) = M(u, v) + a for all u, v, a ∈ R; and

(3) M(u, v) = M(v, u).

These conditions imply that M is monotonically increasing with either variable, and

max(u, v) ≤ M(u, v) ≤ max(u, v) + δ, 0 ≤
∂M

∂u
≤ 1, and 0 ≤

∂M

∂v
≤ 1.

We then define M̂ : R2
≥0 → R≥0 by

M̂(U,V) = exp M(log U, log V) for U,V > 0,

M̂(U, 0) = M̂(0,U) = U,

and note that M̂ is continuous, smooth everywhere except at the origin, and M̂(U,V) =

max(U,V) whenever U/V 6∈ (e−δ, eδ).

In fact, the second condition above implies that M is determined by a smoothing, near

the origin, of the absolute value function on R.

Definition 4.6 Choosing some small ε > 0, we equip CN with ω = ddcΦ, where

(4–3) Φ =

N
∑

i=1

M̂

(

ε,

N
∏

j=1
j6=i

M̂(|zi|
2, |zj|

2)

)

|zi|
2.

Remark 4.7 The only purpose of taking M̂(ε, ...) is that otherwise ω would be

degenerate (and non­smooth) along the coordinate axes. In fact,

∏

j6=i

M̂(|zi|
2, |zj|

2) ≥
∏

j6=i

max(|zi|
2, |zj|

2) ≥
|W0|

2

min{|z1|2, . . . , |zN |2}
≥ |W0|

2(N−1)/N ,

so we have the simpler expression

(4–4) Φ =

N
∑

i=1

(

∏

j6=i

M̂(|zi|
2, |zj|

2)
)

|zi|
2 whenever |W0|

2 ≥ (εeδ)
N

N−1 .

Since we will only consider Lagrangian submanifolds which stay away from the preim­

age of a small disc under W0 , choosing ε and δ sufficiently small we can always work

with the simpler formula (4–4) to study the geometry of admissible Lagrangians.

Lemma 4.8 ω is a toric Kähler form on CN .
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Proof Φ is obviously TN ­invariant, and we will momentarily check that outside of

the coordinate axes it is strictly convex as a function of the variables ρj = log |zj|.

Meanwhile, smoothness and non­degeneracy of the Hessian near zi = 0 follow from

the observation that the coefficient M̂(ε, ...) in the i­th term of (4–3) is bounded below

by ε > 0.

To prove the strict convexity of Φ outside of the coordinate axes, we observe that each

term in the sum (4–3) is log­convex as a function of ρj = log |zj|, i.e. its logarithm is

convex. Indeed, using the convexity of M and the fact that the composition of a convex

monotonically increasing function with a convex function is itself convex, we find that

ϕi(ρ1, . . . , ρN) := M
(

log ε,
∑

j6=i

M(2ρi, 2ρj)
)

+ 2ρi

is a convex function. Since the exponential function is strictly increasing and strictly

convex, we conclude that

Φi(ρ1, . . . , ρN) = eϕi(ρ1,...,ρN )
= M̂

(

ε,
∏

j6=i

M̂(|zi|
2, |zj|

2)
)

|zi|
2

is a convex function, and that its Hessian is non­degenerate on all tangent vectors which

are transverse to the level sets of ϕi , i.e. d2Φi(v, v) > 0 whenever dϕi(v) 6= 0.

Thus, in order to conclude that Φ =
∑

Φi is strictly convex, it suffices to show that

dϕ1, . . . , dϕN are everywhere linearly independent. Equivalently, we need to show

that the matrix A with entries aij = ∂ϕi/∂ρj is invertible. For simplicity we only do

this in the region where ϕi =
∑

j6=i M(2ρi, 2ρj)+ 2ρi ; in light of Remark 4.7 this is the

only case of genuine interest to us.

Let Â = A + AT , with entries âij = aij + aji = ∂ϕi/∂ρj + ∂ϕj/∂ρi . For i 6= j, it

follows from property (2) of Definition 4.5 that

âij =
∂
∂ρi

M(2ρi, 2ρj) +
∂
∂ρj

M(2ρi, 2ρj) = 2.

Meanwhile, âii = 2 ∂ϕi/∂ρi ≥ 4. Thus, given any non­zero vector v ∈ RN ,

〈v, Âv〉 =
N
∑

i,j=1

âijvivj = 2
(

∑

i

vi

)2

+
∑

i

(âii − 2) v2
i > 0,

and it follows that 〈v,Av〉 = 1
2
〈v, Âv〉 is positive as well, which implies that A is

invertible, and hence Φ is strictly convex.

The key feature of the Kähler form ω which makes it possible for fibered Lagrangians

to be fiberwise monomially admissible is that all “large” coordinates are preserved

under parallel transport. We first make the notion of “large” coordinate more precise:
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Definition 4.9 A partition {1, . . . ,N} = K ⊔ J into two non­empty subsets is called

a δ ­gap at a point (z1, . . . , zN) ∈ CN if inf {|zi|
2, i ∈ J} ≥ eδ sup {|zi|

2, i ∈ K}. We

say that zj lies above a δ ­gap if there exists a δ ­gap {1, . . . ,N} = K ⊔ J with j ∈ J .

Lemma 4.10 If |zℓ| ≥ e
1
4

(N−1)δ |W0|
1/N , or if |zℓ| ≥ e

1
2

(N−1)δ min |zi|, then zℓ lies

above a δ ­gap.

Proof Assume zℓ does not lie above any δ ­gap. Then listing all |zi|
2 in decreasing

order, the entry just after |zℓ|
2 (if there is one) is bounded below by e−δ|zℓ|

2 , the next

one is bounded below by e−2δ|zℓ|
2 , and so on, whereas the entries preceding |zℓ|

2

are bounded below by |zℓ|
2 . Thus, we conclude that min |zi|

2 > e−(N−1)δ |zℓ|
2 , and

|W0|
2 =

∏N
i=1 |zi|

2 > e−
1
2

N(N−1)δ|zℓ|
2N . Taking the square root, resp. the 2N ­th root

of both sides of these inequalities, we obtain a contradiction.

Lemma 4.11 Assume that |W0|
2 ≥ (εeδ)

N
N−1 , and that zℓ lies above a δ ­gap. Then

the coordinate zℓ is (locally) invariant under parallel transport.

Before giving the proof, we provide some intuition by briefly considering the case

N = 2: when |z2|
2 ≥ eδ|z1|

2 , our Kähler potential is Φ = |z1|
2|z2|

2 + |z2|
4 , and ω is

locally a product Kähler form when expressed in the coordinates (W0, z2), which readily

implies that parallel transport for W0 preserves z2 . Alternatively, the first component

of the moment map is µ1 = ∂Φ/∂ρ1 = 2|W0|
2 , as is also the case more generally

whenever z1 is the smallest coordinate and separated from z2, . . . , zN by a δ ­gap. Since

d log |W0| is proportional to dµ1 , comparing (4–1) and (4–2) we conclude that only z1

varies along the horizontal distribution, while z2, . . . , zN are preserved. (However, as

parallel transport towards |W0| → ∞ proceeds by varying z1 while z2, . . . , zN remain

fixed, eventually |z1| becomes large enough to “close” the δ ­gap and the statement no

longer holds). The argument in the general case is less explicit but similarly involves

the vanishing of certain coefficients in (4–1).

Proof Let {1, . . . ,N} = K⊔J be a δ ­gap with ℓ ∈ J . Recall that the Kähler potential

is given by (4–4), i.e. Φ =
∑N

i=1 eϕi , where ϕi =
∑

j6=i M(2ρi, 2ρj) + 2ρi . Property

(1) of Definition 4.5 implies that, for i ∈ J and k ∈ K , ∂ϕi/∂ρk ≡ 0, whereas for

i ∈ K and j ∈ J , ∂ϕi/∂ρj ≡ 2. Thus, for k ∈ K and j ∈ J ,

(4–5) Ψjk =
∂2Φ

∂ρj∂ρk

=

N
∑

i=1

(

∂2ϕi

∂ρj∂ρk

+
∂ϕi

∂ρj

∂ϕi

∂ρk

)

eϕi =
∑

i∈K

2
∂ϕi

∂ρk

eϕi ,

which is independent of j. We denote this quantity by ck .
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Next, property (2) of Definition 4.5 implies that for all i we have
∑N

m=1 ∂ϕi/∂ρm = 2N ,

and for i ∈ K we have
∑

m∈K ∂ϕi/∂ρm = 2N − 2|J| = 2|K|. Thus,

∑

m∈K

∂Φ

∂ρm

=
∑

i,m∈K

∂ϕi

∂ρm

eϕi = 2|K|
∑

i∈K

eϕi .

Differentiating with respect to ρk for k ∈ K , we find that

(4–6)
1

|K|

∑

m∈K

Ψmk =
∑

i∈K

2
∂ϕi

∂ρk

eϕi = ck.

The non­degeneracy of ω implies that the symmetric matrix Ψ is positive definite, and

in particular its restriction Ψ|K to the coordinates labelled by elements of K is also

non­degenerate. For k ∈ K , denote by λk the components of (Ψ|K)−1(1, . . . , 1), i.e.

by definition
∑

k∈K Ψikλk = 1 for all i ∈ K . Averaging over i ∈ K and using (4–6),

we also have
∑

k∈K ckλk = 1. Thus, using (4–5) we find that

∑

k∈K

Ψikλk = 1 for all i = 1, . . . ,N.

Setting λj = 0 for j ∈ J , we conclude that that Ψ−1(1, . . . , 1) = (λ1, . . . , λN), i.e.

(λ1, . . . , λN) are the coefficients which appear in (4–1) and (4–2).

For j ∈ J , the vanishing of λj implies that the j­th components of (∂θ)# and (r∂r)
# are

zero, and thus, parallel transport preserves zj . This is in particular true for j = ℓ.

We conclude this section with some estimates for the moment map, which will be

used to establish the analogue of Lemma 4.11 for Kähler forms obtained from ω by

symplectic reduction. Since the formula for the moment map is obviously equivariant

under permutation of the variables, it suffices to consider the case where |z1| ≤ |z2| ≤

· · · ≤ |zN |.

Lemma 4.12 Assume that |W0|
2 ≥ (εeδ)

N
N−1 , and that |z1| ≤ |z2| ≤ · · · ≤ |zN |.

Then:

(1) 0 < µ1 ≤ µ2 ≤ · · · ≤ µN .

(2) 2 ≤
µj

|zj|2j
∏N

i=j+1 |zi|2
≤ 4Ne2Nδ for all 1 ≤ j ≤ N .

(3) (2N)−
1

2N e−δ
(µj

µk

)
1

2N
≤
|zj|

|zk|
≤ (2N)1/2eNδ

(µj

µk

)
1
2

for all 1 ≤ k < j ≤ N .
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Proof Recall that, by (4–4), Φ =
∑

eϕi with ϕi =
∑

j6=i M(2ρi, 2ρj) + 2ρi . Thus,

(4–7) µj =
∂Φ

∂ρj

=

N
∑

i=1

∂ϕi

∂ρj

eϕi =
∑

i6=j

∂M(2ρi, 2ρj)

∂ρj

(eϕi + eϕj) + 2 eϕj .

We first establish the inequality (1). For j < k , we have |zj| ≤ |zk| by assumption,

and using the monotonicity of M we immediately deduce that ϕj ≤ ϕk . Moreover, for

i 6∈ {j, k}, the convexity of M implies that 0 ≤ ∂M(2ρi, 2ρj)/∂ρj ≤ ∂M(2ρi, 2ρk)/∂ρk ,

and hence
∂M(2ρi, 2ρj)

∂ρj

(eϕi + eϕj) ≤
∂M(2ρi, 2ρk)

∂ρk

(eϕi + eϕk ).

Meanwhile, properties (2)(3) of Definition 4.5 and the convexity of M imply that

∂M(2ρj, 2ρk)/∂ρj ≤ 1 ≤ ∂M(2ρj, 2ρk)/∂ρk, so

∂M(2ρj, 2ρk)

∂ρj

(eϕj + eϕk ) + 2 eϕj ≤
∂M(2ρj, 2ρk)

∂ρk

(eϕj + eϕk ) + 2 eϕk .

Combining these inequalities we conclude that µj ≤ µk , which proves (1).

To establish (2), we first observe that, for i1 < i2 , |zi2 |
2 ≤ M̂(|zi1 |

2, |zi2 |
2) ≤ eδ|zi2 |

2 .

Therefore,

|zj|
2j
∏

i>j

|zi|
2 ≤ eϕj =

(

∏

i6=j

M̂(|zi|
2, |zj|

2)
)

|zj|
2 ≤ eNδ|zj|

2j
∏

i>j

|zi|
2.

Since µj ≥ 2 eϕj by (4–7), the lower bound on eϕj immediately yields the lower bound

in (2). Meanwhile, to obtain an upper bound on µj we observe that in the sum (4–7)

the terms corresponding to i such that |zi|
2 ≥ eδ|zj|

2 vanish identically, since for such

i we have M(2ρi, 2ρj) ≡ 2ρi . Otherwise, the inequality 2ρi ≤ 2ρj + δ implies that

ϕi ≤ ϕj + Nδ . Meanwhile, ∂M(2ρi, 2ρj)/∂ρj ≤ 2. Thus,

µj ≤
∑

i6=j
2ρi≤2ρj+δ

2(eϕi + eϕj) + 2eϕj ≤ (2N + 2(N − 1)eNδ) eϕj ≤ 4Ne2Nδ |zj|
2j
∏

i>j

|zi|
2.

This establishes the upper bound in (2). Finally, (3) is a direct consequence of (2) using

the observation that
(

|zj|

|zk|

)2k

≤
|zj|

2j
∏N

i=j+1 |zi|
2

|zk|2k
∏N

i=k+1 |zi|2
=

(

|zj|

|zk|

)2k j−1
∏

i=k+1

|zj|
2

|zi|2
≤

(

|zj|

|zk|

)2j−2

,

which in turn implies that

(

|zj|
2j
∏N

i=j+1 |zi|
2

|zk|2k
∏N

i=k+1 |zi|2

)
1

2N

≤
|zj|

|zk|
≤

(

|zj|
2j
∏N

i=j+1 |zi|
2

|zk|2k
∏N

i=k+1 |zi|2

)
1
2

.
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4.2 Symplectic reduction and monomial admissibility

Recall that the toric variety Y described in §2 is the symplectic reduction of CPZ by

a subtorus TM ⊂ TPZ , i.e. Y = µ−1(λ)/TM , and the superpotential W0 ∈ O(CPZ)

descends to W ∈ O(Y). We equip CPZ with the toric Kähler form constructed in the

previous section, and the reduced space Y with the induced toric Kähler form.

Our goal in this section is to show that symplectic reduction preserves the compatibility

of parallel transport with fiberwise monomial admissibility, i.e. to establish an analogue

of Lemma 4.11 for symplectic parallel transport between the fibers of W : Y → C.

Our starting point is the observation that “parallel transport commutes with reduction”:

Lemma 4.13 The horizontal vector fields (∂θ)# and (r∂r)
# described by (4–2), which

span the symplectic orthogonal to the fibers of W0 : CPZ → C, are TM ­equivariant and

tangent to µ−1(λ). Their images under the projection from µ−1(λ) to µ−1(λ)/TM = Y

span the symplectic orthogonal to the fibers of W : Y → C with respect to the reduced

Kähler form, and in fact they are the horizontal lifts to Y of ∂θ and r∂r .

To take advantage of this property, we need a criterion to determine when a TM ­invariant

monomial on CPZ involves only coordinates to which Lemma 4.11 applies.

Recall that the moment polytope ∆Y of Y , given by (2–6), arises as the intersection

of an affine linear subspace of RPZ (expressing the condition µ = λ) with the non­

negative orthant (the moment polytope for CPZ ). Embedding ∆Y into RPZ in this way,

the coordinate hyperplanes correspond to the facets of ∆Y , and the ambient coordinates

(i.e., the components of the moment map for CPZ ) are given by the affine distances to the

facets of ∆Y . Thus, in terms of the description (2–6), the point (ξ, η) ∈ ∆Y ⊂ Rn⊕R

corresponds to a Tn+1 ­orbit in Y whose preimage in µ−1(λ) ⊂ CPZ is the TPZ ­orbit

whose moment map coordinates (µα)α∈PZ
are given by

(4–8) µα = η − 〈α, ξ〉+ ν(α) for all α ∈ PZ.

Given a vector v = (~v, v0) ∈ Zn ⊕ Z, the toric monomial zv defines a regular function

on Y if and only it pairs non­negatively with the inward normal vector to each facet of

∆Y , i.e.

(4–9) vα := (−α, 1) · v = v0 − α ·~v ≥ 0 for all α ∈ PZ.

The monomial zv vanishes to order vα along the toric divisor of Y corresponding to

α ∈ PZ . Moreover, the monomial
∏

α∈PZ
zvα

α ∈ O(CPZ) is invariant under the TM ­

action and descends to zv ∈ O(Y) under reduction. With a slight abuse of notation, we
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will therefore write

(4–10) zv
=
∏

α∈PZ

zvα

α .

The vectors v satisfying (4–9) are the integer points of a polyhedral convex cone,

whose extremal rays are in one­to­one correspondence with the facets of P.

Definition 4.14 Given a facet of the polytope P with primitive outward normal vector

~v, contained in the affine hyperplane 〈~v, ·〉 = v0 , the corresponding extremal vector is

v = (~v, v0); we denote the set of these vectors by V .

The elements of V can be characterized equivalently as the primitive inward normal

vectors to the n­dimensional cones which lie on the boundary of the fan ΣY , or as the

primitive tangent vectors to the unbounded edges of the moment polytope ∆Y .

For v ∈ V we denote by Av the set of all α ∈ PZ which lie on the corresponding facet

of P, i.e. those α for which α · ~v = v0 , or equivalently, the quantity vα defined by

(4–9) vanishes. These correspond exactly to the facets of ∆Y to which v is parallel.

Given a small positive constant γ > 0 and v = (~v, v0) ∈ V , we define

(4–11) Sv,γ = {ξ ∈ Rn | 〈α, ξ〉 − ν(α) < ϕ(ξ)− γ‖ξ‖ ∀α ∈ PZ \ Av},

where ‖ · ‖ is an arbitrary norm (e.g. the Euclidean norm) on Rn . In other terms,

recalling that ϕ(ξ) = max{〈α, ξ〉 − ν(α) |α ∈ PZ}, Sv,γ is the set of points where the

maximum is achieved by some α ∈ Av , and no α 6∈ Av comes close to the maximum.

We also define Cv,γ ⊂ Y to be the inverse image of Sv,γ × R under the moment map.

Denote by ∆α the polyhedral subset of Rn where α achieves the maximum in ϕ

(which is also the projection to Rn of the corresponding facet of ∆Y ). Then Sv,γ is a

retract of
⋃

α∈Av
∆α , obtained by removing those points which are too close (within

distance of the order of γ‖ξ‖) to some other ∆α . Thus, for sufficiently small γ the

subsets Sv,γ , v ∈ V cover the complement of a compact subset of Rn .

Example 4.15 Consider f (x1, x2) = 1+ x1 + x2 + t2πx1x2 + t4πx2
1 (as in Example 2.1)

and its tropicalization ϕ(ξ1, ξ2) = max{0, ξ1, ξ2, ξ1 + ξ2 − 1, 2ξ1 − 2}. The convex

hull P of PZ = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0)} is a trapezoid with primitive outward

normal vectors ~v1 = (0,−1), ~v2 = (1, 1), ~v3 = (0, 1), and ~v4 = (−1, 0), and we find

that V consists of the four elements v1 = (0,−1, 0), v2 = (1, 1, 2), v3 = (0, 1, 1), and

v4 = (−1, 0, 0), which are indeed the tangent vectors to the unbounded edges of the

moment polytope ∆Y = {(ξ1, ξ2, η) | η ≥ ϕ(ξ1, ξ2)}, shown “from above” on Figure

4.
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α1 =(0,0)

α3 =(0,1)

α2 =(1,0)

α5 =(2,0)

α4 =(1,1)

v1 = (0,−1, 0)

v2 = (1, 1, 2)v3 = (0, 1, 1)

v4 = (−1, 0, 0)

Sv4,γ

Sv1,γ

Figure 4: The extremal vectors v ∈ V and the regions Sv,γ , for f (x1, x2) = 1 + x1 + x2 +

t2πx1x2 + t4πx2
1 (cf. Example 4.15).

For v1 = (0,−1, 0), the elements of PZ which lie on the facet of P with outward

normal vector ~v1 = (0,−1) are α1 = (0, 0), α2 = (1, 0), and α5 = (2, 0), whereas

PZ \ Av1
consists of α3 = (0, 1) and α4 = (1, 1), so

Sv1,γ = {ξ = (ξ1, ξ2) ∈ R2 | ξ2 < ϕ(ξ)− γ‖ξ‖ and ξ1 + ξ2 − 1 < ϕ(ξ)− γ‖ξ‖}

is the set of points where the two terms ξ2 and ξ1 + ξ2 − 1 are sufficiently far from

achieving the maximum in ϕ(ξ1, ξ2); see Figure 4. This is a retract of the region

∆α1
∪ ∆α2

∪ ∆α5
where the maximum is achieved by one of the three other terms.

Similarly for the other regions Svi,γ .

