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Mealtime prediction using 
wearable insulin pump data 
to support diabetes management
Baiying Lu 1, Yanjun Cui 1, Prajakta Belsare 2, Catherine Stanger 3, Xia Zhou 4 & 
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Many patients with diabetes struggle with post-meal high blood glucose due to missed or untimely 
meal-related insulin doses. To address this challenge, our research aims to: (1) study mealtime 
patterns in patients with type 1 diabetes using wearable insulin pump data, and (2) develop 
personalized models for predicting future mealtimes to support timely insulin dose administration. 
Using two independent datasets with over 45,000 meal logs from 82 patients with diabetes, we find 
that the majority of people ( ∼ 60%) have irregular and inconsistent mealtime patterns that change 
notably through the course of each day and across months in their own historical data. We also show 
the feasibility of predicting future mealtimes with personalized LSTM-based models that achieve an 
average F1 score of > 95% with less than 0.25 false positives per day. Our research lays the groundwork 
for developing a meal prediction system that can nudge patients with diabetes to administer bolus 
insulin doses before meal consumption to reduce the occurrence of post-meal high blood glucose.
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Many patients with diabetes struggle with post-meal high blood glucose because of poor adherence to the daily 
task of administering meal-related insulin doses1–7. Sometimes patients skip or forget meal insulin doses (almost 
40% of people with type 1 diabetes8), while other times they fail to administer this critical dose at the right time 
(i.e., ∼ 20 mins before meal consumption)9,10. The timing of meal insulin doses is critical to maintain post-meal 
glucose control because insulin taken “too early” or “too late” can lead to adverse blood glucose events (i.e., 
hypoglycemia or hyperglycemia)9,10. With less than 22% of patients with diabetes achieving the recommended 
glycemic target8, there is immense potential for a meal prediction system that can nudge patients to administer the 
needed insulin dose at the right time to minimize the occurrence of post-meal high blood glucose. In fact, prior 
research has shown the potential to improve glycemic control (i.e., reduce hemoglobin A1C and increase time 
with blood glucose in the target range) through use of a smartwatch-based meal detection system that provides 
mealtime insulin reminders in an effort to reduce missed or late meal insulin doses11.

Given the rise of advanced diabetes technology8,12–14, our research investigates the potential of modeling 
dietary behavior using routinely collected data from wearable insulin pumps for the goal of predicting future 
mealtimes. As shown in Fig. 1, an insulin pump is a clinical-grade wearable medical device (FDA-approved) 
for administering insulin (i.e., the hormone needed to control blood glucose levels). The prevalence of insulin 
pump use is growing amongst people with diabetes and research shows that 65% of patients with type 1 diabetes 
already employ insulin pumps for daily management of their condition8. Despite the benefit of this innovative 
technology, a key limitation with current insulin delivery systems is that they all require users to manually log 
their meals in order to administer bolus doses of insulin needed to metabolize glucose from meals consumed13,15. 
This inherent requirement for insulin pump users to manually log their meals generates large amounts of food 
intake data (over months and years) that can be useful for modeling and understanding dietary behavior. How-
ever, this routinely collected data is significantly underutilized and rarely revisited, similar to other wearable 
device data from everyday diabetes technology16–18.

Building on the state-of-the-art research on dietary monitoring and unmet needs in the diabetes domain4,19–25, 
our research objectives are to: (1) investigate and model mealtime patterns using large volumes of meal logs 
from insulin pumps used by persons with type 1 diabetes, (2) develop and evaluate personalized models for 
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predicting future mealtimes based on population- and individual-level patterns learned from rich longitudinal 
meal log data from insulin pumps, and (3) compare the performance of personalized mealtime prediction from 
insulin pump data with results from related studies in the literature. Toward these objectives, we leverage two 
independent datasets with over 45,000 meal logs from more than 80 patients with diabetes to make the follow-
ing innovative contributions: 

1.	 We show the feasibility of learning dietary patterns and predicting future mealtimes using rich longitudinal 
meal log data from wearable insulin pumps. This contribution lays the groundwork for meal prediction 
systems that can nudge patients in real time to administer critical insulin doses before meals, and in so doing 
mitigate post-meal high blood glucose.

2.	 We characterize dietary patterns in a cohort of patients with diabetes and find that the majority ( ∼ 60%) 
have irregular and inconsistent mealtime patterns. Consequently, a smaller percentage ( ∼ 40%) of patients 
have regular mealtime routines with most of their meals occurring around the same time of day.

3.	 We implement, evaluate, and compare five data-driven methods for predicting mealtimes using historical 
meal logs from wearable insulin pumps. Our results show that future mealtimes can be predicted with an 
average F1 score of 95.33% and false positives per day (FP/day) of 0.25 using personalized 1-layer LSTM 
models. This result is significantly better (>70%) than what was achieved with three baseline methods and 
one ARIMA-based method.

4.	 We compare our research and results to related work in the literature26–30 and show superior performance 
for the task of mealtime prediction with the added benefit of using real patient data as opposed to simulated 
data or data from a healthy population.

