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SCALAR CURVATURE RIGIDITY
OF DEGENERATE WARPED PRODUCT SPACES

JINMIN WANG AND ZHIZHANG XIE

ABSTRACT. In this paper we prove the scalar curvature extremality and rigid-
ity for a class of warped product spaces that are possibly degenerate at the
two ends. The leaves of these warped product spaces can be any closed Rie-
mannian manifolds with nonnegative curvature operators and nonvanishing
Euler characteristics, flat tori, round spheres and their direct products. In
particular, we obtain the scalar curvature extremality and rigidity for certain
degenerate toric bands and also for round spheres with two antipodal points
removed. This answers positively the corresponding questions of Gromov in
all dimensions.

1. INTRODUCTION

Scalar curvature extremality and rigidity problems occupy a central role in Rie-
mannian geometry. The first examples of scalar curvature rigidity are flat tori and
standard round spheres. Specifically, Schoen—Yau [14,15] and Gromov—Lawson [6]
showed that the torus T™ admits no metric of positive scalar curvature, and any
metric on T™ with nonnegative scalar curvature is a flat metric. For the standard
round sphere (S™, gs¢), Llarull proved that if ¢g is a Riemannian metric on S™ such
that ¢ > gs and Scy > Scg,,, then g = go [12]. Here Scy stands for the scalar
curvature of g.

Goette and Semmelmann generalized the theorem of Llarull and proved the
scalar curvature extremality and rigidity for all closed manifolds with nonvanishing
Euler characteristics that are equipped with metrics having nonnegative curvature
operators [5]. Later on, Lott extended their theorem to a scalar-and-mean curvature
extremality and rigidity theorem for compact manifolds with smooth boundary [13].

Inspired by Gromov’s u-bubble approach to scalar curvature problems, Cecchini
and Zeidler proved a scalar-and-mean curvature extremality and rigidity [3] for the
following class of compact warped product spaces: (X x I, g) satisfying that X is a
closed spin manifold with nonzero Euler characteristic, I = [a,b] is a closed finite
interval, and g is a warped product metric of the form:

g=dr* + ¢(r)gx
such that gx is a metric on X with nonnegative curvature operator and ¢ is a
strictly log-concave positive function on I = [a,b]. In contrast with the results of

Llarull [12], Goette-Semmelmann [5] and Lott [13], the result of Cecchini-Zeidler
only requires the metric of the leaf X to have nonnegative curvature operator,
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rather than requiring the entire underlying manifold to satisfy this condition. For
example, it is applicable to annuli in odd dimensional hyperbolic spaces, where
an annulus is viewed as a warped product space of the form S"~! x [a,b]. More
recently, the authors have generalized the theorem of Cecchini—Zeidler and obtained
a dihedral ridigity theorem for a class of codimension zero compact submanifolds
with polyhedral corners in warped product spaces [17]. It is worth noting that these
submanifolds themselves are not necessarily warped product spaces and may have
faces that are neither orthogonal nor parallel to the radial direction of the warped
product metric.

Thus far, all the aforementioned results have primarily focused on addressing the
scalar curvature extremality and rigidity problem in the context of compact, hence
complete, manifolds. From a technical standpoint, this emphasis on completeness
is crucial for making sense of the relevant index theory. Therefore, it is remarkable
that Gromov, using his p-bubble techniques, managed to establish scalar curvature
extremality and rigidity for certain incomplete warped product spaces [7], which
we will refer to as degenerate warped product spaces from now on. More precisely,
Gromov sketched a proof of the scalar curvature rigidity for certain degenerate toric
bands [7] in dimensions n 4+ 1 < 8. These toric bands T" x (-7, ) are equipped
with the warped product metrics

g=dr?+ Lp(r)2go,

where gg is a flat metric on T" and

In the same paper [7], Gromov also sketched a proof for the scalar rigidity for the
n-dimensional standard round sphere with two antipodal punctures, denoted as
(S"\{£}, gst), in dimensions 3 < n < 8 (cf. [8] and [9] for the dimension three
case). One key observation made by Gromov is to view the space (S"\{t}, gst) as
a warped product space

gst = dr® + cos(r)QgE:’_l,
where r € (—7/2,7/2) and g§:71 is the standard round metric on S"~!. Note
that the dimensional restriction in both of Gromov’s results arises due to the usual
regularity issue encountered in minimal hypersurface theory.

In this paper, we generalize the results of Gromov and prove the scalar curvature
extremality and rigidity for a fairly large class of degenerate warped product spaces
in all dimensions. The main class of warped product spaces we consider is the
following. Let M = (—¢,c¢) x X be an n-dimensional manifold equipped with the
following warped product metric

g =dr* +o(r)*gx.
The leaf X is allowed to be the Riemannian product of finitely many spaces from
any of the following classes of closed manifolds:
(i) round spheres of any dimension,

(ii) closed Riemannian manifolds with nonnegative curvature operators and
nonvanishing Euler characteristics, and

(iii) flat tori.

The warping function ¢ is required to be admissible in the following sense.
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Definition 1.1. We say a warping function ¢ is admissible if ¢ satisfies the fol-
lowing properties:

(1) ¢ is log-concave, that is, (log)” <0,

(2) ¢(r) >0 for r € (—c¢,¢), and lim, 4. p(r) =0,

(3) there exists a small ¢ > 0 such that ¥'(r) + n(r)?/2 on the interval
(¢,c—¢) is nondecreasing, and ¢’ (r) +n(r)%/2 on the interval (—c, —c+e¢)
is nonincreasing, where ¢ = (log )’ and n = dim M.

The log-concavity of ¢ is a commonly expected necessary condition for the scalar
curvature extremality and rigidity of warped product spaces. However, the above
definition introduces a new condition (3), which, to the best of the authors’ knowl-
edge, has not been previously considered in the literature regarding scalar curvature
extremality and rigidity. Despite its somewhat technical nature, condition (3) is
shown to be necessary through Example 4.1l More precisely, Example [4.1] shows
that if we drop condition (3), then scalar curvature extremality and rigidity fail for
certain degenerate toric bands with warping functions satisfying conditions (1) and
(2).

Before we state the main theorem of the paper, we recall the definition of spin
maps.

Definition 1.2. A map f: N — M between two oriented manifolds N and M is
called a spin map if the second Stiefel-Whitney classes of TM and T'N are related
by

wa(TN) = f*(wa2(T'M)).
Equivalently, f: N — M is a spin map if TN @ f*T M admits a spin structure.
We have the following main theorem of the paper.

Theorem 1.3. Let M = (—¢,¢) x X be an n-dimensional manifold equipped with
the warped product metric

g=dr’ +o(r)’gx
such that

(1) ¢ is admissible in the sense of Definition [L1] and

(2) (X,gx) is the Riemannian product of finitely many spaces from the classes
(1)—(iil) listed above.

Let (N,g) be a Riemannian manifold and f: N — M be a smooth spin proper
map with nonzero degree. If f is distance-nonincreasing and Scg = f*Scy, then
Scg = f*Scy. Furthermore, the following hold.

(1) If @ is strictly log-concave, that is, (logp)” <0, then N = (—c,c) x Y for
some Riemannian manifold (Y, gy) and the metric g = dr® + o(r)?gy, and
the map [ respects the product structures.

(I1) If ¢ is strictly log-concave and the metric gx on the leaf X has positive
Ricci curvature, then f is a local isometry.
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Our approach uses the index theory of twisted Dirac operators coupled with
potentials. However, due to the noncompactness of the underlying space and the
incompleteness of the metric, it seems unfeasible to hope for a general index the-
ory on the entire underlying space. To get around this, we focus on codimension
zero compact submanifolds with boundary of the underlying space, where the clas-
sical index theory for manifolds with boundary can be applied. However, this
approach inevitably introduces additional error terms when comparing various geo-
metric quantities, such as scalar curvatures and mean curvatures. To overcome this
difficulty, a key aspect of our proof involves carefully balancing these extra error
terms with the comparison conditions given by our assumptions. We show that the
failure of the conclusions of our main theorem would yield a geometric term that,
via a Poincaré type inequality (Lemmal[2.8)), ultimately dominates these additional
error terms. This leads to a contradiction, hence proves our theorem.

We remark that the case where the leaf (X, gx) is an odd dimensional sphere or
torus, the vanishing of the Euler characteristic of the leaf imposes an extra difficulty.
When the leaf is an odd dimensional sphere, we follow Llarull’s idea of taking the
direct product with a large circld! [12] Section 4]. When the leaf is a torus, we pair
the Dirac operator with an almost flat bundle. In both cases, the corresponding
procedure introduces an extra small error term in the relevant curvature estimates.
A key step of our proof is to dominate this extra error term by again a Poincaré
type inequality.

In fact, due to the extra error term caused by introducing an auxiliary circle,
there is a minor gap in Llarull’s proof for the scalar rigidity of a closed standard odd
dimensional sphere [12, Section 4]. We make the observation that the minor gap in
Llarull’s original arugment can be fixed by applying the Poincaré type inequality
we mentioned above.

Theorem 1.4 (Llarull [12]). Let S?**1 be the (2k + 1)-dimensional standard round
sphere. Let (N,g) be a closed spin Riemannian manifold and f: N — M a smooth
map with nonzero degree. If Scg = 2k(2k + 1) and f is area-nonincreasing, then f
15 an isometry.

Of course, if we artificially remove two antipodal points of S?**1 and view it as
a warped product space, Theorem [1.4] appears to be a special case of Theorem [L.3]
However, it is important to note the different assumptions on the map f. The
map [ is only assumed to area-nonincreasing in Theorem [1.4] as opposed to being
distance-nonincreasing in Theorem [[.3l It is worth pointing out that in general
we cannot replace the assumption that f is distance-nonincreasing in Theorem [1.3]
by the weaker assumption that f is area-nonincreasing. On the other hand, our
proof shows that Theorem [L.3] still holds under the weaker assumption that f is
distance-nonincreasing along the warping direction and area-nonincreasing along
the leaf direction. More precisely, let us write f(z) = (r,z) € M = (—¢,¢) x X,
and X, = {r} x X equipped with metric ¢(r)?gx. Define P to be the orthogonal
projection from T,y M to Tty X,. Then instead of being distance-nonincreasing,
we only need to assume the function f in Theorem [L.3] to satisfy that f*r over N
is 1-Lipschitz and Pfy : T, N — T ;)X is area-nonincreasing for all z € N.

IMore precisely, one also needs to consider the smashed product of a sphere with a circle.
Note that the smashed product of an odd dimensional sphere with a circle is an even dimensional
sphere, where the latter has nonzero Euler characteristic.
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In the special case where the leaf X of M = (—¢,¢) x X is a flat torus, we have
the following slight improvement of Theorem [1.3]

Theorem 1.5. Let M = (—c¢,c) x X be an open manifold and
g =dr?+o(r)gx

a warped product metric on M such that

(1) ¢ is admissible in the sense of Definition [L1], and

(2) (X,gx) is the torus T equipped with a flat metric g,.
Let (N, g) be a spin Riemannian manifold and f: N — M be a smooth proper map
with monzero degree. If the function f*r over N is of Lipschitz constant at most
1 and Scg = f*Scgy, then Scg = f*Scy. Furthermore, if in addition ¢ is strictly

log-concave, that is, (logp)” < 0, then N = (—c,¢) x Y, the map f respects the
product structures, and the metric g is also a warped product metric of the form

g=dr’ + o(r)gy,
where gy is a flat metric on'Y .