For c ∈ C∗ , the fiber W−1(c) of W : Y → C is Tn ­invariant, and its image under the

moment map is the graph {(ξ, η) ∈ Rn⊕R | η = fc(ξ)} of a piecewise smooth function

fc : Rn → R (with fc(ξ) > ϕ(ξ) everywhere). We now show that, outside of a bounded

subset of W−1(c) (whose size depends on c), the monomial zv is locally preserved by

parallel transport at all points of Cv,γ .

Proposition 4.16 Let z ∈ W−1(c) ∩ Cv,γ ⊂ Y for some v ∈ V and γ > 0, with

moment map coordinates (ξ, η), ξ ∈ Sv,γ . Assume that |c|2 ≥ (εeδ)N/(N−1) and

‖ξ‖ ≥ R = R(c, γ) := 8N2eN(N+3)δγ−1|c|2 (where N = |PZ|, and ε and δ are the

same constants as in Section 4.1). Then the monomial zv ∈ O(Y) is locally invariant

under parallel transport.

Example 4.17 Continuing with Example 4.15, consider the case of v1 = (0,−1, 0),

for which the quantities vα defined by (4–9) are 0, 0, 1, 1, 0 for α1, . . . , α5 respectively.
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Thus, zv1 ∈ O(Y) arises by toric reduction from the monomial z3z4 ∈ O(CPZ), which is

indeed invariant under the action of the 2­dimensional torus TM described in Example

2.2. By Lemma 4.11, the monomial z3z4 is invariant under parallel transport for

W0 : CPZ → C wherever z3 and z4 lie above a δ ­gap. The main ingredient of the proof

is therefore to prove that such a gap exists whenever ξ ∈ Sv1,γ and ‖ξ‖ is sufficiently

large; the key point being that, by (4–8), when ξ ∈ Sv1,γ the moment map coordinates

µα3
and µα4

are bounded below by min(µαi) + γ‖ξ‖.

Proof Denote by (zα)α∈PZ
the coordinates of a lift of z ∈ Y to µ−1(λ) ⊂ CPZ , and let

α0 ∈ PZ be such that ξ ∈ ∆α0
. Then by (4–8) the smallest moment map coordinate is

min(µα) = µα0
= η − ϕ(ξ) = fc(ξ)− ϕ(ξ). On the other hand, Lemma 4.12 (2) gives

a bound on the ratio between µα0
and |W0(z)|2 = |c|2 . We conclude that

(4–12) 2|c|2 ≤ µα0
= fc(ξ)− ϕ(ξ) ≤ 4Ne2Nδ|c|2.

On the other hand, since ξ ∈ Sv,γ and ‖ξ‖ ≥ R, for all α 6∈ Av we have

µα = fc(ξ)−〈α, ξ〉+ν(α) ≥ µα0
+γ‖ξ‖ ≥ γR = 8N2eN(N+3)δ|c|2 ≥ 2NeN(N+1)δ µα0

.

Hence, by Lemma 4.12 (3),

|zα|

|zα0
|
≥ (2N)−

1
2N e−δ

(

µα
µα0

)
1

2N

≥ e(N−1)δ/2.

By Lemma 4.10, we conclude that zα lies above a δ ­gap for all α 6∈ Av . Hence, by

Lemma 4.11 the coordinates zα (α 6∈ Av ) are locally invariant under parallel transport

in CPZ . Using the fact that the exponents vα in (4–10) vanish for all α ∈ Av (by

definition of Av ) and the compatibility of parallel transport with reduction (Lemma

4.13), we conclude that zv is locally preserved under parallel transport in Y .

Finally, we show that, at every point where ‖ξ‖ is sufficiently large, Proposition 4.16

applies to the largest (in a suitably renormalized sense) among the monomials zv ,

v ∈ V . More precisely, for v ∈ V and vα as in (4–9), we set

(4–13) d(v) =
∑

α∈PZ

vα.

Proposition 4.18 There exist positive constants γ0 and K0 , depending only on the

polytope ∆Y (and on N , ε, δ) with the following property. Let z ∈ W−1(c) ⊂ Y be

a point with moment map coordinates (ξ, η), where |c|2 ≥ (εeδ)N/(N−1) and ‖ξ‖ ≥

K0|c|
2 . Let v0 ∈ V be such that

|zv0 |1/d(v0)
= max{|zv|1/d(v) | v ∈ V}.

Then ξ ∈ Sv0,γ0
and z ∈ Cv0,γ0

.



50 Mohammed Abouzaid and Denis Auroux

Proof Let (zα)α∈PZ
be a lift of z ∈ Y to µ−1(λ) ⊂ CPZ . Recall from (4–12) that

the smallest moment map coordinate µα0
corresponds to α0 ∈ PZ such that ξ ∈ ∆α0

,

and µα0
is bounded by 4Ne2Nδ|c|2 . On the other hand, let α1 ∈ PZ be such that

|zα1
| = max{|zα|, α ∈ PZ}, or equivalently, µα1

= max{µα, α ∈ PZ}. By (4–8),

µα1
− µα0

= 〈α0 − α1, ξ〉 + ν(α1) − ν(α0), so there exist positive constants c1, c2

depending only on ∆Y such that

(4–14) µα1
≤ µα0

+ c1‖ξ‖+ c2.

On the other hand, since P is assumed to have non­empty interior, the quantity

max{〈α−α′, ξ〉, α, α′ ∈ PZ} is bounded below by a positive constant times ‖ξ‖, and

there are positive constants c′1, c
′
2 depending only on ∆Y such that

(4–15) µα1
≥ µα0

+ c′1‖ξ‖ − c′2.

Assume that ξ ∈ Sv,γ for some v ∈ V and γ > 0. Then for all α 6∈ Av we have

(4–16) µα = fc(ξ)− 〈α, ξ〉+ ν(α) ≥ µα0
+ γ‖ξ‖.

Thus, assuming some lower bound on ‖ξ‖ (e.g. ‖ξ‖ ≥ 1), the upper bound on µα1

implies the existence of a constant c3 > 0 (still depending only on ∆Y ) such that, for

all α 6∈ Av , µα ≥ c3γµα1
. Using Lemma 4.12 (3), this in turn yields the inequality

(4–17) |zα| ≥ (2N)−1/2e−Nδc
1/2

3 γ1/2 |zα1
| for all α 6∈ Av.

Taking a weighted geometric mean (and recalling that vα = 0 for α ∈ Av ), we get:

(4–18) |zv|1/d(v) ≥ (2N)−1/2e−Nδc
1/2

3 γ1/2 |zα1
|.

Conversely, if ξ 6∈ Sv,γ , then 〈α, ξ〉 − ν(α) ≥ ϕ(ξ)− γ‖ξ‖ for some α 6∈ Av , hence

µα = fc(ξ)− 〈α, ξ〉+ ν(α) ≤ µα0
+ γ‖ξ‖.

When ‖ξ‖ is sufficiently large, namely ‖ξ‖ ≥ max(2c′2/c′1, 4Ne2Nδγ−1|c|2), we have

µα ≤ 2γ‖ξ‖ and µα1
≥ 1

2
c′1‖ξ‖. Therefore, µα ≤ c′3γµα1

, where c′3 = 4(c′1)−1 .

Using Lemma 4.12 (3), this in turn yields the inequality

(4–19) |zα| ≤ (2N)1/2Neδ(c′3)1/2Nγ1/2N |zα1
|.

Since α 6∈ Av , by definition the exponent vα of zα in the expression for zv is at least

1. Since the other coordinates which appear in the expression for zv are all bounded

by |zα1
|, we obtain:

(4–20) |zv|1/d(v) ≤ eδ/d(v) (2N c′3γ)
1

2Nd(v) |zα1
|.
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With the necessary estimates in hand, we now proceed with the proof. First, there

exists γ1 > 0 depending only on ∆Y such that the subsets Sv,γ1
cover all but a

bounded subset of Rn , i.e. for some constant K1 > 0 (depending only on ∆Y ), every

point with ‖ξ‖ ≥ K1 belongs to some Sv,γ1
. Thus, whenever ‖ξ‖ ≥ K1 , the estimate

(4–18) implies that

(4–21) max{|zv|1/d(v) | v ∈ V} ≥ (2N)−1/2e−Nδc
1/2

3 γ
1/2

1 max{|zα|, α ∈ PZ}.

Let D = {d(v), v ∈ V} (a finite set of positive integers). We now choose γ0 so that

(4–22) eδ/d(2Nc′3γ0)
1

2Nd < (2N)−1/2e−Nδc
1/2

3 γ
1/2

1 for all d ∈ D,

and K0 so that

K0 ≥ 4Ne2Nδγ−1
0 and K0(εeδ)N/(N−1) ≥ max(K1, 2c′2/c′1).

Assume |c|2 ≥ (εeδ)N/(N−1) and ‖ξ‖ ≥ K0|c|
2 , and let v0 be such that |zv0 |1/d(v0) =

max{|zv|1/d(v) | v ∈ V}. If ξ 6∈ Sv0,γ0
, then (4–20) and (4–22) give

|zv0 |1/d(v0) ≤ eδ/d(v0) (2N c′3γ0)
1

2Nd(v0) max{|zα|, α ∈ PZ}

< (2N)−1/2e−Nδc
1/2

3 γ
1/2

1 max{|zα|, α ∈ PZ},

which contradicts (4–21). Thus ξ ∈ Sv0,γ0
, or equivalently, z ∈ Cv0,γ0

.

Propositions 4.16 and 4.18 imply the following:

Corollary 4.19 The extremal monomials zv , v ∈ V introduced in Definition 4.14, the

weights d(v) defined in (4–13), the open subsets Cv = Cv,γ0
, and the closed subset

Ω = {z ∈ Y | ‖ξ‖ ≤ K′
0 max(1, |W|2)}, where K′

0 = max(8N2eN(N+3)δγ−1
0 ,K0), define

a fiberwise monomial subdivision on the toric Landau­Ginzburg model (Y,W, ω).

Moreover, with respect to this subdivision, fiberwise monomial admissibility (with

fixed phase angles) is preserved by parallel transport between the fibers of W over any

path γ : [0, 1]→ C such that |γ(0)|2 ≥ (εeδ)N/(N−1) and |γ(t)| is non­decreasing.

Proof The fact that the collection of extremal monomials (zv)v∈V defines a proper

map is a classical fact of toric geometry, but can also be seen directly from the lower

bound (4–21). Properties (2) and (3) of Definition 4.1 are clear from the construction,

and property (4) follows from Proposition 4.18.

When |W|2 ≥ (εeδ)N/(N−1) , Proposition 4.16 implies that zv is invariant under parallel

transport at every point of Cv which lies outside of Ω. Thus, the property that

arg(zv) = ϕv is preserved under parallel transport. The reason why we require |γ(t)|

to be non­decreasing with respect to t is to ensure that Cv \ (Cv∩Ω) is preserved under

parallel transport (using the fact that ξ is preserved under parallel transport).
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4.3 The wrapping Hamiltonian

We now define a Hamiltonian H : Y → R whose flow preserves both the fibers

of W and monomial admissibility within them. This Hamiltonian is constructed by

reduction from the case of CN . The construction involves a smooth approximation of

the minimum function, conceptually similar to Definition 4.5 but with N variables.

Definition 4.20 Given a constant δ′ > 0, denote by m : RN → R a smooth concave

function with the following properties:

(1) letting I = {i | ui < min(u1, . . . , uN) + δ′}, locally m(u1, . . . , uN) depends only

on (ui)i∈I , and if I = {i0} then m(u1, . . . , uN) = ui0 = min(u1, . . . , uN);

(2) m(u1 + a, . . . , uN + a) = m(u1, . . . , uN) + a for all a ∈ R;

(3) m is symmetric, i.e. m(uσ(1), . . . , uσ(N)) = m(u1, . . . , uN) for all σ ∈ SN .

These conditions imply that m is monotonically increasing in all variables, and

min(u1, . . . , uN)− δ′ ≤ m(u1, . . . , uN) ≤ min(u1, . . . , uN).

For instance, for δ′ ≥ Nδ we can take

m(u1, . . . , uN) = − 1
N!

∑

σ∈SN
M(−uσ(1),M(. . . ,M(−uσ(N−1),−uσ(N)) . . . )).

Denoting µ1, . . . , µN the moment map coordinates for the chosen toric Kähler form

on CN , the Hamiltonian we consider is

(4–23) H0 =

N
∑

i=1

µi − Nm(µ1, . . . , µN).

Setting N = |PZ| and viewing Y as a symplectic reduction of CPZ , recall that the

moment map coordinates µ1, . . . , µN descend to functions (µα)α∈PZ
on the moment

polytope ∆Y , given by (4–8). We then define the Hamiltonian H on Y via reduction:

Definition 4.21 Given a point of Y with moment map coordinates (ξ, η) ∈ ∆Y , set

µα = η − 〈α, ξ〉+ ν(α) for all α ∈ PZ as before. Then we define H : Y → R by

(4–24) H =
∑

α∈PZ

µα − |PZ|m({µα}α∈PZ
).

Proposition 4.22 H only depends on the moment map coordinates (ξ1, . . . , ξn), and

as a function of these variables it is proper, convex, and grows linearly at infinity. In

particular, the flow of H preserves the fibers of W , and the restriction of H to every

fiber of W is proper.
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Proof Clearly H is a function of the moment map coordinates (ξ1 . . . , ξn, η). Since

∂µα/∂η = 1 for all α ∈ PZ , property (2) of Definition 4.20 implies that ∂H/∂η = 0,

i.e. H only depends on (ξ1, . . . , ξn). This in turns implies that XH is everywhere in the

linear span of the generators of the Tn ­action and preserves the fibers of W .

Since the coordinates µα are affine linear functions of (ξ1, . . . , ξn, η), the convexity

of H as a function of these variables (and hence of (ξ1, . . . , ξn)) follows from the

concavity of m. Meanwhile, the properness of H follows from our assumption that P

has non­empty interior, which yields the lower bound (4–15) on max{µα}−min{µα};

the linear growth is manifest.

Proposition 4.23 The flow of H preserves monomial admissibility with respect to the

fiberwise monomial subdivision of Corollary 4.19. More precisely, if ℓ ⊂ W−1(c) is

monomially admissible with phase angles {ϕv, v ∈ V}, then its image under the time

t flow is monomially admissible at infinity with phase angles {ϕv + t d(v), v ∈ V},

where d(v) ∈ Z+ is given by (4–13).

Proof On CN , the Hamiltonian H0 defined by (4–23) is a function of the moment

map coordinates µ1, . . . , µN . Letting I = {i |µi < min(µ1, . . . , µN) + δ′} as in

Definition 4.20 (1), we observe that ∂H0/∂µi ≡ 1 for all i 6∈ I . Thus, the flow of H0

rotates the coordinates zi uniformly at unit speed for all i 6∈ I . Moreover, this flow

is TM ­equivariant, preserves µ−1(λ) ⊂ CN , and descends to Y = µ−1(λ)/TM as the

Hamiltonian flow generated by H .

Using the same notations as in the previous section, fix v ∈ V , and consider a point

of Cv = Cv,γ0
⊂ Y with moment map coordinates (ξ, η) such that ‖ξ‖ ≥ γ−1

0 δ′ .

(Choosing δ′ sufficiently small in Definition 4.20, we can ensure that every point

outside of Ω satisfies this inequality.) Denote µα0
= min{µα}. By (4–16), for α 6∈ Av

we have µα ≥ µα0
+ γ0‖ξ‖ ≥ µα0

+ δ′ . Thus, m({µα}α∈PZ
) only depends on

(µα)α∈Av , and the flow generated by H rotates all the other coordinates (zα , α 6∈ Av ) at

unit speed. Recalling that zv =
∏

α zvα

α with vα = 0 whenever α ∈ Av , we conclude

that the flow of XH rotates zv uniformly at a rate of
∑

α vα = d(v) at every point of

Cv which lies outside of Ω. The result follows.

Remark 4.24 Essentially any Hamiltonian satisfying the conditions of Proposition

4.22 and Proposition 4.23 (possibly with different values of the phase shifts d(v), as

long as these remain positive) would be equally suitable for our purposes; see e.g.

Hanlon’s work [Ha] for another construction. The Hamiltonian of Definition 4.21 is

particularly natural from the perspective of symplectic reduction from CN to Y , but

the categoryW(Y,W) is, up to equivalence, independent of the choice, as will be clear

from the arguments in Section 5.
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5 Computation of fiberwise wrapped Floer cohomology

5.1 Geometric setup

We now fix the geometric data needed for our construction of the admissible Lagrangian

L0 ∈ W(Y,W), besides the Kähler forms and wrapping Hamiltonians defined in Section

4, and check that the various conditions imposed in Section 3 are satisfied.

Let (Y,W = −z(0,...,0,1)) be the Landau­Ginzburg model constructed in Section 2,

equipped with the toric Kähler form ω which is the result of symplectic reduction by

TM of the Kähler form on CPZ introduced in Definition 4.6. Let V ⊂ Zn+1 be the set

of extremal vectors of Definition 4.14, d(v) the positive integers given by (4–13), and

the subsets Cv and Ω of Y as in Corollary 4.19. We consider the height function

(5–1) h = max{hv, v ∈ V} : Y → [0,∞), where hv = |zv|1/d(v),

and the wrapping Hamiltonian H introduced in Definition 4.21.

We fix a properly embedded U­shaped arc γ0 : R→ C such that γ0(0) = −1; |γ0(s)|

passes through a minimum at s = 0 and increases monotonically as a function of |s|;

arg γ0(s) increases monotonically as a function of s; arg γ0(s) = θ0 for s ≪ 0 and

arg γ0(s) = 2π − θ0 for s ≫ 0, for some positive angle 0 < θ0 <
π
2

. (Thus, γ0

intersects the negative real axis transversely at −1, remains at distance at least 1 from

the origin, and outside of a compact subset it coincides with the rays e±iθ0R+ .)

Given a monomially admissible Lagrangian submanifold ℓ ⊂ W−1(−1) ∼= (C∗)n (in

the sense of Definition 4.2), with all phase angles equal to zero, we denote by L = ∪ℓ

the fibered Lagrangian submanifold of Y obtained from ℓ by parallel transport in

the fibers of W over the arc γ0 . It follows from Corollary 4.19 that L is fiberwise

monomially admissible, with all phase angles equal to zero. We will in particular

consider the case where ℓ = ℓ0 is the real positive locus of W−1(−1), i.e. the set of

points where all toric monomials are real positive and z(0,...,0,1) = 1, and denote its

parallel transport by L0 = ∪ℓ0 .

As in Section 3.3, we choose an autonomous flow ρt in the complex plane which

fixes the negative real axis pointwise as well as a small neighborhood of the origin,

specifically the disc ∆′ of radius (εeδ)N/(2N−2) (in particular ρt fixes the points −1

and 0), maps radial lines to radial lines outside of a compact subset, and moves all

radial lines other than the negative real axis in the counterclockwise direction. We will

furthermore assume that the flow rotates the tangent vector to γ0 at −1 (the imaginary

axis) counterclockwise, so that
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(1) for t 6= 0, γt = ρt(γ0) intersects γ0 transversely at −1,

(2) γ0 ∩ γt = {−1} for |t| ∈ (0, t0), where t0 is the value of t for which ρt pushes

the ray e−iθ0R+ past eiθ0R+ , and

(3) for |t| > t0 , γ0 and γt intersect transversely in exactly two points (−1 and one

other intersection).

(These requirements on γ0 ∩ γt are natural and easy to achieve given the other require­

ments on ρt ; see Figure 5).

Since the arcs γt are strictly radial outside of a bounded subset, their mutual inter­

sections, and the bounded polygonal regions they delimit in the complex plane are all

contained within a bounded subset, say the disc of radius R0 . For R ∈ R≥0 , let r(R) be

the maximum of h on the compact subset Ω ∩ {|W| ≤ max(R,R0)} of Y . Then r is a

non­decreasing function, constant over [0,R0], and we take the closed subset Y in ⊂ Y

appearing in Section 3.1 to be the set of points of Y where h ≤ r(|W|). This ensures

that Y in contains Ω.

Finally, we take the almost­complex structure J to be the standard complex structure

of Y outside of the bounded subset

(5–2) Y in ∩ {|W| < ǫ}

for some ǫ≪ 1 (smaller than the radius of ∆′ ), and a generic small perturbation of the

standard complex structure inside that subset. This ensures that simple J ­holomorphic

spheres which intersect this subset are regular, and evaluation maps for rigid somewhere

injective discs and spheres are mutually transverse, as explained in Remark 3.18.

Proposition 5.1 The above geometric data on Y satisfy the requirements listed in

Section 3.1, and the Lagrangian submanifolds L0(t) = φtρt(L0) are admissible in the

sense of Definition 3.5.

Proof We start with the geometric conditions in Section 3.1. First, the properness of

h = max{|zv|1/d(v)} follows from that of the map (zv)v∈V : Y → C|V| (item (1) in

Definition 4.1). Next, we have already seen in Proposition 4.22 that H is proper on

every fiber of W , and its Hamiltonian flow preserves the fibers of W , i.e. dW(XH) = 0.

Thus, H Poisson commutes with the real and imaginary parts of W , whose Hamiltonian

vector fields span the horizontal distribution; it follows that dH vanishes on horizontal

vector fields. Moreover, since H is a function of the moment map coordinates only, XH

is in the span of the vector fields generating the toric action, hence its flow preserves

the norms of all toric monomials, and so dh(XH) = 0.
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γ0

γt′ (t′>0)

γt (t<0)

−1 0

Figure 5: The Lagrangians L0 and L0(t) = φtρt(L0) (t < 0).

