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Summary 
Incentives tend to drive improvements in performance. But when incentives get too high, we can 
“choke under pressure” and underperform right when it matters most. What neural processes 
might lead to choking under pressure? We studied rhesus monkeys performing a challenging 
reaching task in which they underperform when an unusually large “jackpot” reward is at stake 
and sought a neural mechanism that might result in that underperformance. We found that 
increases in reward drive neural activity during movement preparation into, and then past, a zone 
of optimal performance. We conclude that neural signals of reward and motor preparation interact 
in the motor cortex in a manner that can explain why we choke under pressure. 
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Main Text 
 
Introduction 
Failing to perform to one’s highest standard when the potential payoff is particularly great is 
known as “choking under pressure”1. While failures in professional athletics often provide 
memorable examples of this phenomenon, people choke under pressure in diverse settings, 
including test-taking2, video games3, puzzle-solving4, and more4–6. Neuroimaging studies have 
implicated the involvement of reward and motor structures in choking under pressure7,8, but the 
neural mechanisms whereby the possibility of increased rewards leads to performance failure 
remain unclear. 

We recently reported that animals also choke under pressure9. Rhesus monkeys performed a 
challenging task in which they had to perform a goal-directed reach that was both fast and 
accurate (Figure 1A). We cued the volume of the liquid reward they would receive for a 
successful reach. Success was more frequent for Medium and Large cued rewards than for 
Small. This behavioral improvement presumably reflects an increase in motivation to perform this 
challenging task10–13. When “Jackpot” (i.e., rare and exceptionally large) rewards were proffered, 
monkeys underperformed. This effect is “choking under pressure”, and it is characterized by an 
“inverted-U” relationship between performance and reward (Figure 1B)4,7,8. Here we leverage the 
fact that monkeys choke under pressure9, like humans do, to explore the phenomenon’s neural 
basis at the resolution of individual neurons’ activity and at the sub-second timescale at which 
neural activity controls behavior. 

We report a novel neural explanation of choking under pressure: a deficit in motor preparation. 
Motor preparation benefits the execution of rapid, voluntary movements, like the reaches the 
animals performed in our task, by allowing time for neural computations that support the 
movement to be completed before execution14–16. Motor preparation is known to engage 
populations of neurons in the primary motor cortex and the dorsal aspect of the premotor cortex 
(referred to collectively here as MC)17–19. To study how motor preparation relates to choking 
under pressure, we recorded the spiking activity of hundreds of MC neurons and examined how 
cued rewards modulated neural population activity during movement preparation. If choking 
under pressure involves a failure in motor preparation, we might expect there to be some aspect 
of MC activity that exhibits an inverted-U relationship with reward size, like behavior does. 

Previous work has demonstrated that the state of MC activity being closer to an “optimal zone” 
before a movement cue influences reaction time and reach execution17,20. We may then expect 
that MC activity for Large reward trials is closer to this optimal zone, whereas Small and Jackpot 
trials are less so. Leveraging this optimal zone framework, we hypothesized three neural 
mechanisms that could link MC preparatory activity to the choking under pressure behavior that 
we observed (Figure 1C). First, we considered whether MC might paradoxically receive a 
weakened reward signal for Jackpot rewards. This lack of motivational drive seems feasible given 
the observation in our prior work that monkeys exhibited an excess of hypometric reaches on 
Jackpot trials9, and might indicate that Jackpot scenarios are, paradoxically, not as intrinsically 
rewarding as reason might suggest. We refer to this as the “Insufficient Drive” hypothesis (Figure 
1C, left). While prior work has generally demonstrated monotonic trends between incentives and 
neural activity in areas upstream of MC7,8,21, one could conceivably imagine that neural stress 
signals from the prospect of a loss might overwhelm those of positive incentives8 in a manner that 
manifests as an insufficient drive of MC activity. 

A second possibility is that the anticipated reward interacts with aspects of motor preparation 
important to the upcoming reach. It could be that when Large rewards are offered, the patterns of 
neural activity affiliated with motor preparation are made more suitable for the behavioral goal, 
but that Jackpot rewards somehow make neural activity less so. We refer to this as the “Neural 
Bias'' hypothesis (Figure 1C, middle), where the inverted-U we observe in success rates can be 
explained by rewards of increasing magnitude biasing average neural activity patterns to be 
closer to, and then farther from, the optimal zone for movement preparation. 
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A third possibility is that reward modulates the variability of MC activity such that more or fewer 
trials’ preparatory states are nearer to the optimal zone. In monkeys, much of the variability in 
movements comes from variability in upstream cortical signals22. Some animals have been shown 
to alter behavior by modulating neural variability based on context, as happens when juvenile 
songbirds practice courtship singing in solo bouts versus performing in front of a potential mate23–
25. A similar, albeit counterproductive, mechanism may be at play here: Increasing reward from 
Small to Large might suppress neural variability, but Jackpots might paradoxically cause neural 
variability to increase, disrupting performance. We refer to this as the “Neural Noise” hypothesis 
(Figure 1C, right).  
We note that these hypotheses are not mutually exclusive, and it could be that some variant of 
each is at play in our task. Further, behavior cannot disambiguate between these, as the inverted-
U trends in performance could emerge from any mechanism that pushes neural activity out of the 
optimal preparatory zones. Of course, it could also be that choking under pressure in this task is 
explained by neural activity changes occurring during movement, instead of preparation, meaning 
none of these hypotheses need be observed.  

We tested each hypothesis individually in search of a motor preparatory explanation for choking 
under pressure. Our data support the Neural Bias hypothesis. We find that rewards interact with 
target preparation signals to drive neural activity towards a region associated with improved reach 
execution, and then, at the highest rewards, away from this region. This finding provides an 
example of how cortical circuits can be pressed beyond ideal functionality by internal drives (such 
as reward expectation) with consequences for behavior. 

 
Figure 1. Potential neural mechanisms of choking under pressure. (A) Monkeys were trained to prepare a brisk 
reach to a small target. The color (Monkeys E, P) or shape (Monkey R) instructed the reward size. Parameters bolded in 
green were selected individually for each animal to keep the task challenging and motivating (Table S1 shows all 
parameter values). A separate choice task indicated that animals understood reward cues (Table S2). Simultaneously, we 
recorded from primary motor (M1) and/or dorsal premotor cortex (PMd), together termed MC, using 96-channel 
microelectrode “Utah” arrays (Blackrock Microsystems, Inc., see Table S1 for array location details). (B) Success rates 
improved from Small to Large rewards (binomial proportion test, ***p < 0.001), indicating that performance in this difficult 
task is influenced by motivation. All three animals choked under pressure, indicated by the significant decrease in success 
rates from Large to Jackpot. Error bars represent S.E. of overall success rate shown in dark gray. Light gray traces show 
individual sessions. See Table S3 for full statistics. (C) We considered three mechanisms that could relate motor cortical 
activity to the inverted-U in success rates that indicates choking under pressure. In each, Large reward neural activity lies 
best in the optimal preparatory zone for the upcoming movement (purple shaded area). (Left) The “Insufficient Drive” 
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hypothesis: Jackpot rewards induce paradoxically low reward drive to motor cortex. (Middle) The “Neural Bias” 
hypothesis: increasing offered rewards pushes neural activity toward, but then beyond, the optimal preparatory state for 
performance. (Right) The “Neural Noise” hypothesis: higher reward reduces neural variability to contain more of the 
distribution in the optimal zone, but the pressure of Jackpot rewards causes dysregulation by increasing variability. 

Results 
Reward tuning in motor cortex is monotonic, inconsistent with the Insufficient Drive hypothesis 
We examined how the magnitude of the cued reward affected firing rates of individual neurons in 
MC. The Insufficient Drive hypothesis predicts that the main effect of reward on firing rates 
follows an inverted-U, where the reward signal for Jackpot trials would be low. We examined MC 
neuron firing rates at the end of the delay period, a time when the animal had information 
regarding both the target location and potential reward size to be received for a successful trial. 
Neural signals of anticipated reward have been previously reported throughout the cerebral 
cortex, with neurons in many brain areas exhibiting changes in firing rates when more valuable 
rewards are cued26–32, including in MC33–36. However, previous studies have not presented 
monkeys with rare and exceptionally large potential rewards that induce performance 
decrements, and thus the nature of the cortical response to these Jackpot rewards is not known. 
If Jackpot rewards induce individual neurons in MC to fire closer to their Small reward levels than 
Large, this would support the Insufficient Drive explanation for choking under pressure. 

The reward tuning in MC was predominantly monotonic. Most MC neurons exhibited tuning to 
cued reward (n = 300/459 neurons, 65.4%; single neuron metrics are provided in Table S4), 
where most exhibited either monotonically increasing (179/459, 39.0%) or decreasing (95/459, 
20.7%) changes in firing rate through the entire range of cued reward size (Figure 2A-B). We 
observed little “inverted-U” (18/459, 3.9%) or “U-shaped” (8/459, 1.7%) reward tuning in individual 
neurons’ firing rates. 