Results
Study and data description
Our research leverages retrospective wearable data from two independent cohorts with total of 88 patients with 
diabetes - see Table 3 in the Methods section. Dataset 1, also known as DiaTrend31, is open-source and includes 
54 subjects with type 1 diabetes (age = 33.6 ± 15.6 yrs.). This dataset includes 8220 days of insulin pump data 
with 23,678 meal logs (associated with > 0 g of carbs) across all 54 subjects (mean: 438 meal logs per subject). 
The DiaTrend dataset was collected by our research team through the process of recruiting patients with type 1 
diabetes from a local hospital and online platforms, and downloading their retrospective diabetes device data for 
research. Our study was approved by the Committee for Protection of Human Subjects at Dartmouth College and 
all subjects provided informed consent. Conversely, dataset 2 comprises 34 subjects with type 1 diabetes (age = 
42.3 ± 8.6 yrs.). Dataset 2 includes 5392 days of insulin pump data with 21,519 meal logs (associated with > 0g 
of carbs) across all 34 subjects (mean: 632 meal logs per subject). This dataset was collected by and licensed from 
Tidepool32—a non-profit diabetes organization. Across both datasets, there is an average of 3.5–4 meal logs per 
day and a range of 1–19 meal logs per day. In addition, the average quantity of each meal log is 40 ± 24.7 grams 
and 37 ± 24.9 grams in datasets 1 & 2, respectively.

Informed by prior research on the prevalence of missed bolus insulin doses and missed meal logs amongst 
patients with diabetes4,7, we excluded subjects who had less than 15 days of data with at least 2 meal logs per 
day and days of data with less than 2 meal logs per day—see Supplementary Fig. S1. These criteria led to the 
exclusion of 6 subjects, namely, subjects 2, 26, 27, 29, 32, and 35, all from dataset 1. Additionally, the above cri-
teria led to the exclusion of 2623 out of 8220 days (31.9%) from dataset 1 and 449 out of 5392 days (8.3%) from 
dataset 2. Following these exclusions, dataset 1 comprises 5597 days of insulin pump data with > 2 meal logs per 
day (total: 22,322 meal logs from 48 subjects in dataset 1), meanwhile, dataset 2 comprises 4943 days of insulin 
pump data with > 2 meal logs per day (total: 21,274 meal logs from 34 subjects in dataset 2). In total, our final 
dataset includes 10,497 days of insulin pump data with 43,596 meal logs from 82 subjects with type 1 diabetes.

Exploratory analysis on daily meal and mealtime patterns
We examined daily meal and mealtime patterns across our dataset from patients with type 1 diabetes to enable 
comparison between our findings and those from prior work23,33–37. First, we investigated the population-level 

Fig. 1.   Research overview. Insulin pumps used for daily management of diabetes are a rich source of data for 
understanding dietary patterns. This study leverages meal log data from wearable insulin pumps to study dietary 
patterns for the goal of modeling and predicting personalized mealtimes.
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and individual-level distribution of mealtimes (based on the timestamp of each meal log which represents 
both meals and snacks in insulin pump data) versus time of day. It is important to note that meal logs from the 
insulin pump and those used in this study do not include carbohydrate supplements (e.g., carbohydrate intake 
to prevent hypoglycemia during exercise38,39) as these are typically not reported in the insulin pump because 
they do not require an accompanying insulin dose. Fig. 2a shows the population-level distribution of meal times 
summarized in 30-min blocks across the 24-h period of each day. Meanwhile, Supplementary Fig. S1b shows the 
individual-level distribution for each subject where the size of each bubble represents the normalized frequency 
of meal logs for each subject across various times of the day. From these figures, we observe notably irregular 
and inconsistent mealtime patterns that differ significantly from the standard breakfast–lunch–dinner pattern 
that might be expected. However, the population-level distribution of mealtimes shown in Fig. 2a highlights 
two prominent peaks, one at lunchtime around 12:00 PM and the other at dinner time around 6:30 PM. Based 
on our data in this study, the observed distribution was similar across weekdays and weekends, and also across 
U.S. holidays and non-holidays—See Supplementary Figs. S2 and S3. This finding is similar to what was found 
amongst adults without diabetes34 and also in those with type 1 diabetes albeit with meals at different times of 
the day based on country norms37. However, in our dataset, meals around what might be considered the standard 
lunchtime and dinnertime represent around 4% per 30 mins block (or 8% per hour) of the total meal events. No 
subject only had meal logs in the standard breakfast–lunch–dinner hours of 7–9 AM for breakfast, 11 AM–1 PM 
for lunch and 6 PM–8 PM for dinner33, and in total only 46.63% of meal logs were within these time periods.

From the individual-distribution of mealtimes shown in Supplementary Fig. S1, we observe that fewer subjects 
(39%) showed regular mealtime routines (i.e., majority of their meals happen around the same time of day), while 
more subjects (61%) showed irregular mealtime routines which varied significantly across hours of the day. For 
example, subjects 57, 58, 59, & 60 show more regular mealtime patterns on an individual-level with prominent 
but distinct mealtimes indicated by larger-sized bubbles. Meanwhile, many other subjects (e.g., subjects 1, 30, 
45, & 56) show irregular and highly variable mealtime patterns with no prominent mealtimes. Nonetheless, as 
might be expected, we observe more meals during the wakeful hours (i.e., 93% of the total meal logs between 6 
AM–12 Midnight) and fewer meals during the nighttime (i.e., 7% of the total meal logs between 12 AM–6 AM). 
Overall, the individual mealtime patterns observed in our cohort of patients with diabetes shows more variability 
and less regularity than what has been reported in prior work with subjects without diabetes33.

