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Abstract—This paper introduces a novel approach to detect-
ing cyber attacks for power electronics-interfaced renewable
resources, e.g., solar panels. The approach leverages the inherent
variability of renewable energy generation to watermark the
measurements of renewable resources that are vulnerable to false
data injection (FDI) attacks. By checking the existence of the
watermarks imprinted by the natural fluctuations of renewables,
false data injection attacks can be detected. Compared with
the conventional watermarking methods, the proposed approach
does not require additional noise injection which compromises
control performance. The effectiveness of the proposed approach
is validated by simulating a solar photovoltaic system.

Index Terms—Inverter-based resources (IBRs), false data in-
jection, cyber security

I. INTRODUCTION

To decarbonize the electricity infrastructure, an increasing
number of conventional fossil-fueled generators are being re-
placed by renewable generation resources in bulk transmission
systems, and more distributed energy resources are emerging
in distribution grids [1]. Most of these new resources are
interfaced with the AC grids via inverters whose dynamics are
mainly governed by the control and communication software
embedded in the inverters. Due to this coupling between physi-
cal and cyber layers, a malicious intrusion into the cyber layers
of inverter-based resources (IBRs) can significantly compro-
mise the reliability and efficiency of their host power grids.
This has been exemplified by the 2015 and 2016 attacks on
Ukraine’s power grid which both triggered blackouts affecting
over 200,000 customers [2], [3] and the 2010 Stuxnet attack
which destroyed up to a fifth of Iran’s nuclear centrifuges [4].
It is therefore imperative to detect and mitigate the cyber risks
in IBRs in a timely manner [5], [6], [7].

Multiple studies have been conducted to identify and mit-
igate cyber risks associated with inverter-based resources
(IBRs) [8], [9], [10]. Reference [8] presents a vulnerability
analysis of inverter control systems and the communication
systems used to coordinate smart grids. Reference [9] presents
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an overview of existing attack detection approaches and out-
lines the benefits and limitations of knowledge-based and data-
driven approaches. However, the methods in [9] only focus on
general cyber-physical systems, and their performance in the
context of IBRs requires further investigation. Reference [10]
specifically outlines how photovoltaic systems are vulnerable
to both sensor and communication-based attacks and classifies
the detection approaches into model-based and data-driven
techniques. Model-based detection validates measurements
against predictions made by a physics-based model of the
system and can detect attacks that inject false data. How-
ever, such methods are vulnerable to model-based attacks,
e.g., stealthy attacks [6]. Data-driven detection methods train
machine learning algorithms on historical data and can detect
various attacks, but their performance generally lacks physical
interpretation, which limits their application in safety-critical
infrastructure, e.g., power systems [10].

Among the model-based methods, a dynamic watermarking
approach [6], [7] shows potential for detecting false data
injection attacks in IBRs. The watermarking approach super-
imposes a small noise (called a “watermark” signal) on the
controla commands to detect cyber attacks in the IBR sensors.
However, the watermark signal is injected solely for attack
detection, and it may compromise the control performance
of IBRs. This paper therefore proposes a novel approach
that leverages renewable fluctuations to watermark the IBR
measurements and identify measurements under cyber attacks.
Compared with the conventional watermarking approaches
from [6] and [7], the method developed in this paper does
not require external noise injection and thus does not impact
the IBR control performance.

The rest of this paper is organized as follows. Section II
describes the dynamics of IBRs and points out the cyber
vulnerability in the IBRs; Section III introduces the natural
watermarking approach; Section IV tests the effectiveness of
the proposed approach in a single IBR system; and Section V
summarizes this paper and points out future work.



II. PROBLEM FORMULATION

We use the solar-powered IBR shown in Fig. 1 to present a
basic implementation of our natural watermarking, which can
be extended to the IBRs powered by other types of renewable
energy, e.g., wind. A variable DC voltage Vpc models the
intermittent irradiation received by a solar panel. Due to
hardware like DC-link capacitors and the slow change rate
of irradiation, Vpc variations will always be well below the
inverter switching frequency and there will be no significant
interaction between Vpc and the switching dynamics. The
average model of a two-level 3-phase voltage source inverter
(VSI) is therefore used to simulate the terminal voltages [11]:

Vbe

Vabe = Mgpe 7 (1)

where my,. € R? is the voltage modulation index and Vpc
is the DC-link voltage. The inverter output is then passed
through an LCL filter and a closed loop control system is
established through the measurements of the inverter current
if, the capacitor voltage v, and the filter output current
i,. The feedback consists of a droop controller followed by
a voltage and current controller. To reduce the necessary
control complexity all 3-phase measurements are converted to
the synchronous direct-quadrature frame (dq-frame) and the
equations governing each component can be found in [12].

Without considering the switching dynamics of the inverter
in Fig. 1, the dynamics of the inverter with the LCL filter can
be described by

1
x = Ax + 53 Vbemype (2a)

y = Cx (2b)

where vector x collects the states of the three-phase output
filter; matrices A, B, and C result from the filter dynamics;
and y € R? collects the three-phase currents iy and i,, and
the voltages v, of the filter. It is worth noting that the state-
space model in (2a), (2b) contains a bilinear term Vpcmyp,
and, therefore, it is nonlinear. We will exploit this observation
later in Section III.