We next considered whether neural signatures of Insufficient Drive might be visible at the 
population level. We analyzed patterns of covariance in the activity of simultaneously recorded 
neurons. We define a “neural population state space” by treating the activity of each individual 
neural unit as an axis in a high dimensional space. In this population space we can identify 
specific dimensions (i.e., linear combinations of neurons’ firing rates) that capture reward-related 
signals (Figure 2C). Because there were very few Jackpots given per session, we combined 
neural activity across days using a recently-developed “stitching” algorithm37 (STAR Methods). 
We then used principal components analysis (PCA) on the neural activity in the analysis bin to 
identify the linear projection maximizing the amount of reward signal variance captured. We found 
that a single dimension, which we call the “reward axis,” captured most of the reward-related 
variance (Monkey E: 92.6%, P: 89.8%, R: 84.7%). Neural population activity projections onto the 
reward axis were monotonic with reward size (Figure 2D). As with the responses of individual 
neurons, this is inconsistent with the Insufficient Drive hypothesis. 

Having identified a “reward axis” in neural population activity in MC, we considered whether 
neural activity along it might be simply explained by movements. First, we asked whether these 
reward-monotonic effects might reflect muscular co-contraction. However, electromyography 
(EMG) from arm and shoulder muscles showed only minimal activity during the reach preparation 
period, and this activity did not reliably predict reward axis projections (Figure S1A-B). The 
kinematics of the ensuing movement also did not consistently match the patterns of reward axis 
projections (Figure S1C-G). Finally, we identified a “target plane” that maximized variance 
captured in the average neural activity corresponding to reach preparation to different targets 
(Figure 2E). This plane captured most of the variance due to target direction (Monkey E: 92.7%, 
P: 99.7%, R: 90.8%). We found that the reward axis and this target plane were near-orthogonal 
for each animal (Figure 2F). This is consistent with the interpretation that effects observed along 
the reward axis are unlikely to be an artifact due to directional-encoding signals. In sum, we find 
that the encoding of reward information in MC is not on its own able to explain the performance 
drop observed for Jackpot rewards. 
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Figure 2. Reward tuning in motor cortex remains monotonic for Jackpot rewards, ruling out the Insufficient Drive 
hypothesis. (A) Individual neurons exhibited monotonic tuning to reward size. Firing rates from three example neurons 
from Monkey E are shown, averaged within each reward condition (± S.E.). Table S4 shows single unit reward tuning 
statistics. For further analyses, we calculated the firing rate for each neuron and each trial in an Analysis Bin at the end of 
the delay period from 150 ms before to 50 ms after the Go Cue. (B) MC neurons showed tuning to the target direction, 
which was largely separable from the reward tuning. (C) Simultaneous neural firing rates can be visualized in a state 
space in which the firing rate of each neuron corresponds to one dimension (axis) within the space. Three neurons were 
used here for illustration; in actuality, hundreds of neurons recorded over 6-12 days were used, and neural data was 
combined across sessions using a neural stitching algorithm (STAR Methods). Using the average neural activity for each 
reward condition, we can identify a “reward axis” capturing the majority of reward-related variance. (D) Projections along 
the reward axis are monotonic with cued reward, even though behavior is not. Small dots show single trial values. Large 
dots show the mean of the reward condition. Horizontal jitter is to aid visualization. Because the primary effect of reward is 
shifting activity along the reward axis monotonically (not an inverted-U), this rules out the Insufficient Drive hypothesis.  
(E) Using the average activity for each target direction (dots, color indicates target location), we identify two “target axes” 
forming a plane that captures the majority of direction-related variance (STAR Methods). For visualization, adjacent reach 
directions are connected to form a ring. (F) The reward axis is nearly orthogonal to the target plane (STAR Methods, 
Monkey E: 82ᵒ, 93rd percentile of random distribution, Monkey P: 74ᵒ, 95th percentile, Monkey R: 71ᵒ, 86th percentile). 

 

Jackpot rewards position neural activity in a poor state for upcoming movements, corroborating 
the Neural Bias hypothesis 

We next sought an explanation for choking under pressure by examining how reward signals 
might interact with reach preparation. Our Neural Bias hypothesis posits that as potential rewards 
grow from Small to Jackpot, average neural activity is pushed toward, and then away from, the 
optimal preparatory zone for the upcoming reach. Prior theoretical work has demonstrated that 
the quality of neural encoding in the preparatory period is important for the quality of the 
upcoming reach38, a hypothesis supported by some experimental work39. By this account, the 
optimal preparatory state for the upcoming reach may be one with greatest possible separability 
from other reach conditions. Hence, to test the Neural Bias hypothesis, we will examine if reward 
interacts with neural directional encoding signals, then see if these patterns of interaction 
correlate with behavior.  
 
To look for an interaction between reward and reach preparation signals, we projected neural 
activity into the 3D space spanned by the reward axis and target plane. Intriguingly, we observed 
a non-monotonic interaction between reward size and target information. Comparing activity for 
Small and Large rewards, the average response for different upcoming movement directions 
grew farther apart from one another with increasing reward (Figure 3A). But then, for Jackpot 
rewards, the neural states for different target directions collapsed back toward each other. To 
conceptualize the structure we observed, one can picture neural activity on the surface of a 
prolate spheroid (a rugby ball shape): Neural activity moves along the long axis according to the 
reward size, while the activity’s location along the orthogonal plane is governed by the intended 
target. 
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To quantify this expansion-then-collapse of target-related neural states with increasing reward 
magnitude, we examined activity on individual trials. Within each reward condition, we identified 
“target preparation axes” by finding the average response for each target direction (large purple 
dot in Figure 3B) and then calculating the average across the targets (large white dot). We then 
constructed unit vectors that pointed to each target's average from the average response across 
targets. We projected the neural activity for each trial onto its corresponding target preparation 
axis. Like success rates, the average projection along the target preparation axis follows an 
inverted-U as a function of reward (Figure 3C). 

To demonstrate that this non-monotonic trend of neural activity along the target preparation axis 
is consistent with the Neural Bias hypothesis, we must show that preparatory states further along 
the target preparation axis correspond to better reach preparation (Figure 3D). To assess this, 
we first separated the reaches into successes and failures, and then we categorized failed trials 
by their specific failure mode. The animals failed by executing reaches that either overshot or 
undershot the target (STAR Methods). The decrease in success rate between Large and Jackpot 
reward trials was dominated by undershoot failures (Figure 3E)9. These undershoot failures can 
be caused by any combination of slow reaction, slow reach speed, and planning a hypometric 
reach, and the three animals showed idiosyncratic mixtures of these for both Small and Jackpot 
trials (Figure S1C-G).  
 
If the target preparation axis reflects quality of reach preparation, we would expect successful 
trials to have a greater projection along it than failed trials. Within each reward condition, we 
projected neural activity onto the target preparation axis and labeled it according to whether the 
trial was a success or failure. Within nearly every reward condition, neural preparatory activity 
prior to a failed trial had a smaller average projection along the target preparation axis than 
activity prior to a success (Figure 3F, left). Interestingly, even successful trials alone exhibited an 
inverted-U relationship between these projections and reward (Figure S2C). This implies that 
reward is biasing the average neural activity to better (for Medium and Large) or worse (Small 
and Jackpot) preparatory states for the upcoming reach. 
 
When we split trials by failure mode, a stronger trend emerged: undershoots exhibited an even 
greater decrease compared to successes in target preparation axis projections (Figure 3F, 
middle). In contrast, there was little difference between projections for overshoot failures and 
successes (Figure 3F, right). This means that when the projection of neural activity onto the 
target preparation axis was smaller for a trial of a given reward type, the animal was more likely to 
fail by undershooting the target. Quantifying this across all conditions for each animal revealed 
that undershoot trials had significantly smaller target preparation axis projections than successes 
on average (Figure 3G). We also found that within direction-reward conditions, smaller target 
preparation axis projections were correlated with slower reaction time and, to a lesser extent, 
peak speed (Figure S4). It makes sense that neural preparatory activity that is better for the 
upcoming reach should correlate with faster reactions and reach speeds since this task requires 
brisk movements. We conclude that neural states further along the target preparation axis provide 
for better reach preparation. This directly links Jackpot-driven changes in neural activity to sub-
optimal reach performance. As such, our data support the Neural Bias hypothesis. 
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Figure 3. An inverted-U interaction between reward and reach direction preparatory activity supports the Neural 
Bias hypothesis. (A) Neural population activity corresponding to motor preparation for different reach directions is 
pushed apart with increasing cued reward from Small through Large. However, for Jackpot rewards, the activity for 
different reach directions collapses back towards each other, diminishing their discriminability. We projected neural activity 
averaged separately for each reward and direction condition into a 3D space reflecting reward (Reward Axis) and target 
information (Target Axis 1 and 2). For visualization, adjacent reach directions (dot color) are connected to form a ring for 
each reward (line color), and insets (bottom) highlight one target in the target plane. (B) To quantify single trial separability 
of preparatory states, we found a “target preparation axis” for each reward and target direction (STAR Methods). (C) 
When neural activity for individual trials is projected onto these target preparation axes, it exhibits an inverted-U as a 
function of cued reward that parallels how behavior is influenced by reward. Dots represent single trials, and large filled 
circles show the mean within each reward condition (Welch’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001, n.s. not 
significant). We tested several methods for quantification and observed similar results (Figure S2). We note that this 
same effect of expansion and then collapse in neural encoding with reward can also be observed in single-neuron 
direction tuning curves (Figure S3). (D) We considered whether a relationship exists between target preparation axis 
projections (small purple dots) and the quality of reach preparation for individual trials. (E) Success rates (green) and 
failure rates broken down by failure type (light gray: undershoots; dark gray: overshoots). Compared to Large rewards, 
Jackpots had more undershoots, whereas Small rewards evoked both more undershoots and overshoots (binomial 
proportion test). (F) Failed trials showed a consistent decrease in the average target preparation axis projection across 
animals (shape) and rewards (color) compared to successes. When divided by failure mode, undershoots strongly 
exhibited the decrease, whereas overshoots showed little difference. Thick lines and accompanying stars indicate a 
significant difference within that reward condition (Welch’s t-test). (G) To summarize the relationship between target 
preparation axis projections and failure modes, we pooled across rewards after z-scoring within each (STAR Methods, 
mean ± S.E.). Undershoot trials (left, light gray) show a significant decrease in projections along the target preparation 
axis (Welch’s t-test), while overshoot failures (right, dark gray) show a much smaller effect. Because reward caused a shift 
in the average neural activity that corresponds with the inverted-U observed in behavior, our data support the Neural Bias 
hypothesis. 
 