To assess the number of meals/day, we combined meal logs that were close together (i.e., less than 30 mins 
apart) into one “meal” recorded at the first meal’s timestamp. Fig. 2b shows that only 25% of days had exactly 3 
meals, and the number of meals/day varied widely in our population of patients with type 1 diabetes, ranging 
from 1.81 meals/day for the 10th percentile to 6.12 meals/day for the 90th percentile. Overall, 48% of days in 

Fig. 2.   Overview of mealtime patterns observed in 10,497 days of insulin pump data from 82 subjects with type 
1 diabetes. (a) The mealtime distributions across all subjects show two prominent peak mealtimes, one at 12:00 
PM and another at 6:30 PM. (b) A distribution plot showing the number of meal logs per day. (c) A distribution 
plot showing the time between meals.
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our dataset correspond to days with 4 or more meals per day. We also assessed the time between meals at the 
population-level as shown in Fig. 2c. We found that 21% of all meals were within 2 h of another meal, and the 
median inter-meal interval was 4 hrs and 36 mins. These exploratory findings suggest that mealtime patterns are 
equally or sometimes even more variable in a population of patients with diabetes compared to what has been 
found in prior research on a population without diabetes33,34. Given that people with diabetes are prone to low 
blood glucose events which requires food intake to bring the blood glucose back to the normal/target range, 
it is reasonable that this population may have more eating events and/or more variable eating patterns than a 
population without diabetes37.

Modeling and predicting mealtimes using wearable insulin pump data
Toward the goal of mealtime prediction, we implemented and evaluated five data-driven methods, including 
three baselines (i.e., standard-mealtime, prior-day, and peak-mealtime), one statistical method (i.e., SARIMA), 
and one deep learning based method (i.e., LSTM). The objective of all methods was to predict mealtimes ( Mi,j ) 
for subject i on day j using any length of historical data. The standard-mealtime baseline evaluates the assump-
tion that most people eat 3 meals per day and informed by prior work on healthy subjects33, it uses fixed times 
at 8:30 AM, 12:30 AM, and 6:30 PM for prediction. Meanwhile, the prior-day baseline builds on the premise 
that different people have different routines and yesterday’s data from a specific individual could be useful for 
predicting today’s behavior. Thus, a reasonable mealtime prediction for subject i on day j is their own mealtimes 
on the prior day j − 1 . Finally, the peak-mealtime baseline uses the k most frequent mealtimes from n prior 
days of subject’s i data to predict their mealtimes on the next day (i.e., day n + 1). Contrary to the aforemen-
tioned baseline methods and toward the goal of a meal prediction system that can nudge patients with diabetes 
to administer the needed insulin doses at the right time (i.e., ∼ 20 mins before each meal9), we also formulate 
the mealtime problem as a task of predicting the probability of a meal 30 mins in advance of the current time 
t. This formulation enables the use of well-known statistical and deep learning based methods for time-series 
forecasting, such as autoregressive integrated moving average (ARIMA)40 and long short-term memory model 
(LSTM)41. In addition, this formulation supports the use of insights from the earlier times in each day (e.g., time 
of last meal) to achieve a better prediction of when the next meal might occur.

Table 1 shows the average recall, precision, FP/day, FN/day, and F1 score for each method across 82 subjects 
in this study. From this table, we observe that the F1 score was between 10.84 to 23.66% for all three baseline 
methods and seasonal ARIMA (SARIMA), with the peak-mealtime method having the highest baseline perfor-
mance due to a higher recall of 44.26% but relatively low precision of 17.33%. Comparatively, the personalized 
1-layer LSTM performed significantly higher by over 70% and showed the best performance results for the task 
of mealtime prediction with an average F1 score of 95.33% with 0.25 FP/day. Furthermore, we show a box-plot 
comparison in Fig. 3 to assess the within-method variability in performance across our subject cohort. From this 
figure, we observe similar variability with an average interquartile range of 8.23% for all three baseline methods 
and SARIMA. Conversely, we observe notably less variability with an interquartile range of 2.03% with the 
1-layer LSTM for the task of mealtime prediction. These findings show that LSTM achieved more stable results 
across subjects which is more desirable. However, it is worth noting that even with LSTM lower performance was 
observed amongst some subjects as shown by the outliers in Fig. 3a. More specifically, the minimum F1-score 
was 57.14% for subject 16. To further understand our results, we examined the insulin pump data from subjects 
with lower performance (i.e., < 70%) on the task of mealtime prediction and found that most of these subjects 
had large periods of missing data (i.e., no meal log for many consecutive days) within their insulin pump data 
(e.g., subjects 4, 16, 21, and 83). For example, the F1-score for subject 83 was 64.7%, however this subject had 
186 days of insulin pump data with only 37 valid days (i.e., days with more than 2 meal logs per day).

Understanding how much training data is needed for mealtime prediction
Building on the above results which show that the 1-layer LSTM as described outperforms comparative methods 
for the task of mealtime prediction (i.e., predicting meals before they occur), we sought to investigate the effect of 
varying amounts of training data (i.e., number of days with past meal logs) on this performance. Toward this task, 
we trained personalized 1-layer LSTM models with 32 units and 5 epochs with varying amounts of training data 
ranging from 3 to 90 days of past meal log data and evaluated the performance on the same test dataset (i.e., the 
last 20% of each subject’s data). As outlined in Supplementary Table S1, the sequence length of each input window 
used for training the LSTM models was 96 (i.e., using the past 48-h of data). Therefore, when training with only 3 

Table 1.   Performance comparison across methods for mealtime prediction. These results show the average 
of each performance metric on the held-out test dataset from all 82 subjects with type 1 diabetes. The best 
performance for each metric is in bold. The best possible value for recall, precision, and F1 is 100%. The best 
possible value for FP/day and FN/day is 0.