Next we consider the behavior of h along the horizontal distribution – or more pre­

cisely, by Remark 3.12, the behavior of the term(s) hv that achieve the maximum in

h = max{hv}. By Proposition 4.16, for each v ∈ V , and at every point of Cv which

lies outside of Y in ∪W−1(∆′), the monomial zv is invariant under parallel transport.

Therefore, dhv = 1
d(v)

hv d log |zv| and dchv = 1
d(v)

hv d arg(zv) both vanish on hori­

zontal vectors, and their Lie derivatives along horizontal vector fields also vanish. It

then follows from Proposition 4.18 that, everywhere outside of Y in ∪W−1(∆′), these

properties hold for any hv that achieves the maximum in h = max{hv}.

Finally, Proposition 4.23 implies that the flow of XH rotates zv uniformly at a rate

of d(v) at every point of Cv which lies outside of Y in . Therefore, dhv(XH) = 0,

dchv(XH) = 1
d(v)

hv d arg(zv)(XH) = hv ≥ 0, and LXH
(dchv) = 0. As before, these

properties hold everywhere in Y \Y in for any hv that achieves the maximum in h. This

completes the verification of the requirements listed in Section 3.1.

Next we prove the admissibility of L0 in the sense of Definition 3.5. The construc­

tion of the U­shaped arc γ0 ensures that its two halves connecting −1 to infinity

are admissible arcs in the sense of Definition 3.4. The monomial admissibility of

ℓ0 = (R+)n ⊂ W−1(−1) and the compatibility of parallel transport with fiberwise

monomial admissibility (Corollary 4.19) imply that L0 is fiberwise monomially ad­

missible; therefore, arg(zv) vanishes identically on the portion of L0 which lies in

Cv \ (Cv ∩ Y in), which in turn implies the vanishing of dchv = 1
d(v)

hvd arg(zv). It
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follows that the restriction of dch to L0 vanishes outside of Y in (wherever h is differ­

entiable, and otherwise in the sense of Remark 3.12).

Since L0(t) = φtρt(L0) is obtained from the admissible Lagrangian L0 by the admissible

lifted isotopy ρt and the flow of the wrapping Hamiltonian H , it is also admissible by

Lemma 3.7. (Alternatively, ℓ0(t) = φt(ℓ0) ⊂ W−1(−1) is monomially admissible by

Proposition 4.23, and the two portions of the arc γt = ρt(γ0) connecting −1 to infinity

are admissible in the sense of Definition 3.4; since L0(t) is obtained by parallel transport

of ℓ0(t) over γt , its admissibility follows from the same argument as above.)

5.2 The Floer complex CF∗(L0(t′), L0(t))

Recall that L0(t) is fibered over γt , and fiberwise monomially admissible with phase

angles ϕv = d(v)t (by Proposition 4.23). Thus, the asymptotic directions of the

noncompact ends of L0(t) and L0(t′) are disjoint whenever t′ − t ∈ U = R \ ({±t0} ∪
2π
d0
Z), where we denote by d0 the least common multiple of the positive integers dv ,

v ∈ V . Since the arcs γt are strictly radial outside of the disc of radius R0 , and

monomial admissibility precludes the existence of intersections outside of Y in when

the phase angles are distinct, for t′ − t ∈ U all the intersections of L0(t) and L0(t′) lie

within the compact subset Y in ∩ {|W| ≤ R0}.

The intersections of L0(t) and L0(t′) are concentrated in the fibers of W above the

intersection points of γt and γt′ ; we will now see that Lagrangian Floer theory for

these submanifolds can be expressed in terms of the fiberwise Floer complexes in those

fibers and counts of holomorphic sections of W : Y → C over regions of the complex

plane delimited by the arcs γt and γt′ .

Because our construction of the wrapping Hamiltonian does not guarantee that L0(t′)

and L0(t) intersect transversely, we will allow ourselves to modify our Lagrangians

by small Hamiltonian isotopies supported inside Y in (and preserving the fibers of W ,

so that admissibility is not affected) in order to achieve transversality of intersections;

we will see in the next sections that our main calculation reduces to a cohomology­

level argument, so we do not specify the exact choice of perturbation involved in the

definition of the Floer complex.

For t′ − t ∈ R+ ∩ U , we denote by C0(t′, t) the portion of the Floer complex

CF∗(L0(t′), L0(t)) generated by intersection points which lie in the fiber W−1(−1),

i.e. the Floer complex of the monomially admissible Lagrangian submanifolds ℓ0(t′) =

φt′(ℓ0) and ℓ0(t) = φt(ℓ0) inside W−1(−1) ≃ (C∗)n (possibly after a small compactly

supported perturbation to achieve transversality). We similarly denote by C1(t′, t) the
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portion of the Floer complex generated by intersection points which lie in the fiber

above the other intersection point ct′,t of γt′ and γt for t′ − t > t0 ; this amounts to

the Floer complex of the monomially admissible Lagrangian submanifolds ℓ−(t′) and

ℓ+(t) of W−1(ct′,t) obtained by parallel transport of ℓ0(t′) and ℓ0(t) along the portions

of γt′ and γt which run from −1 to ct′,t (clockwise on γt , and counterclockwise on

γt′ ). For t′ − t < t0 we set C1(t′, t) = 0.

The choice of a grading (for instance the usual one) on ℓ0 = (R+)n ⊂ (C∗)n and on the

arc γ0 in the complex plane induces a grading on the admissible Lagrangian L0 , and

also, by following the various isotopies, on the monomially admissible Lagrangians

ℓ0(t) and their images under parallel transport, as well as L0(t). We view C0(t′, t) and

C1(t′, t) as the Floer complexes of the monomially admissible Lagrangian submanifolds

ℓ0(t′), ℓ0(t) (resp. ℓ−(t′), ℓ+(t)) of W−1(−1) and W−1(ct′,t), with the grading induced

by that of ℓ0 ; in the case of C0(t′, t) this coincides with the grading of CF∗(L0(t′), L0(t)),

but in the case of C1(t′, t) the grading in CF∗(L0(t′), L0(t)) is one less than the fiberwise

degree, due to the phase angles of the arcs γt, γt′ at ct′,t differing by an amount in the

interval (π, 2π) for t′ − t > t0 (see Figure 5). Thus,

CF∗(L0(t′), L0(t)) = C0(t′, t)⊕ C1(t′, t)[1]

=

{

CF∗(ℓ0(t′), ℓ0(t))⊕ CF∗(ℓ−(t′), ℓ+(t))[1] (t′ − t > t0)

CF∗(ℓ0(t′), ℓ0(t)) (0 < t′ − t < t0).
(5–3)

Because the almost­complex structure J coincides with the standard one outside of the

subset Y in ∩ {|W| < ǫ} introduced in (5–2), J ­holomorphic curves satisfy the open

mapping principle with respect to the projection W : Y → C and intersect positively

with the fibers of W outside of the disc of radius ǫ. (However this fails near the origin.)

This implies immediately that J ­holomorphic discs with boundary on a union of fibered

Lagrangian submanifolds (disjoint from the region where |W| < ǫ) are either contained

in the fibers of W , or behave (away from the zero fiber) like sections or multisections

of W : Y → C over regions of the complex plane delimited by the arcs over which

the Lagrangians fiber. By abuse of terminology, we call such J ­holomorphic discs

“sections” when their intersection number with the fibers is one, even though they need

not be genuine sections over the disc of radius ǫ.

The fibers of W outside of the origin are isomorphic to (C∗)n , and the monomially

admissible Lagrangians ℓ0(t) and their images under parallel transport do not bound

any holomorphic discs inside the fibers of W (e.g. because they are contractible and

hence exact). It follows that L0(t) does not bound any J ­holomorphic discs.

Moreover, our choice of J ensures that we can also avoid sphere bubbling by arguing

as in Remark 3.18. Since the intersections of L0(t′) and L0(t) lie within the region of
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Y where |W| ≤ R0 and h ≤ r(R0), the maximum principles for W and h (Propositions

3.10 and 3.11) imply that the J ­holomorphic discs contributing to the Floer differential

(and later on, to continuation maps or product operations) also remain within Y in ∩

{|W| ≤ R0}. Since the fibers of W away from the origin are aspherical, the only

possible sphere bubbles are configurations contained in the region where |W| ≤ ǫ, at

least one component of which must pass within Y in ∩ {|W| < ǫ}. The choice of a

generic perturbation of the standard complex structure within this subset ensures that

the underlying simple spheres are disjoint from all J ­holomorphic discs in the 0­ or

1­dimensional moduli spaces we consider, and hence that no sphere bubbles can form.

We can now state and prove the main result of this section, which describes the structure

of the Floer differential on CF∗(L0(t′), L0(t)).

Proposition 5.2 For 0 < t′ − t < t0 , the Floer complex CF∗(L0(t′), L0(t)) in Y is

isomorphic to the Floer complex CF∗(ℓ0(t′), ℓ0(t)) in W−1(−1) ≃ (C∗)n .

For t′ − t > t0 , CF∗(L0(t′), L0(t)) is isomorphic to the mapping cone

(5–4) CF∗(ℓ0(t′), ℓ0(t))⊕ CF∗(ℓ−(t′), ℓ+(t))[1], ∂ =

(

∂0 s

0 ∂1

)

where the diagonal entries are the Floer differentials on the fiberwise Floer complexes,

and the off­diagonal term

(5–5) s = s0
ℓ0,t′,t

: CF∗(ℓ−(t′), ℓ+(t))→ CF∗(ℓ0(t′), ℓ0(t))

is a chain map defined by a (weighted) count of J ­holomorphic sections of W : Y → C

over the bounded region of the complex plane delimited by γt and γt′ (cf. Figure 5).

Proof The open mapping principle implies that the J ­holomorphic discs that con­

tribute to the Floer differential on CF∗(L0(t′), L0(t)) are either contained within the

fibers of W , or (for t′ − t > t0 ) sections of W over the bounded region of the complex

plane delimited by γt and γt′ . The contributions of discs contained within W−1(−1)

and W−1(ct′,t) correspond exactly to the Floer differentials on the fiberwise Floer

complexes C0(t′, t) = CF∗(ℓ0(t′), ℓ0(t)) and C1(t′, t) = CF∗(ℓ−(t′), ℓ+(t)), while the

sections contribute the off­diagonal term s. The fact that s is a chain map follows

directly from the vanishing of the square of the Floer differential.

It follows that the Floer cohomology group HF∗(L0(t′), L0(t)) is isomorphic to HF∗(ℓ0(t′), ℓ0(t))

for 0 < t′ − t < t0 , while for t′ − t > t0 it is determined by the map induced by s on

cohomology, which we again denote by

(5–6) s = s0
ℓ0,t′,t

: HF∗(ℓ−(t′), ℓ+(t))→ HF∗(ℓ0(t′), ℓ0(t)).
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Even though the Floer complexes and the chain map (5–5) depend on the choices

made in the construction, the maps constructed from different choices are related by

homotopies, so that the cohomology­level map (5–6) is independent of choices.

Indeed, deformations of Floer data among the set of choices which satisfy our tech­

nical requirements (e.g. compactly supported fiberwise Hamiltonian isotopies, mod­

ifications of J near W−1(0), or even admissible isotopies of the arcs γt , γt′ which

preserve transversality at all times) induce continuation quasi­isomorphisms on the

Floer complexes (5–4). In every instance, by considering the projection W : Y → C

one shows that continuation trajectories, just like contributions to the Floer differential,

can map generators in W−1(ct′,t) to generators in W−1(−1) but not vice­versa. Thus,

our continuation homomorphisms are upper­triangular with respect to the decomposi­

tion (5–4) and induce quasi­isomorphisms on the summands C0 = CF∗(ℓ0(t′), ℓ0(t))

and C1 = CF∗(ℓ−(t′), ℓ+(t)). Denoting by C0 and C1 the two summands in (5–4)

with respect to one set of choices, and C′
0 and C′

1 the two summands for the other set

of choices, we obtain a diagram

(5–7)

C1 C0

C′
1 C′

0

f1

s

s′

h
f0

where f0, f1, h are the components of the continuation homomorphism, and f0 :

(C0, ∂0)→ (C′
0, ∂

′
0) and f1 : (C1, ∂1)→ (C′

1, ∂
′
1) are quasi­isomorphisms.

The fact that the continuation homomorphism is a chain map implies that

f0 ◦ s + h ◦ ∂1 = s′ ◦ f1 + ∂′0 ◦ h.

Therefore f0◦s and s′◦f1 are homotopic, and so the cohomology level maps induced by

s and s′ coincide under the isomorphisms H∗(C1, ∂1) ≃ H∗(C′
1, ∂

′
1) and H∗(C0, ∂0) ≃

H∗(C′
0, ∂

′
0) induced by f1 and f0 . In this sense, the map (5–6) is independent of the

choices made in the construction and invariant under admissible isotopies.

To put this in proper context, the map s is part of the “Seidel TQFT” (cf. [Se2])

associated to the symplectic fibration W : Y → C. As a general principle, counts

of J ­holomorphic sections over given domains in the complex plane with boundary

on given fibered Lagrangian submanifolds give rise to maps between the respective

fiberwise Floer complexes which are independent of choices up to homotopy and

satisfy algebraic relations that can be understood in terms of gluing axioms (we shall

not elaborate on the latter point here; see [Se2] for details).
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5.3 Floer cohomology for monomially admissible Lagrangians in (C∗)n

To proceed further, we need to discuss Floer theory for monomially admissible La­

grangian submanifolds in the fibers of W , which we identify with (C∗)n by considering

the toric monomials z1, . . . , zn on the open stratum of Y whose weights correspond to

first n basis vectors. (So, for each v = (~v, v0) = (v1, . . . , vn, v
0) ∈ V , the monomial zv

restricts to W−1(c) as (−c)v0
z

v1

1 . . . z
vn
n ). The material in this section closely parallels

Hanlon’s work [Ha, Section 3.4].

The moment map for the standard Tn ­action on W−1(c) ≃ (C∗)n is given by the

first n coordinates (ξ1, . . . , ξn) of the moment map of Y , and for each v ∈ V the

intersection of Cv with W−1(c) is the inverse image under the moment map of the

subset Sv = Sv,γ ⊂ Rn defined by (4–11) (for an appropriate value of the constant

γ > 0, matching that used for Cv at the beginning of §5.1).

We consider Lagrangian submanifolds of (C∗)n which are sections over the moment

map projection; any such Lagrangian is the graph of the differential of a function

K = K(ξ) : Rn → R, i.e. the arguments arg(zj) = θj are determined as functions of

the moment map variables (ξ1, . . . , ξn) by θj = ∂K/∂ξj . (For a given Lagrangian, K

is unique up to an affine function whose gradient is 2π times an integer vector.) The

monomial admissibility condition can then be expressed in terms of the gradient of K :

the graph ℓ = ΓdK ⊂ W−1(c) ≃ (C∗)n is monomially admissible with phase angles

{ϕv} if and only if, outside of a compact subset,

(5–8) 〈∇K(ξ),~v〉 ≡ ϕv − v0 arg(−c) mod 2πZ ∀ξ ∈ Sv, ∀v = (~v, v0) ∈ V .

Definition 5.3 The slope of the monomially admissible Lagrangian section ℓ = ΓdK

is the tuple σ(K) = (σv(K))v∈V ∈ R|V| , where σv(K) = 〈∇K(ξ),~v〉|Sv
.

When K is a convex function, we associate to its slope σ = σ(K) the polytope

(5–9) P(σ) = {u ∈ Rn | 〈u,~v〉 ≤ σv ∀v = (~v, v0) ∈ V}.

Recall that the vectors ~v appearing in (5–9) are the primitive normal vectors to the

facets of the Newton polytope P associated to the Laurent polynomial f (cf. Definition

4.14). Given any vertex α ∈ PZ of P, the subsets Sv associated to the various facets

of P which meet at α have a non­empty and unbounded intersection Uα (comprising

most of the region of Rn where α achieves the maximum in the tropicalization of f ,

cf. Figure 4). Over Uα , the value of ∇K is fully constrained by the slope σ = σ(K),

since 〈∇K,~v〉 = σv whenever ~v is the normal vector to a facet of P containing α .

This corresponds to the equality case in the inequalities (5–9) for a maximal collection
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of linearly independent ~v, i.e. a vertex of the polytope P(σ). From this and standard

facts about convex functions we deduce:

Lemma 5.4 If K is convex with slope σ , then P(σ) is a convex polytope with the

same normal vectors and normal fan as P, and the range of values taken by the gradient

∇K is exactly P(σ).

Example 5.5 The monomially admissible section ℓ0(t) = φt(ℓ0) ⊂ W−1(−1) is the

graph of d(tH), so by Proposition 4.23 and (5–8) its slope is

(5–10) σ0(t) := σ(tH) = (σv(tH))v∈V = (t d(v))v∈V .

Moreover, for t′ − t > t0 , parallel transport of ℓ0(t) and ℓ0(t′) from W−1(−1) to

W−1(ct′,t) along the relevant portions of γt and γt′ preserves the phase angles ϕv =

t d(v), so by (5–8) the monomially admissible Lagrangian sections ℓ−(t′) and ℓ+(t) in

W−1(ct′,t) have slopes

σ−(t′) = (t′d(v)− v0 (arg(ct′,t) + π))v∈V and(5–11)

σ+(t) = (t d(v)− v0 (arg(ct′,t)− π))v∈V ,(5–12)

where we take arg(ct′,t) ∈ (−π, π); the values of arg(−ct′,t) in these two formulas

differ by 2π because we consider parallel transport from −1 to ct′,t clockwise around

the origin for ℓ+(t) and counterclockwise for ℓ−(t′).

Let ℓ and ℓ′ be two monomially admissible Lagrangian sections, expressed as the

graphs of dK and dK′ . If the slopes of K and K′ differ by amounts that aren’t multiples

of 2π , then the intersections of ℓ and ℓ′ remain within a compact subset of (C∗)n , and

their Floer cohomology is well­defined. We claim that HF∗(ℓ′, ℓ) only depends on the

slopes. (As we shall see in the argument below, this is an instance of the invariance

of Floer cohomology under Hamiltonian isotopies which preserve admissibility and

disjointness at infinity, and follows from the existence of well­defined continuation

maps; see [GPS1, Lemma 3.21] for the analogous result in the setting of Liouville

sectors.)

Proposition 5.6 Let ℓ = ΓdK and ℓ′ = ΓdK′ be two monomially admissible La­

grangian sections, with slopes σ(K) = σ and σ(K′) = σ′ , and assume that σv − σ
′
v 6∈

2πZ ∀v ∈ V . Then HF∗(ℓ′, ℓ) only depends on the slopes σ and σ′ of K and K′ .

Moreover, if K′ − K is convex then the Floer cohomology is concentrated in degree

zero and

(5–13) HF0(ℓ′, ℓ) ∼=
⊕

p∈P(σ′−σ)∩(2πZ)n

K · ϑp.
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Proof First we prove invariance. Given any two Hamiltonians K0,K1 with σ(K0) =

σ(K1) = σ , the convex combinations Ks = (1− s)K0 + sK1 also have slope σ , and the

graphs ℓs = ΓdKs are monomially admissible Lagrangian sections. Similarly, given

K′
0,K

′
1 with σ(K′

0) = σ(K′
1) = σ′ , we set K′

t = (1 − s)K′
0 + sK′

1 and ℓ′s = ΓdK′
s
. We

then define continuation maps

Φ01 : CF∗(ℓ′0, ℓ0)→ CF∗(ℓ′1, ℓ1) and Φ10 : CF∗(ℓ′1, ℓ1)→ CF∗(ℓ′0, ℓ0)

by counting index zero J ­holomorphic strips u : R × [0, 1] → (C∗)n with moving

boundary conditions given by ℓ′s (for s a suitable function of the real coordinate) along

R× 0 and ℓs along R× 1.

Since the slopes of K1 − K0 and K′
1 − K′

0 are all zero, the Hamiltonian vector fields

X = XK1−K0
and X′ = XK′

1
−K′

0
(which generate the isotopies of the moving boundary

conditions ℓs and ℓ′s ) satisfy dch(X) = dch(X′) = 0 outside of a compact subset

(where we recall that h = max{hv} = max{|zv|1/d(v)}). More precisely, the vanishing

of 〈∇(K1 − K0),~v〉 and 〈∇(K′
1 − K′

0),~v〉 implies the invariance of the monomial zv

under the flows of X and X′ at all points of Cv ∩W−1(c) which lie outside of Y in , and

hence the vanishing of dchv(X) = 1
d(v)

hvd arg(zv)(X) and dchv(X′).

This in turn implies that J ­holomorphic strips with moving boundary conditions ℓs

and ℓ′s satisfy the maximum principle with respect to the proper function h outside of a

compact subset of (C∗)n , and hence that the continuation maps Φ01 and Φ10 are well­

defined. The argument is similar to the last part of the proof of Proposition 3.11: the

vanishing of dch on the tangent spaces to the monomially admissible Lagrangians ℓs, ℓ
′
s

and on the vector fields X and X′ along which these boundary conditions move implies

that the restriction of dc(h◦u) to the boundary of the strip R×[0, 1] vanishes identically

(outside of u−1(Y in)), and the result then follows from the maximum principle with

Neumann boundary conditions.

The usual argument for Floer continuation maps then shows that Φ01 and Φ10 are

chain maps, and that Φ01 ◦Φ10 and Φ10 ◦Φ01 are homotopic to identity; it follows that

HF∗(ℓ′0, ℓ0) ≃ HF∗(ℓ′1, ℓ1).