Recall that the n-dimensional standard round sphere with two antipodal punc-
tures (S™\{+}, gs¢) may be viewed as a warped product space

ger = dr® + cos(r)2g§:71,
where r € (—m/2,7/2). It is easy to verify that the function ¢(r) = cos(r) is
admissible in the sense of Definition [.LII As a special case of Theorem [1.3] we
have Theorem [1.6] which generalizes the corresponding result of Gromov to all
dimensions.

Theorem 1.6. Assume that n = 3. Let M be the n-dimensional standard round
sphere with a pair of antipodal points removed. Let (N,g) be an open spin Rie-
mannian manifold. Let f: N — M be a proper smooth map with nonzero degree.
If f is distance-nonincreasing and Scg = n(n — 1), then f is an isometry.

We would like to mention that Theorem [L.6] was also obtained independently in
a preprint of Bar-Brendle-Hanke-Wang [1].

So far, we have mainly focused on scalar rigidity results on bands that are degen-
erate at both ends. It is not difficult to see that our techniques can be adapted to
prove the following scalar-and-mean curvature rigidity for warped product spaces
that are degenerate at one end.

Theorem 1.7. Let M = [—c,c) x X and
g=dr* +¢(r)°gx
a warped product metric on M such that
(1) @ is log-concave, that is, ¥ = (logp)” <0,
(2) ' (r) + np(r)?/2 is nondecreasing near r = c,
(3) @(r) >0 forre[—cc), and ¢(c) =0, and
(4)

(X, gx) is the Riemannian product of finitely many spaces from the classes
(i)—(iii) listed above.
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Let (N,g) be a Riemannian manifold with boundary and f: N — M be a smooth
spin proper map with nonzero degree. If f is distance-nonincreasing, and the scalar
curvature and the mean curvature satisfy

Scg = f*Scy and Hg > f*Hy = —(n— 1)(—c),
then Scg = f*Scy and Hy = f*H, = 9(c). Furthermore, the following hold.

(I) If ¢ is strictly log-concave, then N = [—c,c) x Y for some Riemannian
manifold (Y, gy) and the metric g = dr® + o(r)?gy, and the map f respects
the product structures.

(I1) If ¢ is strictly log-concave and the metric gx on the leaf X has positive
Ricci curvature, then f is a local isometry.

The following warped metric
dr? + o(r)?g™

with ¢(r) equal to 7, sin(r), or sinh(r), represents the metric on the geodesic ball
in the spaces form Euclidean space, standard round sphere, and hyperbolic space,
respectively. It is easy to verify that all three functions r, sin(r) and sinh(r) are
admissible in the sense of Definition [L1l As an immediate consequence of Theo-
rem [L.7] we have the following scalar-and-mean curvature rigidity for geodesic balls
in space forms.

Theorem 1.8. Let (M, g) be a geodesic ball in a space form. Let (N,g) be a spin
Riemannian manifold with boundary and f: N — M a smooth map such that

(1) Sc(g)e = Sc(g) f(z) for allze N,

(2) Hg(0N)y = Hy(0OM)(y) for ally € ON,
(3) f is distance-nonincreasing on N,

(4) the degree of f is nonzero,

then f is an isometry.

The authors have previously proved the above theorem for geodesic balls in
Euclidean space using a different method [16, Theorem 1.7]. Interestingly, the
approach presented in [16] shows that the above theorem is valid not only for
geodesic balls but also for all strictly convex domains with smooth boundary in
FEuclidean space. This raises a natural question: does the above scalar-and-mean
curvature rigidity theorem extend to strictly convex domains with smooth boundary
in hyperbolic space?

This paper is organized as follows. In Section [2] we present some key estimates
for Theorem [L.3] with a specific focus on the case where the leaf X has nonzero
Euler characteristic. In Section Bl we prove the special case of Theorem [L.3] where
the leaf X is a standard round sphere. Consequently, we obtain the scalar curvature
extremality and rigidity for standard round spheres with two antipodal punctures.
In Section M, we prove the scalar curvature extremality and rigidity for a class of
degenerate toric bands. The general case of Theorem [L.3] then easily follows from
the proofs of the three special cases given in Sections [2] Bl and dl Additionally, we
give examples of degenerate toric bands to illustrate the necessity of condition (3)
in Definition [L1l Finally, in Section [B, we prove the scalar-and-mean curvature
rigidity for warped product spaces that are degenerate at one end.
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2. SOME ESTIMATES AND A SPECIAL CASE OF THEOREM [L3]

In this section, we prove some estimates that will be needed in the proof of
Theorem[L.3l In order to make our proof more transparent and also to highlight the
subtleties of different cases, we first demonstrate how these estimates are applied in
the special case of Theorem [L.3] where the leaf X of M is assumed to have nonzero
Euler characteristic. The general case of Theorem [L.3] requires some extra care.
More precisely, we shall deal with the case where the leaf X is an odd dimensional
round sphere in Section[3] and the case where the leaf X is a flat torus in Section 4l
Finally, the general case of Theorem [L3] will be proved by a combination of the
above three cases.

2.1. Some estimates. In this section, as a preparation, we first prove a series of
estimates that will be needed later. These estimates are inspired by the work of
[3] and [19]. Let us fix some notation. Let ¢ be a log-concave positive function on
(—c,c) and ¢ = ¢’ /. We fix a closed sub-interval Iy = [—a,a] in (—c¢, ¢) such that
e  attains its maximum in the interior of Iy,
e (¢ +ny?/2)" =0 on (a,c), and
o (¢ +n1p?/2) <0 on (—c,—a).
We first prove the following proposition, which is a weaker version of Theo-

rem [1.3]

Proposition 2.1. Let M = (—c,c) x X be an n-dimensional manifold and
g =dr?+ o(r)’gx
a warped product metric on M such that

(1) ¢ is admissible in the sense of Definition [L1] and

(2) (X,gx) is a closed Riemannian manifold with nonnegative curvature oper-
ator and nonzero Euler characteristic.

Let N be a (possibly incomplete) Riemannian manifold and f: N — M a smooth
spin proper map with nonzero degree. Then there is no metric g on N such that
o f:(N,g) — (M,g) is distance-nonincreasing,
e Scg = f*Scq, and
e Scg > f*Scy+¢( on the preimage of the eg-neighborhood of In x X for some
g0 > 0 and gf, > 0.

For each 0 < A < ¢, we denote by (My,g) = ([-A\,A] x X, g) in M. Recall that
we have denoted by X, = {r} x X the leaf X at r in M. In general, f~1(X)) may
not be a submanifold of N. But by Sard’s theorem and the transversality theory,
there exists a sequence of positive numbers {\;} with 0 < A; < ¢ and \; — ¢ as
i — oo such that f~1(X),) is a submanifold of N. Similarly, there exists a sequence
of positive numbers {\;} with 0 < A, < ¢ and —\; — —c as i — o0 such that
f7H(X_x) is a submanifold of N.

Precisely speaking, we should work with the submanifolds [—\}, \;] x X of M.
But in order to avoid overload of notation, let us assume without loss of generality
that \; = A\,. Now let us choose ) to be one of the \;’s. In particular, Ny = f~1(My)
is a smooth manifold with boundary, and the map f: N — M restricts to a smooth
spin map f: Ny — M, that maps boundary to boundary. It is clear that the degree
of f: Ny — M, equals to the degree of f: N — M.
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For any ¢, > 0, there exist 0 < 7 < ¢ and a smooth function

(2.1) pi =17 = [=e ¢l
such that
o p(+7) = *c,
o 1< p/(r)<1+¢ for re No(Iy), where N (Ip) is the e-neighborhood of Iy,
and

o p/(r)=1for re[—y,v]\N:(Lp)-
By construction, if we fix € and €’, then |p(r) — r| is a positive constant for all r
sufficiently close to +v. We denote this positive constant by x(g,&’).
For any A € [0,7] and p = p(\), we define

(2.2) hpt (My,g) — (M, g), (r,z) — (p(r), )
for r € [-A,A] and z € X. Note that |dh,| <1+ ¢ and h, maps the leaf X, to the

We shall prove Proposition [2.1] by contradiction. Suppose a metric g on N as
described in Proposition 2.1] exists. Let us denote

h:= hp Of: (N)ng) - (M,Lb>g)>
where the constants ¢, &', A,  appearing in the construction of the function p will be
specified later. Set E = S(T'Nx@h*TM,,) to be the spinor bundle of TN\@®h*T M,
over Ny, which exists since f is assumed to be a spin map. The Clifford actions of
TNy and h*TM,, on E are denoted by ¢ and c, respectively. Let & be the grading
operator on F.

Let 0, be the unit vector in h*T'M,, along the r direction. Let V be the spinorial
connection on F naturally induced by the Levi—Civita connection on N and the
pull-back of the Levi-Civita connection on M. We define a new connection on F
by

~ 1
(2.3) Ve = Ve + gc(VZ*f(?r)c(ﬁr),
where V9 is the Levi-Civita connection of (M, g). A straightforward computation
shows that ¢(d,) is parallel with respect to ¥, that is, @c(&r) =0.

Let D be the Dirac operator on E with respect to @,

D= an &)V,
i=1

where {€;}1<i<n is local orthonormal basis of T'Ny.
Recall that we have

/

(2.4) P = % = (log )".

From now on, we denote by r: M = (—¢,¢) x X — (—c¢,c¢) the projection to the
first component, that is, » maps the leaf X; to t. We set

(2.5) U= g p(h*r) - & - c(0y),

where h*r is the function r o h: Ny — [—p, p], and define
(2.6) Dy =D+ 0.
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In the following, we shall consider the Fredholm index of ﬁ\p subject to an appro-
priate local boundary condition.

Definition 2.2. A section o of E over N, is said to satisfy the local boundary
condition B if

&¢(V)e(F0r)o = —a,
on 0N, where 7 is the unit inner normal vectors of 0Ny, and —0,. (reps. 0,.) is the
unit inner normal vector field of X, (resp. X_,).

In the following, we shall consider the index theory of the operator .ﬁ\p on F
over the compact manifold with boundary N, subject to the above boundary
condition B. For the moment, consider the Dirac operator D with respect to the
usual spinorial connection V on E over the manifold N). Note that Dg, i.e., the
operator D subject to the boundary condition B, is essentially self-adjoint and
Fredholm, and its Fredholm index is equal to deg(h) - x(M,) = deg(f) - x(X) # 0.
See for example [13, Section 2.2] and [4] for more details of the computation of
the Fredholm index of Dg. Now observe that the operator ﬁ\p differs from D by
a bounded smooth self-adjoint endomorphism. It follows that lA)q, (subject to the
boundary condition B) is also essentially self-adjoint and Fredholm, and moreover
its Fredholm index equals the Fredholm index of Dp.