Method Recall (%) Precision (%) FP/day FN/day F1 score (%)

Baseline

Standard-mealtime 10.21 11.99 2.64 3.14 10.84

Prior-day 14.62 14.65 2.94 2.95 14.63

Peak-mealtime 44.26 17.33 8.46 1.92 23.66

Rolling Forecast
SARIMA 35.95 10.38 11.23 2.18 16.00

1-layer LSTM 97.72 93.51 0.25 0.07 95.33
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days of data (i.e., 144 observations) and sliding the window one step for each iteration as shown in Fig. 6b, there 
will be a total of 47 iterations (i.e., 144 observations - 96 input features - 1 output), thus yielding a training matrix 
of 96 input features x 47 iterations to effectively train the proposed LSTM model. Fig. 4 shows the result of our 
analysis with varying amounts of training data. As expected, we observe better performance with more training 
data as evident from the increasing F1 scores and decreasing variability in performance across subjects. More 
specifically, our result shows that 45 days of training data is sufficient to achieve an average F1 score of 91.15% 
with an interquartile range of 7.72%, while 60 days of training data is sufficient to achieve an average F1 score of 
93.75% with an interquartile range of 3.60%. It is also important to note that the F1 score plateaus after 60 days 
thereby suggesting that 60 days of training data is optimal for the task of mealtime prediction.

Performance comparison across subject subgroups
The final part of our analysis focused on comparing the performance of all methods described in this work across 
subject subgroups for the task of mealtime prediction. First, we compared the performance of each method 
across datasets, i.e., dataset 1 (DiaTrend31) and dataset 2 (licensed from Tidepool32). Fig. 5a presents the result 
from this analysis. From this figure, we observe that all five methods demonstrated better performance with a 
higher F1 score that was on average 4.5% higher on dataset 2 compared to dataset 1. Upon further examination, 
we observed that dataset 2 has more meal logs/day, more meal logs/subject, and the total meal logs across 34 
subjects in dataset 2 is only about 1000 less than the total meal logs across 54 subjects in dataset 1 in spite of there 
being a similar number of days/subject—Table 3. These observed differences show that dataset 2 has less missing 
data and consists of more subjects who are adherent to logging meals into their insulin pumps to administer 
the needed doses of bolus insulin compared to subjects in dataset 1 (DiaTrend42). This finding suggests that the 
ability to model dietary patterns and predict future mealtimes using meal log data from wearable insulin pumps 
is influenced by the quality and density of the initial dataset. It is expected and intuitive that the performance of 
mealtime prediction will be worse when a dataset includes more missing data.

Fig. 3.   Overview of the within-method variability in performance across subjects based on the held-out test 
dataset. (a) The F1 score obtained with each method for the task of predicting future mealtimes (the optimum 
F1 score is 1). (b) False positives per day obtained with each method for the task of predicting future mealtimes 
(the optimum FP/day is 0).

Fig. 4.   The effect of varying amounts of training data on a 1-layer LSTM for mealtime prediction and evaluated 
on the held-out test dataset. We observe that the performance increases with increasing amounts of training 
data. However, at 60 days, the performance plateaus thereby showing that 60 days of meal log data from 
wearable insulin pumps is sufficient for learning and predicting future mealtimes.
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In addition to the above analysis, we also compared the performance of each method across subjects with 
varying mealtime routines. From our exploratory analysis of daily meals and mealtime patterns, we observed 
notably varying mealtime patterns across patients with type 1 diabetes as shown in Supplementary Fig. S1. How-
ever, we also observed that some subjects have more regular mealtime routines (i.e., the majority of their meals 
happen around the same time of day), such as subjects 59 and 60, while others have more irregular mealtime 
routines such as subjects 1 and 30 as shown in Supplementary Fig. S1. Building on this insight and empirical 
observations for our dataset, we classified subjects into two subgroups based on their mealtime patterns (i.e., 
regular vs. irregular mealtime routine). To achieve this, we defined four intuitive features, namely, f1 - the number 
of prominent peaks (prominence > 0.3), f2 - the number of minor peaks (prominence > 0.05), f3 - area under 
the distribution curve, and f4 - the average time between peaks, all of which were calculated from the mealtime 
distribution plots for each subject. We manually selected five example subjects whose mealtime distributions 
clearly showed regular and irregular mealtime routines, respectively. The five subjects selected as having regular 
mealtime routines are subjects 57, 58, 59, 60, 65, while the five subjects selected as having irregular mealtime 
routines are subjects 56, 64, 66, 74, 80—see Supplementary Fig. S1 for reference. Then, data from these subjects 
was used to train a logistic regression classifier for the binary task of classifying the remaining subjects into one 
of these two subgroups (i.e., regular or irregular mealtime routine). From this analysis, we found that only 32 (or 
39%) had regular mealtime routines, while 50 subjects (or 61%) had irregular mealtime routines.

Building on this stratification, we evaluated the aforementioned five data-driven methods for the task of 
mealtime prediction. Fig. 5b shows the performance of each method for subjects in each subgroup. From this 
figure, we observe an average of ∼ 3% difference in mealtime prediction performance between subjects in the 
regular routine subgroup versus in the irregular routine subgroup for all baseline methods. For example, with 
the prior-day baseline, the average F1 score for mealtime prediction is 16% for subjects in the regular routine 
subgroup and 14% for subjects in the irregular routine subgroup. This difference in performance across both 
subgroups was not as prominent as in the rolling forecast methods. For example, with the 1-layer LSTM, the aver-
age F1 score was 94% and 96% for subjects in the regular and irregular routine subgroups, respectively. Findings 
from this analysis show that mealtime prediction is generally more accurate for subjects with regular routines 
compared to subjects with irregular routines, however, this difference is not observed with the LSTM model.

