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ABSTRACT
Autonomous mobile systems increasingly rely on deep neu-
ral networks for perception and decision-making. While
e!ective, these systems are vulnerable to adversarial ma-
chine learning attacks where small perturbations in the input
could signi"cantly impact the outcome of the system. Com-
mon countermeasures include leveraging adversarial train-
ing and/or data or network transformation. Although widely
used, the main drawback of these countermeasures is that
they require full and invasive access to the classi"ers, which
are typically proprietary. Additionally, the cost of training
or retraining is often prohibitively expensive for large mod-
els. To tackle this, puri"cation models have recently been
proposed. The aim is to incorporate a “puri"cation” layer
before classi"cation, thereby eliminating the necessity to
modify the classi"er. Despite their e!ectiveness, state-of-the-
art puri"cation methods are compute-intensive, rendering
them unsuitable for mobile systems where resources are
constrained and large latency is not desired.
This paper presents a new approach, LightPure, that en-

hances the puri"cation of adversarial images. It improves the
accuracy of the current leading puri"cation methods while
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also providing notable enhancements in speed and computa-
tional e#ciency, making it suitable for mobile devices with
limited resources. Our approach uses a two-step di!usion and
one-shot Generative Adversarial Network (GAN) framework
for puri"cation, prioritizing latency without compromising
robustness. We propose several new techniques in designing
our model to achieve a reasonable balance between classi"ca-
tion accuracy and adversarial robustness while maintaining a
desired latency.We design and implement a proof-of-concept
on a Jetson Nano board and evaluate our method using sev-
eral attack scenarios and datasets. Our results show that
LightPure can outperform existing puri"cation methods by
up to 10x in terms of latency while achieving higher accu-
racy and robustness for various black-, gray-, and white-box
attack scenarios. The fusion of speed and robust defense
mechanisms positions our method as a signi"cant advance-
ment in the "eld of adversarial image puri"cation, o!ering a
scalable and e!ective solution for real-world mobile systems.

CCS CONCEPTS
• Security and privacy→ Embedded systems security; •
Computing methodologies→ Neural networks; • Com-
puter systems organization → Embedded and cyber-
physical systems.
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1 INTRODUCTION
Deep learning models have been increasingly integrated into
various aspects of decision-making in embedded and mobile
devices. For example, deep learning-based computer vision
techniques are now commonly used in commercial o!-the-
shelf advanced autonomousmobile systems (e.g., cars, robots,
drones) [15, 33, 39, 48, 61, 65, 66].

Despite their exceptional performance in various machine
learning tasks, deep neural networks are vulnerable to ad-
versarial attacks [7, 17, 54] where small perturbations in
the input could greatly alter the output of the classi"er.
In the context of real autonomous mobile systems, such
errors could lead to catastrophic failures and critical dam-
ages [5, 6, 8, 23, 34].
Developing new attack and defense mechanisms for ad-

versarial machine learning attacks has been an active area
of research in the past few years [2] and many di!erent
attack and defense strategies have been proposed. On the
defense side, the main solutions can be categorized into ad-
versarial training [13, 24], data transformation [3], gradient
masking [42], and moving target defenses [51]. Despite their
many advantages, these methods often have poor general-
ization [13, 28, 41]. Additionally, adversarial training tends
to be more computationally complex than standard training
[57]. This complexity increases further when continuous re-
training of the classi"er is necessary [51]. Moreover, these
methods require full access to the classi"er, which is often
proprietary. This makes them impractical for real-world au-
tonomous systems due to the large models, limited computa-
tional power on themobile device, and the need for retraining
the classi"er. For instance, the state-of-the-art moving target
defense (MTD) technique [51] demands continuous train-
ing and additional models, resulting in signi"cant overheads
such as area, latency, and power consumption.
To address these issues, new methods based on adversar-

ial puri!cation have been proposed [41]. The key idea is to
develop a machine learning block to purify adversarially per-
turbed images before classi"cation. In comparison to adver-
sarial training methods, puri"cation can defend against un-
seen threats in a cascadable plug-and-play manner without
retraining the classi"ers. In the context of autonomous mo-
bile systems, such a defense strategy is much more desirable

because retraining the classi"er is either not feasible (pro-
prietary) and/or extremely time-consuming. Furthermore,
puri"cation methods do not make assumptions on the form
of attack and the classi"cation model and thus can defend
di!erent pre-existing classi"ers, making them more applica-
ble in diverse scenarios (e.g., di!erent models of autonomous
systems, applicability in various geographical locations, etc.).
Early attempts at puri"cation primarily concentrated on

encoder-based and GAN-based techniques for data transfor-
mation [38, 47]. However, they proved inadequate in ensur-
ing robustness against powerful and adaptable attacks, such
as white-box projected gradient descent [41, 60]. Recently,
more potent puri"cation models have emerged, utilizing dif-
fusion models [49]. These models involve initially mixing
the input with a small amount of noise through a forward
di!usion process, followed by the restoration of the clean
image via an iterative reverse generative process.
While more e!ective than existing invasive adversarial

training models and earlier puri"cation ones, the current
state-of-the-art di!usion puri"cation methods face signi!-
cant latency issues because both the forward and backward
processes may need thousands of steps to achieve the desired
quality for the puri"ed image. As we will show in our experi-
ments, such a puri"cation process takes hundreds of millisec-
onds to process a single image on a standard mobile device.
This makes it unsuitable for autonomous mobile systems that
need low-latency processing and real-time decision-making.

To address the need for a cascadable, generic, non-invasive
but fast puri"cation model, we develop LightPure. Our
model leverages a lightweight di!usion strategy to achieve
puri"cation where the noise is added in one step and the
recovery is also done in one shot. Our key idea is to develop a
carefully designed GAN model instead of using an expensive
iterative di!usion process. As we will explain in this paper,
a naive design of the GAN, proposed in prior work [47], will
result in either low robustness against adversarial and adap-
tive attacks, low accuracy due to poor noise recovery, and/or
high latency. Instead, our design balances the robustness, ac-
curacy, and latency by introducing several new contributions
including a novel GAN structure and employing multiple
new techniques during its training that combine di!usion
models, GANs, and similarity-based loss estimation.

A high-level overview of our method is shown in Figure 1.
LightPure can be applied as a plug-and-play component as
it does not require any prior knowledge about the classi"er.
Details of our design are provided in Section 3. It is also
important to mention that puri"cation is an orthogonal de-
fense method to adversarial training, hence puri"cation can
be combined with existing defense methods including MTD
and adversarial training (i.e., feeding the puri"ed images
from our method to the adversarially trained classi"ers).

https://doi.org/10.1145/3636534.3690684
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Figure 1: To protect the system from adversarial at-
tacks, we develop a method to purify the image before
classi!cation. Our method does not require access to
the classi!er and is signi!cantly faster than the state-
of-the-art while maintaining robustness and accuracy.