First we prove some key estimates. Let P: C®(Ny, E) - C®(N),T*Ny ® E)
be the Penrose operator defined by

. 1 .
(2.7) Peo :=Veo + EE(&)DU

for all £ € TNy and o € C*(N,, E). We have the following identity (cf. [2, Section
5.2]):

~ 1 ~
(2.8) \Vol|? = |Po|?® + E|Da\2

all 0 € C*(Ny, E).
Let 0 € C®(N,, E) be a smooth section of FE satisfying the boundary condition
B as given in Definition[2.2] By the definition of Dy, we have the pointwise equality

(2.9) <ﬁ\1/0', IA)\IIU> = \IA)U|2 +(¥o, ﬁ0> + <ﬁ0, Vo) + (g¢(h*r))2\o|2
over Ny. By the Stokes formula, we have
(2.10) f |Do|? = J (D%c,0) + f (&(v) Do, o),
Ny Ny 0Ny
where 7 is the inner unit normal vector of 0/N,. Note that
(2.11) D? = V*V + R,

where R is the curvature endomorphism of E with respect to V. See line (2.16) in
the proof of Lemma [2.3] for the precise formula of R. Before that, let us observe
that

(2.12) f (V*Vo,0) = Vol|? + (Vy0,0)
N» Ny ONA

again by the Stokes formula.



10 JINMIN WANG AND ZHIZHANG XIE

By combining line (2.10), (2.11), 2.12) and (2.8]), we obtain that

~ n n
|DU|2 :—J |770|2 + —f (Ro,0)
J\N,\ n—1 Ny n—1 N

n

(2.13)

— {(@@)D + Vy)o,0).
ONx

We have the following estimate for the term R in line (2.13) above.

Lemma 2.3. If the curvature operator of (X, gx) is nonnegative, then

Scg f*Sc
2.14 R>—4 - 0,
21 L A
Proof. For 2-forms of N, we define the Clifford multiplication by
(215) E(él N Ej) = E(EZ)E(éJ),

where €;,€; € TN are orthogonal. The Clifford multiplication ¢(w) for a 2-form w
over M is defined similarly.

Let P be the orthogonal projection from TM to TX. By the Bochner—
Lichnerowicz—Weitzenbock formula [10, Ch. II, Theorem 8.17], we have

Sc; 1 ~ _ L
(2.16) R = Tg -3 D UR(Phay;), wida &) ® c(w;),
i,J

where {w;} is a local orthonormal basis of 2-forms on N, and {w;} is a local or-
thonormal basis of leaf-wise 2-forms on M, and R = ¢ 2Rx is the leaf-wise curva-
ture operator of M, i.e., R = ¢ 2Rx is the curvature operator of (X, ¢%gx). Since
0y is parallel with respect to V, the curvature from M is only located on the leaf
X.

As the curvature operator R is nonnegative along each leaf, there exists a self-
adjoint L € End(/\zTX) such that R = L2, that is, (Rw;,w;yp = {Lw;, Lw; ).

Set

Luwy, 1= Y (Lwy, Phy@;yn@; € N°TN
i
and
_ p(h*r)
o(f*r)

The second term on the right-hand side of ([2.16]) can be written as

1 ~
— 5 Z<Rph*lﬂj, wi>ME(1Dj) ® c(wz)
4,J

- _% D L(Phatn;), wiyas - (Lw;, wi)s - () @ e(w;)
1,5,k
_ _% N e(Lwr) ® e L)
k
2 (a—26(iwk)2 ®1+a’ @c(Lwy)? — (a7 'e(Luwk) ®1+a® C(Lw’“))z)
k

1
4
1 - 1
> 1 ;adé(ljwkﬁ ®1+ 1 ; o? ® c(Lwy)?,
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where the last inequality follows from the fact that the element
a'e(Lwy) ® 1+ a® c(Lwy)

is skew-symmetric, hence its square is nonpositive.
The same proof for the Lichnerowicz formula (cf. [10, Theorem II1.8.8]) shows
that

2 20(hFr)? 20(fFr)?

where by construction we have f*Scy, = h*Scy, . Similarly, by the definition of L,
we have

Y e(Lwi)® = > (Lwk, Phytwiyns - (Lwy, Phyt;yas - €(0;) @ (1)

Oézzlc(l/wk)2 = —az% — _a2 h*sch B f*SCgX

k 1,5,k
= Y UR(Phyiv;), Phayit; )y - &(;)e(i;).
4,J
We choose a local g-orthonormal frame €1, ..., &, of TN, and a local g-orthonormal
frame ey, ..., e, of T'M,, such that Phye; = p;e; with p; = 0. This can be seen from

the singular value decomposition of the map Ph,. Then we have Phy(é; A €;) =
pittje; A ej. As f is distance-nonincreasing, it follows from the construction of
the map h that leafwise |dh| < «. In particular, we have 0 < p; < « for each i.
Therefore

(2.17) a*QEE(Ewk)Q =-a? 2 17 /LJ Zin) = —
k

1<j

f*Scgy
20(f*r)?

This finishes the proof. |

Remark 2.4. If dim M = 2, Lemma [2.3] becomes

SCg
R = T

If dim M > 3, to deduce Lemmal[2.3] one may relax the condition that f is distance-
nonincreasing to that Pf,: TN — TX is area-nonincreasing. Indeed, in this case,
the singular value decomposition of Phy in the proof of Lemma R.3] implies that
0 < pip; < o for each i < j. As a consequence, we see that the inequality in line

(2.17) still holds.

Since o satisfies the boundary condition B, by using the fact that ¢(v) = +¢(0,)
is parallel with respect to V, a standard computation shows that

(2.18) (@)D + )0, 0) = % J (Hyo,0%,

ONy

where Hj is the mean curvature of 0Ny, cf. [I7, Lemma 2.9].
To summarize, we have

£
Nyl2 s " 2 n J %_ fSng 2
fNA|D0| “h-1 NA|PU| R NA( 1 dp(frr) )' |

”J s 52,
n—1 0Ny 2

(2.19)
+
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Now we consider the second and third terms on the right-hand side of the equa-
tion from line ([2.9). By the Stokes formula, we have

J (Yo, Doy + (Do, Vo)
Ny

(2.20) = . (DVo,0) + (VDo o) + n ((v)Vo,0)

- (D, ¥, o) + L N (&(v)Vo, o).

Note that

(D, ¥] zgé(gradg(w(h*r))) - Ecloy) = gw'(h*r) - &(grad, (h*r)) - &c(@,)

(2.21) >gw’(h*r) - lgrad (h*r)]
=S (W) (7 ) lerady (£r)| = Sw/ (W*r)p/ (F*r).

Here recall that ¢ = ¢'/¢ = (log )’ and by assumption we have ¢ = (logp)” <0
and f is distance-nonincreasing.
For the boundary term in line (2.20), we have

(&(P)Va,0) = —gw(h*r)@@é(ﬂ)c(&r)a, .

Note that log ¢(r) — —o0 as 7 — tc. Since ¥’ = (log ¢)” < 0 and the domain of v
is a bounded interval, it follows that

(2.22) lim 9(r) = rl_i)nilc(log ©) (r) = Foo.

r—+c

By construction, h*r = +u on the components of dNy. Consequently, when pu is
sufficiently close to ¢, we have

(2.23) @(0)¥0,0) = Sl )] - |of

on all components of dNy, since o satisfies the boundary condition B given in
Definition 2.2

Proposition 2.5. With the notation above, there is some ¢y > 0

ﬁ02>LJ P02+LJ Scs — £*Sc,)|o|?
Duet? > [ o+ s [ e 175l

e'n
(224) — (19 (4*7)] + o)l
F7Y(WNe(o)x X)

| (g o+ o) of

for any smooth section o of E over Ny satisfying the boundary condition B, where
co 18 independent of €,¢' and \.
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Proof. By applying line (2.19)), (2.20), (2.21)and (2.23)) to line (2.9]), we obtain
|Doct? > " | pof
n—1 Ny
n f*Scgy
“J,, Gl

2
+ U W) (f4) + ()2 o
g+

; j . (55 gy o + 5™l

For the warped product metric g = dr? + ¢2gx on M, its scalar curvature is given
by the following formula

(2.25)

n

2

n g n  Scgy
dn—1)""7 4n—-1) 2
By our choice of the interval Iy at the beginning of Section 2.1] we have
2

2.27) B () + ) > )+ (2

on Ny\f~1(Ip x X), since p(r) is closer to +c than r. Inside f~1(Iy x X), as the
map h is C®-close to f, line (2.27) essentially becomes an equality but up to a
small error, which is proportional to ¢’. More precisely, we have
2 2
(228)  SU(0) + (Rt = SU(F) + () -
2 4 2 4 2

on f~1(Iy x X) for all sufficiently small ¢’, where ¢y > 0 is a positive constant that
only depends on the geometry of Iy x X, the geometry of f=(Iy x X), and the
restriction of the map f: N — M on f~!(Iy x X). In particular, ¢y is independent
of g, and \.

Recall that 1 < p’ < 1+ ¢/, and furthermore p' = 1 outside N:(Iy). Now the
proposition easily follows from the above discussion. O

(2.26)

2
Ly
21/) 41/)-

Remark 2.6. In the proof of Proposition[2.5] condition (3) of Definition [L.T] namely
the monotonicity of ¢’ + ni?/2 near +c, is essential for inequality ([2.27) to hold,
which guarantees that the scalar curvature comparison still holds after composing
the map f: N — M with the map h, from line ([2.2). Condition (3) is in fact a
necessary condition, as illustrated by Example [4.1]

Now let us prove Proposition 2.1}
Proof of Proposition [21] Let e = g( given in Proposition[2.1l Given ¢, as in Propo-
sition [2.1] we choose ¢’ > 0 such that
.
2 4dn-—1)
where ¢ is the positive constant from Proposition 2.5l Note that, by such a choice
of €', the sum of the second term and the third term on the right-hand side of (2.24)

becomes nonnegative.
By construction of the function p from line (2.1)), we have

(2.30) w=pA) =X+k(e)

(2.29) ¢ max -

"] + ¢p) <
e (4 (r)] + co)
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for all A sufficiently close to ++v. Note that

lim inf (2( i

; Mb(hEr)) =
A—c—r(e,e’) TEON) n— 1) Hg(x) + 2 W)(h 7")|> oo

Therefore, there exists A < ¢ — k(e,¢’) such that

(2.31) inf

n n "
2EON (mHg(.I) + §|1/)(h T)I) >1>0.

To summarize, for the ,&’, A, i chosen above, the right-hand side of the inequality
([2.24) becomes nonnegative.

On the other hand, since N, is a compact manifold with boundary and ﬁ\p only
differs from the Dirac operator associated to E = S(T'Nx @ h*TM,,) over Ny by a
bounded endomorphism, we have that ﬁq, subject to the local boundary condition
B is a Fredholm operator, and its Fredholm index equals

Ind(ﬁ\y) = deg(h) . X(Mu)v

where x(M,,) is the Euler characteristic of M,, = [—p, 1] x X. See the discussion
after Definition 2.2l Note that x(M,) = x(X) and we have deg(h) = deg(f) by
construction. Since both deg(f) # 0 and x(X) # 0 by assumption, we have

Ind(Dy) = deg(h) - x(My,) = deg(f) - x(X) # 0.