Discussion
Our research work in this paper shows the feasibility of learning dietary patterns and predicting future mealtimes 
using rich longitudinal meal log data from wearable insulin pumps. This study builds on prior work in literature 
centered around increasing the utility of large-scale digital data from advanced diabetes technology16,18,43–47. In 
relation to prior research on sensor-based methods for dietary monitoring11,19–21,48,49, there are several unique 
strengths to the work presented here. First, this study leverages routinely collected data from wearable insulin 
pumps already used by patients for daily management of diabetes. Since our datasets comprise of retrospective 
and observational device data, our research has the advantage of understanding dietary behaviors in the natural 
environment without the potential bias that comes from enrolling participants in a prospective research study. 
Second, this study combines two independent datasets with a total of over 45,000 meal logs for developing and 
evaluating data-driven models for mealtime prediction. Our dataset is orders of magnitude larger than what can 
be found in related work in this field33,34,36,37. Third, this study uses real data from patients with diabetes for mod-
eling and prediction as opposed to data from healthy subjects or simulated data from computer software26–29,33,34. 
Additionally, we show that for the task of mealtime prediction, personalized 1-layer LSTM models can achieve an 
average F1 score of 95.33% and FP/day of 0.25 when evaluated on two independent datasets, including a public 
dataset and a distinct licensed dataset (total: 82 subjects, 10,540 days, 43,596 meal logs). This research is critical 
toward the development of a meal prediction system that can nudge patients with diabetes to administer critical 
insulin doses before meals, and in so doing mitigate post-meal high blood glucose.

Fig. 5.   Comparison of mealtime prediction performance across subject subgroups. (a) Performance 
comparison across two datasets (i.e., the open-source Dataset 1 (DiaTrend)31 versus Dataset 2 (licensed). (b) 
Performance comparison across subjects with regular versus irregular mealtime routines.
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Table 2.   Comparison with related work on mealtime detection or prediction. Dashes (‘-’) are used when a 
certain metric was not reported in prior work.

Study Task Data source # Subjects # Meals Recall Precision FP/day FN/day F1 score

200926 Detection Simulated 200 800 82% 92% 0.2 - 90%

201627 Detection Simulated 30 180 76% 84% - - -

201828 Detection Simulated 10 15,000 82% 92% - - 90%

202029 Detection Simulated 100 15,900 81.3% - 0.15 0.02 -

202230 Detection Real Patients 50 13257 92.3% 96.17% - - 93.97%

This work Prediction Real Patients 82 43,596 97.72% 93.51% 0.25 0.07 95.33%

Table 3.   Data description. Overview of datasets 1 & 2 with over 12,000 days of insulin pump data containing 
over 45,000 meal logs from 88 subjects with diabetes. After the exclusion of 6 subjects who had less than 15 
days of insulin pump data with at least 2 meal logs and all days in the remaining subjects with less than 2 meals 
logs per day, our final dataset includes 10,497 days of insulin pump data with 43,596 meal logs from 82 subjects 
with diabetes.

Dataset 1 (DiaTrend31) Dataset 2 (In-house)

Attributes Mean ± SD Range Mean ± SD Range

Demographics

# Subjects (# excluded) 54 (6) – 34 (0) –

Age (years) 33.6 ± 15.6 19–70 39.8 ± 8.7 24–52

Time since diagnosis (years) 18.5 ± 12.4 2–56 18.4 ± 10.6 2–48

Insulin pump data

Total number of days 8220 – 5392 –

Number of days / subject 152.2 ± 151.2 31–780 158.6 ± 40.2 98-268

Total meal logs (# excluded) 23,678 (1356) – 21,519 (245) –

Meal logs / subject 438.5 ± 479.7 1–2310 632.9 ± 223.0 144–1039

Meal logs / day 3.5 ± 2.2 1–19 4.1 ± 2.1 1–19

Quantity logged / meal (grams) 40.0 ± 24.7 0.5–666 37.0 ± 24.9 1–240

Excluded days w/ < 2 meal logs 2623 – 449 /

Remaining days w/ >= 2 meal logs 5597 – 4,943 –

Total meal logs used in this study 22,322 – 21,274 –

Fig. 6.   Rolling forecast methods for modeling and predicting mealtimes. (a) The partitioning of each subject’s 
data used for training the models, hyperparameter tuning (validation set), and evaluation (testing set). (b) 
An illustration of the mapping from user-entered meal log data to the state arrays used as inputs to the rolling 
forecast models.
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An effective mealtime prediction system has the potential to significantly improve state-of-the-art technol-
ogy in the diabetes domain, i.e., the hybrid closed loop (HCL) system for insulin delivery and blood glucose 
control11,13,50. Today’s technology still fall short compared to what is desired in the field because current HCL 
systems depend on patients to manually log their meals to administer bolus doses of insulin needed to maintain 
postprandial (or post-meal) glucose control51. Consequently, ample research shows that blood glucose control 
around mealtimes remains a primary challenge for patients with type 1 diabetes4,7. Thus, technology-based solu-
tions that accurately predict mealtimes (and quantities) have the potential to radically transform the diabetes 
domain and advance the state-of-the-art technology from a hybrid closed loop to a fully closed loop system5,52–55. 
In addition, such a solution can contribute to novel decision support solutions for advanced diabetes manage-
ment, even for patients who prefer open-loop therapy56.