We now turn to the second part of the statement. Assume that K′ − K is convex,

and observe that the generators of CF∗(ℓ′, ℓ) correspond to points where dK′ and dK

differ by an integer multiple of 2π , i.e. ∇(K′ − K) ∈ (2πZ)n . By Lemma 5.4, the

set of possible values of ∇(K′ − K) is P(σ′ − σ). For each p ∈ P(σ′ − σ) ∩ (2πZ)n ,

the function K′(ξ) − K(ξ) − 〈p, ξ〉 is convex; up to a small perturbation (preserving

convexity) we can assume that its critical points are non­degenerate. Convexity then

ensures that the critical point (guaranteed to exist by Lemma 5.4) is unique and a
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minimum, so that it contributes a single generator to CF0(ℓ′, ℓ), which (up to a suitable

rescaling, see below) we denote by ϑp . Taking the direct sum over all p, we find that

the Floer complex CF∗(ℓ′, ℓ) = span {ϑp, p ∈ P(σ′− σ)∩ (2πZ)n} is concentrated in

degree zero, which in turn implies the vanishing of the Floer differential, and (5–13)

follows.

As a general convention, we rescale all generators of the Floer complexes for mono­

mially admissible Lagrangian sections by their action (suitably defined, see below),

using the exactness of these Lagrangians to eliminate geometrically irrelevant powers

of the Novikov variable and ensure that continuation isomorphisms map generators

to generators. In the setting of Proposition 5.6, given ℓ = ΓdK and ℓ′ = ΓdK′ with

K′ − K convex and p ∈ P(σ′ − σ) ∩ (2πZ)n , and denoting by ξp the critical point of

K′−K−〈p, ·〉, we define the action of this intersection point to be the associated critical

value of K′−K−〈p, ·〉, and the generator we denote by ϑp is actually tK′(ξp)−K(ξp)−〈p,ξp〉

times the standard generator associated to the intersection point. (Of note: our basis

depends not only on the Lagrangians ℓ and ℓ′ but also on the normalizations of K and

K′ ; different choices yield differently scaled bases, which can be related explicitly by

isomorphisms mapping each generator to a power of t times a generator.)

Proposition 5.7 Let ℓ = ΓdK , ℓ′ = ΓdK′ , and ℓ′′ = ΓdK′′ be three monomially

admissible Lagrangian sections, such that none of the pairwise differences of their

slopes σ, σ′, σ′′ is a multiple of 2π . Assume moreover that K′′ − K′ and K′ − K are

convex. Then for any p ∈ P(σ′−σ)∩ (2πZ)n and p′ ∈ P(σ′′−σ′)∩ (2πZ)n , the Floer

product of ϑp ∈ HF0(ℓ′, ℓ) and ϑp′ ∈ HF0(ℓ′′, ℓ′) is given by

(5–14) ϑp · ϑp′ = ϑp+p′ ∈ HF0(ℓ′′, ℓ).

Proof We lift ℓ, ℓ′, ℓ′′ to the universal cover T∗Rn of (C∗)n by considering the graphs

ℓ̃, ℓ̃′ and ℓ̃′′ of d(K + 〈p, ·〉), dK′ , and d(K′′ − 〈p′, ·〉) respectively. By construction,

the generator ϑp lifts to an intersection point of ℓ̃ and ℓ̃′ , and similarly ϑp′ lifts to an

intersection of ℓ̃′ with ℓ̃′′ . Thus, any holomorphic disc in (C∗)n contributing to the

Floer product of ϑp and ϑp′ lifts to a disc in the universal cover with boundary on ℓ̃, ℓ̃′

and ℓ̃′′ . It follows that the output of the disc corresponds to an intersection of ℓ̃ with

ℓ̃′′ , i.e. a critical point of K′′ − K − 〈p + p′, ·〉; hence ϑp · ϑp′ is a multiple of ϑp+p′ .

Denote by ξp , ξp′ , and ξp+p′ ∈ Rn the critical points of the convex functions

K′ − K − 〈p, ·〉, K′′ − K′ − 〈p′, ·〉, and K′′ − K − 〈p + p′, ·〉 respectively. By Stokes’

theorem, the symplectic area of any holomorphic triangle contributing to the coefficient
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of ϑp+p′ in ϑp · ϑp′ is equal to the difference of the actions of the input and output

generators, i.e.

(5–15) (K′′(ξp+p′)− K(ξp+p′)− 〈p + p′, ξp+p′〉)

− (K′(ξp)− K(ξp)− 〈p, ξp〉)− (K′′(ξp′)− K′(ξp′)− 〈p
′, ξp′〉).

Thus, since our chosen bases of the Floer complexes are already rescaled by action,

the powers of t cancel out and each holomorphic disc contributes ±1.

It remains to show that the overall count of discs is +1. Since our calculation is at the

level of Floer cohomology, the count we consider is homotopy invariant and we can

deform the Lagrangian submanifolds ℓ̃, ℓ̃′ and ℓ̃′′ to simplify the problem. We use the

same trick as [Ha, Proposition 3.22], and replace K and K′′ by modified functions K̂

and K̂′′ such that

(K′ − K̂)(ξ) = (K′ − K)(ξ + ξp) and (K̂′′ − K′)(ξ) = (K′′ − K)(ξ + ξp′).

This modification ensures that K′ − K̂ and K̂′′ −K′ remain convex and have the same

slopes at infinity as K′ − K and K′′ − K , but the critical points of K′ − K̂ − 〈p, ·〉

and K̂′′ − K′ − 〈p′, ·〉 now lie at the origin; considering their sum, the critical point of

K̂′′ − K̂ − 〈p + p′, ·〉 also lies at the origin. (A note of caution: modifying K′ − K

and K′′ − K′ by translations in the ξ coordinate in this manner doesn’t quite preserve

monomial admissibility, as the control over arg(zv) is now achieved over a slightly

smaller subset of (C∗)n ; since the collection of these modified subsets still covers the

complement of a compact subset, this does not affect in any significant manner the

maximum principle arguments we use to control holomorphic curves.) Thus we have

reduced the problem to the case where ℓ̃, ℓ̃′ and ℓ̃′′ all intersect (transversely) in a

single point (near which they are the graphs of the differentials of functions whose

differences have non­degenerate minima). The formula (5–15) now shows that any

holomorphic disc contributing to the Floer product must have area zero, i.e. the only

contribution is from the constant map. By linearization and reduction to a product

setting, the constant disc is easily checked to be regular and contribute +1 to the count

(using the preferred trivializations of the orientation lines at even degree generators

and the sign conventions from [Se2, Section 13c]).

Next, we consider continuation elements (quasi­units) for the action of the wrapping

Hamiltonian H on monomially admissible Lagrangian sections in W−1(−1) ≃ (C∗)n .

Recall that H is proper and convex by Proposition 4.22; to simplify normalizations,

we assume that its minimum value is zero (otherwise the formula below should be

corrected by a factor of tτ min H ).
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Proposition 5.8 Let ℓ = ΓdK be a monomially admissible Lagrangian section in

(C∗)n , and ℓ′ = φτ (ℓ) = Γd(K+τH) its image under the time τ flow of the wrapping

Hamiltonian H for τ > 0 chosen so that τd(v) 6∈ 2πZ ∀v ∈ V . Then the quasi­unit

e = eℓ′,ℓ ∈ HF0(ℓ′, ℓ) is the generator e = ϑ0 corresponding to the minimum of H .

Proof As in Section 3.4 (now working in (C∗)n rather than in Y ), the quasi­unit eℓ′,ℓ

is defined by counting solutions to a Cauchy­Riemann equation whose domain Σ is a

disc with a single output boundary puncture, with moving boundary condition along

∂Σ given by the images by ℓ under the flow generated by H . Such a disc lifts to the

universal cover T∗Rn as a disc whose output marked point maps to an intersection of

the graphs of dK and d(K + τH); it follows that e is a multiple of ϑ0 .

The count of solutions to the Cauchy­Riemann equation is homotopy invariant, so

we modify the setting slightly from Section 3.4 in order to make it apparent that the

only contribution is from the constant solution at the point of ℓ where H reaches its

minimum. Denote by η the 1­form on ∂Σ (vanishing near the puncture) such that the

variation of the boundary condition along ∂Σ is induced by the flow of XH ⊗ η . Then

we consider the perturbed Cauchy­Riemann equation

(5–16) (du− XH ⊗ α)0,1
= 0,

where α is a sub­closed 1­form on Σ (dα ≤ 0) which vanishes in the output strip­like

end and satisfies α|∂Σ = η .

As in [Ab, Appendix B], the geometric energy

Egeo(u) =

∫

Σ

‖du− XH ⊗ α‖
2
=

∫

Σ

u∗ω − u∗(dH) ∧ α

of a solution to (5–16) and the topological energy

Etop(u) =

∫

Σ

u∗ω − d(u∗(H)α) = Egeo(u)−

∫

Σ

u∗(H) dα

satisfy 0 ≤ Egeo(u) ≤ Etop(u) (since H ≥ 0 and dα ≤ 0). Denoting by s a coordinate

along ∂Σ and by t(s) the function such that the boundary condition at s is given

by φt(s)(ℓ) = ΓK+t(s)H (so t(s) decreases from τ to zero along the boundary, and its

differential coincides with η ), Stokes’ theorem gives

Etop(u) =

∫

∂Σ
−(u∗(dK)+ t(s)u∗(dH))−u∗(H) η =

∫

∂Σ
−d(u∗K+ t(s)u∗H) = τ Hout,

where Hout is the value of H at the output marked point, i.e. zero. Thus any solution

has vanishing geometric and topological energies, i.e. it is a constant map at the point

where H reaches its minimum. Moreover, the constant map is regular (using the fact



Homological mirror symmetry for hypersurfaces in (C∗)n 67

that its index equals the degree of the output generator, i.e. zero, and the linearized

Cauchy­Riemann operator is injective since essentially the same argument as above

shows that the energy of any element of the kernel must be zero); thus the count

of solutions is ±1. Since the sign is independent of ℓ and τ , it follows from the

multiplicativity of quasi­units (eℓ′′,ℓ = eℓ′,ℓ · eℓ′′,ℓ′ , see e.g. [Ha, Proposition 3.15]) that

the sign is +1, and thus e = ϑ0 .

Finally, we consider the Floer theory of admissible sections with Lagrangian tori, which

will allow us in the next part to reduce Floer­theoretic computations involving non­

compact Lagrangians to computations involving only tori. Given x = (x1, . . . , xn) ∈

(K∗)n , we denote by tx the Lagrangian torus {ξ} × Tn consisting of those points of

(C∗)n whose moment map coordinates satisfy ξi = −
1

2πval(xi) for all i = 1, . . . , n,

equipped with a rank one unitary local system over K whose holonomy yi around

the i­th S1 factor satisfies xi = t−2πξiy−1
i . Given a Lagrangian section ℓ = ΓdK ,

the Floer complex CF∗(ℓ, tx) has rank one, and we denote by εx a suitably rescaled

generator: namely, we define εx to be tK(ξ) times the element of the local system at the

intersection point (ξ, dK(ξ)) obtained by parallel transport of a fixed element at (ξ, 0)

from the origin to dK(ξ) along tx .

Proposition 5.9 Let ℓ = ΓdK and ℓ′ = ΓdK′ be two monomially admissible La­

grangian sections, whose slopes σ and σ′ do not differ by a multiple of 2π and such

that K′ − K is convex, and let tx be the Lagrangian torus with local system associated

to the point x ∈ (K∗)n as above. For p ∈ P(σ′ − σ)∩ (2πZ)n , the Floer product of the

generators ϑp ∈ HF0(ℓ′, ℓ) and εx ∈ HF0(ℓ, tx) is given by

(5–17) εx · ϑp = xp̄ ε′x,

where p̄ = p/2π ∈ Zn , xp̄ =
∏

x
p̄i
i ∈ K∗ , and ε′x is the generator of HF0(ℓ′, tx)

rescaled in the same manner as εx .

Proof The argument is similar to the proof of Proposition 5.7. We lift ℓ and ℓ′ to

T∗Rn by considering the graphs ℓ̃ and ℓ̃′ of d(K + 〈p, ·〉) and dK′ , which intersect

at a lift of ϑp , and lift tx to the cotangent fiber at ξ = − 1
2πval(x). Any holomorphic

disc contributing to the Floer product of ϑp and εx lifts to T∗Rn , and its symplectic

area can be calculated by integrating d(K′ − K − 〈p, ·〉) from ξp to ξ , where ξp is the

critical point of K′ − K − 〈p, ·〉, which gives

(K′(ξ)− K(ξ)− 〈p, ξ〉)− (K′(ξp)− K(ξp)− 〈p, ξp〉).

The contribution to the Floer product also involves a holonomy factor, given by the

ratio between the parallel transport of εx along tx from (ξ, dK(ξ) + p) to (ξ, dK′(ξ))
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and ε′x . Given the above choices of normalizations of the generators ϑp , εx , and ε′x ,

we find that the contribution of each holomorphic disc to the coefficient of ε′x in the

product of εx and ϑp is, up to sign, t−〈p,ξ〉 times the holonomy of tx along a closed

loop whose lift to the universal cover runs from (ξ, dK(ξ) + p) to (ξ, dK(ξ)). This

loop represents the homotopy class −p̄ ∈ Zn ≃ π1(Tn); hence, the holonomy can be

expressed as y−p̄ , and one ends up with

t−〈p,ξ〉 y−p̄
= xp̄.

It only remains to show that the signed count of holomorphic discs contributing to the

Floer product of εx and ϑp is +1. Since this count is invariant under deformations, it

does not depend on the value of ξ (the position of the cotangent fiber), and it suffices

to determine it for a particular value of ξ . We take ξ = ξp , when all three intersection

points coincide and the only contribution is from the constant map, which is regular

and contributes +1.

5.4 Floer products on HF∗(L0(t′), L0(t))

We now return to our main topic, namely the calculation of the Floer cohomology

HF∗(L0(t′), L0(t)) for t′ > t and its product operations. As seen in Example 5.5, the

slopes of the monomially admissible Lagrangian sections ℓ0(t′), ℓ0(t) ⊂ W−1(−1) and

ℓ−(t′), ℓ+(t) ⊂ W−1(ct′,t) (for t′ − t > t0 ) are given by (5–10)–(5–12).

Definition 5.10 For τ > 0, we define

(5–18) σ0(τ ) = (τ d(v))v∈V and σ1(τ ) = (τ d(v)− 2πv0)v∈V

and denote by P0(τ ),P1(τ ) the corresponding polytopes defined by (5–9).

Since H is convex by Proposition 4.22, the results of Section 5.3 apply to the pair

(ℓ0(t′), ℓ0(t)) whenever t′ − t > 0. However, because the clockwise monodromy of

W : Y → C does not act by a convex Hamiltonian, there is no similar guarantee for

the pair (ℓ−(t′), ℓ+(t)); nonetheless, σ1(τ ) is the slope of a convex Hamiltonian for

τ = t′− t sufficiently large (larger than some constant t1 ≥ t0 ), so Propositions 5.6–5.9

apply to the Floer cohomology HF∗(ℓ−(t′), ℓ+(t)) whenever t′ − t > t1 .

Proposition 5.11 For τ = t′ − t ∈ (0, t0) ∩ U , the Floer complex CF∗(L0(t′), L0(t))

is concentrated in degree zero, the Floer differential vanishes, and

(5–19) HF0(L0(t′), L0(t)) ≃ HF0(ℓ0(t′), ℓ0(t)) ≃
⊕

p∈P0(t′−t)∩(2πZ)n

K · ϑt′→t
p ,
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where the generators ϑt′→t
p correspond to the intersections of ℓ0(t′) and ℓ0(t) inside

W−1(−1), rescaled by action as explained in Section 5.3.

For τ = t′ − t ∈ (t1,∞) ∩ U , the Floer cohomology HF∗(L0(t′), L0(t)) is isomorphic

to the cohomology of the complex

(5–20)
{

HF0(ℓ−(t′), ℓ+(t))
s
−→ HF0(ℓ0(t′), ℓ0(t))

}

≃
{

⊕

p∈P1(t′−t)∩(2πZ)n

K · ζ t′→t
p

s
−→

⊕

p∈P0(t′−t)∩(2πZ)n

K · ϑt′→t
p

}

where the generators ζ t′→t
p (in degree −1) and ϑt′→t

p (in degree zero) correspond to

intersections of ℓ−(t′) and ℓ+(t) inside W−1(ct′,t) and to intersections of ℓ0(t′) and

ℓ0(t) inside W−1(−1), rescaled by action within the fibers of W ; and s = s0
ℓ0,t′,t

is

defined by a weighted count of J ­holomorphic sections of W : Y → C over the

bounded region of the complex plane delimited by γt and γt′ .

Proof This follows immediately from Propositions 5.2 and 5.6.

Remark 5.12 There are two ways to understand the complex (5–20) and its relation

to the Floer complex CF∗(L0(t′), L0(t)) for t′ − t > t1 .

(1) Perturbing L0(t′) or L0(t) by an admissible Hamiltonian isotopy (preserving the

fibers of W , and preserving fiberwise monomial admissibility) if necessary, we can

assume that (suitably perturbed versions of) the monomially admissible Lagrangian

sections ℓ−(t′) and ℓ+(t) differ by a convex Hamiltonian. After such a perturbation,

both of the Floer complexes CF∗(ℓ−(t′), ℓ+(t)) and CF∗(ℓ0(t′), ℓ0(t)) are concentrated

in degree 0 and their differentials vanish, so that CF∗(L0(t′), L0(t)) is given by (5–20).

(2) Alternatively, consider the filtration 0 ⊂ CF∗(ℓ0(t′), ℓ0(t)) ⊂ CF∗(L0(t′), L0(t)),

which is compatible with the Floer differential and products, as any holomorphic disc

contributes in a manner that decreases the filtration index by its intersection number

with the fibers of W near the origin.3 This filtration gives rise to a spectral sequence

computing HF∗(L0(t′), L0(t)), in which the second page (after taking the cohomology of

the portion of the differential which preserves the filtration index, i.e. the contributions

of holomorphic discs contained in the fibers of W ) is precisely (5–20).

3Reinterpreting Floer generators as Hamiltonian chords on L0 , their filtration index is their

intersection number with the preimage under W of the real positive axis, making this an instance

of the filtration associated to a stop (and its removal) in partially wrapped Floer theory [Sy1].
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Definition 5.13 We call the complex (5–20) (or (5–19) for t′− t ∈ (0, t0)) the vertical

Floer complex of L0(t′) and L0(t), and denote it by CF∗
vert(L0(t′), L0(t)).

The vertical Floer complex carries a Floer product operation

(5–21) CF∗
vert(L0(t′), L0(t))⊗ CF∗

vert(L0(t′′), L0(t′))→ CF∗
vert(L0(t′′), L0(t))

for t′′ > t′ > t ; this can be understood either as the chain­level product µ2 after suitable

fiberwise perturbations, or as an induced product on the second page of the spectral

sequence computing the Floer cohomology (using the fact that the product operation

is compatible with the filtration). It follows from the algebraic properties of the Floer

product that this operation is associative and satisfies the Leibniz rule with respect to

the section­counting differential s.

Proposition 5.14 Assume t′′ > t′ > t , and t′ − t, t′′ − t, t′′ − t′ ∈ U , and label the

generators as in Proposition 5.11. Then the Floer product (5–21) is given by:

• for p ∈ P0(t′ − t) ∩ (2πZ)n and p′ ∈ P0(t′′ − t′) ∩ (2πZ)n ,

ϑt′→t
p · ϑt′′→t′

p′ = ϑt′′→t
p+p′ ∈ HF0(ℓ0(t′′), ℓ0(t));

• when t′ − t > t1 , for p ∈ P1(t′ − t) ∩ (2πZ)n and p′ ∈ P0(t′′ − t′) ∩ (2πZ)n ,

ζ t′→t
p · ϑt′′→t′

p′ = Ct′′→t′,t ζ
t′′→t
p+p′ ∈ HF0(ℓ−(t′′), ℓ+(t)),

where Ct′′→t′,t is a nonzero constant (independent of p and p′ );

• when t′′ − t′ > t1 , for p ∈ P0(t′ − t) ∩ (2πZ)n and p′ ∈ P1(t′′ − t′) ∩ (2πZ)n ,

ϑt′→t
p · ζ t′′→t′

p′ = Ct′′,t′→t ζ
t′′→t
p+p′ ∈ HF0(ℓ−(t′′), ℓ+(t)),

where Ct′′,t′→t is a nonzero constant (independent of p and p′ );

• when t′ − t > t1 and t′′ − t′ > t1 , for all p and p′ , ζ t′→t
p · ζ t′′→t′

p′ = 0.

Proof Since the projection W : Y → C is holomorphic away from a neighborhood of

the zero fiber, it follows from the open mapping principle and from degree constraints

that all the holomorphic discs contributing to the Floer product are either contained in

the fiber W−1(−1) or sections over a triangular region of the complex plane delimited

by the arcs γt′′ , γt′ and γt (see Figure 5).

When both inputs lie in W−1(−1), the output must also lie in W−1(−1) for degree

reasons, and the only contributions come from discs contained inside W−1(−1). Given

the relative positions of the tangent lines to γt′′ , γt′ and γt at −1, the base of the

fibration W : Y → C doesn’t contribute anything to the index of the Cauchy­Riemann
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operator, so the product operation agrees with the product on the Floer complexes of

the monomially admissible sections ℓ0(t′′), ℓ0(t′) and ℓ0(t) within W−1(−1) ≃ (C∗)n .