Neural Noise does not explain choking under pressure across animals 

Our analyses so far support the view that a neural explanation for choking under pressure is that 
preparatory activity is poorly positioned with respect to an optimal region in MC’s neural 
population activity space. We also considered if neural variability could explain choking under 
pressure, as posited by our Neural Noise hypothesis. Note that our finding of a shift in mean 
neural activity due to reward size does not preclude there also being changes in variability with 
reward; anticipated reward could affect both. 
 
To look for an explanation of choking under pressure stemming from reward-induced effects on 
variability, we calculated trial-to-trial variability at the population level (STAR Methods). The 
Neural Noise hypothesis predicts greater noise corresponds to lower success rates. We found 
inconsistent relationships between neural variability and reward across subjects (Figure 4A-B). 
For two animals (E and R), we observed a decrease in neural variability with reward, up to and 
including for Jackpots. In the third (P), we observed a monotonic increase with reward. These 
findings held whether variability was considered in the full neural population activity space or in 
the target plane (Figure 4C). As such, while the Neural Noise hypothesis may offer some degree 
of explanation for Monkey P’s choking under pressure, we do not find evidence of it explaining 
Monkey P’s Small reward failures, nor the choking behavior observed in the other two animals.  
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Figure 4. Trial-to-trial variability does not consistently explain choking under pressure, providing evidence 
against the Neural Noise hypothesis. (A) Example of “noise variance”, or trial-to-trial variability about a condition 
average, in the target plane. Points represent the average neural activity for each reach direction as seen in Figure 3A. 
Ellipses indicate the covariance of the single trials about the averages. (B) Total noise variance (STAR Methods). Error 
bars are S.E. calculated using bootstrapping. (C) Noise variance from the target axes’ projection. This refutes the Neural 
Noise hypothesis as a consistent explanation of the animals’ choking, as there are not consistent U-shaped trends of 
noise variance as a function of reward across subjects. 

 
Discussion 
 
We can now describe a potential neural basis for choking under pressure. Reward information 
interacts with preparation-related activity in the motor cortex. Moderate amounts of reward boost 
motor performance by driving neural activity closer to an optimal zone of reach preparation. 
However, when a Jackpot is proffered, neural activity pushes too far along the reward axis, and 
concomitantly, is biased away from the optimal state in the target preparation subspace for the 
upcoming reach. This phenomenon can be thought of as a collapse in neural information about 
the upcoming reach, as the preparatory activity for different movements becomes less 
differentiated. The ensuing behavior is adversely impacted by this poor preparation, with the 
result that animals underperform when they should be incentivized to do their best – they choke 
under pressure. 
 
It was this “Neural Bias” hypothesis which found the strongest and most consistent support in our 
data. Two other candidate neural mechanisms for choking under pressure were not well 
supported by our data. “Insufficient Drive” was ruled out by the presence of strong reward signals 
evident in motor cortex (MC) through the entire range of rewards, continuing monotonically for 
Jackpots. The “Neural Noise” hypothesis received only weak and inconsistent empirical support, 
since trial-by-trial variability increased on Jackpot trials in only one animal. Of course, we cannot 
rule out that such explanations, or others, might pertain in other brain areas or tasks. 
 
Here we offer a mechanistic explanation for choking under pressure in terms of patterns of 
spiking activity in the cerebral cortex. It was possible for us to do this because it turns out rhesus 
monkeys are also susceptible to this paradox of behavior9. It is well worth attempting to square 
our findings with the extensive literature on choking under pressure in humans. A few studies in 
humans have examined the neural mechanisms of choking under pressure using functional 
imaging. These studies generally show monotonic trends in signal with reward magnitude in 
various brain regions7,8,40. This aligns well with our finding that the strongest effect of reward on 
MC spiking activity was a monotonic trend along the reward axis (Figure 2). Also, human studies 
of choking under pressure have demonstrated changes in functional connectivity between the 
motor cortex and the prefrontal cortex7 or striatum8. It is very likely that the changes we observe 
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in MC are driven by signals from other brain areas like these. Thus an interesting topic for future 
animal work would be to investigate if the inverted-U we observe in the encoding of reach 
direction in MC (Figure 3) might be caused by changes in how other areas, such as the prefrontal 
cortex or striatum, are communicating with MC, and/or with how excessive midbrain 
neuromodulatory drive (e.g., dopamine or norepinephrine) might push cortical activity outside of 
its optimal operating range41. It seems reasonable to conclude from the neuroimaging studies that 
choking under pressure is a whole-brain process, impacting many neural circuits and the 
communication between them. The neural correlate of choking under pressure that we see in MC 
is no doubt just one manifestation of how the brain contends with unusually high potential 
rewards, albeit one that influences behavioral performance in a particularly intriguing way. 
 
Most studies of choking in humans focus on behavior without measuring neural correlates, and 
they provide explanations of choking in terms of psychological states and drives. Psychological 
explanations for choking under pressure include excessive self-monitoring42,43, over-arousal 
(perhaps causing “jitters”)4,44–46, distraction by the high stakes at hand2,47,48, and stress induced 
by loss aversion8,21. It is important but challenging work to build links between psychological 
explanations and their underlying neural mechanisms. With the recognition that such links may be 
very indirect, we wish to propose some speculative connections. Our “Neural Noise” model could 
be consistent with a “jitters” account of choking, where over-arousal could increase neural 
variability in MC, yielding detrimental behavioral variability as the result. Our “Insufficient Drive” 
hypothesis could connect with psychological descriptions such as distraction or loss aversion, 
whereby attentional resources are drawn away from the task by Jackpot rewards, and thus 
performance mimics that when Small rewards are proffered, and motivation and attentional 
engagement are low. Our “Neural Bias” model might link with excessive self-monitoring, where 
increased focus on the go cue could draw resources away from reach direction encoding or make 
it harder for the animal to release from its hold state to initiate movement. Our findings support 
the “Neural Bias” model, and thus perhaps are better aligned with the psychological explanation 
of over-monitoring, but it would be far too much to claim our study can resolve the issue of which 
psychological account is the “correct” one. Furthermore, the fact that a psychological explanation 
for choking under pressure has not already been uniquely identified reinforces the findings from 
MRI studies suggesting that choking under pressure is a brain-wide phenomenon, and that 
myriad neural processes, and a wide range of cognitive functions, are adversely impacted by 
outsized expected rewards. 
 
By providing an animal model of choking under pressure and identifying a neural correlate at the 
resolution of neural population activity, animal studies can now proceed alongside human studies 
toward understanding the complex interplay between motivational drive and the fine structure of 
behavioral performance. 
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Main figure titles and legends 
 
Figure 1. Potential neural mechanisms of choking under pressure. (A) Monkeys were trained to prepare a brisk 
reach to a small target. The color (Monkeys E, P) or shape (Monkey R) instructed the reward size. Parameters bolded in 
green were selected individually for each animal to keep the task challenging and motivating (Table S1 shows all 
parameter values). A separate choice task indicated that animals understood reward cues (Table S2). Simultaneously, we 
recorded from primary motor (M1) and/or dorsal premotor cortex (PMd), together termed MC, using 96-channel 
microelectrode “Utah” arrays (Blackrock Microsystems, Inc., see Table S1 for array location details). (B) Success rates 
improved from Small to Large rewards (binomial proportion test, ***p < 0.001), indicating that performance in this difficult 
task is influenced by motivation. All three animals choked under pressure, indicated by the significant decrease in success 
rates from Large to Jackpot. Error bars represent S.E. of overall success rate shown in dark gray. Light gray traces show 
individual sessions. See Table S3 for full statistics. (C) We considered three mechanisms that could relate motor cortical 
activity to the inverted-U in success rates that indicates choking under pressure. In each, Large reward neural activity lies 
best in the optimal preparatory zone for the upcoming movement (purple shaded area). (Left) The “Insufficient Drive” 
hypothesis: Jackpot rewards induce paradoxically low reward drive to motor cortex. (Middle) The “Neural Bias” 
hypothesis: increasing offered rewards pushes neural activity toward, but then beyond, the optimal preparatory state for 
performance. (Right) The “Neural Noise” hypothesis: higher reward reduces neural variability to contain more of the 
distribution in the optimal zone, but the pressure of Jackpot rewards causes dysregulation by increasing variability. 
 