It follows that there is a nonzero section ¢ of F over N satisfying the boundary
condition B such that Dgo = 0. Consequently, Proposition 2.5] together with line

[2.30) and ([2.31) above, implies that

(2.32)
n gy, n

Pof + 2o | o+ | o
-1 .[NA 24(n-1) F7ANe(To)x X) ONx

It follows that o = 0 on f~'(N.(Ip) x X) and Po = 0 on Ny. Now Po = 0 and
Dyo = 0 imply that

0= |Dyol? >

~ 1 ~ 1 ~

(2.33) Veo — 55(5)\1/0' = Veo + HE(S)DU =Po=0

for all £ € TNy. In particular, along any smooth curve I' in N,, o satisfies the
following homogeneous ordinary differential equation
~ 1 .
(2.34) Vo — —¢(I)¥o =0,
n

where I is the tangent vector field of the curve I'. It follows that o is smooth on Ny
and nonzero everywhere. However, we have shown that ¢ = 0 on f~1(N: (1) x X).
We have arrived at a contradiction. This finishes the proof. |

2.2. A special case of Theorem[1.3l In this section, we prove the special case of
Theorem [L3]where the leaf X is assumed to have nonvanishing Euler characteristic.

We first prove a Poincaré type inequality (Lemma [2.8)) that will play a key role
in the proofs of our main theorems. We start with the following Poincaré type
inequality in Euclidean spaces.
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Lemma 2.7. Let I" = [0,1]" = I"! x [0,1] be a cube in R™ and { a positive
integer. Denote K = I"~! x [0,{]. Let A be a smooth matriz-valued function on
R™ with |A| < M on K. Then for any smooth vector-valued function o on R™, we
have

(2.35) L{ lof? < e<2M+1>L’(L" laf? + L{ \(% + a)a|).

Proof. Set 8 = d‘% + Aa. We have

i‘aﬁ = Aa, d_a> = 2o, B) — 2€a, Aa).

dx, dx,

Hence

d
Ermﬁ<2mmﬂ+mwmﬁg(m4+mmﬁ+mﬁ

It follows that for any s € [0,1] and 0 < d < £ — 1, we have

J |O[|2 < 6(2M+1)df |a|2 +e(2M+1)(s+d)J |ﬁ|2
In—1x{s+d} I 1x{s} I"—1x[s,s+d]

< 6(21V[+1)€(J |a‘2+f |ﬁ|2>.
Im"—1x{s} K

Integrating s on [0, 1], we obtain

J |a|2 < 6(2M+1)Z(J |a‘2+f |B|2)
In=1x[d,1+d] In=1x[0,1] K

(2.36)

By a summation for d = 0,1,...,¢ — 1, we obtain
J |a|2 < 6(2M+1)£(J |a|2 +J ‘6|2)
K In K
This finishes the proof. (]

Lemma [2.7] easily generalizes from the Euclidean case to the case of general
manifolds.

Lemma 2.8. Let N be an n-dimensional Riemannian manifold and K a compact
connected domain in N. Let E be a Hermitian vector bundle over N equipped with
a connection V, which may not preserve the metric. Let xog be a point in N and
Ns(xo) the d-neighborhood of xo. Assume N(xg) is contained in K. Then there
exist C' > 0 such that

(2.37) f|ﬂ2<CJ |ﬂ2+CJ|Vﬂ2
K Ns(zo) K

for any smooth section o of E over N. Here the constants C' only depend on xq,d
and K.

Proof. Since K is a compact connected domain in N, there exists a finite cover
of K such that each member of the cover is connected to Ns(zg) via a compact
subspace of N that is diffeomorphic to a Euclidean tube as above. Denote these
compact subspaces by {7;}. Although the metric of 7; is not the Euclidean metric,
it is easy to see that the same inequality in Lemma [2.7] applies to sections of E
over T;, except the constants appearing in line (2.35]) need to be replaced by some
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constants that depend on the geometry of 7; and the geometry of E over 7;. By
summing up the corresponding inequalities over 7;, we have

f |a|2<cf |a|2+cj Vol
K N5 (zo0) K

for some C' > 0. Here C is a positive constant that only depends on the geometry
of K, the geometry of E over K, and the number of the 7;’s. This finishes the
proof. O

Now let us prove the following special case of Theorem [1.3]

Theorem 2.9. Let M = (—c¢,c) x X be an n-dimensional manifold equipped with
the warped product metric

g9 =dr’ +¢(r)’gx
such that

(1) ¢ is admissible in the sense of Definition [L1]

(2) the curvature operator of (X, gx) is nonnegative, and

(3) X has nonzero Euler characteristic.

Let (N, g) be a Riemannian manifold and f: N — M a smooth spin proper map with
nonzero degree. If f is distance-nonincreasing and Scg = f*Scy, then Scg = f*Scy.
Furthermore, the following hold.

(I) If v is strictly log-concave, that is, (logp)” < 0, then N = (—c,c) x Y for
some Riemannian manifold (Y, gy) and the metric g = dr® + p(r)?gy, and
the map f respects the product structures.

(I1) If ¢ is strictly log-concave and the metric gx on the leaf X has positive
Ricci curvature, then f is a local isometry.

Proof.

Scalar extremality. First let us prove the scalar extremality part of the theo-
rem, that is, we first prove that Scg = f*Sc,.

Assume on the contrary that Scg # f*Sc, somewhere. Then there exist g € N
and § > 0 such that
(2.38) Scg(z) = f*Scy(x) + 0,Vz € Ns(zo).

Let P be the Penrose operator defined in line (2.7). The exact same proof of
Proposition 2.5 shows that for any sufficiently small €, &’ > 0, we have

~ n on
Docl? > [ Pof o [ o

n — ]. Ny 4(77, — 1) N(;(:Co)

e'n
(2.39) o (10 ()| + o) o
F7EWNe(To)x X)

e[ (gt + Gl o,

where ¢ is the same constant from Proposition 2.5l Since both deg(f) # 0 and
Xx(X) # 0 by assumption, we have

Ind(Dy) = deg(h) - X(M,) = deg(f) - x(X) # 0.
There exists a nonzero section o of E = S(T'N\ @ h*TM,,) over N) satisfying the
boundary condition B such that Dgo = 0.
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We define an operator Q: C®(Ny, E) — C®(Ny,T* Ny ® E) by
N 1
(2.40) Qeo = Veo — —¢(€) Vo,
n

which is a connection on E that may not preserve the metric. Note that .ﬁq;U =0
implies
Po = Qo.

If we choose ¢,&’ > 0 to be sufficiently small and A, p to satisfy line ([2.31)) and
([2.30), then every term, except the third term, on the right-hand side of line (2.39))
is nonnegative. Let K be a fixed compact connected domain of N such that K
contains both f~1(N.(Ip) x X) and Ns(wg). In particular, K does not depend
on the choice of ¢, as along as ¢ is sufficiently small. Note that |¢’| is uniformly
bounded on the pre-compact set N:(Ip). Without loss of generality, let us say
[¥'] < 1 on N:(Ip). Now line (2.39), together with the fact that Dyo = 0 and
Po = Qo, implies that

[ 1o <= e [ 1o
Ny, K

5f o2 < 2¢'(n — 1)(1 + co)f o2,
N (zo0) K

(2.41)

Note that Q only differs from the spinorial connection V on E by an endomorphism,
which is uniformly bounded on K. By Lemma [2.8] there exists a constant C' > 0
such that

(2.42) f lo|? < CJ lo|? + CJ | Qo 2.
K N (o) K

As we have seen in the proof of Lemma[2.8] the constant C only depends on K and
the geometry of E over K, which is covered by some compact tubes Ns(zg). Strictly
speaking, the metric of E = S(T'Nx @ h*TM,), hence its associated Levi-Civita
connection, depends on the map h. But by construction the map h is C®-close to
the map f: N — M. In particular, the metric and its associated connection of F
over the set K are uniformly bounded by some positive constant that is independent
of h. Therefore we may choose C' > 0 independent of €,&’, A and p.
It follows that we have

L o2 <e'(1+ c0>(20<7;_ DI C<”2_ Uy. JK o2,

Now we choose &’ to be sufficiently small so that

5’(1+co)(20(n_1> N C(n—l)) < 1

S <1
5 2 9 =

It follows that o = 0 on K. By the first line of (2.41]), we have Qo = 0 everywhere on
N). Hence o satisfies the homogeneous ordinary differential equation (2.34]) along
every curve in Ny. In particular, ¢ vanishes everywhere on Ny, which contradicts
the fact that o is a nonzero section. This proves the scalar extremality part of the
theorem.

Scalar rigidity. Now let us prove the scalar rigidity part of the theorem. First,
let us prove part (I), that is, we prove that if ¢ is strictly log-concave, then (N, g)
is also a warped product metric with the same warping function ¢.
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Let us start with Claim 2.101
Claim 2.10. Under the given assumption, we have |grad,(f*r)| = 1.

Proof of Claim 210l By the assumption that f is distance-nonincreasing, we see
that

lgrad; (f*r)] < 1
Assume on the contrary that
|grad§(f*r)\ <1

somewhere. More precisely, we assume that there exists xg € IV and § > 0 such
that

(2.43) lgrad, (f*r)(z)| <1 —6,Yx € Nj(zo).

Recall that we have used the inequality (2.21) in the proof of Proposition 2.5
If we do not apply the inequality (2.21), then the inequality (2.24) may be written
as follows

T 2, " 2 LJ % 2
Duol® 225 | Poft+ gy | (Seq = 175l

e'n - 5
Ty ([ (R*r)| + co)o]
F7Y(WNe(To)x X)

+gj ! (h*r)| - (0 (f*r) — elgrad,y (h*r))Ee(@,))o, o)

+LN (s o + o)l

In other words, the effect of applying the inequality (2.21)) is to eliminate the third
line from the above inequality (2.44). In particular, the above inequality (2.44)

becomes the inequality (2.24) if we apply the inequality (2.21).
Note that

|c(grad; (h*r))Ec(r)| = |e(grad, (h*r))| = p'(f*r)lc(grad, (f*r))| < o' (f*7),
where we have used the fact that f is distance-nonincreasing. Therefore, if we
replace the domain of integral Ny in the third line of the inequality ([2.44) with

Ns(z), the inequality (2.44)) still holds. Since ¢ is strictly log-concave, there exists
¢’ > 0 that

(2.44)

[0 (f*r)| > &',V € Nas(zo).
It follows from line (2.43]) that for € and ¢’ sufficiently small, we have
n

f)a?zlf P02+7J Sc: — h*Sc,)|o|?
|Dyo|| — NAI | i(n—1) NA( g 9)lo]

e'n noo’
(2.45) S (/en)|+colloP + 25 [ o
FTH N (o) x X) s(zo)

+LN (mff + Shoth*r ) lof?.