We develop a proof-of-concept for LightPure using an
Nvidia Jetson Orin Nano board. Using standard datasets like
CIFAR-10 and GTSRB, we show that our system can achieve
strong resistance against di!erent types of black-, gray-, and
even white-box attacks, similar to leading defense methods
such as adversarial training and puri"cation. Additionally,
we analyze the speed and accuracy of our model, demon-
strating a signi"cant improvement in latency compared to
the best puri"cation models for mobile systems. Our results
show that LightPure outperforms existingGAN-based and
di"usion-based methods by 2x and 10x in terms of latency,
respectively, while also achieving slightly better robustness
and accuracy. Furthermore, compared to state-of-the-art non-
puri"cation methods (MTD [51]), LightPure improves the
latency by more than 2x while also outperforming them in
terms of accuracy and robustness.

In short, the contributions of this paper are as follows:
• A new latency-aware di!usion model based on a GAN ar-
chitecture and a novel training scheme to achieve robust
and low latency puri"cation.

• Improving the accuracy of the di!usion model by intro-
ducing a feedback-based accuracy-aware algorithm.

• Proof-of-concept implementation of our system on a
Jetson Nano embedded system.

• Evaluating LightPure’s robustness, accuracy, and latency
using standard benchmarks. Comparing it with state-of-
the-art adversarial defense models [51].

• Our design and evaluations are publicly available and
open-sourced at https://github.com/ssysarch/LightPure.

2 BACKGROUND
Adversarial Attacks.Machine learning models are vulnera-
ble to a range of attacks targeting their availability, integrity,
and privacy. This paper focuses on evasion attacks where
the goal is to craft an input during inference time to cause
misclassi"cation by the victim model. More formally, the

objective is to "nd an adversarial input, 𝐿 , such that for a
function, 𝑀 , 𝑀 (𝐿) ω 𝑀 (𝐿), where 𝐿 is the original input.
Several methods exist for crafting adversarial samples.

For example, the Fast Gradient Sign Method (FGSM) was
designed to attack classi"cationmodels that utilize Stochastic
Gradient Descent (SGD) [17]. FGSM calculates the gradients
of the model’s loss function with respect to each pixel, then
perturbs the input data to maximize the loss function:

x̃ = x + 𝑁 sign (↑x 𝑂 (𝑃 , x,𝑄)) . (1)

Given that FGSM relies on the model’s parameters, it is
generally considered a white-box attack, indicating the at-
tacker has full access to the model’s architecture and param-
eters.

The Projected Gradient Descent (PGD) is a more powerful
multi-step variant of FGSM [37]. PGD operates on a schedule
of iterative perturbations where the noise is clipped by a
maximum allowed perturbation 𝑅 on each iteration t. More
formally:

x(𝐿+1) = clipx,𝑀
(
x(𝐿 ) + 𝑆 · sign(↑x 𝑂 (𝑃 , x(𝐿 ) ,𝑄))

)
. (2)

The PGD process is solely guided by maximizing the
model’s loss without accounting for the con"dence of the
model’s prediction. Similar to the FGSM, the PGD and its
variants are also white-box attacks. However, these attacks
can still be utilized in black-box and gray-box scenarios. In
black-box attacks, the internal details of the target model are
completely abstracted or hidden from the attacker. Resilience
to black-box attacks is fundamental to the robustness of a
model. By training an FGSM or PGD attack on a white-box
SGD model, the attack may be e!ective against a black-box
target SGD model. A gray-box attack lies between both white
and black-box scenarios where the attacker is given a por-
tion of the model, while the rest is hidden. In systems with
a puri"er and a classi"er, a possible gray-box attack could
consist of the attacker having access to the classi"er but not
the puri"er and/or the adversary knowing the architecture
of the puri"er and classi"er but not the internal gradients.
In this context, de"ning an attacker’s access to the model
means the attacker knows the parameters of the model, not
that they have physical access to the model. Further details
about our threat model, assumption, and attack strategies
are discussed in Sections 3 and 4.
Defense Mechanisms. Several techniques exist to defend
against adversarial evasion attacks. These include adver-
sarial training, data transformation, gradient masking, and
puri"cation.
Adversarial training involves adding perturbed images

into the training data for the classi"er [11]. The idea is that
the classi"er would be able to learn what perturbations ad-
versaries are using in attacks to improve model robustness.

https://github.com/ssysarch/LightPure
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However, this method su!ers drawbacks since generating
such perturbed images for training is expensive, and this
training method can decrease the classi"er’s accuracy on
clean images.

Data transformation involves applying linear transforma-
tions such as Principal Component Analysis (PCA) on the
input data before classi"cation [3]. The idea behind these
types of defenses is that the transformations will remove the
adversarial perturbations of the input before classi"cation
to improve robustness.
Gradient masking is designed to increase the di#culty

of generating adversarial samples given a classi"er [1]. By
purposely introducing random noise into the input of the
classi"er, it is harder for an adversary to determine how to
perturb the input in order to degrade the performance of the
classi"er. This method also su!ers the drawback of decreased
accuracy on clean images, as purposely introducing noise
can interfere with the classi"er’s performance.
To address this, a moving target defense (MTD) has re-

cently been proposed [51, 52]. The key idea is to leverage
multiple independently trained models during inferences
to increase robustness against adversarial inputs. Further-
more, MTD dynamically retrains the networks to further
improve robustness. The main drawbacks of MTD are: (i)
it requires multiple models (up to 20) during inferences to
achieve robustness. This in turn signi"cantly increases the
latency, storage, and energy overheads. (ii) MTD requires
model retraining. While for small models this is possible, for
large models this is not feasible.
More recently, methods based on puri!cation have been

proposed [47, 59]. Puri"cation involves using a purifying
model to remove the adversarial perturbations on input im-
ages before classi"cation The puri"ed input is passed to the
classi"er for classi"cation. The main advantage of puri"ca-
tion is that it is independent from the classi"cation, hence
retraining the classi"er is not needed. Furthermore, it is an
orthogonal solution, hence it can be combined with MTD
and/or adversarial training.
Adversarial Puri!cation. Methods based on puri"cation
are "rst proposed in MagNet [38] and DefenseGAN [47].
Speci"cally, MagNet leverages an auto-encoder to move ad-
versarial examples closer to the manifold of legitimate ex-
amples. The robustness is further improved by utilizing a
collection of auto-encoders during runtime and having a
mechanism to randomly pick one of them.

DefenseGAN [47] further improves this by introducing a
GAN structure. Despite these advantages, the performance
usually falls behind current adversarial training methods
[11, 24, 44], particularly against adaptive attacks where the
attacker has the full knowledge of the defense method [1, 55].
This is usually attributed to the shortcomings of current

generative models used as a puri"cation model, such as mode
collapse in GANs [16] and the lack of randomness [41, 43].
Recent advancements in puri"cation research have been

driven by the use of di"usion models. This idea was "rst intro-
duced in Di!pure [41]. It includes two steps: (i) adding noise
to the input in the forward process with small but repet-
itive di!usion timesteps, (ii) removing the noise through
a generative (backward) process by solving a reverse sto-
chastic di!erential equation (SDE). Several follow-up works
improve the speed and robustness of this process by intro-
ducing new techniques for the forward and/or backward
processes [40, 58, 60].