Figure 2. Reward tuning in motor cortex remains monotonic for Jackpot rewards, ruling out the Insufficient Drive 
hypothesis. (A) Individual neurons exhibited monotonic tuning to reward size. Firing rates from three example neurons 
from Monkey E are shown, averaged within each reward condition (± S.E.). Table S4 shows single unit reward tuning 
statistics. For further analyses, we calculated the firing rate for each neuron and each trial in an Analysis Bin at the end of 
the delay period from 150 ms before to 50 ms after the Go Cue. (B) MC neurons showed tuning to the target direction, 
which was largely separable from the reward tuning. (C) Simultaneous neural firing rates can be visualized in a state 
space in which the firing rate of each neuron corresponds to one dimension (axis) within the space. Three neurons were 
used here for illustration; in actuality, hundreds of neurons recorded over 6-12 days were used, and neural data was 
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combined across sessions using a neural stitching algorithm (STAR Methods). Using the average neural activity for each 
reward condition, we can identify a “reward axis” capturing the majority of reward-related variance. (D) Projections along 
the reward axis are monotonic with cued reward, even though behavior is not. Small dots show single trial values. Large 
dots show the mean of the reward condition. Horizontal jitter is to aid visualization. Because the primary effect of reward is 
shifting activity along the reward axis monotonically (not an inverted-U), this rules out the Insufficient Drive hypothesis.  
(E) Using the average activity for each target direction (dots, color indicates target location), we identify two “target axes” 
forming a plane that captures the majority of direction-related variance (STAR Methods). For visualization, adjacent reach 
directions are connected to form a ring. (F) The reward axis is nearly orthogonal to the target plane (STAR Methods, 
Monkey E: 82ᵒ, 93rd percentile of random distribution, Monkey P: 74ᵒ, 95th percentile, Monkey R: 71ᵒ, 86th percentile). 
 
Figure 3. An inverted-U interaction between reward and reach direction preparatory activity supports the Neural 
Bias hypothesis. (A) Neural population activity corresponding to motor preparation for different reach directions is 
pushed apart with increasing cued reward from Small through Large. However, for Jackpot rewards, the activity for 
different reach directions collapses back towards each other, diminishing their discriminability. We projected neural activity 
averaged separately for each reward and direction condition into a 3D space reflecting reward (Reward Axis) and target 
information (Target Axis 1 and 2). For visualization, adjacent reach directions (dot color) are connected to form a ring for 
each reward (line color), and insets (bottom) highlight one target in the target plane. (B) To quantify single trial separability 
of preparatory states, we found a “target preparation axis” for each reward and target direction (STAR Methods). (C) 
When neural activity for individual trials is projected onto these target preparation axes, it exhibits an inverted-U as a 
function of cued reward that parallels how behavior is influenced by reward. Dots represent single trials, and large filled 
circles show the mean within each reward condition (Welch’s t-test, *p < 0.05, **p < 0.01, ***p < 0.001, n.s. not 
significant). We tested several methods for quantification and observed similar results (Figure S2). We note that this 
same effect of expansion and then collapse in neural encoding with reward can also be observed in single-neuron 
direction tuning curves (Figure S3). (D) We considered whether a relationship exists between target preparation axis 
projections (small purple dots) and the quality of reach preparation for individual trials. (E) Success rates (green) and 
failure rates broken down by failure type (light gray: undershoots; dark gray: overshoots). Compared to Large rewards, 
Jackpots had more undershoots, whereas Small rewards evoked both more undershoots and overshoots (binomial 
proportion test). (F) Failed trials showed a consistent decrease in the average target preparation axis projection across 
animals (shape) and rewards (color) compared to successes. When divided by failure mode, undershoots strongly 
exhibited the decrease, whereas overshoots showed little difference. Thick lines and accompanying stars indicate a 
significant difference within that reward condition (Welch’s t-test). (G) To summarize the relationship between target 
preparation axis projections and failure modes, we pooled across rewards after z-scoring within each (STAR Methods, 
mean ± S.E.). Undershoot trials (left, light gray) show a significant decrease in projections along the target preparation 
axis (Welch’s t-test), while overshoot failures (right, dark gray) show a much smaller effect. Because reward caused a shift 
in the average neural activity that corresponds with the inverted-U observed in behavior, our data support the Neural Bias 
hypothesis. 

Figure 4. Trial-to-trial variability does not consistently explain choking under pressure, providing evidence 
against the Neural Noise hypothesis. (A) Example of “noise variance”, or trial-to-trial variability about a condition 
average, in the target plane. Points represent the average neural activity for each reach direction as seen in Figure 3A. 
Ellipses indicate the covariance of the single trials about the averages. (B) Total noise variance (STAR Methods). Error 
bars are S.E. calculated using bootstrapping. (C) Noise variance from the target axes’ projection. This refutes the Neural 
Noise hypothesis as a consistent explanation of the animals’ choking, as there are not consistent U-shaped trends of 
noise variance as a function of reward across subjects. 
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STAR Methods 
 
 
RESOURCE AVAILABILITY 
 
Lead contact 
Further information and requests for resources should be directed to and will be fulfilled by the 
lead contact, Steven Chase (schase@andrew.cmu.edu). 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and code availability 
The data that support the findings of this study are available from the lead contact upon 
reasonable request. All original code is publicly available as of the date of publication (see Key 
Resources Table). Any additional information required to reanalyze the data reported in this 
paper is available from the lead contact upon request. 
 
 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Three adult male rhesus macaques, Monkeys E (9.0 kg, 10 years old), P (9.5 kg, 6 years old), 
and R (19.0 kg, 10 years old) were implanted with either 96 or 64 electrode arrays (Blackrock 
Microsystems) in the proximal arm region of the primary motor cortex and/or dorsal premotor 
cortex. All experimental and animal procedures were approved by the University of Pittsburgh 
Institutional Animal Care and Use Committee in accordance with the guidelines of the US 
Department of Agriculture, the International Association for the Assessment and Accreditation of 
Laboratory Animal Care, and the National Institutes of Health. 
 
 
 
METHOD DETAILS 
 
Experiments and behavioral recordings.  
Three monkeys were trained on delayed reaching tasks. We used standard water regulation 
procedures to maintain motivation and the valuation of reward. During experiments, each monkey 
sat in a primate chair facing a mirror ~8 cm in front of his eyes that reflected a computer monitor 
displaying task events. The monkeys performed all tasks by making hand movements (right arm 
for Monkeys E and R, left arm for Monkey P) in an open space in front of them. While the working 
arm and hand were unrestrained, the hand was not visible to the animal, as it moved in the space 
behind and below the mirror. 3D hand position was tracked with an infrared LED marker attached 
either to the monkey’s index finger (Monkeys E and P, 120 Hz sampling rate, nominal resolution 
< 1 mm, PhaseSpace, Inc) or the back of the hand (Monkey R, 60 Hz sampling rate, nominal 
resolution < 1 mm, Optotrak 3020, Northern Digital Instruments). The monkey’s hand movements 
corresponded to a cursor position displayed on the monitor. The software environment was 
calibrated such that 1 cm of hand displacement in the coronal (frontoparallel) plane corresponded 
to 1 cm of cursor movement. Any trials where tracking of the hand failed at any point in time were 
removed (fewer than 1% of trials).  
 
For post-hoc analysis, we smoothed the hand position signals with a zero-phase low pass 
Butterworth filter (4th order, cutoff frequency 15 Hz). We then also calculated velocity by taking 
the first difference of the position data, dividing by the time difference between samples, and 
assigning each velocity sample a timestamp that was the midpoint of the timestamps for the two 
position samples used. We then used spline interpolation for both the position and velocity 
signals to upsample to 1000 Hz at identical timepoints. For Monkey R, we also simultaneously 
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recorded surface electromyography (EMG) from shoulder and arm muscles (see 
Electromyography section below). 
 
Main task. 
The main task performed by the animals in this study was a challenging delayed center out 
reaching task (Figure 1A) which has been described in detail in Smoulder et al. 20219 (referred 
to in that work as the “speed + accuracy task”). Specific task parameters for each animal are 
listed in Table S1. We note that nearly all of the data in this study are new behavioral recordings, 
with only Monkey E’s behavioral data here being a subset of the data reported in our previous 
work9.  
 
All trials began with a circular target appearing at the center of the display. The animal had to 
move its hand to position the cursor in the center target to initiate a trial. After a short period of 
time (ranging from 200-600 ms, different for each animal), a reach target appeared at one of 
several possible locations (Monkeys E and R: 8 possible target locations, Monkey P: 4) and 
remained visible through the rest of the trial. The appearance of the reach target began a delay 
period during which the animal could see their hand position cursor, the reach target, and the 
center target, but was not allowed to let the cursor exit the center target. The duration of this 
delay period was drawn randomly from a uniform distribution each trial (ranging from 200-950 ms, 
different distributions for each animal). After this duration, the center target disappeared from the 
screen, which cued the animal to move the cursor to the reach target (i.e., the go cue). The 
animal had only a brief amount of time after the center target disappeared to react and acquire 
the reach target (range across animals of 667-825 ms). If the animal moved the cursor into the 
reach target in time, he had to hold the cursor within the target for 400 ms, after which he 
received a liquid reward. The allowed reach duration and target size were titrated during training 
for each animal to make the task challenging, and then those values were maintained throughout 
experiments. 
 