Comparison with related work on mealtime detection or prediction
Given the importance of mealtime detection and/or prediction in the diabetes domain, there are several stud-
ies in the literature that have worked toward these tasks. To position our work and provide an anchor for our 
results, we compare this research with others in the field. Table 2 presents a comparison of key parameters from 
related work for mealtime detection or prediction using diabetes device data. From this table, we can observe 
that the majority of prior work in the field focus on the task of detecting unannounced meals after the meal is 
consumed and majority of these studies use simulated data sources25–30,54,55,57 . Meanwhile, this study focuses on 
the task of predicting future mealtimes (i.e., before the meal is consumed) and we use real patient data for mod-
eling and evaluation. Only a few studies in literature have worked toward the predicting or anticipating future 
meals in the context of diabetes management58–61, but the methods/metrics used for evaluation do not allow for 
comparison with this study. However, prior work has shown improvements in hemoglobin A1C and time with 
blood glucose in the target range (70–180 mg/dL) when mealtime reminders are combined with HCL systems 
to reduce missed or late meal insulin doses11, and improvements in time with blood glucose below the target 
range (i.e., < 70 mg/dL) when mealtime anticipatory systems are combined with fully-closed loop systems (FCL) 
systems58. Nonetheless, the datasets used in this study have significantly more meal events (i.e., user-entered 
meal logs) than those in prior work. Additionally, the performance scores obtained on both datasets in this 
study (i.e. 82 subjects) is similar or greater than what has been reported in all prior studies. From this analysis, 
we also observed that several studies did not report comprehensive metrics which may give a false sense of their 
full results if not assessed carefully.

Comparison of SARIMA and LSTM for time series forecasting
Time series forecasting is an important task in many domains such as health, economics, business, and 
finance40,41,62–65. Given the prevalence and promise of well-known stochastic models (e.g., ARIMA and SARIMA) 
and deep learning based models (e.g., LSTM and BiLSTM), open questions remain around understanding which 
forecasting methods offer the best predictions for various domain-specific tasks. Previous research studies have 
found that LSTM can outperform ARIMA on various forecasting tasks with a lower error rate of ∼ 85–100%40,41,63. 
Similarly, our research shows that LSTM also outperformed SARIMA (a variant of the standard ARIMA model) 
for predicting mealtimes. In particular, SARIMA performed very poorly with an average F1 score of only 16% 
compared to 95.33%, as shown in Table 1. One key contributor to the poor performance of SARIMA for the 
task of predicting mealtimes relates to the nature of meal data from wearable insulin pumps. In particular, 
user-entered meal logs create a discrete and binary dataset with only two states (meal or no meal) as shown in 
Supplementary Fig. S4. Given this, ARIMA-based models are not fitting, meanwhile, LSTM models are more 
effective for the task of modeling and predicting mealtimes from wearable insulin pump data.

Limitations and future work
Although there are several strengths to the work presented in this paper, there are also some important limita-
tions to note. First, given that meal logs from wearable insulin pumps are a form of self-reported data, this will 
inherently include human error such as missed meal logs or inconsistency in the timing of entries. Although, 
the clinical recommendation is for patients with diabetes to log each meal in their insulin pump around 20 mins 
before meal initiation9, there is often variability in when exactly people enter their meals into their insulin pump 
(e.g., 10-mins before meal initiation or 5-mins after meal initiation)6. Given this knowledge, we used a 30-mins 
buffer window around the exact meal log timestamps to assess the performance of our mealtime prediction 
models. A second limitation of this work is that mealtime prediction alone may not be sufficient to initiate bolus 
insulin delivery based on today’s hybrid closed loop technology, another important factor is the meal quantity 
which is necessary to determine the appropriate amount of insulin needed for that meal. However, as seen in prior 
work mealtime prediction and/or detection systems can be used to provide reminders that reduce the occurrence 
of missed or late meal insulin doses11. Additionally, meal anticipation systems have been evaluated with fully 
closed loop systems by providing a fixed insulin bolus at mealtime or increased insulin in the hours leading up 
to a potential meal58. With this knowledge, our future work will investigate the ability to model and predict meal 
quantities as well as other key factors that influence insulin delivery and dosage such as exercise54,55,66,67. A third 
limitation of this work is that we leveraged retrospective data for model development and evaluation, thus more 
research is needed to evaluate such a system in a real-time/online fashion.

Method
Study and data description
As described above, this study leverages retrospective wearable data from two independent cohorts with total of 
88 patients with diabetes as shown in Table 3. Dataset 1 (DiaTrend31) is an open-source dataset that includes 54 
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subjects with type 1 diabetes (age = 33.6 ± 15.6 yrs.). This dataset was collected by our research team through the 
process of recruiting patients with type 1 diabetes from a local hospital and online platforms, and downloading 
their retrospective diabetes device data for research. Our study was approved by the Committee for Protection 
of Human Subjects at Dartmouth College, all subjects provided informed consent, and all experiments were 
performed in accordance with the relevant guidelines. Conversely, dataset 2 comprises 34 subjects with type 1 
diabetes (age = 42.3 ± 8.6 yrs.). This dataset was collected by and licensed from Tidepool32—a non-profit diabetes 
organization. Both datasets represent retrospective and observational device data (i.e., data that is not influenced 
by recruiting subjects into a prospective study).

Building on prior research4,7, we excluded subjects who had less than 15 days of data and days of data with 
less than 2 meal logs per day—see Supplementary Fig. S4. These criteria led to the exclusion of 6 subjects, namely, 
subjects 2, 26, 27, 29, 32, and 35, all from dataset 1. Additionally, this criteria led to the exclusion of 2623 out of 
8220 days (31.9%) from dataset 1 and 449 out of 5392 days (8.3%) from dataset 2. Following these exclusions, 
dataset 1 comprises 5597 days of insulin pump data with > 2 meal logs per day (total: 22,322 meal logs from 48 
subjects in dataset 1), meanwhile, dataset 2 comprises 4943 days of insulin pump data with > 2 meal logs per day 
(total: 21,274 meal logs from 34 subjects in dataset 2). In total, our final dataset includes 10,497 days of insulin 
pump data with 43,596 meal logs from 82 subjects with type 1 diabetes.