By using Lemmal[2.8] the same argument as in the proof for the Scalar extremality
part above shows that the inequality ([2.43]) leads to a contradiction. This finishes
the proof of the claim. O
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By Claim [2.10] we see that f*r is a smooth function on N with no critical points,
and moreover fy(grad;(f*r)) = d,. Therefore, N is diffeomorphic to (—c,c) x Y,
where Y is the preimage of the leaf X, for some (hence any) ro. Furthermore, it
follows that f: N — M = (—c¢,¢) x X preserves the product structures. The metric
g is now given by

g= dr?® + Grr-
We shall show that g is indeed a warped product metric.

For notational simplicity, we also denote grad;(f*r) by dz. We define a tensor
field V € C*(N,TN ® TN) by

(2.46) Ve = ngvaf —¥(f*r) (f =&, 0m)N a?)
for any tangent vector field £ of N.
Claim 2.11. We have V = 0.

Proof of Claim 2111 Assume on the contrary that V # 0. Then there exists xg €
N, § > 0, and a unit tangent vector field £ over Ns(zg) such that

(2.47) |(Ve)a| > 0, Y € Nis(z0).
By compactness, we assume that
|V| < Cl, and |VV| < C1

for some C; > 0 on Nj(zo).

Let us first prove a technical estimate (inequality (2.52)), which will then be
combined with Lemma 2.8 to get a contradiction. Suppose o is a smooth section
of E/ over Ny. We set

(2.48) T=1-¢07)8Ec(0).
A direct computation shows that
(2.49) [Qe, T] = c(Ve)&e(dr),

where the operator Q is defined in line ([2.40). We may assume without loss of
generality that § is sufficiently small so that the boundary ON;(zg) of Ns(zo) is a
smooth hypersurface in Ns(zg) for each 0 < s < §. By the Stokes formula, we have

| gevat= | qoer-1@o0 0TI
Ns(z0) Ns(zo)
- | Qo106 TI) ~ Qe 110 T10))
N (zo)
= |, . (@100 106 Tl + 106 TIRc) ~ Qe TR To))
# [ X [0 Tl

where v; is the unit inner normal vector of dNs(zg). Note that

(250)  [Qe,[Qe, T1] = [Qe. &Ve) ()] = &V Ve)Ee(dr) — w(h*r)e(§ A V).
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Therefore, there is Cy > 0 such that

. Vel <a | (Tolel +1Qcollel + Qcol T

s(x())

+ CQJ To]|o].

For z € Nj(z), we define F(x) = ¢ — dist(x, ), which gives a continuous positive
function on Ns(zg). We integrate both sides of inequality (2.51) for s € [0,4]. B
changing the order of integration, we obtain

[ Flever <[ F(iTolol+ 1Qellol + Qoo
(%0) Ns (o)

e f Tol|o|.
Ns (o)

Therefore, there exists C3 > 0 such that

am) | least<c [ (Tollo] + Qo] + 1QcoliTol).
Ns (20) Ns(zo)

(2.51)

Now suppose that o is a nonzero section of E over N, satisfying the boundary
condition such that ﬁq,a = 0. Let K be a fixed compact connected domain in N
that contains Ns(zo) and f~1(N:(Ip) x X). By Claim .10, we see the integrand
in the third line of the 1nequahty ([2.44) becomes

[v' (h*r)] - {(p( — c(grady (h*r))&c(dy))o, o)
= \¢(h*r)|'<( (fFr) = o (fFr ) (gradg(f* 1))Ec(d,))o, o)
= [/ (h*r)lp' (f*r) - ((1 = &(0r)Ec(or))o, o)
= [ (W*r)|p(f*r) - (To, o).
It follows from the inequality (2.44) and Po = Qo that there is Cy > 0 such that

f |Qa\2<c4e'J 0P,
Ny K

(To, o) < c@f o2,
Ny K

Note that T is a self-adjoint endormorphism and (1 — T)? = 1. It follows that, at
each point of N, the operator T is a self-adjoint matrix with eigenvalues 0 and 2.
In particular, we have

(2.53)

1
(2.54) (To,o) = 5|To|2.

From line (2.52)), (2.53), (2.54) and the Cauchy—-Schwarz inequality, we have
(2.55) J &(Ve)ol* < csx/Zf |o|?
Ns (o) K

for some C5 > 0. Combined with line (2.47), we obtain
C
(2.56) J o < 5\/_1 o2
Ns (1?0)
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We emphasize that the constants {C;}1<;<5 above are independent of the choice
of the parameters ¢,&’, A\, that appear in the construction of the map h. By
using Lemma [2.8) we see that the inequality (2.56), together with line ([2.53)), leads
to a contradiction (cf. the corresponding argument in the proof for the Scalar
extremality part above). This prove Claim 2.11] |

Now that we know V = 0, that is,
(2.57) V& 0r = 0(f*r) (€ = & 0o - Or),

it follows that the integral curves of 0 on IV are geodesic and the second fundamen-
tal form of the leaf {r} x Y is equal to ¢ - I, where I stands for the identity matrix.
In other words, all principal curvatures of {r} x Y are equal to ¢. Therefore, (N, g)
is also a warped product metric. Moreover, since ¢ = '/, it follows that g is of
the form

g=dr’ + gy,
where gy is some Riemannian metric on Y. This proves Scalar rigidity part (I).

Now we prove Scalar rigidity part (II). Denote Y, = {r} x Y. By the proof
of Scalar rigidity part (I) above, the map f maps Y, to X,. By assumption,
X is Ricci positive and f: Y, — X, is distance-nonincreasing. To prove Scalar
rigidity part (II), it suffices to show that f,: TY, — TX, is an isometry for every
r € (—c¢c).

Assume to the contrary that f, is not an isometry for some rg and yg € Y,,.
Consider the singular value decomposition of fy: Ty, Y., — T(y)Xr,, that is, there
exist orthonormal bases {€;}1<i<n—1 Of Ty, Yy, and {e;}1<i<cn—1 of T(y,) Xy, such
that fy€; = pe; for some p; € [0,1]. By our assumption, there exists some iy such

that

Pig S V1—10'
for some ¢’ > 0. Then by definition of the map h, we have hye; = au,;v;, where
{vi}1<i<n—1 is an orthonormal basis of T}, (y,) X ,(ry) and a = @(p(ro))/¢(re). Com-
pare with the proof of Lemma 2.3 to see how the constant « enters into the esti-
mates. It follows from the above discussion that the inequality (2.17) becomes a
strict inequality. More precisely, at the point (rg,y0) € N, we have

B *Sc f*Ricx(e;,)
258 2 L _ 2 . Z o f 9x 6" 0
(080 e Qe = et Q0 R > g+ e
where Ricx (e;,) is the Ricci curvature of (X, gx) at f(yo) in the direction of e, .
By continuity, the inequality ([2.58) (but with possibly a smaller ¢') also holds on
a small neighborhood of (rg,40) in N = (—¢,¢) x Y. To summarize, we see that
there exist 6 > 0 and xo = (19, %0) € N such that
Scg _ _f*Scgy

4 de(f*r)?
on Ns(zp), where R is the curvature term from line (2.13) (cf. the proof of
Lemma [2.3). Together with the estimates from the proof of Proposition [2.5] this
implies that there exists xg € N and § > 0 such that

n T r sk N n’ *
R ()l () + )2
(Scg(z) — f*Scy(x)) + 6 =6, Va e Ns(xo).

(2.59) R >

4(n—1)

=
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Now we proceed exactly the same way as the proof of Scalar extremality part and
arrive at a contradiction. This proves Scalar rigidity part (II), hence completes
the proof of the theorem. O

3. SCALAR CURVATURE RIGIDITY OF DEGENERATE SPHERICAL BANDS

In the previous section, we prove a special case of Theorem [[.3] where the leaf
X of M = (—¢,¢) x X has nonzero Euler characteristic. In this section, we shall
prove a special case of Theorem [L.3] where the leaf X is a standard round sphere.

Theorem 3.1. Let M = (—c¢,c¢) x X be an n-dimensional manifold equipped with
the warped product metric
g=dr’ +¢(r)’gx
such that
(1) ¢ is admissible in the sense of Definition [L1] and
(2) (X, gx) is the (n — 1)-dimensional standard round sphere (S"71, g5, ).

Let (N,g) be a spin Riemannian manifold and f: N — M be a smooth proper
map with nonzero degree. If f is distance-nonincreasing and Scg = f*Scy, then
Scg = f*Scq. Furthermore, if in addition n > 3 and ¢ is strictly log-concave, then
f is a isometry.

Of course, the case where X is an even dimensional sphere has already been
covered by Theorem 2.9] So it remains to consider the case where X is a standard
odd dimensional sphere. In order to overcome the difficulty caused by the fact
an odd dimensional sphere has vanishing Euler characteristic, we follow Llarull’s
idea and take the direct product with a large circle. But this introduces an extra
small error term in the relevant curvature estimates. A key step of our proof is to
dominate this extra error term by the Poincaré type inequality from Lemma[.8] As
mentioned in the introduction, due to the extra error term caused by introducing
an auxiliary circle, there is a minor gap in Llarull’s proof for the scalar rigidity of a
closed standard odd dimensional sphere [12, Section 4]. In order to make more clear
how the Poincaré type inequality (Lemma[2.8)) enters into our proof of Theorem [B.1]
let us first demonstrate how it can applied to fix this minor gap in Llarull’s proof
for the scalar rigidity of a closed standard odd dimensional sphere.

Theorem 3.2 (Llarull [12]). Let (S?***1 g.;) be the standard round unit sphere of
dimension (2k + 1) = 3. Let (N,g) be a closed spin Riemannian manifold and
f: N — M a smooth map with nonzero degree. If Scg > 2k(2k + 1) and f is
area-nonincreasing, then f is an isometry.

Proof. We first follow closely Llarull’s original proof. Let N xSk be the Riemannian
product of N with the circle S of radius R. Consider the following map

id

(3.1) (N x Sk, g+ R2dg?) 0, (s2R+1 5§t g, + df?) —%s §2+1 A St = §2+2,
where S?¢%2 is the standard unit round sphere, f x % is given by (f x %)(m, 0) =
(z, %) for all (z,0) € N x Sk, and « is a distance-nonincreasing map of nonzero
degree.

Let us write f =qao(fx %). Let E be the following spinor bundle over N x Sk:
E=8 (T(N x Sk) @ f*TSz’”Q) .
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Let D be the corresponding Dirac operator for E. By the Bochner—Lichnerowicz—
Weitzenbock formula, we have

(3.2) =V*V + ch + = Zz<f* ei.e;Chs €1) C(€;)C(€5) ® c(er)c(er),

1,5 k,l

where {e;} is a local orthonormal basis of f*TSQ’”Q, and f*R is the curvature
form of j? *TS?k+2, Here we have used the obvious fact the scalar curvature of
N x Sk coincides with the scalar curvature Scy of (N,g). If {w;} and {w;} are
local orthonormal bases of A*T(N x S) and f* A*TS2*+2 respectively, then we
can rewrite (8.2 as

ch

(3.3) D* =V*V + =2 — Z<f*wk,wz> c(wr) ® c(wy).
We choose a local g-orthonormal frame e, ..., es; 0 of T(N x SL), where eay 4o
is tangential to Sk, and a local g-orthonormal frame ey, ..., ea, 42 of TS?*2 such

that f*ez = u;e; with p; = 0. Then we have f* (€ N Ej) = pipsje; Aej. As f is area-
nonincreasing, we have u;p; < 1 for all ¢ # j. Moreover, since f is —-contractlng
along the Sk direction, we have fioy 42 <— It follows that

Scg  2k(2k+1) 2k+1

RRVE NCg
/VV+4 1 ¥

In particular, we have

4 4 2R

Sc;  2k(2k+1 2k +1
6 ez iver+ [ (B LD JIel
N xSk

for all smooth sections ¢ of E over N x SL. So far, we have essentially followed
the same argument of Llarull [12) Section 4]. Note that the Fredholm index of
D is nonzero, in fact, equal to 2 times the degree of f, where 2 comes from the
Euler characteristic of S?**2. Therefore there exists a nonzero section o of E such
that Do = 0. One would like to plug o into the inequality (8.4) to conclude that
Scg = 2k(2k + 1). However, a priori, the extra error term —M prevents us from
directly making such a conclusion. In the following, we shall use the Poincaré type
inequality from Lemma 2.8 to get round this issue.