More formally, given an adversarial sample x0 ↓ 𝑇(𝐿0), the
"rst step in di!usion-based adversarial puri"cation is adding
noise to smooth the adversarial perturbations. In di!usion
models [22, 49], this is done via the forward di!usion process
of 𝑈 steps and variance schedule {𝑉𝐿 }𝐿 ↔ [𝑁 ] modeled by a
conditional probability distribution:

𝑇(x1:𝑁 | x0) =
𝑁∏
𝐿=1

𝑇(x𝐿 | x𝐿↗1),

𝑇(x𝐿 | x𝐿↗1) = N(x𝐿 ;
√
1 ↗ 𝑉𝐿x𝐿↗1, 𝑉𝐿 I) .

(3)

The total amount of noise inserted should be signi"cant
enough to remove the perturbations while preserving the
global semantics of the image for accurate classi"cation. Ad-
versarial perturbations are typically small and therefore can
be eliminated using fewer timesteps than generative tasks.
Empirically, it has been shown that it is only necessary to
inject noise for 7.5% to 15% of the total time steps required
for the full di!usion process, depending on the dataset [41].

The next step is to denoise x𝑁 to obtain the puri"ed image
x̂0, which is typically de"ned in di!usion models with the
distribution

𝑊𝑂 (x0:𝑁 ) = 𝑊 (x𝑁 )
𝑁∏
𝐿=1

𝑊𝑂 (x𝐿↗1 | x𝐿 )

𝑊𝑂 (x𝐿↗1 | x𝐿 ) = N
(
x𝐿↗1; 𝜴𝑂 (x𝐿 , 𝑋) , 𝛚𝑂 (x𝐿 , 𝑋)

)
.

(4)

However, this process is extremely slow because 𝑈 must
be large enough to ensure that the step size 𝑉𝐿 is su#ciently
small for the Gaussian assumption on the denoising distribu-
tion to hold [14]. This is typically in the order of hundreds.
Our approach builds on established puri"cation insights

but introduces a new architecture tailored to address the
practical drawbacks seen in current methods, especially in
mobile systems. Details of our design are presented in the
next section.

3 DESIGNING LIGHTPURE
The main objective of our model, LightPure, is to design
a fast and e#cient puri"cation model that is suitable for
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resource-constrained mobile systems. In the following, we
"rst explain our threat model and assumptions and then
describe the model in detail.

3.1 Threat Model and Assumptions
We are concentrating on mobile autonomous systems that
use cameras and deep neural networks for sensing and per-
ception. Examples include autonomous cars, drones, and
robots. Compared to high-end servers, these mobile devices
have often limited resources including CPU and GPU compu-
tational power, memory storage, and energy. Yet, they require
real-time processing given the time-sensitive cyber-physical
nature of their operations (e.g., path planning, driving, etc.).

We focus on evasion attacks during inference time, specif-
ically image classi"cation using a deep neural network. This
is a fundamental basic block for perception in many mobile
autonomous systems. We assume that the model is trained
correctly and that even standard defense mechanisms such
as certi"ed robustness and adversarial training were applied
during the training.
An adversary can control the inputs and can generate

adversarial samples using state-of-the-art techniques. Par-
ticularly, we utilize standard and widely used AutoAttack
benchmarks [10, 11] for crafting adversarial samples. We
consider both targeted and non-targeted attacks. Further, we
assume that the adversary has either (i) full knowledge about
the internals of the system, including the structures and the
internal values (gradients). This is referred to as a white-box
attack; or (ii) partial knowledge where the attacker only has
access to the gradient of the classi"er and does not know
anything about the puri"er. We refer to this as a gray-box
attack; or (iii) no knowledge about the system, considering
the model as a black-box.

The assumption of white-box attacks is particularly strong
in the context of mobile systems. Previous studies in this "eld
operated under the assumption that attackers do not possess
physical access to internal system values, such as gradients.
Consequently, they considered white-box attacks to be out-
side the scope of their research [51, 52]. The rationale is
that if attackers did have such access, they could potentially
carry out more direct and powerful attacks without requiring
adversarial inputs. This paper, however, examines all three
types of attacks and presents "ndings for each. Nonetheless,
it is highlighted that gray-box attack scenarios are the most
realistic in contemporary autonomous mobile systems.

3.2 LightPure Overview
As discussed in Section 2, puri"cation models o!er various
advantages such as $exibility and suitability for autonomous
mobile systems. However, the main issue is that existing pu-
ri"cation models are slow. Our main contribution is creating

a new puri"cation model that is accurate, fast, and robust.
The key insight here is that to speed up the puri"cation
process, we should (i) use much larger time steps (mean-
ing fewer iterations), and (ii) make denoising (both forward
and backward) less complex. Consequently, if we increase
the step size, 𝑉𝐿 in Equation 3, to decrease the number of
steps, the true denoising distribution becomes more com-
plex and multimodal. Our main observation is that a GAN
model can be used since they have been proven e!ective in
modeling such distributions in the image domain [30, 58].
Furthermore, evaluating GANs is much more lightweight
compared to SDEs which were used in prior methods, further
improving the speed.
Designing a GAN-based puri"cation model, however, is

not trivial. The important consideration is that in an au-
tonomous mobile system, three important metrics should be
jointly optimized: accuracy, robustness, and latency. Naive
design decisions could lead to poor designs where some or
all metrics are sacri"ced in favor of others (e.g., poor accu-
racy but good robustness and latency, large latency with
good accuracy, etc.). To optimize this, we design LightPure.
Our design has two important contributions: (i) Latency-
aware robust di"usion model and (ii) Accuracy-aware
training scheme. Note that our method is fundamentally
di!erent than GAN-only methods for puri"cation [38, 47].
These methods do not employ di!usion and as a result, are
signi"cantly less robust against adaptive attacks [41]. As we
will show, combining GANs in a di!usion model, however,
is non-trivial and requires a careful set of considerations.
Figures 2 and 3 present the main steps in our design. In

the following, we explain each component in detail.

3.3 Latency-Aware Di"usion Model
To explain our design, we "rst provide its high-level intuition
and then present the formal details. Recall that our goal is to
design a puri"er that has a low number of denoising steps
and each step is preferably simple. As a result, initially, we
aim for a method that has only one forward step (di!usion)
and one backward step (denoising). Internally, the design
includes a generator that learns how to generate (denoise)
an input using a discriminator that can distinguish between
noisy (fake) and clean (real) images.