The attack symbol in Fig. 1 points out the location where
an attacker can manipulate the actual measurements y. By
doing this, the attacker can control the inverter operation and
cause the IBR to malfunction, harming both the inverter and
the connected loads, and compromising grid security. In this
article, we assume that the DC voltage measurements are
secured, since the DC voltage sensors are less physically
accessible and not directly used within the control loop,
making them less likely to be a target for attackers.

III. NATURAL WATERMARKING APPROACH

In this section, we discuss in detail how the natural water-
marking approach detects cyber attacks.

A. Watermarking Measurements via Renewables to Detect
Cyber Attacks

Fig. 1 can be simplified by the feedback system shown
in Fig. 2. The active watermarking approach injects an inde-
pendent and identically distributed watermark signal e, with
known statistics onto the inverter control input mgp. as shown
in Fig. 2. This externally injected watermark then propagates
through the system and appears in the sensor measurements
if, v¢, and i,. By checking the existence of the watermark
signal in the sensor measurements via two statistical tests, a
wide range of false data injection attacks in the measurements
can be detected [13]. Note that detecting cyber attacks in
the measurements requires a noise injection e which may
compromise the control performance of the controller in Fig. 2.

Plant

Mabe + € ’if,UC,’io

e Mab
P £ | Controller |<

Fig. 2. Active watermarking approach.

The natural watermarking approach proposed in this paper
aims to eliminate the need for injecting the noise e in the
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Fig. 1. System block diagram.



conventional watermarking approach. The proposed approach
leverages the fluctuations of renewable energy generation,
Vbe, as a natural watermark signal, as illustrated in Fig. 1.
Changes in environmental conditions such as temperature and
solar irradiation introduce a stochastic feature to variable Vpc.
This makes it challenging for the attackers to reproduce this
signal. The renewable fluctuation Vpc behaves like a natural
watermark for the measurements and thus removes the need
for externally injecting white noise e.

The next question is how to check if the natural watermark,
i.e., the renewable fluctuation Vpc, exhibits in the measure-
ments y. For the ¢-th sensor, this can be done by computing
two types of indicators: moving average xi; and moving
variance Y2;. Denoted by z is the sensor measurements of y.
An FDI attack may cause z # y. Each element z; in vector z
corresponds to the measurement reported by sensor ¢ which is
one of measurements of the three-phase if, v, and i,. We
calculate the difference Az;[k], between the corresponding
elements of the measured and the predicted values of each
Sensor ¢:

Azi[k] = |2i[k] — Z[K]] 3)

where Z;[k] is the predicted measurement at k-th data point
according to dynamics (2), Vpe, and my,.. With Az;, the
two indicators x1;[I] and x2;[I] at time [ are computed in a
sliding-window fashion. In Fig. 3, the red-dashed box shows
the window at time [ that collects W data points from time
l—W +1 to time /. Using the data collected in the red-dashed
box, we compute x1;[!] and x2;[l] by

(4a)

1
x2:[l] = W

Z (Azl[k‘} — Xli)Q-

k=l-W+1

(4b)

When n € {1,2,...,W} new data points are received, the
data points in the red-dashed box are updated by removing 7
past data points and adding 1 new data points. The updated
data points are collected by the blue-dashed window in Fig. 3.
Then we recalculate x1,[] and y2;[l] based on the updated
data points in the the blue-dashed window. After repeating
the above process, we will obtain a sequence of x1; and ;.
Once a cyber attack occurs at the ¢-th sensor, the values of
x1; and yo; will start shooting up significantly compared to
the no-attack scenario, making the attack detectable.
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Fig. 3. Sliding window approach.

B. System Identification

The detection of cyber attacks using natural watermarking
requires prior knowledge of the system inputs Vpc, and myp,
and the plant model (2a) and (2b). This knowledge is necessary
to obtain Z;[k] which is compared with the measured outputs
z;|k] to detect cyber abnormalities. The plant model of the
system can be obtained by analytically deriving the state-space
model of the IBR system, as discussed in Section II. However,
a third-party cybersecurity service provider may not know the
IBR parameters to derive the state-space model. To overcome
this challenge, we leverage the system identification technique
in [14] to obtain the state-space model.
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Fig. 4. (a) Performance of system identification when using

my,. and Vpce as the inputs and i, and v, as the outputs; (b)
Zoomed-in plot of the area marked by the blue box.
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Fig. 5. (a) Performance of system identification when using
Vabe as the input and i, and v, as the outputs; (b) Zoomed-in
plot of the area marked by the blue box.