Let us prove Scz = 2k(2k + 1) by contradiction. Assume to the contrary that
the inequality Scg > 2k(2k + 1) is strict somewhere. Then there are xp € N and
6 > 0 such that

Scg(z) = 2k(2k + 1) + 6, Vo € Ni(z0).
It follows that

Scnxsy () = 2k(2k + 1) + 6, Yo € Ni(zo) x Sp.

We recall that the constants appearing in the Poincaré type inequality from
Lemma 2.8 only depends on the local geometry of N x S}% and the bundle E, the
number of tubes (as in the proof of Lemma [2.8)) that cover N x Sk and their sizes.

Let f1 be the map N x St — §%*+2 for R = 1, and ip
pe (N x Sk g + R20%) — (N x 81,5 + do?)
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the identity map (at the level of sets). Let
B =8 (T(N xshe fl*Ts%”) .

We notice that E = i% 1, and the spinorial connection V on E is the pull-back of
the connection on Fy by ig. Clearly F; is independent of R, and as R — o0, the
connection on i%E; becomes flatter in the S'-direction. Thus, the local geometric
data of N x Sk and the bundle E over N x Sk are uniformly bounded for any
R>1.

Given Ns(zg) € N, there exist finitely many tubes 7; as in the proof of Lemma[2.§]
that contain Ns(zo) and cover N. Then each tube 7; x S}% contains N(zq) x S}%
and together they cover N x SL. The cardinality of the set {7; x Sk} is clearly
independent of R. Moreover, the constant appearing in the corresponding Poincaré
type inequality (as in Lemma 2.8]) may be chosen so that it only depends on the
size of T;, in particular, is independent of R, as long as R > 1. Therefore, it follows
from Lemma [2.8] that there exists C' > 0 (independent of R > 1) such that

(3.5) f P <C WP+CJ Vol?
N xS}, N (zo) xSk NxS}

for all smooth sections ¢ of E.
Since Do = 0, it follows that

Scg  2k(2k+1) 2k+1
0= D0|2>f VU|2+‘[ -4 — ol?
H ‘ NXS}?| NXS}?‘( 4 4 2R )|
2k +1 2k +1
e T I e N
NXS}% N(;(;co)xS}% 2R 2R NXS}%
2k +1)C
(3.6) >(1- ﬂ) J Vo2
R N xS}
2k+1  (2k+1)C
+(0- °R 2 )j ol
R R N (20) xSL

Since C is independent of R, for a given sufficiently large R, the above estimates
imply that o vanishes on Ns(xg) % S}% and Vo vanishes on N x S}%. This together
with the inequality (3.5) implies that o vanishes on N x Sk, which leads to a
contradiction. Therefore, we have proved that Sc; = 2k(2k + 1).

Now since 2k + 1 = 3, the proof of the Scalar rigidity part (II) of Theorem [2.9]
can be easily adapted to the current setting to show that f is an isometry. Indeed,
assume to the contrary that f is not an isometry. Then there exists yg € IV such that

w1 Ty N — TS**1 is not an isometry. Consider the singular value decomposition
of fou: Ty, N — Tf(yO)S%H, that is, there exist orthonormal bases {€;}1<i<or+1 Of
Ty, N and {e;}1<i<anr1 of T(y,)S** 1 such that fie; = pe; for some p; > 0. Since
2k +1 > 3 and pp; < 1 for all 4 # 7, there exist 1 < o, 8 < 2k + 1 with o #
such that

fapp < 1.
This together with line (8.3) implies that there is ¢’ > 0 such that
Scg 1 _ _ 2k +1
Tg - §Z<f*wkawl>c(wk) ® c(wy) = 0" — 7 Ve e No(yo) x Sh-
k.l



SCALAR CURVATURE RIGIDITY OF WARPED PRODUCT SPACES 25

Now by applying the same estimates as in (3.5) and (3.6]), we arrive at a contradic-
tion. This finishes the proof. ]

Similar remarks also apply to the following improvement of Llraull’s theorem
due to Listing [11].

Theorem 3.3 (Listing [11]). Let (S™, gst) be the standard round unit sphere of odd
dimensionn = 3. Let (N, g) be a closed spin Riemannian manifold and f: N — M

a smooth map with nonzero degree. If Scz = H/\Qf,,< | -n(n —1), then there exists a
constant a > 0 such that f: (N,a-g) — (S™, gst) is an isometry.

Proof. Let S(TN@® f*T'S™) be the spinor bundle of TN @ f*TS™ over N and D its
Dirac operator. For each point yg € N in N, we pick a singular value decomposition
of fs: TyyN — Tj(,,)S", that is, there exist orthonormal bases {€;}1<i<n of Ty, N
and {e;}1<i<n Of T(y,)S" such that fie; = pe; for some p; > 0. By the Bochner—
Lichnerowicz—Weitzenbock formula, we have

Sc; 1
D? = v*y 4 2% 4 = Z pikjc(ei)e(e;) @ clei)c(e;).
4 8 &~
i1F#]
We may assume that p; < -+ < p,,. Thus H/\Qf* | = pn—1ptn, and
SC@

(3.7) Vi é Z it €(€;)c(€5) @ c(e;)c(ej) =
i#j

Scg  Hn—1ftn -n(n—1)

= 0.
4 4

The equality holds if and only if p;p; = pn—1pn for all ¢ # j. Since n > 3,
Hifbj = fin—1pn for all 7 # j implies that

(1) either all u;’s are nonzero and equal to each other,

(2) or p;=0forall 1 <i<n—1.
Since n is odd, we consider the product with a large circle as in the proof of
Theorem [3.2] If there exists a point & € N such that condition (1) and condition (2)
above both fail, then line (8.7) becomes a strict inequality in a small neighborhood
of x in N. Now the same argument from the proof of Theorem [3.2] together with
a Poincaré-type inequality leads to a contradiction. To summarize, for any point
x € N, either condition (1) or condition (2) holds at x.

The rest of the proof follows from the same argument in [19, Theorem 1.6 (I)].

Let U be the open set of N where condition (1) holds. Since the degree of f is

nonzero, U is nonempty. Let h = |A®f,|"/2. Then we have h2 - g = f*gs on U.
By the formula of scalar curvature under conformal change, we have on U

Scg  2(n—1) (n—1)(n—-4)
[*Scq., = h_2g i Ah — i

Since Scy; = h? - f*Sc,,, and h =0 on N — U, we see that
2hF AR = —(n — 4)h* " Vh|?
on the entire N for all £ > 1. By the Stokes theorem, we have

|dh|?.

0 :J (R"Ah + (V(h"),Vh)) :J (R"Ah + ER* 1| VA[?).
N N

(k _ > 4) JN WF=1 VR = 0

Therefore




26 JINMIN WANG AND ZHIZHANG XIE

for all Kk > 1. As a result, Vh = 0 on N. Therefore, h is a nonzero constant
function, say a, on N. It follows that f: (N,a-g) — (S™,gst) is a local isometry.
Since n = 3, the sphere S™ is simply connected. Therefore, f: (N,a-g) — (S™, gst)
is an isometry. This finishes the proof. (]

Now let us prove Theorem [3.1]

Proof of Theorem Bl Since an even dimensional sphere has nonzero Euler char-
acteristic, which has already been covered by Theorem [2.9] we shall only focus the
case where X is an odd dimensional standard round sphere. Our proof will be a
combination of the proof of Theorem [3.2] and the proof of Theorem [2.91

Similar to the proof of Proposition 2.1] for a given 0 < A < ¢, let My = [—-A, A\] x
Sn=1 = M. We assume without loss of generality that Ny = f~(M)) is a manifold
with boundary. We denote by M = [\, A] x S™, equipped with the metric

G=dr’ +o(r)? g5

Let Ny x Sk be the Riemannian product of (Ny,g) and the circle S} of radius R.
For any ¢’,e > 0, let p be the smooth function given in line ([2.1):

(3-8) pi[=7,7] = [~ c]
such that

e p(£7) = *e,
o 1< p(r)<1+¢ forreN.(Ip), and
o p/(r) = 1forre[—,7]\Ne(lo),
where Iy is a subinterval of (—c¢,¢) as given at the beginning of Section 2.1 and
N:(Ip) is the e-neighborhood of Ij.
For A € (0,7) and u = p(\), we consider the map

}NL: (N)\ X Sl,ngRQdGQ) - (Muv.a)

defined as the composition of the following maps

(Nx x S1, g+ R?d6?) 9% (M, x SY,dr® + o(r)%¢S, " + R2d6?)
(3.9) A (M, xS dr? + o(r)2(¢5 T+ db?))

X0, (M., 3),

where h is given in the proof of Proposition 2.Iland « is the map from S"~! x S' to
S™ in the proof of Theorem 3.2l By construction, T is a smooth map with nonzero
degree.

Set E = S(T(N, x Sh) @%*TMM). We impose the same boundary condition
B on sections of E at 0N, x S! as given in Definition 2.2l Let V be the spinorial
connection on E determined by the Levi-Civita connections of Ny x S! and M u A
new connection ¥V on E is defined as follows

(3.10) Ve = Ve + %o(vﬁzgar)c(ar),vg e CP(Ny x S}, T(Ny x Sh)).
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Let {€;}1<i<ns+1 be a local orthonormal basis of T'(Ny x S!), where {&;}1<i<n is a
local orthonormal basis of TNy and €, is an orthonormal basis of TS!. Let D
be the Dirac operator on E with respect to V,

n+1
(3.11) D= ) eE)Ve,.
i=1

Similar to the proof of Proposition 2.1 we write
(3.12) U= gw(h*r) - Ec(0r),
where ¢ = ¢’ /¢, and define

(3.13) Dy =D+,

We emphasize that here n is equal to the dimension of M , minus one.

~

Since x(M,) # 0 and deg(%) # 0, we have Ind(Dy) # 0, cf. the proof of
Proposition 2.1l Therefore, there exists a nonzero section o of E satisfying the
boundary condition B such that .ﬁ\pU =0.

Note that

(3.14) 0 = |Dyo|? = |Do|? + ((Do, Vo) + (¥a, Dod) + [Wo|?.