The magnitude of the liquid reward that would be dispensed upon successful completion of the 
trial was indicated by the color of the target cue (Monkeys E, P) or by an image within the target 
(Monkey R). Four reward sizes were used for each animal and were drawn randomly every trial: 
Small, Medium, Large, and Jackpot (magnitudes and cues differed by animal; see Table S1). 
Jackpot rewards were presented on only 5% of trials (which resulted in a range of 1-12 Jackpots 
proffered per reach direction per day), while the other rewards were presented with equal 
frequency for the remaining trials. For purposes of visualization in this work, we use the color 
scheme indicated in Figure 1A: Small is red, Medium is orange, Large is blue, and Jackpots are 
black (see Table S1 for actual cue colors and shapes).  
 
For Monkeys P and R, a small proportion of trials (5%) were “catch” trials, where the trial abruptly 
ended at the time of go cue and the animal was rewarded without making a reach. These were 
used to discourage “false start” reaches before the go cue. Catch trials were randomly 
interspersed throughout the session and could be of any cued reward and direction. The reward 
provided on catch trials corresponded to the cued reward.   
 
Two target choice task. 
To test whether the animals understood the reward cues, we instructed them to perform a two-
target choice. This task proceeded in the same way as the main task with two differences: (1) two 
reach targets were available for the animal to select, diametrically opposed, and (2) the animal 
had a slightly longer amount of time to reach to their selected target. Target direction was 
selected randomly from the working animal’s target set used in the main task. Reward values 
were typically selected randomly each trial with equal probability, with the exception that Jackpot 
rewards were available for selection only on 5% of trials and the Jackpot reward was never 
presented at both available targets. Upon trial success, the animal would receive the reward 
associated with the target he selected. 
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We then evaluated the animals’ selections in each combination of reward presentations to 
confirm the animals selected the greater reward when presented. Collectively, animals selected 
the larger reward on 98.9% of trials (Table S2, see Behavioral training and recording sessions 
below). Trials where both targets had the same reward cue were excluded from this analysis.  
 
Trial failure 
In both the main and two-target task, the animal failed the trial if he moved the hand position 
cursor outside of the center target during the delay period, did not acquire the reach target in 
time, or exited the reach target before 400 ms had elapsed after acquiring it. Upon failure, the 
cursor and reach target turned purple and the screen froze for a duration exceeding the maximum 
length remaining for a successful trial (i.e., if the animal failed during the delay epoch, the freeze 
time was the remaining time for the longest delay period, plus the maximum reach time, plus the 
400 ms target hold). After this, a purple reach target appeared at a location other than that of the 
failed target. The animal had to reach to the purple target, for which no reward was given, before 
the next trial could begin. These “punishment” reaches were included to discourage the animal 
from aborting Small reward trials, as it makes task failure objectively worse than attempting the 
trial, even for the least rewarding (e.g., 0 mL) cases. After either a punishment reach was 
completed (for failed trials), or a reward was dispersed (for successful trials), an intertrial interval 
elapsed before the next trial began (Monkeys E and P: 500 ms, Monkey R: 600 ms). For Monkey 
R, intertrial intervals after successful Jackpot trials were extended to 1200 ms to give additional 
time for the animal to consume the larger reward.  

 
Behavioral training and recording sessions. 
All animals followed the same general training procedures prior to performing the task for the 
recordings used in this study. Animals were first trained to proficiently perform a delayed reaching 
task (> 90% success rate). Then, reward cues for Small, Medium, and Large were introduced into 
this task. We ran sessions of the two-target choice task after the main task each day to assess 
understanding of the relative reward cue values. After at least one week of performing the same 
task with these reward cues, we began making the task more challenging. We titrated the amount 
of time the animal had to acquire the reach target and the reach target size to reduce average 
success rate to about 70%. Making the task challenging enabled us to better measure if cued 
reward either improved or hurt success rate. If the difference in success rate between Small and 
Large rewards was small (i.e., less than 10%), we expanded the reward range by shrinking the 
Small reward magnitude and increasing the Large reward. We expanded the Small-Large reward 
range in this manner for two animals; Monkey R before introduction of Jackpot rewards, and 
Monkeys E after Jackpots had been introduced (see 9).  
 
Once the animals indicated understanding of the relative value of the reward cues in the choice 
task and parameters were adjusted to the appropriate task difficulty, we introduced the Jackpot 
reward cue. For each animal, we ran the main task for one session, then the next day split the 
session between the main task and the two-target choice task to assess understanding of the 
Jackpot cue. Monkey E indicated full Jackpot cue understanding, after which we performed 
experiments. After several sessions of this, we then expanded Monkey E’s Small-Large reward 
range and ran the choice task each day after the main task. These sessions with the expanded 
Small-Large reward range are what is reported in this study and are shown in Table S2 (see 9 for 
information on the initial main task sessions). Monkey P indicated full Jackpot cue understanding 
during this session, after which we halted Jackpot behavioral experiments until after array 
implantation. After recovery, we ran a session of choice task including Jackpots to ensure 
Monkey P still understood cue values (the data of which are shown in Table S2), after which we 
collected data for the main task. Monkey R did not immediately select the Jackpot cue when 
presented, potentially because of a more challenging cue to learn and distinguish (the cue was a 
specific image, as opposed to a color). Additionally, his performance improved in the first 2-3 
sessions after Jackpot reward introduction. We adjusted the parameters of the task to account for 
these behaviors (we shortened the reach period maximum time but slightly increased reach target 
diameter and increased cue contrast). After this, we repeated the procedure of one session with 
all four reward cues and one session of split main and choice task, during which the animal 
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indicated understanding of all reward cues.  We began neurophysiological recordings the 
following day. The data from this session of the choice task and additionally run choice task 
sessions after a few days of the main task are reported in Table S2.  
 
 
Electromyography. 
For one animal (Monkey R), we recorded surface electromyography (EMG) on various muscles of 
the working arm and its shoulder. 

 
Surface EMG recordings. 
We used pairs of disposable adhesive electrodes for bipolar recordings (3M, model 2560), placed 
with a dab of conductive gel (Spectra 360) above muscles on shaved regions of the working arm 
(lateral biceps, triceps) and shoulder (anterior deltoid, posterior deltoid, trapezius). Anecdotally, 
shoulder muscle signals were more salient than those from arm muscles during experimental 
recordings. We also placed a pair of electrodes across the chest to record electrocardiogram 
(ECG) signals, with one electrode on the center of the chest and the other on the left upper 
abdomen. A ground electrode was placed on the skin of the lower abdomen, under which the 
animal had a fair deal of adipose tissue such that muscular signals were minimal during the task. 
Signals were sent through a differential amplifier (RA16LI-D, Tucker Davis Technologies (TDT), 
Inc.), then a pre-amplifier (PZ2 Pre-Amp, TDT), then to a signal processor that digitized signals 
(nominal 48KHz sampling frequency, RZ2 BioAmp Processor, TDT). Signals were then fed 
through a 2nd order 10 Hz biquad high pass filter, downsampled to 10KHz and stored. Two 
minutes of data were collected immediately preceding the start of each experiment while the 
animal rested to identify baseline EMG and ECG.  
 
Surface EMG preprocessing. 
For analysis, EMG and ECG data were zero-phase filtered using a comb of notch filters to 
remove line noise and a bandpass Butterworth filter to attenuate movement artifacts and high-
frequency noise. The comb filter was 2nd order, with cutoff frequencies of 60 Hz and its harmonics 
up to 480 ± 1 Hz. The bandpass filter had cutoff frequencies of 20 and 500 Hz with stopband 
attenuation of -60 dB, implemented using MATLAB’s “bandpass” function. ECG artifacts were 
visible in the EMG signals during recording, particularly during the two-minute baseline period. To 
remove these, we first fit a static, linear transfer function from the ECG data to each of the EMG 
recordings using the two-minute baseline period. We used a moving 50 ms window and used 
ordinary least squares to fit a transfer function from ECG signals to the EMG from each channel. 
We then applied this transfer function to the entire ECG recording, producing a predicted ECG 
artifact signal for each EMG channel. This predicted ECG signal was subtracted out for each 
channel. While we performed this as a data cleaning step, we note that results did not 
qualitatively change if ECG artifact removal was not performed. After this operation, signals were 
rectified and downsampled to 1000 Hz.  
 