Hence, using the same normalization of the generators as in Section 5.3, it follows

from Proposition 5.7 that ϑt′→t
p · ϑt′′→t′

p′ = ϑt′′→t
p+p′ .

Next we consider the case where one input lies in W−1(ct′,t) (with t′ − t > t1 ) and the

other one is in W−1(−1). The output then necessarily lies in W−1(ct′′,t) for degree

reasons, and the contributions to the Floer product come from holomorphic sections

over the triangle Tt′′→t′,t delimited by γt′′ , γt′ and γt with vertices at −1, ct′,t , and

ct′′,t . Since we are considering cohomology­level operations on the fiberwise Floer

complexes, the count we consider is homotopy invariant under deformations; it is in

fact one of the operations of the cohomology­level “Seidel TQFT” [Se2] associated

to the fibration W : Y → C (in a fairly simple case, since the region over which

we count sections does not contain the critical value 0). Thus, we can simplify the

counting problem either by trivializing the fibration and deforming the symplectic and

complex structures to product ones over Tt′′→t′,t , or more simply, by deforming the

arc γt (without crossing the origin) by a compactly­supported isotopy in order to bring

the intersection points ct′,t and ct′′,t to −1 and shrink the triangular region Tt′′→t′,t to

a single point. After this deformation, we are once again reduced to a calculation of

the Floer product for the admissible Lagrangian sections within a fiber of W , as the

horizontal direction does not contribute to the index of the Cauchy­Riemann operator.

Since the slopes of the relevant admissible Lagrangian sections differ by σ1(t′ − t) at

one input and by σ0(t′′− t′) at the other, it follows again from Proposition 5.7 that, for

all p ∈ P1(t′ − t) ∩ (2πZ)n and p′ ∈ P0(t′′ − t′) ∩ (2πZ)n , the product of ζ t′→t
p and

ϑt′′→t′

p′ is equal to ζ t′′→t
p+p′ up to a scaling factor (some power of the Novikov parameter)

coming from the amount of symplectic area swept in the deformation to a single fiber.

Next we show that, when all the generators are normalized by action within the fibers of

W , the coefficient of ζ t′′→t
p+p′ in the product of ζ t′→t

p and ϑt′′→t′

p′ depends only on t′′, t′, t

but not on p and p′ . Let Kc : Rn → R (resp. K′
c,K

′′
c ) be such that the intersection

of L0(t) (resp. L0(t′), L0(t′′)) with W−1(c) is the graph of dKc (resp. dK′
c, dK′′

c ) for

each c ∈ γt (resp. γt′ , γt′′ ). Normalizing Kc,K
′
c,K

′′
c suitably, we can ensure that

they vanish at ξ = 0, and that a holomorphic section u of W : Y → C over Tt′′→t′,t

which contributes to the product of ζ t′→t
p and ϑt′′→t′

p′ lifts to the universal cover of

W−1(Tt′′→t′,t) as a section with boundary values on the graphs of dKc + p, dK′
c , and

dK′′
c − p′ for each c ∈ ∂Tt′′→t′,t . With this understood, the holomorphic section u

represents the same relative homology class as the chain obtained by adding together:

(1) the “zero section” of W over Tt′′→t′,t , consisting of the points with moment map

coordinates ξ = 0 and angular coordinates θi = arg(zi) = 0 in each fiber;
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(2) over each edge of Tt′′→t′,t , a path in each fiber W−1(c), c ∈ ∂Tt′′→t′,t , connecting

the zero section to the boundary value u(c) of the holomorphic section u by

running first along ξ = 0 from the origin to dKc(0)+p, dK′
c(0), or dK′′

c (0)−p′ ,

and then along the graph of dKc + p, dK′
c , or dK′′

c − p′ from ξ = 0 in a straight

line to the ξ ­coordinate of u(c);

(3) over each vertex of Tt′′→t′,t , a chain in W−1(c) (c ∈ {−1, ct′,t , ct′′,t}) which lies

over a straight line path from ξ = 0 to the ξ ­coordinate of u(c), and for each

ξ ­value runs in a straight line from dK′
c(ξ) to dK′′

c (ξ) − p′ (for c = −1), resp.

dKc(ξ) + p to dK′
c(ξ) (c = ct′,t ), resp. dKc(ξ) + p to dK′′

c (ξ)− p′ (c = ct′′,t ).

Denote by At′′→t′,t the symplectic area of the first part of our chain (the “zero section”),

which manifestly does not depend on p and p′ . The second portion of our chain (over

the edges of Tt′′→t′,t ) runs partly along the Lagrangians obtained by parallel transport of

the torus {ξ = 0} over γt, γt′ , γt′′ , and partly along the Lagrangians L0(t), L0(t′), L0(t′′),

so its symplectic area vanishes. Finally, the third piece (over the vertices) contributes at

each vertex an area equal to the fiberwise action of the corresponding Floer generator,

given that we have normalized the Hamiltonians Kc,K
′
c,K

′′
c so that they vanish at ξ = 0.

For instance, the portion which lies in W−1(ct′,t), over the path from 0 to ξ = ξp and

between the graphs of dKc + p and dK′
c , has symplectic area given by the integral of

dK′
c−dKc−p from zero to ξp , i.e. (K′

c(ξp)−Kc(ξp)−〈p, ξp〉)− (K′
c(0)−Kc(0)), which

coincides with the fiberwise action for the generator ζ t′→t
p within W−1(ct′,t) since the

last term vanishes. Similarly at the two other vertices. Because a rescaling by action

is built into the definition of our Floer generators, this implies that the coefficient of

ζ t′′→t
p+p′ in the product ζ t′→t

p · ϑt′′→t′

p′ is Ct′′→t′,t = tAt′′→t′,t .

The case of the product ϑt′→t
p · ζ t′′→t′

p′ is handled by exactly the same argument,

deforming the problem from a count of sections over a triangular region of the complex

plane to a fiberwise Floer product and appealing to Proposition 5.7. Finally, the product

of two degree −1 generators vanishes for degree reasons.

For x = (x1, . . . , xn) ∈ (K∗)n and t ∈ R, we denote by Tx(t) the admissible Lagrangian

with local system obtained by parallel transport over the arc γt of the Lagrangian torus

with local system tx introduced in Section 5.3. To be more specific, we fix a Tn ­

equivariant structure on the local system of tx , i.e. a family of isomorphisms between

the local system and its pullbacks under rotations by elements of Tn . (This can be

done e.g. by thinking of the local system as a trivial complex line bundle equipped with

a translation­invariant connection.) With this understood, tx is invariant under both

parallel transport between the fibers of W and the action of the wrapping Hamiltonian,
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and the restriction of Tx(t) to the fiber of W over any point of γt can be identified (as

a Lagrangian submanifold with local system) with tx .

For t′ − t > t0 , L0(t′) and Tx(t) intersect transversely once in W−1(−1) and once

in W−1(ct′,t); we denote by εt′→t
x ∈ HF0(ℓ0(t′), tx) and ηt′→t

x ∈ HF0(ℓ−(t′), tx) the

corresponding Floer generators, rescaled by action as in Section 5.3. We now consider

the Floer product

(5–22) CF∗
vert(L0(t′), Tx(t))⊗ CF∗

vert(L0(t′′), L0(t′))→ CF∗
vert(L0(t′′), Tx(t)).

Proposition 5.15 For t′− t > t0 , CF∗
vert(L0(t′), Tx(t)) = CF∗(L0(t′), Tx(t)) is given by

(5–23)
{

K · ηt′→t
x

sx−→ K · εt′→t
x

}

,

where the generators ηt′→t
x (in degree −1) and εt′→t

x (in degree zero) correspond to

intersections of ℓ−(t′) and ℓ0(t′) with tx inside W−1(ct′,t) and W−1(−1) respectively,

rescaled by action, and sx is defined by a weighted count of J ­holomorphic sections

of W : Y → C over the bounded region of the complex plane delimited by γt and γt′ .

Moreover, given t′′ > t′ > t with t′ − t > t0 , the Floer product (5–22) is given by:

• for p = 2πp̄ ∈ P0(t′′ − t′) ∩ (2πZ)n ,

εt′→t
x · ϑt′′→t′

p = xp̄ εt′′→t
x ∈ HF0(ℓ0(t′′), tx) and

ηt′→t
x · ϑt′′→t′

p = Cξ;t′′→t′,t xp̄ ηt′′→t
x ∈ HF0(ℓ−(t′′), tx);

• if moreover t′′ − t′ > t1 , then for p = 2πp̄ ∈ P1(t′′ − t′) ∩ (2πZ)n ,

εt′→t
x · ζ t′′→t′

p = Cξ;t′′,t′→t xp̄ ηt′′→t
x ∈ HF0(ℓ−(t′′), tx)

and ηt′→t
x · ζ t′′→t′

p = 0.

Here Cξ;t′′→t′,t and Cξ;t′′,t′→t are non­zero constants which depend on t′′, t′, t and

possibly on ξ = − 1
2πval(x) but not on p.

Proof The proof is identical to that of Proposition 5.14, except after reduction to a

Floer product within the fiber of W we now appeal to Proposition 5.9. The other

difference with our previous argument is that the scaling constant Cξ;t′′→t′,t is now

determined by the symplectic area of a reference section of W over Tt′′→t′,t whose

edge along γt lies at the ξ ­value of tx , i.e. ξ = − 1
2πval(x), rather than at ξ = 0, hence

it generally depends on ξ ; similarly for Cξ;t′′,t′→t .

Our next result concerns the quasi­units induced by continuation:
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Proposition 5.16 For t′ > t , the quasi­unit et′→t ∈ HF0(L0(t′), L0(t)) is given by

et′→t = ϑt′→t
0 .

Proof It suffices to prove the result for t′ − t ∈ (0, t0), as the general case follows

using the multiplicative property of quasi­units (et′′→t = et′→t · et′′→t′ for t′′ > t′ > t)

and Proposition 5.14.

Recall that the quasi­unit is defined by counting solutions to a Cauchy­Riemann equa­

tion whose domain Σ is a disc with a single output boundary puncture, with moving

boundary condition given by the Lagrangians L0(τ ) for τ varying between t and t′ .

Along ∂Σ, the boundary condition is obtained from the flow of XK⊗η for some 1­form

η on ∂Σ and some Hamiltonian K , namely the sum of a Hamiltonian generating the

admissible lifted isotopy ρτ , cf. Lemma 3.8, which we assume to be supported over a

neighborhood V of
⋃

τ∈[t,t′] γτ , and the wrapping Hamiltonian H . The restriction of

K to L0(τ ) is proper and achieves its minimum at the point of W−1(−1) where H has

its minimum; we normalize K so that this minimum value is zero.

As in the proof of Proposition 5.8, we consider solutions to the perturbed Cauchy­

Riemann equation (du − XK ⊗ α)0,1 = 0, and α is a sub­closed 1­form on Σ whose

restriction to ∂Σ agrees with η . Solutions to this equation satisfy the open mapping

principle with respect to the projection W : Y → C everywhere outside of V (where

XK is not purely vertical) and a neighborhood of the origin (where W isn’t necessarily

J ­holomorphic); this implies that solutions remain within W−1(V), where the Kähler

form is exact and the same energy argument as in the proof of Proposition 5.8 shows

that the only solution is the constant map at the point of W−1(−1) where H reaches

its minimum. It follows that et′→t = ϑt′→t
0 .

5.5 The Floer differential

Propositions 5.11–5.16 give all the information needed to determine the fiberwise

wrapped Floer cohomology HW∗(L0, L0) and its ring structure, except for one key

piece of data: the differential of the complex (5–20), i.e. the section­counting map

s = s0
ℓ0,t′,t

: HF0(ℓ−(t′), ℓ+(t)) → HF0(ℓ0(t′), ℓ0(t)). We will first show that this map

is given by multiplication with a Laurent polynomial, then show that this polynomial

also controls the section­counting map for the parallel transport of the tori tx .

Fix t+ > t− with t+ − t− > t1 , and for p = 2πp̄ ∈ P0(t+ − t−) ∩ (2πZ)n , denote by

cp̄ ∈ K the coefficients such that

(5–24) s0
ℓ0,t+,t−(ζ

t+→t−
0 ) =

∑

p

cp̄ ϑ
t+→t−
p .
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Lemma 5.17 For all t′ > t such that t′ − t > t1 and all p′ ∈ P1(t′ − t) ∩ (2πZ)n ,

(5–25) s0
ℓ0,t′,t

(ζ t′→t
p′ ) = C(t′, t)

∑

p

cp̄ ϑ
t′→t
p+p′

where C(t′, t) is a nonzero constant depending only on t and t′ . Moreover, if cp̄ 6= 0

then p̄ ∈ PZ .

Proof The compatibility of the Floer product with the differential (i.e. the Leibniz

rule), together with the product formulas of Proposition 5.14, implies that

(5–26) s0
ℓ0,t′,t

(ζ t′→t
p1

) · ϑt′′→t′

p2
= Ct′′→t′,t s0

ℓ0,t′′,t
(ζ t′′→t

p1+p2
)

for all (t′′ > t′ > t) with t′− t > t1 , p1 ∈ P1(t′− t)∩(2πZ)n , p2 ∈ P0(t′′− t′)∩(2πZ)n ;

and

(5–27) ϑt′→t
p1
· s0

ℓ0,t′′,t′
(ζ t′′→t′

p2
) = Ct′′,t′→t s0

ℓ0,t′′,t
(ζ t′′→t

p1+p2
)

for all (t′′ > t′ > t) with t′′−t′ > t1 , p1 ∈ P0(t′−t)∩(2πZ)n , p2 ∈ P1(t′′−t′)∩(2πZ)n .

We now deduce the lemma from these two identities. First, choose t′′ > max(t′, t+)

such that P1(t′ − t) ⊂ P0(t′′ − t+). It follows from (5–26) for (t′′ > t+ > t−), p1 = 0

and p2 = p′ that, for all p′ ∈ P1(t′ − t) ∩ (2πZ)n ⊂ P0(t′′ − t+) ∩ (2πZ)n ,

s0
ℓ0,t′′,t−

(ζ
t′′→t−
p′

) = C−1
t′′→t+,t−

s0
ℓ0,t+,t−(ζ

t+→t−
0 ) · ϑ

t′′→t+
p′

= C−1
t′′→t+,t−

∑

p

cp̄ ϑ
t′′→t−
p+p′

.

Next, considering (5–27) for either (t′′ > t− > t) or (t′′ > t > t−), with p1 = 0 and

p2 = p′ again, yields

s0
ℓ0,t′′,t

(ζ t′′→t
p′ ) = C(t′′, t)

∑

p

cp̄ ϑ
t′′→t
p+p′

for all p′ ∈ P1(t′ − t) ∩ (2πZ)n , where C(t′′, t) equals C−1
t′′→t+,t−

C−1
t′′,t−→t

if t < t− ,

or C−1
t′′→t+,t−

Ct′′,t→t− if t > t− . This is precisely (5–25), except with t′′ everywhere

instead of t′ . Finally, we use (5–26), now for (t′′ > t′ > t), p1 = p′ , and p2 = 0, to

conclude that

s0
ℓ0,t′,t

(ζ t′→t
p′ ) = Ct′′→t′,tC(t′′, t)

∑

p

cp̄ ϑ
t′→t
p+p′ ,

which is the desired result.

Moreover, the final step of the calculation implies that p+ p′ ∈ P0(t′− t)∩ (2πZ)n for

all p = 2πp̄ such that cp̄ 6= 0 and for all p′ ∈ P1(t′− t)∩ (2πZ)n . Recall that P0(t′− t)

is defined by the inequalities

(5–28) 〈~v, ·〉 ≤ (t′ − t) d(v)
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for all v = (~v, v0) ∈ V , while P1(t′ − t) is defined by

(5–29) 〈~v, ·〉 ≤ (t′ − t) d(v)− 2πv0

for all v ∈ V , and P is defined by the inequalities 〈~v, ·〉 ≤ v0 for all v ∈ V (cf.

Definition 4.14). For every v ∈ V , we can choose t and t′ such that P1(t′− t)∩ (2πZ)n

contains some p′ which realizes the equality in (5–29). Thus, since p + p′ satisfies

(5–28) whenever cp̄ 6= 0, it follows that 〈p,~v〉 ≤ 2πv0 , i.e. 〈p̄,~v〉 ≤ v0 , whenever

cp̄ 6= 0. Since this holds for all v ∈ V , it follows that p̄ ∈ P ∩ Zn = PZ .

Lemma 5.17 implies that the coefficients cp̄ ∈ K (p̄ ∈ PZ ) suffice to determine the

fiberwise wrapped Floer cohomology of L0 . More explicitly:

Proposition 5.18 Let g(x) =
∑

p cp̄xp̄ ∈ K[x±1
1 , . . . , x±1

n ], and assume that g is not

identically zero. Then HW∗(L0, L0) is isomorphic to the quotient K[x±1
1 , . . . , x±1

n ]/(g)

of the ring of Laurent polynomials by the ideal generated by g.

Proof By Corollary 3.24, we can calculate HW∗(L0, L0) as a colimit of Floer coho­

mology groups HF∗(L0(t′), L0(t)) for t′ − t→∞. For t′ − t > t1 , we use Proposition

5.11 and Lemma 5.17 to identify CF∗
vert(L0(t′), L0(t)) with a subcomplex of the chain

complex

(5–30) K[x±1
1 , . . . , x±1

n ]
g
−→ K[x±1

1 , . . . , x±1
n ]

where in degree 0 we identify ϑt′→t
p with the monomial xp̄ for all p ∈ P0(t′−t)∩(2πZ)n ,

and in degree −1 we identify ζ t′→t
p with C(t′, t) xp̄ for all p ∈ P1(t′− t)∩ (2πZ)n , and

the subcomplex corresponds to those Laurent polynomials whose Newton polytopes

are contained inside 1
2πP0(t′ − t) resp. 1

2πP1(t′ − t).

It follows from Proposition 5.14 that, with these identifications, the product operations

on these Floer complexes are given by multiplication of Laurent polynomials; and

Proposition 5.16 implies that the continuation maps as t′ − t increases to infinity are

given by inclusion. Thus, the naive limit of the complexes (5–20) as t′ − t → ∞ is

given by (5–30).

Since by assumption g is not zero, multiplication by g is injective, and the cohomology

of (5–20) is concentrated in degree zero; specifically, HF0(L0(t′), L0(t)) is the quotient

of the space of Laurent polynomials whose Newton polytope is contained in 1
2πP0(t′−t)

by the subspace of those which are g times a Laurent polynomial with Newton polytope

contained in 1
2πP1(t′ − t). Taking the colimit under inclusion maps as t′ − t → ∞,
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we conclude that HW∗(L0, L0) is also concentrated in degree zero, and we have an

isomorphism of K­vector spaces

HW0(L0, L0) ≃ K[x±1
1 , . . . , x±1

n ]/(g).

This isomorphism is compatible with the ring structure, since by Proposition 5.14 the

Floer product operation corresponds to multiplication of Laurent polynomials.

Given Proposition 5.18, the proof of Theorem 1.2 reduces to the determination of

the Laurent polynomial g. More precisely, we need to show that, after equipping

Y with a suitable bulk deformation class, g can be assumed to coincide with the

Laurent polynomial f defining the hypersurface H up to an overall scaling factor. To

this end, we first reinterpret g as a count of holomorphic sections with boundary on

the objects Tx(t) obtained by parallel transport of product tori with rank one local

systems. Recalling the calculation of the vertical Floer complex CF∗
vert(L0(t′), Tx(t))

from Proposition 5.15, we have:

Proposition 5.19 For t′ − t > t1 , and for x ∈ (K∗)n , the differential on the complex

CF∗
vert(L0(t′), Tx(t)) is given by

sx(ηt′→t
x ) = Cξ(t′, t) g(x) εt′→t

x ,

where Cξ(t′, t) is a nonzero constant depending only on t , t′ , and ξ = − 1
2πval(x).

Proof For t′′ > t′ + t1 , the compatibility of the Floer product (5–22) with the differ­

entials on the vertical Floer complexes implies that

sx(ηt′→t
x ) · ζ t′′→t′

0 − ηt′→t
x · s0

ℓ0,t′′,t
(ζ t′′→t′

0 ) = 0.

Using Lemma 5.17 and Proposition 5.15, this yields:

sx(ηt′→t
x ) · ζ t′′→t′

0 = C(t′′, t′)
∑

p

cp̄ η
t′→t
x · ϑt′′→t′

p = C(t′′, t′) Cξ;t′′→t′,t g(x) ηt′′→t
x .

Since sx(ηt′→t
x ) is a multiple of εt′→t

x , comparing with the formula for εt′→t
x · ζ t′′→t

0

given by Proposition 5.15 we conclude that

sx(ηt′→t
x ) = C−1

ξ;t′′,t′→t
C(t′′, t′) Cξ;t′′→t′,t g(x) εt′→t

x .

The result follows, setting C−1
t′′,t′→t

C(t′′, t′) Ct′′→t′,t = Cξ(t′, t).