Our initial analysis revealed that this model lacks general-
ization and robustness primarily because it predominantly
learns to replicate the input. While this is desirable for stan-
dard image generation tasks, it proves detrimental for ad-
versarial puri"cation. In such cases, closely mimicking the
input is insu#ciently robust, given that the input image may
contain adversarial elements (recall that the objective is to
eliminate adversarial noise). The only bene"t of mimicking
the input is that the ‘clean’ data accuracy remains unchanged
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Figure 2: Training the puri!er involves multiple steps.
The original (clean) image is !rst di"used in two steps.
The perturbed image is then fed into a generator. The
generator is trained using a loss function that is a com-
bination of a conditional discriminator and similarity
(SSIM) losses.

C Stop Sign

C Fire Hydrant

Figure 3: The trained generator is used during the in-
ference to purify images dynamically.

as the puri"cation does not signi"cantly change the input
(note that this is desired for image generation scenarios).

To address this, we’ve made a new observation that a two-
step di!usion (forward) process could potentially solve the
issue. Essentially, our model "rst generates a noisy image
(depicted as 𝐿1 in Figure 2) from the original clean image.
Instead of using this for the discriminator and generator, we
create another noisy image by adding more noise to 𝐿1 (and
not the clean image). The goal is to then use these two noisy
samples (𝐿1, 𝐿2) to train the generator and discriminator (𝑌 ()
and 𝑍 () in Figure 2). The idea is for the model to learn to
denoise 𝐿2 given a noisy input 𝐿1. In contrast, originally (with
just one step), the model learned how to denoise 𝐿1 given a
clean input 𝐿0. The key di!erence lies in the fact that during
inference, inputs are more similar to 𝐿1 than 𝐿0, hence the
puri"cation will be more robust. Note that here we don’t
make any assumption about the noise and/or distribution.
Instead, the observation is that the model should learn to
purify a noisy image rather than mimicking a clean one. In
Section 6, we will show that our model remains robust under
di!erent noise distributions, further con"rming this claim.
The steps during inference are also shown in Figure 3.

Here, we only add one more step (given that the input is
already noisy) and the goal is to generate a clean image from
these two samples.

To enhance robustness further, we observe that the dis-
criminator could also bene"t from a two-step approach. In-
stead of using 𝐿2 and 𝑌 (𝐿2) for the discriminator (to distin-
guish between noisy and clean images), we compare 𝐿1 and
its noisy version, 𝐿 ↘1, which is created by adding noise to
the puri"ed image (shown as 𝐿 ↘0 in Figure 2). The idea is for
the generator function to learn how to completely purify the
image (i.e., one-shot) using 𝐿2 without recreating 𝐿1 (which
remains noisy). In simpler terms, since the objective is to
purify adversarial samples, the generator should be able to
produce a clean image (similar to 𝐿0) from a noisy sample,
while the discriminator should be able to distinguish be-
tween an original noisy image and its fake version (puri"ed
and then perturbed again). Additionally, guiding this process
using 𝐿2 as a condition further improves the discriminator’s
accuracy (more details later).

More formally, to train our GAN for denoising with larger
step sizes, we reduce the number of timesteps without having
to increase 𝑉𝐿 by setting 𝑈 = 2 and train a time-independent
discriminator and a one-shot generator. Speci"cally, from
the raw image x0, we obtain x1 and x2 by di!using for one
and two timesteps, respectively:

x1 =
√
1 ↗ 𝑉1𝐿0 +

√
𝑉1𝑅 . (5)

x2 =
√
1 ↗ 𝑉2𝐿1 +

√
𝑉2𝑅 . (6)

where 𝑅 ↓ N(0, I𝑃 ) and 𝑉1, 𝑉2 is the variance schedule. Our
generator, a one-shot model denoted as 𝑌𝑂 (x, z) : R𝑄 ≃
R𝑅 → R𝑄 , models the denoising distribution 𝑊𝑂 (x1 | x2).
In other words, it predicts x↘0 from x2 and an 𝑎-dimensional
latent variable z ↓ 𝑊 (z) := N(z; 0, I):

x↘0 = 𝑌𝑂 (x2, z) . (7)

x↘1 is sampled using the posterior distribution 𝑇(x𝐿↗1 |
x𝐿 , x0) given x2 and x↘0 (similar approach has been proposed
in prior work by Xiao et al. [58]). The noise is denoted by 𝑏⇐
in Figure 2.

The discriminatorwith parameters𝑐 , denoted as𝑍𝑆 (x, x2) :
R𝑄 ≃R𝑄 → [0, 1], takes two N-dimensional inputs, x and x2,
and determines whether x is an output from the generator
(x↘1) or from a real sample (x1). We discriminate on a di!used
input to prevent over"tting of the discriminator, since the
di!usion process smooths the data distribution [36]. The
loss function of the discriminator quanti"es how well the
discriminator can di!erentiate between real and denoised
samples by comparing its predictions to the actual labels of
the data. It is formalized as follows:

min
𝑆

E𝑇 (x0 )𝑇 (x1 |x0 )𝑇 (x2 |x1 )
[
↗ log

(
𝑍𝑆 (x1, x2)

) ]
+ E𝑇 (x2 )𝑈𝐿 (x1 |x2 )

[
↗ log

(
1 ↗ 𝑍𝑆

(
x↘1, x2

) ) ]
.

(8)

For the generator’s architecture, we follow Xiao et al. and
use StyleGAN, a non-saturating GAN variant [25, 26, 58].
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While we considered other architectures, we found that Style-
GAN achieves the right balance between computational com-
plexity and accuracy.
Since the goal of the generator is to generate samples

that the discriminator classi"es as real, it is penalized by the
loss function when the discriminator correctly identi"es its
output as fake. The loss function is formulated as follows:

min
𝑂

E𝑇 (x2 )E𝑈𝐿 (x1 |x2 )
[
↗ log

(
𝑍𝑆

(
x↘1, x2

) ) ]
. (9)

Note that, we did not further try to optimize the GAN
structure as our main novelty relies on the design algorithm
(two-step forward and one-shot reverse training) rather than
the GAN architecture itself. We left further optimization
of the internal architecture to future work. Details of the
network are provided in Section 4, and are shown in Figure ??
(see Appendix).

3.4 Accuracy-Aware Denoising Model
The objective in LightPure is to optimize robustness, latency,
and accuracy simultaneously. The design outlined above
enhances both robustness and latency by employing a one-
shot generation during inference, as depicted in Figure 3.
This approach is fast and utilizes a generalized model that is
robust. However, our analysis revealed that the puri"cation
process signi"cantly a!ects downstream task accuracy due
to its invasive nature. To address this issue, we enhance
LightPure by introducing a new denoising step that considers
accuracy as a factor.
Inspired by Cycle-Consistent Adversarial Networks [63],

to improve the quality of denoised images, we incorporate
a metric comparing the similarity between a denoised im-
age and the original clean image into the generator’s loss
function [63]. Speci"cally, we use the Structural Similarity
Index Measure (SSIM), which is based on the computation
of three factors: luminance, contrast, and structure [56, 62].
The SSIM calculates the similarity between 𝐿1 and 𝐿 ↘1, adding
it as an extra component to the generator’s loss function.
The updated loss function is

min
𝑂

E𝑇 (x2 )E𝑈𝐿 (x1 |x2 )
[
↗ log

(
𝑍𝑆

(
x↘1, x2

) ) ]
+𝑑(1↗SSIM(𝐿,𝑄)).