By the Bochner—Lichnerowicz—Weitzenbock formula, we have D? = V*V +R. Now
we compute the curvature operator R. Let P be the orthogonal projection from
TM onto (6,)%, and P the orthogonal projection from TM onto (d,), where
(0,)* is the orthogonal complement of o, in TM (resp. TM). By the Bochner—

Lichnerowicz—Weitzenbock formula for %, we have
(3.15) RS 1 N e neg)e(Plhse) n P(hae;))
. = 4 230(}1*7")2 i J B *C5))

i<j<n+1

where the Clifford action of 2-forms is defined by

c(u Av) = %(C(u)c(v) —c(v)e(u)).
We claim that
(3.16) Yo @@ A g)e(Phsei) a P(hses)) < [A*(Phi)h,
i<j<n+1
where | A?(Phy)|1 denotes the trace norm of the linear map

A (Phy): N*T(Ny x S') — A’TM,,.

Indeed, let us consider the singular value decomposition of A? (ﬁﬁ*) More pre-
cisely, there exist orthonormal bases {@),} of A°T(Ny x S!), {wy} of /\2TM#, and
A =0 for 1 <k <n(n+1)/2 such that

(ﬁﬁ*)@k = )\kwk.
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Therefore, we have

Z c(e; A éj)C(ﬁ(E*éi) A ﬁ(};*éj))

i<j<n+1
n(n+1)/2 n(n+1)/2 .
= Y d@ew < D) A= N (PRl
k=1 k=1

This finishes the proof of the claim.
Recall that h: Ny — M, is given by h = h, o f, cf. line (2.2). We define

Sn+1

B: (M, x S',g+ R2d6%) — (M, 5 = ¢, )

as the composition of the following maps

~

(M, x S', g + R*d6%) 2% (M, x S',dr? + o(r)?(¢% " + d6%)) 2% (M, 3).

Then we have

~

h = pgo(h,xid)o f.
‘We notice that
Phy = (PB4«P) o (P(h, x id)+P) o fs.

For each r € (—¢, ¢), we denote by X, the leaf of M at r, and X’r the leaf of M at
r. Then for each fixed r, we have

PByP = By: T(X, x SY) — TX,,
and
P(h, x id)«P = (h, x id)s: T(X, x S') = T(X, () x SY),

as h, maps the leaf at r to the leaf at p(r). Therefore, by the Hélder inequality, we
have

IN*(Pha)|1 <IA?(PBwP)|1 - IN(P(hy x id)P)| - [A® fu|

(3.17) w(h*r) 2,
< . PB«P)|1,
where we have used the fact |A%fy| < 1 since f is distance-nonincreasing and
2 . p(h*r)®
P(h, x id)4+P)| =
IA"(P(hy < id)« P)] o)

since h, maps the leaf at r to the leaf at p(r).
Now we estimate the trace norm of

N (PBxP) = N*By: N°T(X, x SY) > N°TX,
for each fixed r. Let p be the orthogonal projection
p: N*T(X, xSY) > TX, ATS' =TX, ®TS".

Note that the range of p has dimension (n — 1), and the orthogonal complement
of the range of p has dimension (n — 1)(n — 2)/2. We recall that f§ is distance-
nonincreasing. Therefore

(n—l)(n—2)+n—1.

(318) [A?Buls < I(A*B) 0 bl + [(A*By) o (1 =P < = -
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To summarize, we have shown that
RZ%— 1 'ga(h*r)Q((n—l)(n—Z)_i_n—l)
4 2p(h*r)? o(f*r)? 2 R
S¢g (n—2)(n—1) n—1

4 dp(f*r)2  2Rp(f*r)?

The estimates for the other three terms in line (3.14)) are the same as in the proof
of Proposition 2.1] Recall the operator Q defined on N as given in line (2.40).
Since Dyo = 0, it follows that Po = Qo. To summarize, we have

0 :J |Dyo|?
N xSt

4(n—1)

(3.19)

2 o 2__n—-1 | o
.[kasl Qo+ (Seg = [Scg) I 21’“380(1”‘7")2‘0|

V

(3.20)

N G ARl

/
-5 (' (h*1)| + o)l
FY(Ne(Io)xSm—1) xSt

where ¢ is independent of €,¢’, A\, u and R, and Iy is the interval defined at the be-
ginning of Section 2.1l We remark that we have used condition (3) of Definition [L.1]
for the warping function ¢ in the above inequality.

Now we shall prove Scg = f*Sc, by contradiction. Assume to the contrary that
the inequality Scgz > f*Sc, is strict somewhere. More precisely, assume that there
is zg € N and ¢ > 0 such that

Scg(z) = f*Scy(x) + 0,Vx € Ns(z0).

Let K be a compact connected domain in N containing Nj(zg) and f~*(N:(Ip) x
S"=1), and K = K x S'. For any ¢,¢’ below, we always choose A such that

(3.21) H, + SW(#)I >1>0

n
2(n—1)
on 0Ny, where u = p(A).

Note that, as long as € and €’ are sufficiently small, there exists ¢; > 0 (inde-
pendent of €,&’, A and ) such that |¢/(h*r)| +co < ¢1 on f71(N:(1p)), where I is
the interval as chosen in the beginning of Section 2.1} Thus line ([8.20) yields that

n n—1
o>—f Qo2 — —2"= |52
101 Jye 27T~ 2R
no

3.22
() el I = W
4(”’71) Ns(zo) xSt 2 K

It follows that

2(n —1)° 1 2 / 2
|QU|2 < 7J ————|o|* + 2¢1¢ (nfl)f lo] %,
Jkasl nR Naxst P(f*r)? 24

2(n —1)2 1
5] ]2 < MJ R 1)] ]2,
Ns(zo) xSt nR Ny xSt Lp(f T) K
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Therefore, we have

2 1
—J Qo + —fJQoF +f o?
3 N)\Xgl 3 K Ng(xo)XSl

(3.23) <& -2 (n—1) (1 n %) J

K

1 2(n—1)? 1 1 9
S S ( [ I - . .
+ 5 ~ ( + 5) SID J;\MS1 o]

A

jo|?

By Lemma [2.8] we have the Poincaré-type inequalities

jw|a|2 < cf o + chQaP,
K Ng(zo)XSl K

f mF<OJ mﬁ+af Q0 2.
Ny xSt Ns(zo) xSt N, xSt

The readers should not confuse the two constants C' and C’ in the two inequalities
of (8.24) above. The first inequality of (8.24) only requires the geometric data of
f: N — M near K, which is not affected by the S'-direction. Hence the constant
C > 0 only depends on K and 4, and is independent of ,&’, A\, u and R. The second
inequality of (3.24) requires the geometric data of the entire Ny. In particular, the
constant C’ > 0 may depend on ¢,&’, A\, u, but is still independent of R.

Now given the compact connected domain K and d > 0, we choose € > 0 and
¢’ > 0 small enough so that

(3.24)

2Cce' (n — 1)(1 + %) < %,

and choose A as in line (8.21). With e,&’, A chosen, the constant C’ is now fixed.
Finally, since N, is also fixed and compact, we choose R large enough so that

1 20'(n—1)2, 1 1 1
T (1) sup—e— < -
R n ( * 6) S]l]l}\) e(f*r) 3

It follows from ([B.23) and (3.24) that

1 1
-J |Qd2+—f o2 <0.
3 N)\Xgl 3 Ng(xo)XSl

This together with the second inequality in line (8.24) implies that o vanishes on
N, x S!, which leads to a contradiction. Therefore, we have proved that Sc; =
f*Scy.

Now if in addition n > 3 and ¢ is strictly log-concave, then the proof of the
Scalar rigidity part of Theorem[2.9/or the proof of the rigidity part of Theorem[3.2]
can be easily adapted to the current setting to show that f is an isometry. We shall
not repeat the details. This completes the proof. ([l
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4. SCALAR CURVATURE RIGIDITY OF DEGENERATE TORIC BANDS

In this section, we first prove Theorem [.5] which is an improvement of Theo-
rem [1.3] for the case where the leaf X of M is a flat torus. The general case of
Theorem [L.3] will then follow by a combination of the proofs of Theorems [2.9] B.1]
and [L.5]

Proof of Theorem [l Without loss of generality, we assume that (n — 1) is even.
The case where (n — 1) is odd can be proved similarly by taking product with a
circle as in the proof of Theorem [3.1]

The torus T""! is enlargable [6]. More precisely, for any ¢ > 0, there exists
a finite-sheeted covering space of T"~! (equipped with the lifted metric) which
admits an e-contracting map onto the standard round sphere S~ ! such that the
map is constant at infinity and of nonzero degree. In particular, for a finite covering
space T ! of T"~!, let us denote this e-contracting map by 9J5: Th ! — S*~1,
Let (—c,c) x S"! be the Riemannian product of S*~! with the interval (—c¢,c).
Consider the map

id x 9p: M = (—c,c) x TR F — (—c,c) x S"7L.

Note that the metric of the leaf {r} x T%~* has to be rescaled by a factor of o(r)?2.
But in any case, for any € > 0 and any 0 < ¢ < ¢, there exists a sufficiently large
finite-sheeted covering space Txfl of T"~! such that

Op i=id x Op: [£, 0] x T — [—£,4] x S™1

is e-contracting and of nonzero degree.
Let Np be the covering space over IV induced by the covering space

—c,¢) x TVt 5 M = (—¢,c) x T !
A

via the map f: N — M. The map f lifts to a map Ny — (—c¢,¢) x Txfl, which we
still denote by f. Let S, be the spinor bundle of (Na,g). Set h := h,o f as in
line ([2.2]), where the function p is defined similarly as in line (2.1)). More precisely,
for any &’,e > 0, there is 0 < v < ¢ and a smooth function

(4.1) pi =17 = [=ec]
such that
e p(+7) = *c,
o 1< p(r)<1+¢€ifreN(p), and
o p/(r) =1forre[—7,7]\W:(lo),
where I is a subinterval of (—c¢, ¢) chosen as at the beginning of Section 2.1]
Let A > 0 be sufficiently close to v and p = p(\). We denote by

Nax = fH[=A A < T

and My, = [—p, p] % 'H‘Xfl. By a similar discussion as in Section 2.1] without loss
of generality, we may assume that the preimage of X, is a smooth submanifold of
N for r close enough to +c¢. Therefore, without loss of generality, we may assume
N,y is a smooth manifold with boundary.

Now let us set E to be the spinor bundle

E = S(TNap® (04 0 h)*T([—p, p1] x S"71))
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over Ny x, where T'([—pu, u] x S*™1) is the tangent bundle of [—pu, u] x S*~1. By
construction, the pull-back bundle (04 o h)*T'([—u, p] x S*~1) gets arbitrarily flat
over N » as A becomes sufficiently large. That is, we may assume the curvature
of (O 0 h)*T([—p, p] x S*~1) to be as small as we wish, as long as A is sufficiently
large.