Remark 5.20 Another way to prove Proposition 5.19, still using the Leibniz rule,

Lemma 5.17, and Proposition 5.15, is to argue that, for t′′ > t′ > t with t′′ − t′ > t1 ,

sx(ηt′′→t
x ) = C−1

ξ;t′′,t′→t
sx(εt′→t

x · ζ t′′→t′

0 ) = C−1
ξ;t′′,t′→t

εt′→t
x · s0

ℓ0,t′′,t′
(ζ t′′→t′

0 )

= C−1
ξ;t′′,t′→t

C(t′′, t′)
∑

p

cp̄ ε
t′→t
x · ϑt′′→t′

p = Cξ(t′′, t) g(x) εt′′→t
x .
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Next we consider the Floer complex CF∗
vert(Tx(t′), Tx(t)) for t′−t > t0 . The Lagrangian

submanifolds (with local systems) Tx(t′) and Tx(t) obtained by parallel transport of

tx over the arcs γt′ and γt intersect cleanly along tori within the fibers W−1(−1) and

W−1(ct′,t), rather than transversely, so the definition of their Floer complex requires a

bit of care. One approach is to use a small Hamiltonian perturbation to achieve transver­

sality within the fibers of W ; another approach that is better suited to computations is

to use a “Morse­Bott” model. Namely, we choose a Morse function on the n­torus,

and consider holomorphic discs with boundary in Tx(t′) ∪ Tx(t) together with Morse

flow lines (within a component of Tx(t′) ∩ Tx(t)) from the boundary marked points of

the disc to critical points of the Morse function; see for example Section 4 of [Sh] (with

the difference that we only use Morse theory within the fibers of W , while in the base

direction we have usual strip­like ends). Equivalently, instead of involving Morse flow

lines, one could simply require the boundary marked points of the holomorphic discs

to lie on the stable or unstable manifolds of the Morse critical points.

Regardless of the chosen approach, the Floer complex is built from two copies of the

fiberwise Floer complex CF∗(tx, tx), corresponding to generators and Floer trajectories

which lie entirely within each of the two fibers W−1(−1) and W−1(ct′,t), together with

a connecting differential which counts J ­holomorphic sections of W : Y → C over

the region delimited by γt and γt′ (with the usual caveat regarding our use of the

word “section” since J differs from the standard complex structure near W−1(0)), with

boundary on tx , and satisfying incidence conditions at −1 and at ct′,t .

As before, we denote by CF∗
vert(Tx(t′), Tx(t)) the “vertical Floer complex” obtained by

taking the cohomology with respect to the contributions to the Floer differential which

lie entirely within a fiber of W . Since tx ⊂ (C∗)n does not bound any holomorphic

discs, the Floer differential on CF∗(tx, tx) only involves a classical part, and reduces to

the usual cohomology of Tn (with coefficients in endomorphisms of the local system,

which are canonically isomorphic to the ground field K). We claim:

Proposition 5.21 For t′ − t > t0 , and for x ∈ (K∗)n , the vertical Floer complex

CF∗
vert(Tx(t′), Tx(t)) is given by

(5–31)
{

H∗(Tn,K)
sx−→ H∗(Tn,K)

}

,

where the connecting differential sx , defined by a weighted count of J ­holomorphic

sections of W : Y → C over the region delimited by γt and γt′ , with incidence

conditions on cycles in tx at −1 and ct′,t , is given by multiplication by C′
ξ(t′, t) g(x) ∈ K

for some non­zero constant C′
ξ(t′, t) depending only on t, t′ and ξ = − 1

2πval(x).
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The first part of the statement is clear from the above description of the Floer complex

CF∗(Tx(t′), Tx(t)); the remaining part, namely showing that the differential sx is given

by multiplication by g(x), relies on an algebraic argument similar to the proof of

Proposition 5.19 using the Leibniz rule. Thus, we first need to establish a couple of

lemmas (analogous to Propositions 5.14 and 5.15), before providing the proof.

We denote respectively by δt′→t
x and 1t′→t

x the elements which correspond to 1 ∈

H0(Tn,K) in the left and right summands of (5–31); given α ∈ H∗(Tn,K), the

corresponding elements of the left and right summands of (5–31) are denoted by

α δt′→t
x and α 1t′→t

x . With this notation, we have:

Lemma 5.22 Assuming t′ − t > t0 and t′′ − t′ > t0 , the Floer product

CF∗
vert(Tx(t′), Tx(t))⊗ CF∗

vert(Tx(t′′), Tx(t′))→ CF∗
vert(Tx(t′′), Tx(t))

is as follows: for all α, α′ ∈ H∗(Tn,K),

(α 1t′→t
x ) · (α′ 1t′′→t′

x ) = (α⌣ α′) 1t′′→t
x ,

(α δt′→t
x ) · (α′ 1t′′→t′

x ) = C′
ξ;t′′→t′,t (α⌣ α′) δt′′→t

x ,

(α 1t′→t
x ) · (α′ δt′′→t′

x ) = C′
ξ;t′′,t′→t (α⌣ α′) δt′′→t

x ,

(α δt′→t
x ) · (α′ δt′′→t′

x ) = 0

where C′
ξ;t′′→t′,t,C

′
ξ;t′′,t′→t ∈ K∗ depend only on t, t′, t′′ and ξ = − 1

2πval(x).

Proof The proof is essentially the same as for Proposition 5.14: by considering the

projection under W : Y → C, we find that the only holomorphic discs contributing

to the Floer product are either contained in W−1(−1), or sections over one of the

two triangular regions delimited by γt′′ , γt′ and γt ; in the latter case, we use a

deformation argument to shrink the triangular region to a single point and reduce to

a count within the fiber of W . Either way, things reduce to the Floer product on

HF∗(tx, tx) ≃ H∗(Tn,K), which coincides with the ordinary cup product since there

are no non­constant holomorphic discs in (C∗)n with boundary on tx . As in the

proof of Proposition 5.14, the constant factors C′
ξ;t′′→t′,t and C′

ξ;t′′,t′→t account for the

symplectic area of a reference section (now chosen to lie at the same ξ ­value as tx ,

i.e. ξ = − 1
2πval(x)) over the appropriate triangular region of the complex plane, which

turns out to coincide with the amount of area swept in the deformation used to reduce

to a single fiber.

Lemma 5.23 Assume t′ − t > t0 and t′′ − t′ > t0 . The Floer product

CF∗
vert(Tx(t′), Tx(t))⊗ CF∗

vert(L0(t′′), Tx(t′))→ CF∗
vert(L0(t′′), Tx(t))



80 Mohammed Abouzaid and Denis Auroux

vanishes identically on elements of the form (α 1t′→t
x ) or (α δt′→t

x ) whenever α is a

cohomology class of positive degree, whereas

1t′→t
x · ηt′′→t′

x = C′′
ξ;t′′,t′→t η

t′′→t
x , 1t′→t

x · εt′′→t′

x = εt′′→t
x ,

δt′→t
x · εt′′→t′

x = C′′
ξ;t′′→t′,t η

t′′→t
x , δt′→t

x · ηt′′→t′

x = 0,

where C′′
ξ;t′′→t′,t,C

′′
ξ;t′′,t′→t ∈ K∗ depend only on t, t′, t′′ and ξ = − 1

2πval(x).

Proof The argument is again similar, reducing to the calculation of Floer products

within the fiber W−1(−1) ≃ (C∗)n , specifically the product

HF∗(tx, tx)⊗ HF∗(ℓ0(t′′), tx)→ HF∗(ℓ0(t′′), tx).

The vanishing for elements of HF∗(tx, tx) ≃ H∗(Tn,K) of positive degree then follows

from the fact that HF∗(ℓ0(t′′), tx) has rank one and is concentrated in a single degree;

whereas 1 ∈ H0(Tn,K) ≃ HF0(tx, tx) acts by identity by cohomological unitality.

Proof of Proposition 5.21 Given t, t′ with t′ − t > t0 , choose t′′ so that t′′ > t′ + t1 .

The compatibility of Floer products and differentials on vertical Floer complexes (the

Leibniz rule) implies that

sx(δt′→t
x ) · ηt′′→t′

x − δt′→t
x · sx(ηt′′→t′

x ) = 0,

which using Proposition 5.19 and Lemma 5.23 yields:

sx(δt′→t
x ) · ηt′′→t′

x = Cξ(t′′, t′) g(x) δt′→t
x · εt′′→t′

x = C′′
ξ;t′′→t′,t Cξ(t′′, t′) g(x) ηt′′→t

x .

Using again Lemma 5.23 (and degree constraints), it follows that

sx(δt′→t
x ) = C′′−1

ξ;t′′,t′→t C′′
ξ;t′′→t′,t Cξ(t′′, t′) g(x) 1t′→t

x .

Setting C′
ξ(t′, t) = C′′−1

ξ;t′′,t′→t C′′
ξ;t′′→t′,t Cξ(t′′, t′), we rewrite this as

sx(δt′→t
x ) = C′

ξ(t′, t) g(x) 1t′→t
x

whenever t′ − t > t0 , which is the desired result for the generators of H0(Tn,K).

To extend the result to higher degree cohomology classes, we use the product formulas

of Lemma 5.22: given t′ > t + t0 , and choosing t′′ > t′ + t0 , the Leibniz rule implies

that

sx(α δt′→t
x ) · δt′′→t′

x = (α δt′→t
x ) · sx(δt′′→t′

x ) = C′
ξ(t′′, t′) g(x) (α δt′→t

x ) · 1t′′→t′

x

= C′
ξ;t′′→t′,t C′

ξ(t′′, t′) g(x) (α δt′′→t
x ),
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and hence

sx(α δt′→t
x ) = C′−1

ξ;t′′,t′→t C′
ξ;t′′→t′,t C′

ξ(t′′, t′) g(x) (α 1t′→t
x ) = C′

ξ(t′, t) g(x) (α 1t′→t
x ),

where the identity C′
ξ(t′, t) = C′−1

ξ;t′′,t′→t C′
ξ;t′′→t′,t C′

ξ(t′′, t′) follows from considering

the special case α = 1.

Given Propositions 5.18 and 5.21, the remaining step in the proof of Theorem 1.2 is a

direct calculation of the differential in (5–31), with the aim of showing that the Laurent

polynomials f and g agree up to a constant scaling factor.

5.6 Holomorphic sections of W with boundary on product tori

We now turn to the problem of explicitly determining the differential on the complex

(5–31), i.e. counting J ­holomorphic sections of W : Y → C over the region delimited

by γt′ and γt′′ , with boundary in the product torus tx in each fiber. (In this section we

use t′ and t′′ instead of t and t′ to avoid notation conflicts with the Novikov parameter).

By Proposition 5.21, the differential sx is given by multiplication by some element

of K; thus it is enough to determine the image of the generator of H0(Tn,K) (or

equivalently, that of Hn(Tn,K)); this amounts to counting J ­holomorphic sections

whose boundary passes through some prescribed input point in W−1(−1) (or output

point in W−1(ct′′,t′) if we consider Hn rather than H0 ; or in fact a point anywhere on

the Lagrangian boundary condition, as the end result does not depend on this choice).

While our definitions involve a perturbation of the standard complex structure J0

near W−1(0) in order to achieve regularity of moduli spaces, actually counting discs

in practice requires one to consider the limit as J converges to the (non­regular)

standard complex structure J0 . Under this limit, the J ­holomorphic discs contributing

to the differential sx converge either to holomorphic discs (holomorphic sections of

W : Y → C), or to stable configurations consisting of a holomorphic disc (a section

of W ) together with one or more rational curves contained inside the singular fiber

W−1(0). (This is a standard instance of Gromov compactness for a C∞ ­convergent

sequence of almost­complex structures, cf. [McS, Theorem 5.3.1] for the closed case;

as usual when considering sections, it follows from positivity of intersection of the

non­vertical components with the fibers of W that any bubbles arising in the limit must

be contained in a fiber of W, hence in W−1(0).) Thus, the first step is to understand

moduli spaces of holomorphic sections of W bounded by Tx(t′′) ∪ Tx(t′).
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Proposition 5.24 For t′′ − t′ > t0 and x ∈ (K∗)n , the homotopy classes of holo­

morphic sections of W : Y → C with boundary on Tx(t′′) ∪ Tx(t′) are in one­to­one

correspondence with the elements of PZ . For each such class, the moduli space of

sections consists of a single orbit under the action of Tn , and the count of sections

through any given point of tx ⊂ W−1(−1) is equal to one.

Proof Denote by S the region of the complex plane delimited by γt′′ and γt′ . Since

S contains the origin, a holomorphic section of W : Y → C over S has intersection

number one with Z = W−1(0) =
⋃

α Zα , which is the union of the irreducible toric

divisors of Y . Hence it must intersect exactly one of these, say Zα for some α ∈ PZ ,

and be disjoint from Zα′ for all α′ 6= α . For fixed α , we are thus reduced to studying

holomorphic discs contained in Yα = Y \
⋃

α′ 6=α Zα′ , the partial compactification of

the open stratum of the toric variety Y obtained by adding the open stratum of Zα .

Yα is biholomorphic to C× (C∗)n , and we choose such an identification where the first

coordinate is given by W = −z(0,...,0,1) , and the remaining coordinates (z1, . . . , zn) ∈

(C∗)n are given by toric monomials, in such a way that product tori in the fibers W−1(c),

c ∈ ∂S correspond to standard product tori in {c} × (C∗)n .

We parametrize holomorphic sections of W|Yα
: Yα → C over S by the first coordinate

(i.e., W ), so that the domain is S , and we are reduced to finding holomorphic maps

S→ (C∗)n , w 7→ (z1(w), . . . , zn(w)) which satisfy the appropriate boundary conditions

over ∂S . Specifically, our boundary condition is given by product tori in (C∗)n , i.e.

the value of |zi| is prescribed at every point of the boundary. We claim that solutions,

if they exist, are unique up to the action of Tn on (C∗)n by rotations. Indeed, if

zi, z̃i : S → C∗ are both holomorphic and |zi(w)| = |z̃i(w)| for all w ∈ ∂S , then the

ratio z̃i(w)/zi(w) defines a holomorphic map from S to C∗ , taking values in the unit

circle along ∂S; the open mapping principle thus implies that it is constant, i.e. there

exists eiθ ∈ S1 such that z̃i(w) = eiθzi(w) for all w ∈ S . Thus the moduli space of

sections in the given class consists of at most one Tn ­orbit.

One approach to prove existence is to use complex analysis. For each i ∈ {1, . . . , n},

the boundary condition prescribes the value of log |zi| = Re(log zi) at every point of ∂S .

Using the Riemann mapping theorem to identify S with the unit disc, it is a classical

result of Schwarz that, up to a pure imaginary additive constant, there exists a unique

analytic function log zi : int(S) → C (given by the Schwarz integral formula) whose

real part has a continuous extension and takes the prescribed values at the boundary of

S (see e.g. [Ahl, §4.6.3­4.6.4]). Because the given real boundary condition along the

unit circle is Hölder continuous (even after pullback from S to the disc, see e.g. [Po,

Chapter 3]), the imaginary part Im(log zi) (the harmonic conjugate of Re(log zi)) also
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has a (Hölder) continuous extension to the boundary, given by the Hilbert transform of

the real part [Gar, Theorem III.1.3]. Exponentiating, we arrive at the desired mapping

zi : S → C∗ , and conclude that, up to the action of Tn by rotation of the coordinates

of (C∗)n , there is a unique continuous map w 7→ (z1(w), . . . , zn(w)) from S to (C∗)n

which is holomorphic over the interior of S and satisfies the given boundary conditions.

An alternative approach to existence is to use the invariance of the count of holomorphic

sections of W upon deforming the given boundary condition to a product one, given

by the same torus (in terms of the coordinates zi ) in all the fibers of W over ∂S; i.e.

we modify the problem so that the prescribed value of |zi| is the same at every point

of ∂S , rather than possibly varying from one point to another. (This can viewed either

as deforming the totally real boundary condition being imposed on the sections of W ,

or as keeping the same Lagrangian boundary condition but modifying the coordinates

and the complex structure on Yα by rescaling each of z1, . . . , zn by an amount which

varies smoothly over S .) After this deformation, one is led to look for holomorphic

maps from S to (C∗)n such that |zi| is equal to a fixed constant at every point of ∂S:

in other terms, holomorphic discs (parametrized by S) in (C∗)n with boundary on a

fixed product torus. By the maximum principle, the only solutions are constant maps,

and these are regular. Thus, in the deformed setting, the moduli space of sections

consists of precisely one Tn ­orbit, and the count of holomorphic sections through a

given point is equal to one. Because of the homotopy invariance of Floer­theoretic

section­counting invariants under deformations, it follows that the moduli space of

sections for our initial problem is also non­empty, consisting of a single Tn ­orbit, and

the count of sections through a given point is equal to one.

Remark 5.25 The argument can be simplified if we assume that ξ = − 1
2πval(x) lies

in the intersection of n of the subsets Sv,γ , v ∈ V defined by (4–11); since non­empty

such intersections always exist, and our comparison of f and g only requires us to

determine the differential sx for x of arbitrary fixed valuation, this simpler setting

would in fact suffice for our purposes. When ξ lies in the intersection of n of the

Sv,γ , by Proposition 4.16 we can choose the toric monomials z1, . . . , zn in the above

argument in such a way that they are all invariant under parallel transport along ∂S at

all points of tx . This implies that the radii |zi| of the boundary tori remain constant

all along ∂S (i.e., the boundary condition consists of the same product torus in (C∗)n

over each point of ∂S); we can then directly classify the holomorphic sections without

appealing to complex analysis nor to a deformation argument.

Each of the families of holomorphic sections identified in Proposition 5.24, representing

a relative homology class [Dα] ∈ H2(Y, Tx(t′′) ∪ Tx(t′)), contributes to the Floer
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differential on CF∗
vert(Tx(t′′), Tx(t′)) with a weight

(5–32) weight([Dα]) = t

∫

[Dα]
ω

hol([∂Dα]) exp(
∫

[Dα]
b) ∈ Λ≥0.

In this formula, hol([∂Dα]) denotes the holonomy of the local system along the bound­

ary of Dα , which requires some clarification. Since the local systems on Tx(t′) and

Tx(t′′) are isomorphic over Tx(t′)∩Tx(t′′) (canonically over W−1(−1), and in a preferred

manner up to a constant factor over W−1(ct′′,t′) using the Tn ­equivariant structure of

tx ), they can be glued into a local system on the portion of Tx(t′) ∪ Tx(t′′) which fibers

over ∂S . Noting that this subset of Tx(t′) ∪ Tx(t′′) can be deformed isotopically to a

product torus in Y , we choose the gluing at W−1(ct′′,t′) in such a way that the holonomy

of the local system along a loop which deforms to an orbit of the last S1 ­factor of the

toric action (with moment map η ) is equal to identity. (Meanwhile, the holonomies

along the first n circle factors, within the fibers of W , coincide with those of tx .) With

this choice in hand, we define hol([∂Dα]) to be the holonomy of the local system on

Tx(t′) ∪ Tx(t′′) along the boundary of Dα . Also, we denote by b a representative of

the bulk deformation class which is supported near W−1(0) (so its pairing with [Dα]

is well defined). Specifically, we choose the bulk deformation to be of the form

(5–33) b =
∑

α∈PZ

bα δZα ,

where the constants bα ∈ Λ≥0 are coefficients to be determined later, and δZα is a

representative of the cohomology class Poincaré dual to the divisor Zα , supported in a

small neighborhood of Zα . Since [Dα] has intersection number one with Zα and zero

with the other components of W−1(0), we find that exp(
∫

[Dα]
b) = exp(bα).

Proposition 5.26 For all t′′ > t′ + t0 , α ∈ PZ , and x ∈ (K∗)n , there exists a nonzero

constant Kξ(t′′, t′) depending only on t′, t′′ and ξ = − 1
2πval(x) such that the weight of

a holomorphic section of W : Y → C bounded by Tx(t′′) ∪ Tx(t′) and representing the

class [Dα] is given by

(5–34) weight([Dα]) = Kξ(t′′, t′) t2πν(α)xα exp(bα).

Proof The portion of Tx(t′′) ∪ Tx(t′) which fibers over ∂S can be deformed by an

isotopy into a product torus in Y (by deforming S to a disc), so H2(Y, Tx(t′′)∪Tx(t′)) ≃

H2(Y, Tn+1) ≃ ZPZ (where the latter isomorphism follows from standard facts in

toric geometry). Concretely, this means that relative homology classes are uniquely

determined by their algebraic intersection numbers with each of the toric divisors Zα .

Let α1, α2 ∈ PZ be two lattice points which are connected by an edge in the subdivision

P of P determined by the tropicalization of the Laurent polynomial f (see Section 2),
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i.e. such that the toric divisors Zα1
, Zα2

⊂ Y intersect along an (n − 1)­dimensional

toric stratum Zα1α2
. In terms of the moment polytope ∆Y , Zα1α2

corresponds to the

codimension 2 stratum of points (ξ, η) where α1 and α2 both achieve the maximum

in the piecewise linear polynomial ϕ, and

(5–35) η = ϕ(ξ) = 〈α1, ξ〉 − ν(α1) = 〈α2, ξ〉 − ν(α2).

The stabilizer of the Tn+1 ­action on Y along Zα1α2
is the subtorus spanned by the

weights (−α1, 1) and (−α2, 1) (the generators of the two rays of the fan ΣY which

span the cone corresponding to Zα1α2
, or equivalently, the normal vectors to the

face (5–35) of ∆Y ). Thus, we can define a 2­chain Dα1α2
in Y , with boundary

in Tx(t′′) ∪ Tx(t′), by considering a path in the complex plane which connects some

w1 ∈ ∂S to the origin, and in every fiber of W over this path, a suitably chosen orbit

of the S1 ­action with weight (α1 − α2, 0). We take these S1 ­orbits to lie at moment

map values which start at ξ1 = − 1
2πval(x) over w1 ∈ ∂S (so that the boundary of our

2­chain lies in Tx(t′′) ∪ Tx(t′)), and end at a point (ξ0, η0) which satisfies (5–35) over

the origin (whence the S1 ­orbit collapses to a point by our above observation on the

stabilizer along Zα1α2
).