(10)
Here, 𝑑 is a regularization factor, balancing the importance

of accuracy vs. robustness. Details are also shown in Figure 2.
In Section 6, we will show that using SSIM as part of the loss
function has a signi"cant impact on improving the overall
accuracy and robustness metrics across di!erent datasets.

4 PROOF-OF-CONCEPT
IMPLEMENTATION

Device. We utilize an Nvidia Jetson Orin Nano board to
develop the proof of concept for LightPure. This board is

commonly used for running deep neural networks in vari-
ous applications like automotive, manufacturing, retail, and
more. It features a six-core ARM CPU, a 1024-core NVIDIA
Ampere architecture GPU with 32 Tensor Cores, and 8GB
LPDDR4Xmemory. Despite being smaller andmore resource-
constrained compared to other Jetson family versions, our
results in Section 6 demonstrate that LightPure can achieve
real-time latency. Furthermore, the implementation can eas-
ily apply to other versions with minimal e!ort. Our board
uses Linux (Ubuntu 22.04) and Nvidia-provided SDK (JetPack
6.0). Pytorch 2.1.0 is used to run the codes and models with
CUDA toolkit version 11.5.
Generating Adversarial Samples Since the computing
power of the Jetson is limited, we generate the adversarial
images beforehand on a separate server with access to more
computing power. For generating samples and training the
model, we rely on a server equipped with two Nvidia A6000
GPUs featuring NVLink, 96 GB of memory, and a 10-core
Intel 11th-gen processor. We use various datasets and attack
strategies to create the baseline and adversarial samples.
Details are explained in Section 5.
LightPure Architecture. The LightPure puri"er is devel-
oped and trained on the server (details above). Once trained,
the model weights are exported to the Jetson for testing. Our
LightPure puri"er has 45,610,598 parameters which take up
174MB of memory. The structure of our puri"er (the genera-
tor) is shown in the Appendix (Figure ??).
Our generator structure largely follows the U-net struc-

ture [46] which consists of multiple ResNet and Attention
blocks. As mentioned in Section 3, the key novelty in our
design is the usage of a two-step forward with a one-shot
reverse mechanism that was further enhanced by incorpo-
rating SSIM (similarity) loss.
We use 𝑑 = 3 for the loss function (see Equation 10).

Also, we select 256 for the latent dimension and 512 for the
latent embedding dimension (𝑒). For the di!usion process,
we choose 𝑉1 = 0.0167 and 𝑉2 = 0.0331 for the noise levels,
and 10↗4 for the learning rate.
Once trained, the puri"er is then paired with di!erent

classi"ers (details in Section 5) during inference. Note that,
LightPure does not need to know the details of the classi!er nor
does it require retraining the classi!er. Readers can refer to
Figures 2 and 3 for the design and steps during the training
and inference. Our code and data will be open-source and
publicly available.

The examples of clean, perturbed (using forward di!usion),
and puri"ed (using the generator) are shown in Figure 4.
The examples show that LightPure can maintain the main
visual aspects of the original image while being capable of
removing the perturbations. The detailed results for accuracy
and robustness are presented in Section 6.
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(a) Clean. (b) (Adversarial) Perturbed. (c) Puri!ed.

Figure 4: Examples of clean images, perturbed adversarial images, and puri!ed images on the CIFAR-10 dataset.

Measuring Latency. Images are classi"ed individually, and
the time it takes to classify each image is measured. To ob-
tain the duration for each model to return a result, we utilize
Python’s built-in time package’s perf_counter() function.
We record the time just before classi"cation starts and im-
mediately after classi"cation produces a result. By calculat-
ing the di!erence, we determine the time it took to classify
one image. The latency is the averaged number over 1000
instances. This approach is employed to emphasize the ac-
tual latency, rather than measuring the end-to-end (sensor-
computation-actuation) latency, which could be a!ected by
sensor/actuator and/or network delays. Additionally, we did
not take batching into account, as the assumption is that
the model must process images individually in a real-world
system, such as autonomous driving.

5 EVALUATION SETUP
Metrics.We use two main metrics, clean accuracy and ro-
bust accuracy. The ‘clean accuracy’ or ‘standard accuracy’
refers to the performance of the model on untampered data.
When employing a puri"er before the classi"er, there might
be a slight decrease in clean accuracy due to perturbations.
Note that this is common even for other defense mechanisms
such as adversarial training. The reduction in accuracy is
primarily because training on adversarial examples can inad-
vertently in$uence themodel’s learning in a way that slightly
compromises its performance on clean data. Therefore, it
is ideal to have zero or minimal impact on clean accuracy
when adding puri"cation.

We use three standard con"gurations for ‘robust accuracy’.
1-Black-Box A#ack: In this setup, the adversary has no

knowledge about either the classi"er or the puri"er. Essen-
tially, the adversary is operating without understanding the
internal mechanisms or con"gurations of either component.
2-Gray-Box A#ack: The adversary is knowledgeable

about both the classi"er and a puri"er (their architecture),
but the classi"er used for generating the attack is not the
one targeted in the evaluation. The attack is crafted based on

this external puri"er and the classi"er, and the robustness is
tested against the intended (targeted) puri"er and classi"er.
3-Complete White-Box A#ack: This setup allows full

access to both the classi"er and the puri"er including the
architecture, hyperparameters, and the ability to calculate
the full gradients of both the classi"er and puri"er. Note that
in real mobile systems, this is less realistic as it requires full
physical access to the device and its internal computations.
Given such a strong capability, the adversary could possibly
launch a more direct and more powerful attack instead of
launching an ML-based evasion attack.
Attack Methods. To assess the robustness of our model
against adversarial attacks, we employ the RobustBench
benchmark, which uses AutoAttack, an ensemble of white-
box and black-box attacks [10, 11]. Autoattack utilizes Auto-
PGD, a more powerful variant of PGD that automatically
adapts the step size. This can be applied to various loss func-
tions, including cross-entropy loss (APGD-CE) and di!erence
of logits ratio loss (APGD-DLR):

CE(𝐿,𝑄) = ↗ log𝑊𝑉 = ↗𝑒𝑉 + log

(
𝑊∑
𝑋=1

𝑓𝑌 𝑀

)
(11)

DLR(𝐿,𝑄) = ↗
𝑒𝑉 ↗max𝑍ω𝑉 𝑒𝑍

𝑒𝑎1 ↗ 𝑒𝑎3

(12)

Due to the stochastic nature of our model, we utilize the
AutoAttack version against randomized adversarial defenses
(APGD-rand), which is an ensemble of APGD-CE and APGD-
DLR. To counter randomness, APGD-rand applies Expecta-
tion over Transformation (EOT), which averages 20 compu-
tations of the gradient at the same point, to get the direction
for the update step [1]. Additionally, we run an experiment
with APGD-CE without EOT to evaluate our model against
faster but less powerful attacks. Similar to prior work, we
choose to use the L-in"nity norm, we set the number of
restarts to 1, set the number of target classes to 9, and train
with a learning rate of 8/255.