One key question of system identification techniques is:
what are the inputs and outputs? Without domain knowledge
of IBR dynamics, a natural option is to consider mg,. and Vpc
as two separate inputs, and i, and v, as the outputs. To perturb
the system we change Vpc, which has a mean of 800 V, by
adding a normally distributed (Gaussian) fluctuation with a
variance of 50 V at every 10 ms. Then we use the system
identification toolbox in MATLAB to obtain the state-space
model. Fig. 4 shows the system identification performance:
while the predicted measurement can capture the general trend
of the actual measurement, the predicted measurements do
not capture the dynamics caused by the change of m,,. and
Vbe. Such a poor performance results from the non-linearity
of dynamics (2).



However, if we consider my,.Vpc as the inputs, system
(2) becomes linear. With such an observation, we perform
the system identification by choosing mg,. Vpc as inputs. The
performance of the system identification is shown in Fig. 5.
It can be observed that the predicted measurements capture
not only the general trend of the measurements but also the
transients due to the perturbation of mg,. and Vpc, resulting
in a high prediction accuracy of over 99.9%.

IV. CASE STUDY

In this section, the test system is briefly described and
the natural watermarking approach is evaluated against noise
injection attacks, replay attacks, and stealthy attacks.

A. Test System Description

The output voltage of the PV system, Vpc, from Fig. 1 is
modeled with a mean of 800 V and a normally distributed
(Gaussian) fluctuation at every 10 ms. This fluctuation of Vpc
creates a natural watermark that propagates to the system
measurements and is essential for cyber attack detection. The
solar PV system is then connected to an inverter modeled using
the average model. The output of the inverter is connected to
an LCL filter with the parameters Ly = 1.35 mH, C; = 50 uF,
re = 0.1 Q, L, = 0.35 mH, r. = 0.03 Q. A resistive load of
25 Q is connected to the system.

B. Simulation Results

1) Noise Injection Attack: In this attack scenario, a Gaus-
sian noise is added to the sensor measurements. This distorts
the current and voltage measurements that are used in the
control loop and affects the normal operation of the system.
Fig. 6a shows how the filter output current in phase A is
distorted under a noise injection attack starting at 0.15 s. The
sudden increase in the indicators as seen in Fig. 6b and 6c¢
clearly indicates the presence of the attack. This alerts the
system operators about the system intrusion and the noise
injection attack can be detected almost immediately.

2) Replay Attack: In this attack scenario, the attacker
replaces the true system measurements with recorded measure-
ments and keeps replaying the recording to evade detection.
This is an advanced attack scenario where there is no visible
distortion in the sensor measurements. Fig. 7a shows a replay
attack launched on the filter output current in phase A at
0.15 s. This looks as if the system is healthy and is in normal
operation conditions even if there is an attack present in the
system. Although the current measurement does not indicate
any distortions or abnormal behavior, the sudden increase in
both x;1 and xs clearly indicates that there is an anomalous
behavior in the system as seen in Fig. 7b and 7c. Thus, the
replay attack can be detected in less than 1.5 cycles after the
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Fig. 8. Detection of stealthy attack at 0.15 s due to the presence of the watermark signal in the sensor measurements: (a)
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Fig. 9. Undetected stealthy attack at 0.15 s due to the absence of the watermark signal in the sensor measurements: (a) Stealthy
attack in 7.,; (b) Detection using x1,, the attack indicator for sensor 1 which measures %.,; (c) Detection using x2,, the attack

indicator for sensor 1 which measures i,,.

attack using the proposed approach.

3) Stealthy Attack: In this attack scenario, the attacker
predicts the behavior of the system based on the system model
and measurements. With the predicted measurements z, the
attacker forces the sensors to report z + n where n is a
small noise different from the true noise. The response of the
detection system under a stealthy attack in i, is shown in Fig.
8 and it can be seen that the attack is detected by the proposed
attack indicators x1 and yo.

Next, we show why the natural watermark is necessary for
detecting cyber attacks in our approach. When the natural
watermark is not present in the sensor measurements which
means that our watermark signal Vpc is a constant, the
response of the detection system in such a scenario is shown
in Fig. 9. It can be seen that the stealthy attack is not detected
by the proposed attack indicators x; and X2, as the indicators
keep almost constant. Hence, this validates the necessity of the
natural watermark signals in our algorithm for cyber attacks
detection. Even if the solar PV output voltage, which is our
watermark signal, remains constant for a while, our detection
system would still be able to detect cyber attacks, once the
PV output starts to fluctuate again.

V. CONCLUSION

This paper proposes a novel cyber attack detection method
that leverages the natural fluctuations of renewable generation,
e.g., PV panels, to watermark the IBR measurements and
thereby detect cyber attacks in the system. Compared with con-
ventional watermarking approaches, the proposed technique
does not require an external noise injection as the watermark
signal. Thus, it does not affect the IBR control performance.
The attack detection is carried out using two types of indicators
namely the moving average x; and the moving variance xo.
The performance of the proposed method is validated against
noise injection attacks, replay attacks, and stealthy attacks.
All these attacks are successfully detected by the proposed
method in a short time. This approach can be extended to
grid-connected multi-IBR systems powered by heterogeneous
renewable resources. Future work will verify the results using
hardware experiments under realistic renewable fluctuations.
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