We wanted to combine EMG recordings across days. Because these monkeys are overtrained on 
the task, we expect that the ground-truth average EMG activation of a given muscle during 
reaching will be the same across days49. However, due to differences in contact quality and exact 
electrode placement, the actual recording voltage range varies day-to-day. To combine signals 
across days, we first took the EMG power in a 200 ms window surrounding peak cursor speed 
(see Behavioral analysis) for each trial and each muscle, then averaged within each reach 
direction condition. This effectively made an EMG directional “tuning curve” for each muscle. We 
also added an additional point to this tuning curve to include EMG in the 200 ms period before 
target onset while Monkey R held the cursor at the center target. We thus had 9 data points per 
muscle per day. For each muscle each day, we calculated the mean and the standard deviation 
of the tuning curve across these 9 points. We then normalized all EMG data for that muscle/day 
by subtracting this mean and dividing by the standard deviation, effectively z-scoring so that the 
units for EMG for each day were comparable. 
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Neural recordings and preprocessing. 
We recorded neural activity from the primary motor cortex (M1) and dorsal aspect of the premotor 
cortex (PMd) using multielectrode “Utah” arrays (Blackrock Microsystems). Monkey E had one 
96-electrode array straddling the shoulder regions of M1 (~64 channels) and PMd (~32 
channels), implanted approximately 1.5 years prior to these experiments. Monkey P had two 64 
electrode arrays, one in the arm area of M1 and one in the arm area of PMd, implanted two 
weeks prior to these experiments. Due to equipment constraints, only 96 electrodes could be 
recorded simultaneously at the time of the experiments, so only half of the M1 electrodes were 
used. Monkey R had two 96 electrode arrays in the anterior and posterior aspects of M1, in the 
shoulder region, implanted approximately 4.5 years prior to these experiments. Recordings on 
most electrodes from both regions showed modulation during the late delay period analyzed here, 
and thus in this study we make no distinction between recordings from M1 versus PMd, referring 
to the combined site of recordings as motor cortex (MC). We include all recordings for all 
analyses. 
 
Before each experiment began, we set voltage thresholds on each electrode at a multiplier of the 
root-mean-square voltage (Monkey E: -3.5x, P: -3x, R: -3x). We stored 1 ms waveform snippets 
(sampling rate 30 KHz; 30 samples per snippet) surrounding each threshold crossing during the 
experiment. Individual units were manually sorted on each electrode using offline spike sorting 
(Plexon). Units were identified visually using a combination of features, including waveform 
principal components and peak-to-trough amplitude. We included both well-isolated units and 
multi-unit waveforms for this study, yielding each day 145±4 units for Monkey E (mean ± std 
across sessions), 183±86 units for Monkey P, and 273±25 units for Monkey R. 
 
 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Behavioral analysis. 
Success rate and failure mode analysis. 
We analyzed success rates for the main task as a function of reward cue (Figure 1B). Average 
success rates were pooled across all sessions (black lines), and also calculated for individual 
sessions (gray lines). For error bars, we performed a bootstrap analysis in which we randomly 
sampled (with replacement) the trials within each reward size and calculated the success rate 
10,000 times. Error bars are the standard deviation of these 10,000 bootstrap samples. 
 
We analyzed the way the animals failed trials in the same manner as previous work9. For this 
study, we only considered trials where the go cue occurred (i.e., no failure during the delay 
period). Beyond this, all successful and failure trials were considered for behavioral and neural 
analyses. Once the go cue occurred, two types of reach failures could occur: overshoots and 
undershoots (Figure 3E, right). First, the animal could reach past the target, miss it, and run out 
of time prior to being able to make a correction, an “overshoot.” We also considered trials where 
the cursor blew through the target as overshoot failures. Second, the animal could “undershoot” 
by running out of time before acquiring the target. Undershoots could occur either due to a reach 
landing short of the target and the animal having insufficient time for corrective movements 
(approximately 25% of undershoots), or due to reacting and/or reaching slowly and running out of 
time mid-reach (approximately 75% of undershoots). Although these two types of undershoots 
are distinguishable based on kinematics, we reasoned that both could correspond to a failure to 
plan well, and thus we combined them for analyses. It could also be that reaches with high 
angular error could feasibly not fit easily into either category. However, when we calculated error 
from a straight line between the center and reach target, only one trial out of the total 15,721 
exceeded 25 mm (this trial was excluded). The rest were generally straight towards the target and 
could fall into the classification of going past the target (overshoot) or coming up short 
(undershoot). 
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If the cursor stopped successfully in the target, it was considered a reach epoch success (a 
success for the purposes of Figure 3E); however, the animal could still fail if the cursor drifted out 
of the reach target during the target hold period (a failure for the purposes of overall success rate 
in Figure 1B). The specific parameters used to decide which label each failed trial was given are 
described in 9. We note that the failure mode trends in this study for comparing Small and Jackpot 
reward trials to Large reward trials were consistent with the results from 9.  
 
Single trial behavioral metrics. 
We report five kinematic metrics as a function of reward in Figure S1C-G. To find peak speed for 
each trial, we first calculated the cursor speed as the square root of the sum of the squared 
horizontal and vertical velocity signals. We calculated the peak speed of each trial as the max 
cursor speed occurring after the go cue. We calculated the reaction time as the time from the go 
cue that it took for the cursor to reach 20% of the animal’s overall average peak speed. In this 
way, reaction time was calculated at the crossing of a static speed threshold for each animal.  
 
We calculated the homing time and ballistic endpoint predictions in the same way as previous 
work9. Homing time was calculated starting at the time the cursor was within the last ⅓ of the 
distance to the target and ending when the cursor was within 1 mm of the target edge. Homing 
time trends were not sensitive to this exact start or end point. Ballistic endpoint predictions were 
calculated by first identifying the locations of the cursor 50 ms before reaction time and at the 
time of peak speed. The displacement between these points was calculated and doubled. This is 
mathematically equivalent to mirroring the velocity profile in time about peak speed and 
integrating, producing a prediction of where the reach would have landed with a symmetric, 
ballistic velocity profile. We report this quantity specifically projected along the vector connecting 
the center target to the reach target.  
 
The off-axis error was the cursor location of at the time of peak speed along the axis orthogonal 
to the vector connecting the center and reach target for each trial (e.g., for a rightward reach, the 
peak speed position along the vertical axis). We defined positive values as being 
counterclockwise of the center to reach target vector. We calculated the standard deviation of this 
quantity (which we call the off-axis deviation) as a measure of the angular accuracy of the reach. 
The off-axis deviation was calculated for each reward-direction condition, and we report values 
averaged across directions. We calculated error bars via bootstrapping: within each reward-
direction condition, we resampled with replacement and calculated the off-axis deviation, then 
averaged across reach conditions. We repeated this procedure 10,000 times and used the 
standard deviation of this distribution for error bars. 
 
Surface EMG analysis. 
We performed two analyses on Monkey R’s surface EMG signals. First, we assessed the overall 
quality of the EMG signals by visualizing activity for each reach direction (Figure S1A). For all 
successful trials, we smoothed rectified EMG signals with a 50 ms boxcar filter and extracted 
three windows aligned to target onset, go cue, and target acquisition. We then averaged across 
all trials within each reach direction and plotted activity as a function of reach direction for each 
muscle. 
 
Second, we assessed EMG during the delay period time bin coinciding with the neural analyses 
in the main text ([-150 50] ms around the time of go cue) to determine if muscle activation could 
explain changes in neural activity with increased cued rewards. For any trial that had a go cue 
(i.e., no delay failures or catch trials) we calculated the average EMG signal in this time bin to get 
one value per muscle per trial, then grouped trials by their reward and direction labels. We then 
performed a two-way ANOVA to evaluate statistical significance of reward and directional tuning 
in the EMG signals (Figure S1B). 
 
 
Neural data analysis. 
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In this work, we focused on steady-state neural activity during reach preparation, a 200 ms period 
starting 150 ms before each trial’s go cue and ending 50 ms after. As 50 ms is less than the time 
it takes for visual information to reach MC50, we consider all of this activity to fall within the time 
the animal was prepared to move but had yet to begin reacting to the go cue. We calculated the 
averaged firing rate within this bin. For the visualizations of Figure 2A, we made peri-stimulus 
time histograms for the delay period using spike times convolved with a Gaussian kernel (25 ms 
standard deviation). All neural analyses performed were additionally tested after subsampling trial 
counts of Small, Medium, and Large rewards to match those of Jackpots. These are not reported, 
as beyond the decreased statistical power associated with lower sample counts, we observed no 
differences from the results presented. 
 
Monkeys P and R experienced a subset of trials with very short delay periods (< 400 ms). To 
assess if neural activity sufficiently reached a steady state for these short-delay trials, we 
calculated the average distance of the neural state from a steady state endpoint (~450 ms after 
target onset) as a function of time after target onset for non-short delay trials19. We found that 
Monkey E’s trajectories reached 90% of the average distance by 220 ms, P by 197 ms, and R by 
317 ms. We excluded trials with delays shorter than this for all analyses. We note that this 
procedure only removes trials for Monkey R (shortest delay 200 ms), as Monkey E and P’s 
shortest delay period is longer than this. Using a static threshold of trials with delay length greater 
than 400 ms did not meaningfully affect results. 
 
Single unit analysis. 
For single unit analyses (Table S4, Figure S3), we only included units that were present for at 
least 10 presentations of Jackpot rewards for each reach direction (leaving 42 units for Monkey E, 
113 units for Monkey P, and 304 units for Monkey R). This typically required the unit to be 
present across at least 2-3 sessions of data collection (see Combining neural data across 
sessions). To analyze tuning as a function of reach direction and reward, we used a 2-way 
analysis of variance (ANOVA) on the binned firing rates for each identified unit. If the ANOVA 
indicated significant effects of reward on firing rate, we used Tukey’s test with multiple 
comparisons correction (the “multcompare” function in MATLAB) to assess significant differences 
between reward conditions, from which we could evaluate the shape of the reward tuning curve. 
For this analysis only, we combined Medium and Large rewards due to their general similarity in 
effects on firing rate and to simplify the operation of evaluating reward tuning curve shape. Based 
on the pattern of the differences between the Small, Medium/Large, and Jackpot reward 
conditions, we identified 9 possible tuning curve shapes, as described in Table S4. We 
categorized each unit into one of these 9 shapes and tallied their results into Table S4. 
 