By comparing intersection numbers with the toric divisors of Y , we find that, for

a suitable choice of orientation, [Dα1α2
] = [Dα2

] − [Dα1
]. Thus, since the weight

formula (5–32) is manifestly multiplicative, we conclude that

(5–36) weight([Dα2
]) = weight([Dα1α2

]) · weight([Dα1
]).

On the other hand, the weight of Dα1α2
can be calculated explicitly. Parametrizing

this disc by a map u : D2 → Y and using polar coordinates ρ (along the path in the

moment polytope ∆Y ) and θ (along the S1 ­orbits), and observing that ω(·, ∂θu) =

d(〈α1 − α2, ξ〉) by definition of the moment map, we have
∫

Dα1α2

ω =

∫∫

D2

ω(∂ρu, ∂θu) dρ dθ = 2π

∫ 1

0

∂ρ(〈α1−α2, ξ(ρ)〉) dρ = 2π〈α1−α2, ξ1−ξ0〉.

Since ξ0 satisfies (5–35), 〈α1 − α2, ξ0〉 = ν(α1)− ν(α2), so
∫

Dα1α2

ω = 〈α2 − α1, val(x)〉+ 2πν(α2)− 2πν(α1).

Denoting by y = (y1, . . . , yn) the holonomies of the local system of tx along the

various circle factors, the holonomy along the boundary of Dα1α2
is given by yα1−α2 .

Recalling that xi = tval(xi)y−1
i , we conclude that the weight of Dα1α2

is

weight([Dα1α2
]) = yα1−α2 t〈α2−α1,val(x)〉+2πν(α2)−2πν(α1) exp(bα2

− bα1
)(5–37)

= xα2−α1 t2πν(α2)−2πν(α1) exp(bα2
− bα1

).
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In light of (5–36), and using connectedness of the 1­skeleton of the subdivision P (i.e.,

any two elements of PZ can be connected via a sequence of elements of PZ such that

the above calculation can be applied to consecutive terms in the sequence), this implies

that for fixed t′, t′′, x , the weight of Dα is proportional to

(5–38) xαt2πν(α) exp(bα).

This is basically the desired formula (5–34), except we have not yet shown that the

scaling constant depends only on the valuation of x (and t′, t′′) rather than on x itself.

To show the constant only depends on ξ (and t′, t′′ ), we observe that for fixed ξ =

− 1
2πval(x), the only role played by x is in determining the holonomy of the local

system. Recalling that Tx(t′′) ∪ Tx(t′) (after restriction to ∂S) is isotopic to a product

torus tx × S1 ≃ Tn+1 in Y , and noting that the boundary of Dα represents the class

(−α, 1) in π1(Tx(t′′) ∪ Tx(t)) ≃ π1(Tn+1) ≃ Zn+1 , we find that hol([∂Dα]) = y−α ,

so that the dependence of the weight of Dα on x is indeed as in (5–38), and the

scaling factor Kξ(t′′, t′) does not depend on the holonomy, i.e. it depends only on

ξ = − 1
2πval(x) and not on x itself.

We now return to the problem of counting J ­holomorphic sections of W : Y → C with

boundary on Tx(t′) ∪ Tx(t′′). As previously noted, when J converges to the standard

complex structure J0 , the J ­holomorphic discs contributing to the differential (5–31)

limit to stable curves consisting of a holomorphic disc, representing one of the classes

[Dα] for some α ∈ PZ (by Proposition 5.24), and a (possibly empty) configuration

of rational curves contained in Z = W−1(0), representing some homology class β ∈

H2(Y) (with [ω] · β > 0 whenever β 6= 0).

Definition 5.27 For fixed t′, t′′, ξ , and for each α ∈ PZ and β ∈ H2(Y), we denote

by nα,β the (signed) count of J ­holomorphic sections of W (for generic J close to J0 )

whose relative homology class in H2(Y, Tx(t′) ∪ Tx(t′′)) is equal to [Dα] + β , passing

through a generic point of tx ⊂ W−1(−1).

By considering the limit as J → J0 and using the classification of holomorphic discs

in Proposition 5.24, we see that every J ­holomorphic section under consideration is in

one of these homology classes, nα,0 = 1 for all α ∈ PZ , and nα,β = 0 for all β 6= 0

such that [ω] · β ≤ 0.

Remark 5.28 The invariance of counts of holomorphic sections under deformations

of the Lagrangian boundary condition implies that nα,β is independent of t′ , t′′ (as

long as t′′ − t′ > t0 ) and ξ ; hence the notation. However, our argument does not

depend on it, so we will not elaborate further.
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Since the weight of a section in the class [Dα] + β is given by

weight([Dα] + β) = weight([Dα]) t[ω]·β exp([b] · β),

we arrive at:

Proposition 5.29 The Laurent polynomial g of Propositions 5.18–5.21 satisfies

(5–39)

C′
ξ(t′′, t′) g(x) = Kξ(t′′, t′)

∑

α∈PZ

t2πν(α)xα exp(bα)
(

1 +
∑

β∈H2(Y)
[ω]·β>0

nα,β t[ω]·β exp([b] · β)
)

.

Proof This follows directly from a comparison of the weighted counts of sections

which determine the differential on (5–31) (the coefficient of 1t′′→t′

x in sx(δt′′→t′

x )) as

given by Proposition 5.21 and by direct calculation of
∑

α,β nα,β weight([Dα]+β).

Corollary 5.30 There exists a constant C ∈ K∗ such that

(5–40) g(x) = C
∑

α∈PZ

t2πν(α)xα exp(bα)
(

1 +
∑

β∈H2(Y)
[ω]·β>0

nα,β t[ω]·β exp([b] · β)
)

.

Proof The key point is that, for any ξ ∈ Rn , the coefficients of a Laurent polynomial

in K[x±1
1 , . . . , x±1

n ] are determined by its evaluation at points x ∈ (K∗)n with fixed

valuation val(x) = −2πξ . Thus, comparing the left­ and right­hand sides of (5–39)

for fixed ξ, t′′, t′ we find that g(x) and the Laurent polynomial appearing in the right­

hand side coincide up to a constant factor. Incidentally, this also implies that the ratio

C′
ξ(t′′, t′)/Kξ(t′′, t′) is a genuine constant independent of t′, t′′ and ξ , and that the power

series appearing as coefficients in the right­hand side are independent of t′, t′′ and ξ (in

general this is slightly weaker than asserting that the nα,β themselves are independent

of these choices.)

Remark 5.31 The power series in the right­hand side of (5–40) are also exactly those

which appear in expressions for the instanton­corrected superpotential for product tori

in the toric Calabi­Yau variety Y (cf. e.g. [AAK] and [CLL]), and more explicitly in

terms of Gromov­Witten invariants in [CLT], where these quantities are also interpreted

as correction terms in the mirror map for the toric variety Y . Indeed, deforming (a

subset of) Tx(t′) ∪ Tx(t′′) to a product torus in Y it is apparent that the enumerative

geometry problems we consider here and those discussed in [AAK, CLL, CLT] are

equivalent.
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Example 5.32 Let f (x) = t2πx−1+1+x , so H = f−1(0) consists of two points. Then

PZ = {−1, 0, 1}, ϕ(ξ) = max(−ξ − 1, 0, ξ), and Y is isomorphic to the total space

of O(−2) → CP1 . In this example, the term in (5–40) corresponding to α = 0 (i.e.,

discs in Y which intersect the zero section CP1 ) includes a non­trivial contribution

from β = [CP1], with nα=0,[CP1] = 1, whereas all the other nα,β are zero (cf. e.g.

[CLL, Example 5.3.1]). Hence, g(x) is proportional to

eb−1 t2πx−1
+ eb0(1 + t2πe[b]·[CP1]) + eb1x,

which matches f (x) when b1 = b−1 = 0 and eb0(1 + t2πe−2b0) = 1. See also [CLL,

§5.3] for examples where infinitely many nα,β are non­zero. On the other hand, the

coefficients nα,β all vanish when every rational curve in Y is contained in a toric

stratum of complex codimension at least two.

Finally, we observe that, as in the above example, it is always possible by a suitable

choice of the bulk deformation class [b] ∈ H2(Y,Λ≥0) to ensure that the right­hand

side of (5–40) matches the Laurent polynomial f used to define the hypersurface H .

Proposition 5.33 Given any collection of unitary (i.e., valuation zero) elements aα ∈

K∗ for all α ∈ PZ , there exists a unique collection of unitary elements ebα ∈ K∗ ,

α ∈ PZ , such that

(5–41) ebα
(

1 +
∑

β∈H2(Y)
[ω]·β>0

nα,β t[ω]·βe[b]·β
)

= aα for all α ∈ PZ.

Proof We can solve for ebα order by order. Namely, the series
∑

β nα,β t[ω]·β e[b]·β

consist of terms whose valuations are positive and bounded below by some constant

λ > 0 (by Gromov compactness, the symplectic areas of the rational curves which

can appear in these expressions form a discrete set). Thus, (5–41) implies that ebα =

aα mod tλ . Moreover, once ebα is determined mod tNλ for some N ∈ N and for all

α ∈ PZ , the power series appearing in the left­hand side of (5–41) are determined mod

t(N+1)λ , and thus (5–41) determines ebα mod t(N+1)λ for all α ∈ PZ .

Proof of Theorem 1.2 We equip Y with the bulk deformation class b =
∑

bαδZα ,

where the coefficients bα are determined by Proposition 5.33 so that the expression

(5–40) agrees with the Laurent polynomial f in (1–1) up to scaling by a nonzero

constant. The result then follows from Proposition 5.18 and Corollary 5.30.
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6 Complete intersections

6.1 Geometric setup

In this section we describe the geometric setup for extending Theorem 1.2 to complete

intersections in (C∗)n . Consider k Laurent polynomials

(6–1) fi =
∑

α∈Pi,Z

ai,α t2πνi(α)xα ∈ K[x±1
1 , . . . , x±1

n ], 1 ≤ i ≤ k,

where the finite subsets Pi,Z ⊂ Zn , the exponents νi(α) ∈ R, and the coefficients

ai,α ensure that the hypersurfaces Hi = f−1
i (0) satisfy the same “tropical smoothness”

conditions as in Section 2, and additionally we assume that the tropical hypersurfaces

associated to the tropicalizations

(6–2) ϕi(ξ) = max{〈α, ξ〉 − νi(α) |α ∈ Pi,Z}

are in generic position relative to each other (i.e., all intersections between strata

are transverse). Following [AAK, Section 11], we define Y to be the Kähler toric

(n + k)­fold defined by the moment polytope

(6–3) ∆Y = {(ξ, η1, . . . , ηk) ∈ Rn ⊕ Rk | ηi ≥ ϕi(ξ) ∀i = 1, . . . , k}.

Dually, Y is also described by a fan ΣY ⊆ Rn ⊕ Rk , whose rays are generated by

the integer vectors (−α, ei) for all 1 ≤ i ≤ k and α ∈ Pi,Z , where e1, . . . , ek is the

standard basis of Zk .

For 1 ≤ i ≤ k , we define Wi : Y → C to be the negative of the toric monomial

with weight (0, ei) = (0, . . . , 0, 1, 0, . . . , 0) (where the 1 is in the (n + i)­th position).

(Thus, the zero set of Wi is the union of the toric divisors of Y corresponding to

the rays of ΣY generated by (−α, ei), α ∈ Pi,Z , or equivalently, to the facets of

∆Y on which ηi = ϕi(ξ).) The candidate mirror to the complete intersection H =

H1 ∩ · · · ∩ Hk is then the Landau­Ginzburg model (Y,W1 + · · · + Wk); however, our

version of the (fiberwise wrapped) Fukaya category of this Landau­Ginzburg model

will involve Lagrangian submanifolds which are simultaneously admissible for each of

the projections W1, . . . ,Wk . Accordingly, we view our k monomials as the components

of a (toric) map

W = (W1, . . . ,Wk) : Y → Ck.

We call (Y,W) the toric Landau­Ginzburg mirror to the complete intersection H

determined by the Laurent polynomials (f1, . . . , fk).

In the course of our argument, we will also consider mirrors of partial intersections

determined by a subset of the Laurent polynomials f1, . . . , fk . Given any subset
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I ⊂ {1, . . . , k}, denote by WI = (Wi)i∈I : Y → C|I| the projection of W onto

the subset of coordinates associated to I . We also write I = {1, . . . , k}− I for the

complement of I .

Proposition 6.1 Given any cI ∈ (C∗)k−|I| , the submanifold YI = W−1

I
(cI) ⊂ Y

equipped with the restriction of WI is isomorphic (as a toric Kähler manifold together

with an |I|­tuple of monomials) to the toric Landau­Ginzburg mirror of the complete

intersection determined by (fi)i∈I .

For I = ∅, this says that the fiber of W over a point of (C∗)k is isomorphic to (C∗)n .

Proof Algebraically, WI : Y → Ck−|I| is a dominant toric morphism, induced by

the morphism of fans from ΣY to the fan of Ck−|I| induced by the linear map from

Rn ⊕ Rk to Rk−|I| given by projection to the (n + i)­th coordinates for all i ∈ I

(we call these the components indexed by I ). Thus, the fibers of WI over the points

of the open dense orbit (C∗)k−|I| are all isomorphic, and described by the fiber of the

morphism of fans over the trivial cone {0}, i.e. the intersection of ΣY with the subspace

Rn⊕RI ⊂ Rn⊕Rk ; or, dually, the projection of ∆Y from Rn⊕Rk onto Rn⊕RI given

by forgetting the components ηi for i ∈ I . This agrees exactly with the toric variety YI

obtained by applying our construction to the complete intersection determined by the

Laurent polynomials fi for i ∈ I . Moreover, it is clear that the monomials Wi for i ∈ I

restrict from Y to YI in the expected manner (the toric weights match after forgetting

the components indexed by the elements of I ).

Symplectically, we observe that the moment map µI : Y → Rn × RI for the action of

Tn × TI (the subtorus which preserves the fibers of WI ) is obtained from the moment

map µ of the Tn+k ­action on Y by forgetting the components indexed by the elements

of I . The image of µI is therefore

∆Y|I = {(ξ, (ηi)i∈I) | ηi ≥ ϕi(ξ) ∀i ∈ I} ⊂ Rn ⊕ RI .

Moreover, WI maps every stratum of Y on which (C∗)I acts freely (i.e., the strata

where ηi > ϕi(ξ) ∀i ∈ I ) onto the open stratum (C∗)k−|I| ; this implies that every such

stratum intersects W−1

I
(cI). In particular, W−1

I
(cI) contains points in strata which map

to the vertices of ∆Y|I under µI , as well as strata which map to its unbounded edges.

By convexity of the moment map image (and given that there are no other toric fixed

points, hence no additional vertices), this implies that the restriction of µI to W−1

I
(cI)

is surjective onto ∆Y|I . Thus the Kähler form on the generic fiber of WI has moment

polytope equal to ∆Y|I , as expected.
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Example 6.2 One case where the geometry of (Y,W) is particularly simple is when

H is a product of hypersurfaces in (C∗)ni , i = 1, . . . , k , i.e. each Laurent polynomial fi

involves a different subset of the coordinates x1, . . . , xn (n =
∑

ni ). In this case, Y ends

up being the product of the mirrors we associate to each hypersurface f−1
i (0) ⊂ (C∗)ni ,

with W1, . . . ,Wk the (pullbacks of the) respective superpotentials. In general Y is not

a product, but the above considerations nonetheless make it possible to argue in terms

of subsets of the collection {f1, . . . , fk}.

We can also describe the toric Kähler manifold Y in terms of toric reduction, as we

have done in §2.2 for the case of hypersurfaces. We start from the product
∏k

i=1 C
Pi,Z ,

equipped with the product of the toric Kähler forms described in §4.1. Denote by M

the kernel of the surjective map

(6–4)
∏k

i=1 Z
Pi,Z → Zn ⊕ Zk

which maps the generator corresponding to α ∈ Pi,Z to the element (−α, ei) of Zn⊕Zk ,

and by TM = M ⊗ (R/Z) the corresponding subtorus of
∏

TPi,Z . Dualizing (6–4) we

have a short exact sequence

0→ Rn+k ι
−→

∏

RPi,Z
π
−→ M∗

R → 0,

where the first map is given by

ι(ξ1, . . . , ξn, η1, . . . , ηk) =
(

−〈α, ξ〉+ ηi

)

α∈Pi,Z, 1≤i≤k
.

Viewing the exponents νi(α) in (6–1) as an element (ν1, . . . , νk) of
∏

RPi,Z , we

consider the reduction of
∏

CPi,Z by TM at the level λ = π(ν1, . . . , νk), and observe

that

µ−1(λ)/TM ≃ Y,

since the moment polytope for the action of Tn+k ≃ (
∏

TPi,Z)/TM on the reduced space

is the intersection of π−1(λ) = Im(ι) + (ν1, . . . , νk) with the non­negative orthant in
∏

RPi,Z , which is naturally identified with ∆Y .

The toric Kähler manifold Y , its Kähler form ωY , and W = (W1, . . . ,Wk) are thus

obtained by Hamiltonian reduction from the product of the spaces CPi,Z for i =

1, . . . , k , each equipped with the toric Kähler form of §4.1 and the functions W0,i =

−
∏

α∈Pi,Z
zi,α : CPi,Z → C. (More precisely: the pullback of W0,i to

∏

CPi,Z is

TM ­invariant and descends to Wi : Y → C.)

This description of (Y,W) as a reduction of the product of k “standard” Landau­

Ginzburg models (CPi,Z ,W0,i) corresponds to viewing H as the intersection of an

n­dimensional algebraic subtorus of the open stratum of
∏k

i=1 P(KPi,Z) with a product

of (|Pi,Z| − 2)­dimensional pairs of pants, as in Remark 2.3.
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6.2 The fiberwise wrapped Fukaya category of (Y,W)

The construction of the partially wrapped Fukaya category W(Y,W) parallels that

introduced in Section 3, except we now consider properly embedded Lagrangian sub­

manifolds of Y whose image under each of the projections Wi : Y → C agrees outside

of a compact subset with a finite union of admissible arcs in the complex planes; in

fact, we shall only consider Lagrangians which fiber over product of U­shaped arcs

(the same arcs γt as in our main construction) with respect to W : Y → Ck .

As before, we control the behavior of holomorphic curves by equipping Y with a

compatible almost­complex structure J making each of W1, . . . ,Wk holomorphic out­

side of a neighborhood of the zero fiber (as before, J will be taken to agree with the

standard complex structure of Y except for a small perturbation near
⋃

i W−1
i (0)), and

by choosing a continuous weakly plurisubharmonic function h : Y → [0,∞) which is

proper on the fibers of W; in addition, we fix a non­negative wrapping Hamiltonian

H : Y → R. The functions H and h are required to satisfy the same conditions as in

Section 3 with respect to each of W1, . . . ,Wk , i.e. with respect to the whole horizontal

distribution given by the symplectic orthogonals to the fibers of W : Y → Ck , thus

ensuring that the maximum principle estimates of §3 (with respect to h and to the var­

ious |Wi|) continue to hold. Specific choices of h and H satisfying these requirements

are given below.

6.2.1 Parallel transport preserves fiberwise monomial admissibility

The function h is again defined as the maximum of the (rescaled) norms of certain

monomials zv ∈ O(Y) for v in a set of “extremal” vectors V (primitive integer vectors

parallel to the unbounded edges of ∆Y ),

(6–5) h = max{|zv|1/δ(v), v ∈ V},

where δ(v) is defined below in (6–8). As in the case of hypersurfaces, the key point

which ensures that h has all the required properties is that, at every point outside of a

bounded subset of each fiber of W, any monomial zv which achieves the maximum in

(6–5) is invariant under parallel transport between the fibers of W (Propositions 6.3 and

6.4 below). This property, which amounts to a compatibility of fiberwise monomial

admissibility with parallel transport, is proved similarly to the arguments in Section

4.2.

Given a vector v = (~v, v1,0, . . . , vk,0) ∈ Zn ⊕ Zk , the toric monomial zv defines a

regular function on Y if and only

(6–6) vi,α := (−α, ei) · v = vi,0 − α ·~v ≥ 0 for all 1 ≤ i ≤ k and α ∈ Pi,Z.
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In fact zv vanishes to order vi,α along the toric divisor of Y which corresponds to the

ray (−α, ei) of the fan ΣY . Next we observe that the monomial

k
∏

i=1

∏

α∈Pi,Z

zvi,α

i,α ∈ O
(
∏

CPi,Z
)

is invariant under the action of TM and descends to zv ∈ O(Y) under reduction.

For v ∈ Zn+k satisfying (6–6), i ∈ {1, . . . , k}, and γ > 0 small, we define a subset

Sv,i,γ of Rn as in (4–11), namely we set

(6–7) Sv,i,γ = {ξ ∈ Rn | 〈α, ξ〉−νi(α) < ϕi(ξ)−γ‖ξ‖ ∀α ∈ Pi,Z such that vi,α > 0}.

The exact same argument as in the proof of Proposition 4.16 then shows:

Proposition 6.3 Given v ∈ Zn+k satisfying (6–6) and i ∈ {1, . . . , k}, the monomial

zv ∈ O(Y) is locally invariant under parallel transport between the fibers of the map

Wi : Y → C at every point z ∈ Y whose moment map coordinates (ξ, η) satisfy

ξ ∈ Sv,i,γ as well as lower bounds on |Wi(z)| and on ‖ξ‖ as in Proposition 4.16.