To avoid out-of-memory issues, prior puri"cation meth-
ods such as Di!pure calculate the gradients using an adjoint
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(a) White-Box.
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(b) Gray-Box.
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(c) Black-Box.

Figure 5: Robustness for three di"erent con!gurations using CIFAR-10 and GTSRB datasets. The results are for the
baseline (no protection), Di"pure (Di"P), a baseline GAN (bGAN), and our method (LightPure) which includes the
latency-aware di"usion model (LP-GAN) and the di"usion model with the accuracy-aware model (LP-GAN+SSIM).

method, which has been reported to be sensitive to numeri-
cal errors [41, 67]. When compared to an attack using full
gradients obtained from direct backpropagation, the adjoint
method returns a higher robust accuracy, leading to an over-
estimation of the robustness of the model [31]. Therefore, in
this paper, we utilize full gradients for all attacks.
Datasets. We use three standard datasets. CIFAR-10 is a 10-
class dataset comprising 50,000 training samples and 10,000
test samples. Each sample is a 32×32 RGB color image. The
10 classes include airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. We use only the Test dataset to
evaluate our accuracy and robustness, and to train our pu-
ri"er we use only the Train dataset, but we do not use any
label to train our puri"er.

GTSRB (German Tra#c Sign Recognition Benchmark) is a
43-class dataset with over 50,000 images ranging in size from
15×15 to 250×250 pixels. We divide them into training, and
test datasets with 45000 and 5000 samples, respectively. Also,
we resize the pictures to 32x32 for training and evaluation.

Tiny ImageNet is a 200-class dataset derived from Ima-
geNet [12], containing 100,000 training images and 20,000
validation/test images, each resized to 64×64 pixels. We used
5,000 images from the validation set for our evaluation [29].
Classi!ers. For CIFAR-10, we use Resnet-56 [9], a publicly
available state-of-the-art classi"er with a top-1 accuracy of
94.37 percent on clean images. Resnet-56 has 855,770 param-
eters which takes up 3.3MB of memory in our embedded
board (Jetson Orin Nano). For GTSRB, we train a Resnet-
20. It achieves 97.26 percent accuracy on clean images. It
has 272,474 parameters and takes up 1.04MB. For Tiny Ima-
geNet, we train a ResNet-18 model. It achieves 45% accuracy
on clean images. The model has approximately 11.2 million
parameters and takes up 44.6MB.
For black-box attacks, we use Resnet-50 as the shadow

model which will be used by the adversary to create the
adversarial samples.

State-of-the-Art Models. In addition to LightPure, we also
implement other models on Jetson and reported latency, ac-
curacy, and robustness results. Speci"cally, we implement
Di!pure [41]. We test performance with the purifying dif-
fusion model using 10, 20, and 30 timesteps. The di!usion
model has 35,746,307 parameters which uses 136.4MB of
memory. Additionally, we compare LightPure with a GAN-
only design (i.e., when no di!usion is used) based on the
method proposed in Defense-GAN [47]. Lastly, we compare
our method with a recently proposed technique,Moving Tar-
get Defense (MTD) [51]. We assume that MTD has at least 10
base models (for voting) with early stopping. Depending on
the classi"er, the MTD’s storage overhead changes. On aver-
age, for CIFAR-10, it takes about 35MB of Jetson’s memory.
For GTSRB, the storage is about 12MB. Detailed results for
di!erent metrics and models are provided in Section 6.

6 RESULTS
6.1 Latency, Accuracy, and Robustness
Robustness.We report the robustness of ourmethod against
the attack model and datasets described in Section 5. We
report the results for the baseline (no protection), Di!pure
(Di!P) [41], a GAN-only solution (i.e., without di!usion)
based on Defense-GAN [47], which we refer to as baseline
GAN (bGAN), and our method (LightPure). For our model,
we report two con"gurations: the latency-aware di!usion
model (LP-GAN) and the di!usion model with the accuracy-
aware model (LP-GAN+SSIM). Results are reported for two
primary datasets (CIFAR-10 and GTSRB), with additional
comparisons made on Tiny ImageNet.
Results are reported for black-, gray-, and white-box ad-

versary models (see Section 5), as shown in Figure 5.
Our evaluations demonstrate that LightPure consistently

achieves the highest robustness across di"erent attack con!gu-
rations. While black-box con"guration is evidently the most
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Figure 6: Clean accuracy (higher is better) for the down-
stream classi!cation task using two di"erent datasets.

secure, LightPure still manages to achieve notable robust-
ness under white-box and gray-box attacks (especially for
the GTSRB dataset). Comparing the two datasets, it is much
harder to defend against white-box attacks (even with Di!-
pure) on CIFAR-10 than on GTSRB, indicating that internal
information is more bene"cial for "ne-tuning APGD attacks
on CIFAR-10. Furthermore, it should be noted that white-box
attacks are considered less feasible in mobile systems due
to the need for direct physical access, which is often not
practical. In our view, gray-box attacks represent the most
realistic scenario for an attack in a mobile system.

Lookingmore closely at grey-box results, LightPure achieves
>80% robustness, on average, across datasets. Comparing
LP-GAN and LP-GAN with SSIM, the results are improved
by 5% for CIFAR-10 and by 10% for GTSRB, highlighting the
usefulness of utilizing a similarity metric to further improve
the generation accuracy.
Accuracy. Results for (clean) accuracy are reported in Fig-
ure 6. Recall that we use two di!erent classi"ers (details in
Section 5) for the downstream classi"cation task. It is im-
portant to analyze the impact of adversarial defense (e.g.,
puri"cation, adversarial training, etc.) on the accuracy as re-
training and/or adding and removing noise could potentially
impact the clean accuracy.