We also assessed how directional encoding in single unit activity was affected by reward. For 
each unit, we fit directional tuning curves to average firing rates for each reach direction using 
linear regression with a sinusoidal basis set with period of 360 degrees as done in previous 
work51. Modulation depth is the amplitude of the tuning curve (Figure S3A). We plotted 
modulation depth for the units with the strongest directional tuning for each animal (Figure S3B). 
To combine values across units, we first focused on only units in the top quartile of average 
modulation depth value, as there are many motor cortical units with little-to-no delay tuning. Our 
results were robust to other reasonable fractions of units used (i.e., 1/5, 1/3). We then calculated 
the average modulation depth for each reward across this fraction of units (Figure S3C). To 
calculate error bars, we first subtracted the average modulation depth across rewards from each 
unit, then calculated the standard error of the mean within each reward.  
 
We also evaluated how trial-to-trial variability was affected by reward. For each unit x reward x 
direction condition, we calculated the fano factor as the variance of firing rates divided by the 
mean (Figure S3E). This effectively creates a variability metric that controls for the signal-
dependent noise inherent to Poisson-like neural firing rates52. Because our hypotheses related to 
neural noise were related to the entire neural population, we included all units for this analysis, 
though we note that our interpretations of results (i.e., not seeing a “U-shape” in noise as 
expected by the Neural Noise hypothesis) did not change when the same subset of units used in 
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the modulation depth analysis were considered. Otherwise, we averaged fano factor across reach 
directions for each unit and direction, and we calculated the average fano factor (and S.E.M.) 
across units the same way as described for modulation depth. 
 
Combining neural activity across sessions. 
Jackpot rewards occurred rarely (5% of trials), meaning that single sessions have a low quantity 
of Jackpot trials for a given reach direction. Combining across days is necessary to gain the 
statistical power sufficient to analyze the Jackpot trials. However, due to electrode recording 
instabilities, not all units are conserved session-to-session, and few neural units are present 
across all recording sessions (21 units for Monkey E, 3 units for Monkey P, and 6 units for 
Monkey R; see below for details about how this was assessed). Statistical algorithms can be 
used to “stitch” neural recordings across sessions53–57. In this work, we combined neural activity 
across days using a modified version of the stabilization algorithm from Degenhart, Bishop et al. 
202037, described below. It requires identification of common units across recording sessions but 
does not require consistent task or trial structure across sessions. Unless stated otherwise, all 
further methods and analyses were performed using the latent factors identified by this neural 
stitching method.  
 
First, to identify units that were present in recordings across different sessions, we used the 
method described in58. In brief, we calculated four quantities for every sorted unit using the first 
100 trials of each session: 1) average waveform shape, 2) average firing rate, 3) spiking 
autocorrelation, and 4) spiking cross-correlations with all other sorted units from that session. We 
assumed that units recorded from different electrodes were not the same across days due to the 
physical distance between electrodes. Accordingly, to identify units putatively conserved across 
days, we calculated these four similarity metrics for units recorded on the same electrodes on 
different days as described in58. To evaluate the stability of the units across days, we compared 
the distribution of values for same-channel-different-day to a “different” distribution that we 
created by computing these four values across units recorded on different electrodes on different 
days. If similarity scores computed for two units from the same electrode was below a selected 
false-positive threshold percentile in the “different” distribution (99th percentile for Monkeys E and 
R, and 95th percentile for Monkey P), the units were considered the same.  
 
Using this procedure, we found a high number of units tracked over different pairs of recording 
sessions, primarily across consecutive sessions. For example, the minimum number of units 
present across two consecutive sessions was 71 for Monkey E, 28 for Monkey P, and 67 for 
Monkey R. Units could be present across non-consecutive sessions (i.e., present sessions 1 and 
3 but not session 2). However this was rare and nearly exclusively occurred for Monkey P, whose 
array was implanted shortly preceding the study and, as such, exhibited greater amounts of 
instability in recordings. 
 
Having identified and tracked units across sessions, we organized the neural activity into a n x T 
matrix of binned spike counts, where n is the number of unique units recorded (i.e., the union of 
units across all sessions), and T is the total number of trials across all sessions. If unit i was 
present during trial t, that element of the matrix was filled in with the spike count. Otherwise, that 
element was left empty. 
 
To identify a common latent space across sessions (the T trials), we used factor analysis (FA).  
We chose FA because it is the most basic dimensionality reduction method that seeks to 
preserve variance shared across units. FA relates neural activity for trial t, !! Î ℝn, to latent 
factors, #! Î ℝm (m < n) according to:  
 

!!|#!	~	'(Λ#! + +,Ψ)    (1) 
#!							~	'(/, 0)																	  (2) 

 
where	Λ	Î ℝn×m is the loading matrix that defines the relationship between latent factors and spike 
counts, +	Î ℝn is a vector of mean spike counts for each unit, and ΨÎ ℝn×n is a diagonal matrix 
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that describes the variability independent to each unit. The latent factors #! capture the variance 
that is shared across units. 
 
To fit the FA model parameters Λ, Ψ, and +, we used the expectation maximization (EM) 
algorithm.  Notably, there are empty entries in the spike count vectors, !!, as described above.  
We treat this as a missing data problem, where units that are not present for a given session are 
treated as missing observations. The EM algorithm can handle missing data seamlessly by 
maximizing the probability of only the data entries that were observed. By fitting a single FA 
model across the T trials, we effectively “stitch” the neural activity across experimental sessions 
to identify a single common latent space. This method is described in 56, with theory that can be 
used to derive how many units need to be in common across recordings for successful stitching 
in53. Other methods are also available for neural stitching, for example those that leverage the 
time course of activity55,57 or trial labels such as reach direction49. Note that the stitching method 
we use here does not require trial labels; instead, it leverages the identification of stable units 
across (a subset of) sessions. 
 
To determine the number of factors m, we used 5-fold cross validation to fit FA models ranging 
from 1 to 40 factors. We selected the number of factors m* that maximized the cross-validated 
data likelihood (Monkey E: 16 factors, P: 5, R: 20). We then fit a single FA model for each animal 
across all observed activity !! using m* factors. This procedure was performed separately for 
each animal, yielding a single “stitched” FA model per animal. To facilitate visualizations and 
analyses involving the latent factors, we orthonormalized the columns of the loading matrix Λ and 
ordered the factors (i.e., the elements of #!) by the amount of shared variance explained59. 
 
To validate the stitching procedure, we assessed the stability of neural direction and reward 
representations across days. We note empirically that projections along the reward and target 
axes (see below) were highly consistent across days; more rigorous validation of the algorithm 
itself is available in 56. Whenever possible, we reproduced results found in the stitched latent 
space with analyses on single units (Table S4, Figure S3). 
 
We refer to the latent factors simply as “neural activity” for the remainder of the methods and in 
the main text from Figure 2D onward.   
 
Reward axis calculation. 
To find a population-level signature of reward encoding in the motor cortex, we identified a signal 
that captured reward-related variance across the population. We first calculated average neural 
activity from a single time bin in each trial (“Analysis Bin” in Figure 2A, from 150 ms before to 50 
ms after the Go Cue). We then grouped trials by their direction-reward condition (e.g., leftward-
Large) and averaged across trials within each condition. We then averaged across reach 
directions, yielding a number-of-reward-conditions by number-of-factors matrix (e.g., for Monkey 
E, a [4 x 16] matrix). We performed principal components analysis (PCA) on this matrix to identify 
the dimensions (of length 4) explaining the most reward-related variance. A single PC explained 
the overwhelming majority of the reward-related variance for each animal (E: 92.6%, P: 89.8%, R: 
84.7%); because of this, we dubbed this PC the “reward axis”. Since PCA output is only unique to 
a sign-flip, we selected the sign of these PCs such that Large reward trials had greater average 
projections than Small reward trials. 
 
We projected all trials along this single dimension for each animal (Figure 2C-D). We note that 
there was no part of the PCA objective that encouraged monotonic trends for Jackpot rewards; 
that is, if the main reward-related variance in the data exhibited an inverted-U, it would have 
come out of this procedure. We note that we found near-identical reward axis results when we 
used other algorithms to identify it, such as linear discriminant analysis (LDA) with reward labels 
or linear regression of neural activity to categorical reward size (i.e., S = 1, M = 2, L = 3, J = 4). 
We also saw similar results if we only fit the reward axis using Small/Medium/Large trials and 
projected all trials down, effectively extrapolating Jackpot responses. 
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For Figure S4, we also considered the second PC from the method described that explained 
nearly all of the remaining reward signal variance for each animal (E: 6.4%, P: 8.5%, R: 15.8%). 
We again aligned this projection such that the average projection for Large reward trials was 
higher than that of Small reward trials. 
 