Modeling and predicting mealtimes
Toward the goal of modeling and predicting mealtimes from routinely collected insulin pump data, we imple-
mented, evaluated, and compared five data-driven methods (three baselines and two machine learning meth-
ods) for the task. Our baseline methods are similar to those in prior work on continuous trajectory prediction 
tasks68–70, while our machine learning methods include both statistical and deep learning-based methods for 
time-series forecasting40,41.

Baseline methods for predicting mealtimes
As a baseline, we evaluated the effectiveness of predicting mealtimes ( Mi,j ) for subject i on day j using: (1) a 
standard-mealtime baseline, (2) a prior-day baseline, and (3) a peak-mealtime baseline. The aforementioned 
methods represent reasonable baselines that leverage both population-level and individual-level insights from 
this study and from prior work33,34. For performance assessment, we use an evaluation window of 30 mins to 
quantify the prediction performance across all methods. Therefore, 15 mins before and 15 mins after any pre-
diction with the baseline methods is compared with the ground truth timestamp of meal logs to assess correct-
ness—see Supplementary Fig S5.

The standard-mealtime baseline is informed by prior work which found a clear breakfast-lunch-dinner pat-
tern in a population of subjects without diabetes, with the first meal at 8:29 AM, second meal at 12:42 PM, and 
third meal at 6:30 PM33. Building on these findings, we selected standard mealtimes at the closest half-hour 
point, namely 8:30 AM, 12:30 PM, and 6:30 PM. This choice is also (partly) supported by the peak mealtimes 
observed in our population-level analysis shown in Fig. 2a. Hence, the standard-mealtime baseline evaluates 
the assumption that most people with diabetes eat 3 meals per day and it uses fixed times at 8:30 AM, 12:30 PM, 
and 6:30 PM for prediction. This baseline is similar to the “most frequent visit” baseline from prior work on 
location/mobility prediction68–70.

Meanwhile, the prior-day baseline builds on the premise that different people have different routines and 
yesterday’s data from a specific individual could be useful for predicting today’s behavior. Thus, a reasonable 
mealtime prediction for subject i on the day j is their own mealtimes on the prior day j − 1 . For example, if the 
meal log data for subject i on the day j shows mealtimes at 10:56 AM and 5:10 PM, then the mealtime predic-
tions for subject i on the day j + 1 will be 11 AM and 5 PM. This prior-day baseline is similar to the “last week 
trajectory” or “same place” baseline methods from prior work on location/mobility prediction68,70.

Thirdly, the peak-mealtime baseline also builds on the premise that different people have different routines. 
However, it uses the most frequent pattern in recent days for each individual to predict their future behavior. 
More specifically, this baseline uses the k most frequent mealtimes from n prior days of subject’s i data to pre-
dict their mealtimes on the next day (i.e., day n+ 1 ). Supplementary Fig. S5 shows an example of this method 
with k = 3 based on 15 days of prior data for subject 68. As can be observed from this figure, the most frequent 
mealtimes for this unique subject based on their own historical data are 5:30 AM, 11:30 AM, and 6 PM; hence 
these times directly inform the mealtime prediction for this subject on day 16. While this might be a reasonable 
approach for mealtime prediction for some subjects, we observed that this method has the potential to perform 
poorly for subjects who show irregular mealtime routines (i.e., the majority of subjects in this study as shown 
in Supplementary Fig. S1).

Rolling forecast methods for predicting mealtimes
Toward the goal of a meal prediction system that can nudge patients with diabetes to administer the needed 
insulin doses at the right time (i.e., ∼ 20-mins before each meal9,10), we formulate the problem here as a task of 
predicting the probability of a meal 30-mins in advance of the current time t. This formulation enables the use 
of well-known statistical and deep learning-based methods for time-series forecasting, such as autoregressive 
integrated moving average (ARIMA) and long short-term memory model (LSTM)40,41. In addition, this formula-
tion supports the use of insights from earlier times in each day (e.g., the time of the last meal) to achieve better 
prediction of when the next meal will occur. It is important to note that the proposed approach is different from 
the above-mentioned baseline methods that aim to predict mealtimes Mi,j for subject i on day j using meal logs 
from prior days.
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For the rolling forecast methods implemented in this work, we start by apportioning each subject’s data into 
a training, validation, and testing set using a 70/10/20 split as shown in Fig. 6a (i.e., we develop personalized 
models). Then, we transform each subject’s past meal log data into a 1-D state array ( At ), where A represents 
the state: meal (1) or no meal (0), and t is the time index of each consecutive (i.e. non-overlapping) 30-mins 
window— see Fig. 6b. In the case where two adjacent meal logs were within 30 mins of each other but fell in dif-
ferent window segments, these meal logs were combined and only the first meal log was used as the ground truth 
timestamp. Following this, we apply LSTM - a state-of-the-art neural network algorithm that is well-established 
for long sequence modeling, and seasonal ARIMA (SARIMA) - a well-known variation of the traditional ARIMA 
model fitting for seasonal data71,72.