As shown in Figure 6, LightPure incurs a minimal accuracy
drop compared to the baseline. Speci"cally, for CIFAR-10 the
drop for LightPure is about 4% when using the GAN+SSIM
model. For GTSRB, the drop is almost zero (<.01%). Com-
pared to other methods, the usage of an accuracy-aware
training model using SSIM loss and a generalized (two-step)
discriminator/generator training method (see Section 3).
Tiny ImageNet Results. While CIFAR-10 and GTSRB pro-
vide a solid basis for evaluating our method’s robustness, we
also tested our approach on the Tiny ImageNet dataset, a
more challenging benchmark due to its numerous classes and
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Figure 7: Latency for puri!cation+classi!cation for dif-
ferent methods (lower is better). y-axis shows the la-
tency in milliseconds.

reduced image size. Results are shown in Figure 8. Our model
outperforms both Di!Pure and the Baseline GAN in gray-box
and white-box scenarios. Also, note that the baseline accu-
racy in all cases is much lower than that of other datasets
due to the complexity of the classi"cation task. These results
further highlight the robustness of our method, even in more
complex datasets like Tiny ImageNet.
Latency. We compare the inference latency (puri"cation
and classi"cation combined) for di!erent methods (refer to
Section 4 for details of the device and measurement method-
ology). The results are displayed in Figure 7 in milliseconds.

Compared to the baseline (classi"cation only), puri"cation
methods add between >50x to 4x. The reason for added
latency is the extra processing needed during puri"cation.
Among di!erent methods, LightPure achieves the lowest. We
improve Di!Pure’s latency by an order of magnitude since
our method does not need multiple steps and each step is
much simpler. Furthermore, compared to the baseline GAN
method [47], LightPure is more than twice faster mainly
because the generation is one-shot as opposed to the multi-
step generation needed in state-of-the-art GAN methods.

Also, note that the latency for LP-GAN and LP-GAN+SSIM
is the same since the generator architecture and steps stay
similar for both methods. The di!erence is during the train-
ing phase which does not impact the inference latency.

6.2 Comparison with Moving Target
Defense (MTD) Method

We further compare our results with the state-of-the-art
non puri!cation methods. Speci"cally, we compare Light-
Pure (LP+SSIM) with MTD [51] in terms of accuracy, latency,
and robustness. Instead of using puri"cation, MTD leverages
several base models (10-20 models) and develops a majority
voting and detection method to eliminate adversarial attacks.
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Figure 9: Comparison between ourmethod and state-of-
the-art non-puri!cation method, MTD [51]. Accuracy
and robustness are normalized percentages (higher is
better) while latency is in seconds (lower is better).

For accuracy and robustness, we use the results reported
by the authors [51]. We use the gray-box attack con"gura-
tion1. For latency, we assume that MTD queries at least 10
base models (this is a favorable assumption) using the early
stopping scheme (with𝑔 = 0.2) [51].
Results are shown in Figure 9. For CIFAR-10, LightPure

achieves higher accuracy and robustness. The results are
fairly comparable in general. The clear advantage of Light-
Pure, however, is in latency as it has more than 2x lower la-
tency for the same classi"er. The main reason for this is that
LightPure leverages a one-shot puri"er while MTD needs
several serialized queries from the classi"er. The problem is
exacerbated when using a more sophisticated classi"er.
Looking at the results for GTSRB in Figure 9 (b), similar

trends can be observed. Compared to the CIFAR-10 dataset,
LightPure achieves better robustness but similar accuracy
(both around 96%). Similar to CIFAR-10, LightPure outper-
forms MTD in terms of latency. The di!erence is smaller
since the classi"er is faster (smaller).

1MTD’s threat model is neither black-box nor gray-box. To be fair, we
assume the gray box in our setting which has lower robustness.
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Figure 10: Accuracy and robustness results for combin-
ing adversarial training (AdvT) with our puri!cation
(Puri) model.

The storage overhead can be also compared. Based on
the implementation results in Sections 4 and 5, LightPure
has about 174MB storage overhead. For MTD, the overhead
depends on the classi"er. For a smaller Resnet-18 classi"er,
this is about 12MB. For a larger Resnet-56 classi"er, the
storage overhead is about 35MB. Please note that while the
storage overhead of LightPure is higher, the overall storage
requirement in LightPure is still only 2% of the total memory.
In both cases, the storage requirement is negligible.
Overall, the key takeaway is that LightPure is more ben-

e"cial for larger classi"ers when latency overhead is large.
Furthermore, LightPure is bene"cial in scenarios where re-
training is prohibitive or infeasible. Given the trend of using
larger and more sophisticated models in autonomous mobile
systems, we believe LightPure provides an e!ective solution
for current and future models. Additionally, in the following
section, we’ll demonstrate how the method can be further
combined to improve the system’s overall performance.

6.3 LightPure with Adversarial
Training/MTD

Since our proposed puri"cation model is an orthogonal de-
fense method to adversarial training and/or moving target
defense, we can also combine our method with them by feed-
ing the puri"ed images from LightPure (LP+SSIM) to the
adversarially trained and/or MTD classi"ers.
To experimentally evaluate this, Figure 10 shows that

this combination (“AdvT + Puri”) can improve the robust
accuracies against di!erent attack models. The "gure shows
the accuracy and robustness under three di!erent setups: 1)
Training a robust classi"er using adversarial training [11].
2) Using LightPure to puri"er the image but using a regular
classi"er (not adversarially trained); and 3) Combining the
robust classi"er in (1) with our puri"er (2).
For robustness, we report the gray-box accuracy for all

three cases. The results in Figure 10 show that the overall
robustness slightly improves when combining adversarial
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training (AdvT) with adversarial puri"cation (Puri). This,
however, comes at the cost of a slight reduction in accuracy
as both AT and Puri cause degradation in image quality and
overall classi"cation accuracy due to adding perturbations
to the model and/or input. Although not shown in this sec-
tion, a similar approach could be used to combine Puri with
MTD. Even further, Puri, AdvT, and MTD can be combined
if desired.

The main takeaway from this experiment is that LightPure
proposes an orthogonal solution to existing non-puri"cation
solutions. When combined, the results could improve. How-
ever, the combination introduces new tradeo!s between ac-
curacy, robustness, and training time. The designers can
ultimately choose the right balance to achieve their goals.

7 FURTHER ANALYSIS AND DISCUSSIONS
7.1 Ablation Study
As explained in Section 3, we utilize a two-step noise addition
method during training. To highlight the importance of such
a method, we initially experimented with a single-step noise
addition process. However, we observed that this approach
led to signi"cant over"tting, particularly when using SSIM
loss, as the generated image was directly compared to the
original, uncorrupted image. Our results show more than 50%
reduction in robustness. To address this issue, we introduced a
two-step di!usion process. First, we generate a noisy image
𝐿1 from the original clean image. Rather than using 𝐿1 for
direct training, we add an additional layer of noise to create a
second noisy image 𝐿2. The model is then trained to denoise
𝐿2. After denoising 𝐿2, we calculate the SSIM loss between the
original 𝐿1 and the 𝐿1 generated from the denoised version of
𝐿2. This step helps to increase generalization by ensuring that
the model e!ectively handles various levels of noise, rather
than merely replicating the clean images. This approach
leads to better generalization and improved performance
across di!erent noise conditions.