The first consequence, setting v = (0, ej) and observing that S(0,ej),i,γ = Rn for all

i 6= j, is that Wj = −z(0,ej) is invariant under parallel transport in the direction of Wi for

all i 6= j. (Inspection of the argument shows that in this case no restriction on |Wi(z)| or

on ‖ξ‖ is needed: the point is that the lift of Wj to
∏

CPi,Z only involves the variables

zj,α , all of which are preserved under parallel transport for the i­th component.) This

ensures that the parallel transports along the different factors in the base of the fibration

W : Y → Ck commute with each other, and that the parallel transport of a Lagrangian

in a fiber of W over a product of arcs in Ck is well­defined.

Next, to each ~v ∈ Zn , we associate an element of Zn+k as follows: set vi,0 =

max{α ·~v, α ∈ Pi,Z}, and v = (~v, v1,0, . . . , vk,0). Denote by A~v,i the set of α ∈ Pi,Z

which achieve the maximum in the definition of vi,0 , or equivalently, those α for which

vi,α as defined by (6–6) is zero. Denoting by ∆α,i the polyhedral subset of Rn where

α achieves the maximum in ϕi , we observe that Sv,i,γ is nonempty (for sufficiently

small γ ) and is a retract of
⋃

α∈A~v,i
∆α,i obtained by removing those points which are

too close to some other ∆α′,i , α
′ 6∈ A~v,i . We also note that the ∆α,i appearing in this

union are those which are unbounded in the direction of ~v. Given this, we define V to

be the set of all v obtained by this process from some ~v ∈ Zn which is the primitive

outward normal vector to any facet of the Newton polytope Pi of any of the Laurent

polynomials fi , 1 ≤ i ≤ k . Equivalently and much more concisely, the elements of V

are the primitive tangent vectors to the unbounded edges of ∆Y .
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For v ∈ V and vi,α as in (6–6), we set

(6–8) δ(v) =

k
∑

i=1

di(v)

2Ni

, where di(v) =
∑

α∈Pi,Z

vi,α and Ni = |Pi,Z|.

For sufficiently small γ > 0, and for all v ∈ V , Sv,γ :=
⋂k

i=1 Sv,i,γ is non­empty (it

is a retract of the union of those regions of Rn delimited by the union of the tropical

hypersurfaces of ϕ1, . . . , ϕk which are unbounded in the direction of ~v), and the union
⋃

v∈V Sv,γ covers the complement of a compact subset in Rn . We have the following

analogue of Proposition 4.18:

Proposition 6.4 There exist positive constants γ0 and K0 such that, at every point

z ∈ Y with |Wi(z)|2 ≥ (εeδ)Ni/(Ni−1) ∀i and whose moment map coordinates (ξ, η)

satisfy ‖ξ‖ ≥ K0|W(z)|2 , if v0 ∈ V achieves the maximum in (6–5) then ξ ∈ Sv0,γ0
.

Proof Consider a point z ∈ Y and its lift (zi,α) ∈ µ−1(λ) ⊂
∏

CPi,Z . For each i,

let αi,0, αi,1 ∈ Pi,Z correspond to the smallest, resp. largest |zi,α| (or equivalently,

moment map coordinate µi,α ) of all α ∈ Pi,Z . By Lemma 4.12 (2), up to bounded

constant factors, µi,αi,0
∼ |Wi(z)|2 , while µi,αi,1

∼ |zi,αi,1
|2Ni . Bounding µi,αi,1

− µi,αi,0

in terms of ‖ξ‖ as in the proof of Proposition 4.18, we find that µi,αi,1
∼‖ξ‖ and hence

|zi,αi,1
|∼‖ξ‖1/(2Ni) up to a bounded factor whenever ‖ξ‖ ≫ |Wi(z)|2 .

We now proceed as in the proof of Proposition 4.18: if ξ ∈ Sv,γ then |zi,α| satisfies a

lower bound (4–17) by a constant multiple of |zi,αi,1
|∼‖ξ‖1/(2Ni) for all α ∈ Pi,Z−A~v,i

(the constant depends on γ ). Hence, |zv| has a lower bound by a constant multiple

of ‖ξ‖
∑

vi,α/2Ni = ‖ξ‖δ(v) (where the constant again depends on γ ). Applying this

for some fixed γ = γ1 > 0 such that
⋃

v∈V Sv,γ covers the complement of a compact

subset in Rn , we find that h(z) = max{|zv|1/δ(v), v ∈ V} is bounded from below by a

constant c(γ1) times ‖ξ‖ (still assuming that ‖ξ‖ ≫ |W|2 ).

Conversely, if ξ 6∈ Sv,γ for γ > 0 (now chosen much smaller than γ1 ) then there

exists some i and α ∈ Pi,Z − A~v,i such that |zi,α| satisfies the upper bound (4–19),

which implies that |zv| is bounded by a constant times γ1/2Ni times ‖ξ‖δ(v) . Choosing

γ = γ0 sufficiently small (so that γ
1/(2Niδ(v))

0 is much smaller than c(γ1)), this implies

that |zv|1/δ(v) cannot achieve the maximum in (6–5).

Propositions 6.3 and 6.4 imply that h = max{|zv|1/δ(v), v ∈ V} is invariant under par­

allel transport between the fibers of W outside of a compact subset of each fiber. This

in turn implies, first, that perturbed holomorphic curves satisfy maximum principles



Homological mirror symmetry for hypersurfaces in (C∗)n 95

with respect to |W| and h as in Propositions 3.10–3.11, and second, that we can con­

struct admissible Lagrangian submanifolds of Y by parallel transport of (monomially

admissible) Lagrangian submanifolds of the fiber of W (i.e., (C∗)n ) over products of

admissible arcs.

6.2.2 The wrapping Hamiltonian

We define the wrapping Hamiltonian H : Y → R as in Section 4.3: the moment

map coordinates of
∏

CPi,Z descend to real­valued functions µi,α on Y (i = 1, . . . , k ,

α ∈ Pi,Z ), given by

µi,α = ηi − 〈α, ξ〉+ νi(α).

We then define H : Y → R by

(6–9) H =

k
∑

i=1

(

∑

α∈Pi,Z

µi,α − |Pi,Z|m({µi,α}α∈Pi,Z
)
)

,

where m is a smooth approximation of the minimum function as in Definition 4.20.

Propositions 4.22 and 4.23 carry over with essentially the same proofs. To summarize:

Proposition 6.5 The wrapping Hamiltonian H only depends on (ξ1, . . . , ξn), and as

a function of these coordinates it is proper and convex. The flow generated by H

preserves the fibers of W, and within each fiber it preserves monomial admissibility

with respect to the collection of monomials zv , v ∈ V : if ℓ ⊂W−1(c) is monomially

admissible with phase angles arg(zv) = ϕv , v ∈ V , then its image under the time

t flow is monomially admissible at infinity with phase angles ϕv + t d(v), where

d(v) =
∑k

i=1 di(v) =
∑

i,α
vi,α .

6.2.3 The fiberwise wrapped category

As in Section 3 we first associate to (Y,W) a directed category whose objects are a

given collection of admissible Lagrangian submanifolds of Y , whose images under

each of the projections W1, . . . ,Wk agree near infinity with some fixed collection of

radial straight lines in the complex plane, and their images under an autonomous flow

L(t) = φtρt(L), where ρt is the lifted admissible isotopy generated by applying the

same autonomous flow ρ as in §3.3 to each factor of Ck , and φt is the flow generated

by the wrapping Hamiltonian H . This geometric setup gives rise to quasi­units and

continuation maps with the exact same properties as in Section 3.4, and we again define

W(Y,W) to be the localization of the directed category with respect to the quasi­units.
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Remark 6.6 Our construction of W(Y,W) is rather ad hoc, but it can be recast in

the language of monomial admissibility on Y , using the collection of toric monomials

{zv, v ∈ V} ∪ {W1, . . . ,Wk}. Indeed, our conditions on objects of W(Y,W) require

each of these monomials to have locally constant argument (equal to a prescribed

phase angle, or a pair of possible phase angles in the case of Wi ) over each end

of the Lagrangian within a suitable subset of Y ; and the flow we consider has the

effect of increasing the phase angles within the interval (−π, π) for each Wi , and

in an unbounded manner for zv (i.e., we have removed the “stops” that monomial

admissibility would normally place at each arg(zv) = π ).

Even though the appropriate notions have yet to be developed outside of the Liouville

setting, one also expects that monomial admissibility can be recast in the language

of stops in the sense of [GPS2] (see [HH] for an instance of this), or even better,

wrapped Floer theory on a (non­exact) sector with sectorial corners, in the spirit of

[GPS2, Section 12]. A rough candidate for the appropriate sector with corners is the

subset of Y consisting of those points where Re (Wi) ≥ −R for all i = 1, . . . , k , for

some R ≫ 0; however, making the collection of hypersurfaces {Re (Wi) = −R},

i = 1, . . . , k sectorial requires a modification of the Kähler form on Y .

6.3 The main theorem

As in Section 5.1, we fix a properly embedded U­shaped admissible arc γ0 in the com­

plex plane which crosses the real axis at −1, and consider the admissible Lagrangian

submanifold L0 ⊂ Y obtained by parallel transport over γ0×· · ·×γ0 ⊂ Ck of the real

positive locus ℓ0
∼= (R+)n in W−1(−1, . . . ,−1) ∼= (C∗)n .

Theorem 6.7 For a suitable choice of bulk deformation class b ∈ H2(Y,Λ≥0), the

fiberwise wrapped Floer cohomology ring HW∗(L0, L0) is isomorphic to the quotient

K[x±1
1 , . . . , x±1

n ]/(f1, . . . , fk), i.e. the ring of functions of the complete intersection

H. Hence, the derived category of coherent sheaves of H admits a fully faithful

quasi­embedding into W(Y,W).

As in Section 5, the main step to calculate the fiberwise wrapped Floer cohomology

HW∗(L0, L0) is to determine the Floer complex of L0(t′) and L0(t) = φtρt(L0) for t′− t

sufficiently positive. We start by observing that L0(t) is obtained from ℓ0(t) = φt(ℓ0)

by parallel transport over γt × · · · × γt (where γt = ρt(γ0) as in Section 5). Thus, for

t′ − t > t0 , the intersections of L0(t′) and L0(t) lie in the fibers of W above the 2k

points (c1, . . . , ck) ∈ Ck where each ci belongs to γt ∩ γt′ = {−1, ct′,t}.
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For I ⊂ {1, . . . , k} we denote by cI ∈ Ck the point with coordinates ci = −1 if i 6∈ I

and ci = ct′,t if i ∈ I . We then find that, for t′ − t > t0 ,

(6–10) CF∗(L0(t′), L0(t)) =
⊕

I⊂{1,...,k}

CI(t
′, t)[|I|],

where CI(t
′, t) = CF∗(ℓI,−(t′), ℓI,+(t)) is the Floer complex of the fiberwise La­

grangians obtained by intersecting L0(t′) and L0(t) with W−1(cI), and the grading

shift by |I| comes from considering the grading contributions of the phase angles of

the arcs γt and γt′ in the various factors of Ck . Moreover, by considering intersection

numbers of holomorphic discs with fibers of W (outside a small neighborhood of the

coordinate planes), we find that the Floer differential maps each summand CI(t
′, t) of

(6–10) to the span of the CI′(t
′, t) for I′ ⊆ I .

Thus, the complex (6–10) carries a natural filtration (by |I|); we can proceed as in

Section 5 and calculate HF∗(L0(t′), L0(t)) as the cohomology of a “vertical Floer

complex” built from the fiberwise Floer cohomology groups

H∗(CI(t
′, t)) = HF∗(ℓI,−(t′), ℓI,+(t)),

together with the maps from H∗(CI(t
′, t)) to H∗(CI′(t

′, t)) for I′ ( I induced by the

relevant portions of the Floer differential on (6–10) (i.e., discs which are not contained

within the fibers of W).

Observing that for each v = (~v, v1,0, . . . , vk,0) the restriction of the monomial zv to

W−1(c1, . . . , ck) ≃ (C∗)n is given by
∏k

i=1(−ci)
vi,0

z
v1

1 . . . z
vn
n , the same calculation as

in Example 5.5 shows that the monomially admissible Lagrangian sections ℓI,−(t′) and

ℓI,+(t) in W−1(cI) have slopes

σI,−(t′) =
(

t′d(v)−
(
∑

i∈Iv
i,0
)

(arg(ct′,t) + π)
)

v∈V
and

σI,+(t) =
(

t d(v)−
(
∑

i∈Iv
i,0
)

(arg(ct′,t)− π)
)

v∈V.

Because H is convex, for t′ − t sufficiently large (larger than some constant t1 ≥ t0 )

(6–11) σI(t
′ − t) = σI,−(t′)− σI,+(t) =

(

(t′ − t) d(v)− 2π
∑

i∈Iv
i,0
)

v∈V

is the slope of a convex Hamiltonian for all I ⊂ {1, . . . , k}, so that the results of

Section 5.3 apply to the Floer cohomology groups HF∗(ℓI,−(t′), ℓI,+(t)). In particular,

these cohomology groups are concentrated in degree zero; since the differential on

the vertical Floer complex has degree 1, the only non­zero connecting maps are those

which take H0(CI(t
′, t)) to H0(CI′(t

′, t)) for I′ ⊂ I , |I′| = |I|−1. Writing I = I′∪{i},

we denote by sI,i the relevant portion of the differential.

Next, we recall that for t′ − t > t1 and I ⊂ {1, . . . , k}, HF0(ℓI,−(t′), ℓI,+(t)) has a

basis consisting of action­rescaled Floer generators ζ t′→t
I,p , whose elements are indexed
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by the points of PI(t
′ − t) ∩ (2πZ)n , where PI(t

′ − t) is the polytope associated to the

slope σI(t
′ − t) by (5–9). For I = ∅ we also use the notation ϑt′→t

p = ζ t′→t
∅,p . Hence:

Proposition 6.8 For t′−t > t1 , the Floer cohomology HF∗(L0(t′), L0(t)) is isomorphic

to the cohomology of the vertical Floer complex

(6–12)

CF∗
vert(L0(t′), L0(t)) =

⊕

I⊂{1,...,k}

HF∗+|I|(ℓI,−(t′), ℓI,+(t)) ≃
⊕

I⊂{1,...,k}
p∈PI (t

′−t)∩(2πZ)n

K · ζ t′→t
I,p ,

where the generators ζ t′→t
I,p (in degree −|I|) correspond to intersections in W−1(cI),

rescaled by action within the fiber; together with a differential which is a sum of maps

sI,i : HF0(ℓI,−(t′), ℓI,+(t))→ HF0(ℓI′,−(t′), ℓI′,+(t))

for all I = I′ ⊔ {i} ⊂ {1, . . . , k}.

Since the projections W1, . . . ,Wk : Y → C are holomorphic outside of a small neigh­

borhood of the origin, the open mapping principle implies that any J ­holomorphic disc

which contributes to the portion of the Floer differential mapping CI(t
′, t) to CI′(t

′, t)

(I′ ⊂ I ) is contained within a single fiber of Wi (over either −1 or ct′,t ) whenever

i ∈ I′ or i 6∈ I , while for i ∈ I − I′ it is a section (except possibly near the origin) of

Wi : Y → C over the bounded region delimited by γt′ and γt .

Thus, in the case at hand, the contributions to the differentials sI,i correspond to

holomorphic discs which are contained in a level set of Wı = (Wj)j6=i : Y → Ck−1 . By

Proposition 6.1, this fiber Yi , equipped with the restriction of Wi , is isomorphic to the

mirror of the hypersurface Hi = f−1
i (0) considered in our main argument. Moreover,

the restrictions of L0(t′) and L0(t) to (Yi,Wi) are exactly the same sort of fibered

admissible Lagrangians we have considered in Section 5 – even though for I′ 6= ∅

the relevant fiberwise monomially admissible Lagrangian sections differ from those

previously considered by the monodromy of Wi′ around the origin for i′ ∈ I′ , as is

manifest from the expression (6–11) for the slopes σI(t
′− t) and σI′(t

′− t). Despite this

minor difference, the core calculation of Section 5 applies to this setting, and implies:

Proposition 6.9 For all I = I′ ⊔ {i} ⊂ {1, . . . , k}, the differential

sI,i : HF0(ℓI,−(t′), ℓI,+(t))→ HF0(ℓI′,−(t′), ℓI′,+(t))

is, up to a nonzero multiplicative constant CI,i(t
′, t) ∈ K∗ , given by multiplication by a

Laurent polynomial gi(x) =
∑

p̄∈Pi,Z
ci,p̄xp̄ ∈ K[x±1

1 , . . . , x±1
n ] with the same Newton

polytope as fi . Namely, for p′ ∈ PI(t
′ − t) ∩ (2πZ)n ,

sI,i(ζ
t′→t
I,p′ ) = CI,i(t

′, t)
∑

p̄∈Pi,Z

ci,p̄ ζ
t′→t
I′,p′+2πp̄.
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Moreover, equipping Y with a bulk deformation class b =
∑

i

∑

α∈Pi,Z
bi,αδZi,α , where

the δZi,α are Poincaré dual to the irreducible toric divisors of Y and the coefficients

bi,α ∈ Λ≥0 are determined as in Proposition 5.33, ensures that gi = fi for all i.

Thus, denoting by K[(x±1
i )]P the subspace of K[(x±1

i )] consisting of Laurent polyno­

mials whose Newton polytope is contained in 1
2πP, we have:

Proposition 6.10 For a suitable choice of bulk deformation class b ∈ H2(Y,Λ≥0),

for t′− t > t1 the Floer cohomology group HF∗(L0(t′), L0(t)) is concentrated in degree

zero and isomorphic (as a vector space), via ϑt′→t
p 7→ xp̄ , to the quotient

(6–13) K[(x±1
i )]P0(t′−t)

/ (

f1K[(x±1
i )]P{1}(t′−t) + · · ·+ fkK[(x±1

i )]P{k}(t′−t)

)

.

The Floer product

(6–14) CF∗
vert(L0(t′′), L0(t′))⊗ CF∗

vert(L0(t′), L0(t))→ CF∗
vert(L0(t′′), L0(t))

can be determined as in Section 5, by observing that any contributing J ­holomorphic

disc projects under Wi : Y → C to either a single point or a triangular region of the

complex plane delimited by γt′′ , γt′ and γt (not enclosing the origin), and reducing to

a calculation within the fiber of W. This yields an analogue of Proposition 5.14:

Proposition 6.11 For t′′ − t′ > t1 and t′ − t > t1 , the product (6–14) is given by

(6–15) ζ t′→t
I,p · ζ t′′→t′

J,p′ =

{

CI,J,t′′,t′,t ζ
t′′→t
I ⊔ J, p+p′ if I ∩ J = ∅,

0 if I ∩ J 6= ∅,

for all I, J ⊂ {1, . . . , k}, p ∈ PI(t
′ − t) ∩ (2πZ)n , p′ ∈ PJ(t′′ − t′) ∩ 2πZ)n , where

CI,J,t′′,t′,t is a non­zero constant. In particular, for I = J = ∅ we have

(6–16) ϑt′→t
p · ϑt′′→t′

p′ = ϑt′′→t
p+p′ .

It follows from (6–16) that the cohomology­level product structure corresponds to

multiplication of Laurent polynomials on the quotient spaces (6–13).

Finally, the quasi­unit et′→t ∈ HF0(L0(t′), L0(t)) is again given by et′→t = ϑt′→t
0 , by

the same argument as in Proposition 5.16. Thus, computing HW(L0, L0) as a colimit

of the Floer cohomology groups HF∗(L0(t′), L0(t)) as t′ − t → ∞ amounts to taking

the colimit of (6–13) under the naive inclusion maps, and we arrive at

HW(L0, L0) ≃ K[x±1
1 , . . . , x±1

n ]/(f1, . . . , fk),

which completes the proof of Theorem 6.7.
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Remark 6.12 It is not a coincidence that the structure of the vertical Floer complex

(6–12) matches that of the Koszul complex which resolves i∗OH . This can be un­

derstood using the same perspective as in Section 1.3, given the interpretation of the

Landau­Ginzburg models (YI,WI), I ⊂ {1, . . . , k} provided by Proposition 6.1 and

observing that for I = I′ ⊔ {i} the categories W(YI,WI) and W(YI′ ,WI′) are related

to each other by cap and cup functors which correspond under mirror symmetry to the

inclusion and restriction functors between the derived categories of HI =
⋂

i∈I f−1
i (0)

and HI′ .

Remark 6.13 The object L0 is expected to generate W(Y,W), which would imply

that the embedding of Theorem 6.7 is an equivalence. The argument should proceed

by induction on k , using stop removal. Namely, for I = I′⊔{i} it should follow from a

suitable stop removal result (for the stop at Wi → −∞) thatW(YI,WI′) is the quotient

of W(YI,WI) by the image of the cup functor from W(YI′ ,WI′). On the other hand,

the category W(YI,WI′) is expected to be trivial for I′ a strict subset of I ; at least,

SYZ mirror symmetry suggests that (YI,WI′) admits a B­side Landau­Ginzburg mirror

whose superpotential has no critical points [AAK], which implies the triviality of its

derived category of singularities. Thus, one expects that W(YI,WI) is generated by

the image under the cup functor of a generator of W(YI′ ,WI′); the result then follows

by induction on k .
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