Similar to the proof of Proposition 2.1, we consider a specific Dirac opera-
tor together with potential on Nj » as follows. Let 0, be the unit vector in
(©p 0 h)*T([—p, p] x S*~1) along the direction of [—u, uu]. Let V be the spinorial
connection on F naturally induced by the Levi—Civita connection on N and the
pull-back of the Levi-Civita connection on M. Similar to line (2.3]), we introduce
a new connection on F by

~ 1 n—1
Ve i= Ve + 50(Vio 0npe Or)e(dr),

where V&' is the Levi-Civita connection of [—u, 1] x S*~1. Note that, since
[—p, 1] x S*~1 is a Riemannian product, 0, is clearly parallel with respect to the
connection V5" . In other words, the “new” connection ¥ above in fact is equal
to the original connection V on F. We only introduced the new connection so that
our notation is more consistent with that from Section 2.1l Let D be the Dirac

operator on E with respect to V,
~ n A~
D= Z &(€;)Ve,
i=1

where {€;}1<i<n is local orthonormal basis of TNy ».
Recall that we have

Y = % = (log p)".

We denote by r: M = (—c¢,¢) x X — (—c¢, c) the projection to the first component,
that is, 7 maps the leaf X; to t. We set

W= g (W) - & - e(8y),

where & is the Zs-grading on E and h*r is the function r o h: Ny — [—pu, u]. We
define

(4.2) Dy :=D+0

and impose the same boundary condition B as in Definition [2.2]
Since both deg(©4 o h) # 0 and x(S"~1) = 2 # 0, we have

Ind(Dy) = deg(O4 o h) - x([—p, p1] x S*71) # 0.

There exists a nonzero section o of E over N, , satisfying the boundary condition
B such that lA)q,o =0. R
Now let us prove Scg = f*Sc, by contradiction. Indeed, we shall show that Dy is
invertible if the inequality Scz = f*Sc, is strict somewhere on N. By construction,
the curvature of (O o h)*T([—u,p] x S*~1) is arbitrarily small, as long as A is
sufficiently large. Therefore, if o is a nonzero section of E satisfying the boundary
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condition B and ﬁq,a = 0, then the same proof of Proposition 2.5l shows that
~ n
on' |D¢d2>——————f Q0 ? + (S — f*Se,)|o 2 = Calo]?
Nax 4(n—1) Iy, , 7 !

(13) | (gt + Flol)laf

e'n

-5 (I (h*r)| + co) o],
7N o)xTn 1)
where ¢g is the same constant as line ([2.28) and C) is a positive constant such that
Cp — 0as A — 0. We emphasize that we have used condition (3) of Definition [I.1]
for the warping function ¢ in the above inequality (4.3). On the other hand, in the
current case, the proof of the above inequality (4.3) does not require Lemma 2.3
This is because the scalar curvature of M is calculated only using the potential ¥ in
the current case, and the curvature term coming from (O, o h)*T'([—pu, p] x S*~1)
is arbitrarily small and has been reflected in the constant Cy during the estimates.

Suppose that there is a point zg € N such that Sc; > f*Scy 4+ § on Nj(zg). Let
Azg € N be the preimage of zy via the covering map No — N. Then we also
have Scz > f*Scy, + & on Ns(Azp).

Fix a compact set K in N that contains Ns(xg) and f~1(N.(Io) x X), and we
denote by K, the preimage of K in Ny. Given € > 0 and &’ > 0, we choose A > 0
such that
(4.4) n

H,
g+2

n
m—1) ()] =1 >0,

where p = p(\). Without loss of generality, we may assume that 1’| <1 on N (1p).
It follows from the inequality (4.3) that

/ J—
J |QU‘2 < (1+CO>€ (n 1)J |0|2 +CAJ |0|2,
Na,x Ka

2 N,

(4.5)
5J |o|? <2(1+CO)5’(n—1)J |O"2+CAJ o
NJ(AI()) Ka N/\,)\

By Lemma [2.8] we have the following inequalities

J o2 < C o2+c | |0,
Ka Ng(/\wo) Ka

f |a|2<0'f |a\2+0'f 0P,
NA,/\ KA NA,/\

for some C' > 0 and C’ > 0. Note that there is d > 0 such that the d-neighborhood
of Axg in N covers K, where d is independent of A. Moreover, the geometric data
of F over N, restricted on K are also independent of A. Therefore, the constant
C > 0 in the first line of (4.6) is independent of €,&’, A and especially independent
of A. The constant C” in the second line of (4.6) is also independent of A, but may
depend on €,¢’, A, as one of the integrals takes place on the entire Ny .

Now we first choose € and &’ to be sufficiently small according to C, then choose
A > 0 such that the inequality (4.4) holds, and finally choose A to be sufficiently
large according to C”. It is not difficult to see that an appropriate choice of €,&’; A
and A leads to a contradiction. See for example the argument towards the end of
the proof of Theorem B.Il This finishes the proof of the equality Sc; = f*Sc,.

(4.6)
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If in addition ¢ is strictly log-concave, then the proof of the Scalar rigidity
part of Theorem 2.9] can be easily adapted to the current setting to show that
N = (—c¢,c¢) x Y, the map f respects the product structures, and the metric g is
also a warped product metric of the form

g =dr’ + o(r)gy,
where gy is a metric on Y. It remains to show that gy is flat.

As we have showed that Sc; = f*Scq, the standard formula for the scalar cur-
vature of warped product metrics (cf. line (2.26])) shows that gy is scalar flat,
that is, Scg, = 0. Note that ¥ maps to T"~! with nonzero degree. Therefore Y
is enlargable [6]. It then follows from a theorem of Gromov and Lawson that YV
does not admit a metric of positive scalar curvature, and any metric of nonnegative
scalar curvature on Y is flat [6] Theorem A][10, Chapter IV, Proposition 5.8]. This
finishes the proof. O

Now the general case of Theorem [1.3] follows from a combination of the proofs
of Theorem [2.9] Theorem [3.1] and Theorem [1.5]

As we have seen in various steps of the proof of Theorem [[.3] the notion of ad-
missible warping functions, introduced in Definition [I.1] is crucial for the validity
of scalar curvature extremality and rigidity of degenerate warped product spaces.
The log-concavity of ¢ is a commonly expected necessary condition for the scalar
curvature extremality and rigidity of warped product spaces. However, condition
(3) of Definition [I.1] is new and has not been previously considered in the litera-
ture regarding scalar curvature extremality and rigidity. Example [4.1] shows that
condition (3) in fact is necessary. More precisely, Example [4.1] shows that if we
drop condition (3), then scalar curvature extremality and rigidity fail for certain
degenerate toric bands with warping functions satisfying conditions (1) and (2).

Example 4.1. Let b be a positive number. Let X be a flat torus T"~! and
M = (—7/2,7/2) x T"~1, which carries a warped product metric

g = dr? + cos® (r)gpn-1
with the warping function ¢(r) = cos®(r). A direct computation shows that
¥ = (log ) = —btan(r),

' = (logp)" = —bsec?(r),
and
Scy = —2(n— 1)(¥' + gw — (n—1)(b(2 — nb) tan®r + 2b).

In particular, ¢ is strictly log-concave; and ¢(r) > 0 for r € (—w/2,7/2) such that
lim,_, +» ¢(r) = 0. Therefore ¢ satisfies conditions (1) and (2) of Definition [L.1l In
the present case, ¢ satisfies condition (3) of Definition [L.1}

(' +ny?/2) <0 nearr = —m/2
(¢ +ny?/2) =0 near r =m/2

if and only if b = 2/n. B
Now assume that b < 1/n and choose b € (b, 1/n). Consider the following warped
product metric

g = dr? + cos®(r)gpn—
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on M. Note that the function r is 1-Lipschitz with respect to both g and g. Hence
all assumptions, except condition (3) of Definition [L.1] of Theorem [L.5] are satisfied
by (N,g) := (M,g) and (M, g). However, a direct computation shows that

Scg — Scg = (n— 1) (b(2 — nb) — b(2 — nb)) tan®r + 2(n — 1)(b— b) > 0.

Therefore, the above choice of b and b gives a counter-example of Theorem [L.5] if
we drop condition (3) in Definition [

We observe that the warping function (1) = cos’(r) in Example 1] satisfies
conditions (1) and (2) of Definition [L1] for all b > 0. It satisfies condition (3)
of Definition [L1]if and only if b = 2/n. However, in Example [4.1] we have chosen
b < 1/n in order to demonstrate the necessity of condition (3). This raises a natural
question.

Question 4.2. Does scalar curvature rigidity hold for M = (—n/2,7/2) x T"~!
equipped with the warped product metric

g = dr® 4 cos® (r)grn

when 1/n < b < 2/n?

5. SCALAR-MEAN RIGIDITY OF WARPED PRODUCT SPACES

In this section, we prove Theorem [I.7] The proof is a straightforward adaption
of the proof of Theorem [1.3

Proof of Theorem [L1. For simplicity, we shall only focus on the case where the leaf
X has nonzero Euler characteristic. The general case can be dealt with similarly
as the general case of Theorem [L.3]

As the main ingredients of the proof are very similar to those used in the proof
Theorem [L.3] we shall be brief. We start from the function p as given in line (2.1)
except that p is defined to equal the identity map near —c this time.

We retain the same notation from the proofs of Proposition[2.1]and Theorem 2.9
Note that d Ny consists of two parts, where 0_N, = 0N is mapped to {—c} x X,
and the remaining part 04 N is mapped to {u} x X. Let o be a nonzero section of
the spinor bundle F satisfying the boundary condition B and ﬁq,a = 0. Then by
Proposition [2.5] we have

~ n
0= 1Duol? =" | Poft 4 g [ (8es 778 )lof
n—1 Ny Ny

n
4(n—1)
e'n
S (10 (h#0)| + eo)lo?
F7EWNe(o) x X)
n

DTSy LNA (g = £ Hy) ot

+L N (ﬁﬂﬁgw(mn)w.

The equality of scalar curvature Sc; = f*Sc, follows from the same argument
of Theorem 2.9 Indeed, otherwise the inequality of scalar curvature Scg > f*Sc,
is strict somewhere, then line (5.I) and Lemma [2.8]1ead to a contradiction.

(5.1)
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Now let us prove Hy; = f*H,. Suppose to the contrary that the inequality
Hy > f*H, is strict somewhere on 0_Ny = JN. That is, there is a small open
subset A in dN such that Hy > f*H, + 6 on N for some § > 0. Let K be a
compact connected domain in N containing both 0N and f~'(N.(I) x X). Then
an obvious modification of the proof of Lemma [2.8] shows that

(5.2) J || SCJ |0\2+CJ |Vol|?
K N K

for some C' > 0 independent of the parameters ¢,&’, A, u that appear in the con-
struction of the function h: Ny — M,,. Indeed, the inequality (£.2)) follows from
the same proof of Lemma 2.7 and Lemma [2.8] except that we replace line (2.36]) by

(5.3 | s e | jp).
In—1x{t} In—1x{0} K

for smooth function o over R™ and 8 = % + Acq, and integrate with respect to
t € [0,4] as in the proof of Lemma 2.7 Now the inequality (5.2)), together with line
(B.1), shows that o vanishes on N, which contradicts the fact that o is nonzero.
This proves that Hg = f*H,.

The scalar rigidity part of the theorem follows by the same argument as the
Scalar rigidity part of Theorem 2.91 This completes the proof. |
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