7.2 Comparison to Latent Di"usion Models
In the context of adversarial image puri"cation, we chose
GAN-based networks over Latent Di!usion Models (LDMs)
due to their superior e!ectiveness in preserving image accu-
racy. While LDMs are known for their speed, with a latency
of around 300 ms- signi"cantly faster than traditional De-
noising Di!usion Probabilistic Models (DDPMs) [22, 45]- this
speed does not necessarily translate to better performance
in puri"cation tasks. Our GAN-based model, with a latency
of 200 ms, not only o!ers comparable speed but also en-
sures higher puri"cation e!ectiveness. The key advantage
of GANs lies in their ability to operate directly in the pixel
space, where adversarial noise is introduced, enabling more

precise noise removal without the complications introduced
by transforming images into a latent space, as LDMs do.
Transforming images into a latent space, as required by

LDMs, can obscure the details necessary for e!ective noise
removal and potentially shift decision boundaries, compli-
cating the puri"cation process and reducing robustness. In
contrast, our GAN-based approach maintains the image in
its original domain, ensuring that the puri"cation process di-
rectly addresses the adversarial noise at the pixel level. This
approach results in better preservation of the image’s accu-
racy and robustness, making GAN networks a more suitable
choice for adversarial image puri"cation, where maintaining
the integrity of the original image is crucial.

7.3 Our Model Limitations
Our model’s limitations include the necessity to train our
GAN separately for each dataset and using di!erent noise
levels to determine the optimal level for puri"cation. Addi-
tionally, determining the appropriate ratio of SSIM loss to
GAN loss presents another challenge. In contrast, Di!Pure
does not require retraining the di!usion model to identify
the required noise level for purifying adversarial samples
[41]. Consequently, "nding these hyperparameters makes
training our model more challenging compared to Di!Pure,
which utilizes a pre-trained di!usion model.

7.4 Exploring Potential Architectural
Optimizations in StyleGAN Models

Various architectural optimizations can be employed to en-
hance the e#ciency and performance of our model. One
area of interest is pruning, where reducing the model’s re-
dundancy by incrementally removing less impactful weights
might decrease memory usage and improve computation
speed. Other techniques such as structured and iterative
pruning can be used to improve the latency without signi"-
cantly impacting output quality [19]. Additionally, knowl-
edge distillation could be examined, where a smaller “stu-
dent”model would be trained to replicate the “teacher”model.
This approach would focus on matching both the output dis-
tribution and intermediate feature maps to potentially reduce
the model size and accelerate inference times [21].

8 RELATEDWORK
Adversarial Defenses. First introduced by Madry et al.,
adversarial training incorporates adversarial samples dur-
ing training. Many improvements have been made to this
technique, including the work done by He et al., which in-
jects trainable Gaussian noise at each layer of the model
to introduce randomness [20]. Gowal et al. utilized gener-
ative models for data augmentation, with di!usion models
resulting in the best robustness [18]. A major drawback of
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adversarial training, however, is the need for retraining the
classi"er.

Adversarial puri!cation, on the other hand, involves train-
ing a separate puri"cation model that removes adversarial
perturbations on input images before the downstream task.
MagNet leverages auto-encoders to move adversarial exam-
ples closer to the manifold of legitimate examples [38], and
Samangouei et al. proposes using GANs as the puri"cation
model and uses GD minimization to yield higher robustness
[47]. More recently, Song et al. proposed PixelDefend, which
relies on PixelCNN, an autoregressive generative model [53],
and Yoon et al. used score-based generative models to purify
adversarial samples [59]. Di!pure was the "rst attempt to
use a di!usion process followed by a backward denoising
process for puri"cation [41].

As extensively discussed in this paper, LightPure improves
the prior work in two major directions. Compared to GAN-
only based methods, LightPure signi"cantly improves robust-
ness and accuracy while also slightly improving latency as it
uses one-step forward and backward processes. Compared
to di!usion-based models, LightPure signi"cantly improves
latency while also achieving better robustness.
Attacks to Physical Autonomous Mobile Systems. Also
relevant to this work are methods that target physical sen-
sors (e.g., camera, LIDAR, mmWave, RF, etc.) to attack au-
tonomous mobile systems. Some attacks target the avail-
ability and/or integrity of the sensor by manipulating the
environment and/or the operation of the sensors [65].

More relevant to this work are methods that create physi-
cal adversarial samples to impact the machine learning-based
classi"cation task [27, 35, 50]. These attacks can further be
categorized as physical adversarial attacks [4] and physi-
cal sensor attacks [66]. In both categories, there is a rich
literature for creating adversarial patches [32]. They com-
monly use similar methods (e.g., FGSM, PGD, etc.) to those
considered in this paper to generate adversarial samples. De-
pending on the physical modalities and threat model, various
methods could be used to conduct the attack (e.g., shooting a
laser, jamming the signal, causing interference, 3D printing
the object, etc [64].)
Compared to these methods, we consider a strong and

comprehensive threat model ranging from fully white-box
(complete knowledge) to black-box. As mentioned in the pa-
per, we believe that gray-box attacks are the most reasonable
assumption in our setting.
Comparison. We conclude this section by summarizing dif-
ferent solutions. In Table 1, we compare adversarial training,
defense-GAN, Di!Pure, and MTD on the metrics of latency,
accuracy, robustness, and retraining.

Table 1: Comparing di"erent methods for visual anal-
ysis on latency, accuracy, robustness, and retraining.
For each property, a !lled circle means better. (AT =
Adversarial Training, DG = Defense-GAN, DP = Di"-
Pure, MTD = Moving Target Defense).

AT [11] DG [47] DP [41] MTD [51] Ours
Latency
Accuracy
Robustness
Retraining

9 CONCLUSIONS
This paper addressed the critical challenge of defending
autonomous mobile systems against adversarial machine
learning attacks, which pose signi"cant threats to their re-
liability and safety. While previous countermeasures have
shown promise, they often require invasive modi"cations to
classi"ers or incur high computational costs, making them
unsuitable for resource-constrained mobile devices.
To overcome these limitations, we introduced an innova-

tive puri"cation approach that leverages a GAN framework.
Our method achieves a remarkable balance between classi"-
cation accuracy, adversarial robustness, and computational
e#ciency, making it well-suited for real-world applications
where speed and resource constraints are paramount. Our
key contribution was the design and implementation of a
new one-shot generator that leverages a two-step forward
di!usion process during its training. The method was further
improved by introducing a similarity-based loss function for
training the generator.
Through extensive experimentation and evaluation, we

demonstrated the superiority of our approach over existing
puri"cation methods, achieving signi"cant improvements
in both latency and performance across various attack sce-
narios. Our method represents a notable advancement in
the "eld of adversarial image puri"cation, o!ering a scalable
and e!ective solution for safeguarding autonomous mobile
systems in practical settings.
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