Target axes calculation. 
We wanted to study how reward interacted with the representation of target direction during 
movement preparation. To determine the dimensions in neural space with the most target-related 
variance, we once again calculated the trial-averaged activity within each direction and reward 
condition, then marginalized across rewards to produce a number-of-directions by number-of-
factors matrix for each animal. We then performed PCA on this to find the linear combinations of 
factors that capture the greatest variance about target response. We found that the top two PCs 
explained the overwhelming majority of this variance (E: 92.7%, P: 99.7%, R: 90.8%). (Note that 
this large amount of variance explained by two dimensions for a static time bin of neural data is 
not particularly surprising: the number of points used is equal to the number of directions, and 
accordingly the number of dimensions needed to fully account for these points’ variance is the 
number of targets minus one. Further, the target positions were embedded in a 2D space in the 
coronal plane, meaning only two dimensions are needed to fully define the target locations.) We 
called the axes of this 2D space “target axes”. For ease of visualization only (Figure 2E, 3A, 4A, 
S3D), after projecting to this 2D plane, we aligned all animal’s spaces such that the average 
neural activity for the up-rightward reach target was pointed along the first quadrant diagonal unit 
vector (meaning that target axis 1 is positive for rightward targets, while target axis 2 is positive 
for upward targets).  
 
Projecting to 3D space of target/reward axes. 
The target axes are orthogonal in the latent space by definition when using PCA. However, as the 
reward axis and the target axes were found in separate steps, there were no constraints to the 
alignment of the reward axis with respect to the target axes. We assessed how aligned the 
reward and target axes were for each animal (Figure 2F). We first calculated the angle between 
the reward axis and the target plane (black vertical line). We compared this value against two null 
distributions: 1) random vectors, and (2) aligned vectors. For the first of these, we drew random 
vectors in the full dimensional space of the factor analysis model and measured their angle to the 
target plane. We did this 10,000 times to construct a distribution of angles between random 
vectors and the target plane (dark gray, labeled “Random”). For an aligned vectors distribution, 
we split the data into two halves 1,000 times, randomly apportioning equal numbers of trials for 
each reward and direction condition. We then found the 2D plane spanned by the target axes in 
one of the halves, and in the other identified the 1st target axis. We calculated the angle between 
these (light gray, labelled “Same”), reasoning that the target axis in one half should be aligned 
with the target plane calculated from the other half of the data. Thus, this distribution reflects what 
the variation in angle measurements might be between a vector and an aligned 2D plane that is 
due to sampling error. The angles found between the reward axis and target axes’ plane were on 
the upper end of the “random” distribution, far above the “same” distribution, and close to 
orthogonal. This permits orthogonalization of the reward axis to the target plane with minimal 
distortion of reward axis projection values. 
 
Given this near-orthogonality, for visualization (Figure 3A, Figure S3D), we orthogonalize the 
reward axis with respect to the 2D target plane using QR decomposition. We projected all trials 
into this 3D space, then calculated the average activity within each direction and reward condition 
(Figure 3A). We reproduced the results shown in Figure 3A using other algorithms to identify the 
target axes, including LDA with target direction labels and linear regression of neural activity to 
spatial target location (not shown due to space constraints but is available upon request). 
 
Target preparation axes. 
We saw qualitatively that the separation of average activity for different upcoming reach 
directions (i.e., the radius of the target ring) was modulated as a function of cued reward in 
Figure 3A. To quantify this effect, we performed an analysis on single trials calculating how close 
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or far the neural preparatory state was from the origin of the target plane. To do this, we 
calculated “target preparation axes” within each reward and direction condition as follows (Figure 
3B): First, we calculated the average projections for each reward and direction condition in the 
target axes’ plane. Then, for a given reward condition, we calculated the average across 
directions. Intuitively, this is the center of the ring of targets for the given reward shown in Figure 
3A. Then, for a given reward-direction condition, we calculated the vector connecting this ring 
center for the given reward to the average activity for the current reward-direction. We then 
projected all trials’ activity for that condition along the vector. Higher values indicate greater 
distance from the ring center along this vector. Lower values indicate activity closer to (or beyond) 
the ring center. We performed this procedure for each direction-reward condition. To combine 
values across direction conditions while maintaining the relationship between reward condition 
values, we pooled values across rewards within a given reach direction, then z-scored, such that 
the target preparation axis values for each reach direction overall had zero mean and unit 
standard deviation (Figure 3C). Results from Figure 3C do not meaningfully change when we 
use other algorithms to identify the target axes before calculating the target preparation axis 
(Figure S2A). We also note that similar results can be observed using offline decoders of reach 
direction on the delay period neural data from each reward condition (Figure S2B), and that 
these results are also observed even if only successful trials are included for analysis (Figure 
S2C). 
 
We hypothesized that neural activity with smaller projections onto the target preparation axes 
indicated more poorly-prepared reaches, and hence, would more likely be failures (Figure 3D). 
To test this, we calculated the average target preparation axis projection (after combining across 
directions as in Figure 3C) for each reward separately for successes and failures (Figure 3F, 
left), then separately depending on whether the trial was a success, an undershoot, or an 
overshoot (Figure 3F, right). To combine across rewards and compare the target preparation axis 
for successes versus each failure mode, we z-scored values within each reward based on the 
mean and standard deviation from their successful trials, then pooled across them (Figure 3G). 
We tested this same procedure using data from the full stitched space (Figure S2A). 
 
To further test the relationship between the target preparation axis projections and behavior, we 
correlated projections with the metrics quantified in Figure S1. We split data into each reward-
direction condition (n = 80 total: 32 for Monkeys E and R, 16 for Monkey P), and we calculated 
the Spearman rank correlation between the target preparation axis projections and each metric. 
We used the corr function in MATLAB, which also calculates the p-value for each correlation 
based on a t-test. We report all correlation values as histograms in Figure S4A with median 
shown as a dashed line, and correlations that were significant (p < 0.05) were overlaid in a 
shaded histogram. We used a sign-rank test (n = 80) for each metric to assess if the overall 
correlation was significant. We also performed this test within each subject to assess consistency 
across animals. Note that we correlated projections with the absolute value of the off-axis error, 
which has a value per trial, as opposed to the off-axis deviation, which has a value per direction-
reward condition. 
 
Prior work has demonstrated correlations between neural preparatory states in PMd activity and 
reach accuracy19. We assessed if the projections in the target plane exhibited correlations with 
peak speed cursor locations (Figure S4B-C). Within each reward-direction condition, we first 
compared the “on-axis” quantities in both neural and cursor space. This means we compared the 
neural projection along the target preparation axis (TPA) with the location of peak speed along 
the vector pointing from the center to the reach target for that condition. We also compared “off-
axis” values: we calculated the “off-TPA” projection as the projection along the vector orthogonal 
to the TPA in the target plane for a given direction-reward condition. Because the target plane 
was aligned to the reach target locations, we selected the orientation of the off-TPA to match the 
off-axis of the reach direction, such that positive values pointed counterclockwise of the TPA in 
the target plane. We correlated these projections with the off-axis error of the cursor position at 
the time of peak speed within each direction-reward condition and compiled the results in the 
same manner as the metrics in Figure S4A. 
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Trial-to-trial variability analysis. 
Along with changes in average neural activity as a function of direction and reward, we wanted to 
assess how trial-to-trial variability was modulated as a function of reward (Figure 4). We 
calculated trial-to-trial variability within a given reward-direction condition (1",$% ) for each factor of 
the latent space individually as: 

 
1",$% =	 &

'!,#(&
∑ (4) −	6",$'!,#
)*& )%  (3) 

 
where 7",$ is the number of trials for this reward (r) direction (d) condition, 4) is the neural activity 
for trial t of this reward-direction condition (in this case, just one dimension of neural activity), and 
6",$ is the average neural activity for reach direction d and reward r. We then calculated the 
average trial-to-trial variability for each reward along each factor as the average across reach 
directions: 
 

									1$% =	 &+∑ 1",$%+
"*&    (4) 

 
where D is the total number of reach directions (8 for Monkeys E and R, 4 for Monkey P). This 
produces a value of trial-to-trial variability for each individual factor of the latent space and each 
reward condition. To calculate the total trial-to-trial variability within each reward, we took the sum 
of the trial-to-trial variability across all factors of the latent space (Figure 4B). We then specifically 
calculated trial-to-trial variability for each reward along dimensions of the neural state space that 
we previously identified, specifically the target axes (1$,',$-./0.% , summed across the two target 
axes (Figure 4C). To calculate standard error bars for each variance calculation, we performed 
1,000 bootstraps within each reward condition and used the standard deviation of the bootstraps. 
 
 
 
 
 
 
 
 
Supplemental item titles 
 
Figure S1. Neither muscle activation during cue presentation nor upcoming reach behavior 
explains reward-related modulations of neural activity along the reward axis. 
 
Figure S2. Further validation of Neural Bias hypothesis.  
 
Figure S3. Single unit tuning shows an inverted-U relationship between separability of directions 
with reward. 
 
Figure S4. Correlations between target plane projections and upcoming reach behavior. 
 
Table S1. Task conditions and experimental details for each animal. 
 
Table S2. A two-target choice task indicates the animals understood the reward values. 
 
Table S3. Full statistics for all main text figures. 
 
Table S4. Single unit reward tuning statistics. 
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