Since LSTM models learn a function that maps a sequence of past observations as input to predict a target71, 
we define a sliding window of length N to allocate a portion of past observations [ At−N+1 , At−N+2 , ... , At ] as 
input features to predict a target At+1 . We evaluate a 1-layer LSTM and a 2-layer LSTM with various unit numbers 
(16, 32, 64, and 128) and various number of epochs (2 to 7), while maintaining a fixed learning rate of 0.0003. 
Fig. 7a and b show the results of this analysis on the validation set. Additionally, we evaluate different window 
sizes N = [24, 48, 96, 144], which represent the prior 12-h, 24-h, 48-h, and 72-h of past observations as input 
features. Fig. 7c shows the result of this analysis on the validation set. Based on this analysis, we select a 1-layer 
LSTM architecture with 32 units, 5 training epochs, and a window size of N = 96 (i.e., the past 48-h) as input 
features. Supplementary Table S1 provides an outline of the parameter settings for the proposed 1-layer LSTM. 
Upon implementation, this model outputs the probability of a meal occurring in a target time index within the 
state array based on prior observations, hence, we leverage a simple peak detection method to identify the highest 
probabilities and annotate the mealtime predictions—see Supplementary Fig. S6 for an example.

To support a comparison of two well-known time-series forecasting methods, we also applied SARIMA for the 
task of predicting mealtimes. Similar to the implementation with LSTM, we defined a sliding window of length 
N to allocate a portion of past observations [ At−N+1 , At−N+2 , ... , At ] as input features to predict a target At+1 . 
In this work, we used a fixed value of N = 14 days to provide two full weeks of past observations on mealtimes in 
order to create a balance between the computational efficiency of the model and performance. Our choice of 
setting N = 14 days was also informed by our exclusion/inclusion criteria described earlier which shows that our 
dataset retained 82 subjects with a minimum of 15-days of insulin pump data. As described in prior work62,72, 
SARIMA is formed by adding seasonal terms to the traditional ARIMA model and thus can be described as:

where (p, d, q) represents the non-seasonal part of the model, particularly, autoregression (p), the difference (d), 
and moving average (q), while (P,D,Q)m represents the seasonal part of the model, particularly, the seasonal 
autoregression (P), the seasonal difference (D), and seasonal moving average (Q). Lastly, the seasonality param-
eter m represents the number of time periods in a single seasonal period. In this work, we set the seasonality 
parameter (m) to 24-h (i.e., window size N = 48 for 30-min windows) and we used grid search on the validation 
dataset to determine the order of the non-seasonal and seasonal parts of the model. Based on our analysis, we 
select the parameters for SARIMA(3,1,0)(2,1,0). Finally, we defined and used a threshold of 0.158 (the best per-
forming threshold evaluated on the validation set of 10 randomly selected subjects) to annotate mealtime pre-
dictions from the probability outputs of SARIMA. Our choice of using a threshold-based approach (as opposed 
to the peak detection method) to assess the probability output from SARIMA was informed by the fact that we 
did not observe any obvious structure in the probability outputs from SARIMA during development and testing.

Performance metrics and evaluation
To evaluate the performance of the above mealtime prediction methods, we leverage standard metrics such as 
recall (or sensitivity), precision, and F1 score73. Recall represents the true positive rate, that is the proportion 
of real mealtimes that were correctly predicted. Conversely, precision represents the true positive accuracy (or 

(1)SARIMA(p, d, q)(P,D,Q)m

Fig. 7.   Comparing the performance of a 1-layer LSTM vs. a 2-layer LSTM with varying number of units, 
training epochs, and window sizes. (a) The average F1 score on the validation set with a 1-layer LSTM. (b) The 
average F1 score on the validation set with a 2-layer LSTM. (c) The average F1 score on the validation set with 
different window sizes.
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confidence), that is the proportion of correct mealtimes (per the ground truth) amongst the predicted mealtimes, 
as shown in Supplementary Fig. S4. Meanwhile, the F1 score is a cumulative metric that represents the harmonic 
mean between recall and precision. Since the above metrics focus on positive events, we complement these with 
other metrics that quantify the error rate. In particular, the false positive rate, which describes the proportion of 
real negatives (i.e., no meal on a given day and time) that are predicted as a mealtime, and the false negative rate 
(or miss rate), which describes the proportion of real positives (i.e., mealtimes on a given day and time) that are 
not predicted. We calculate the false positive and false negative rates per day (i.e. FP/day and FN/day) to enable 
easy comparison of our results with related work28,29,54,55,74.

One additional criteria leveraged for performance evaluation in this study relates to using a buffer window to 
quantify mealtime prediction results. This criteria was set in place because there is extensive debate in the litera-
ture on when exactly is mealtime. For example, is the mealtime at the start, middle, or end of an eating episode 
(e.g., having breakfast)? Additionally, in the diabetes domain, the clinical recommendation is for patients to log 
their meals ∼ 20-mins before meal consumption to initiate the needed insulin dose, and thus mitigate post-meal 
high blood glucose events9,10. However, in practice, there is often variability in when patients log their meals 
into the insulin pump. Hence, in this study, we use a 30-mins buffer window around the exact timestamp of 
each user-entered meal log (i.e., ground truth) to quantify true positives, false positives, and false negative labels 
for mealtime predictions. More specifically, only when a prediction is within the window of 15-mins before or 
15-mins after the exact timestamp of a ground truth meal log is it labeled as a true positive event.

Data availability
A subset of the data analyzed in this work (i.e., Dataset 1 also known as DiaTrend31) is available for request and 
direct access through Synapse at https://doi.org/10.7303/syn38187184. Meanwhile, data sharing agreements 
prohibit the authors from making the Dataset 2 publicly available. However, access to Dataset 2 can be requested 
from and provided by Tidepool32 pending scientific review and a completed material transfer agreement.

Code availability
All the code generated in this work was done with Python 3.10. In this study, we leveraged packages Scipy and 
Scikit-learn for statistical analysis and Tensorflow 2.15 for LSTM model building. The code generated for this 
study is available upon request to the Augmented Health Lab at Dartmouth College (www.​ah-​lab.​cs.​dartm​outh.​
edu/).
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