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SCALAR CURVATURE RIGIDITY

OF DEGENERATE WARPED PRODUCT SPACES

JINMIN WANG AND ZHIZHANG XIE

Abstract. In this paper we prove the scalar curvature extremality and rigid-
ity for a class of warped product spaces that are possibly degenerate at the
two ends. The leaves of these warped product spaces can be any closed Rie-
mannian manifolds with nonnegative curvature operators and nonvanishing
Euler characteristics, flat tori, round spheres and their direct products. In
particular, we obtain the scalar curvature extremality and rigidity for certain
degenerate toric bands and also for round spheres with two antipodal points
removed. This answers positively the corresponding questions of Gromov in
all dimensions.

1. Introduction

Scalar curvature extremality and rigidity problems occupy a central role in Rie-
mannian geometry. The first examples of scalar curvature rigidity are flat tori and
standard round spheres. Specifically, Schoen–Yau [14, 15] and Gromov–Lawson [6]
showed that the torus Tn admits no metric of positive scalar curvature, and any
metric on Tn with nonnegative scalar curvature is a flat metric. For the standard
round sphere pSn, gstq, Llarull proved that if g is a Riemannian metric on Sn such
that g ě gst and Scg ě Scgst , then g “ gst [12]. Here Scg stands for the scalar
curvature of g.

Goette and Semmelmann generalized the theorem of Llarull and proved the
scalar curvature extremality and rigidity for all closed manifolds with nonvanishing
Euler characteristics that are equipped with metrics having nonnegative curvature
operators [5]. Later on, Lott extended their theorem to a scalar-and-mean curvature
extremality and rigidity theorem for compact manifolds with smooth boundary [13].

Inspired by Gromov’s µ-bubble approach to scalar curvature problems, Cecchini
and Zeidler proved a scalar-and-mean curvature extremality and rigidity [3] for the
following class of compact warped product spaces: pX ˆ I, gq satisfying that X is a
closed spin manifold with nonzero Euler characteristic, I “ ra, bs is a closed finite
interval, and g is a warped product metric of the form:

g “ dr2 ` ϕprq2gX

such that gX is a metric on X with nonnegative curvature operator and ϕ is a
strictly log-concave positive function on I “ ra, bs. In contrast with the results of
Llarull [12], Goette–Semmelmann [5] and Lott [13], the result of Cecchini–Zeidler
only requires the metric of the leaf X to have nonnegative curvature operator,
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rather than requiring the entire underlying manifold to satisfy this condition. For
example, it is applicable to annuli in odd dimensional hyperbolic spaces, where
an annulus is viewed as a warped product space of the form Sn´1 ˆ ra, bs. More
recently, the authors have generalized the theorem of Cecchini–Zeidler and obtained
a dihedral ridigity theorem for a class of codimension zero compact submanifolds
with polyhedral corners in warped product spaces [17]. It is worth noting that these
submanifolds themselves are not necessarily warped product spaces and may have
faces that are neither orthogonal nor parallel to the radial direction of the warped
product metric.

Thus far, all the aforementioned results have primarily focused on addressing the
scalar curvature extremality and rigidity problem in the context of compact, hence
complete, manifolds. From a technical standpoint, this emphasis on completeness
is crucial for making sense of the relevant index theory. Therefore, it is remarkable
that Gromov, using his µ-bubble techniques, managed to establish scalar curvature
extremality and rigidity for certain incomplete warped product spaces [7], which
we will refer to as degenerate warped product spaces from now on. More precisely,
Gromov sketched a proof of the scalar curvature rigidity for certain degenerate toric
bands [7] in dimensions n ` 1 ď 8. These toric bands Tn ˆ p´π

n , π
n q are equipped

with the warped product metrics

g “ dr2 ` ϕprq2g0,

where g0 is a flat metric on Tn and

ϕprq “
´
cos

nr

2

¯2{n
.

In the same paper [7], Gromov also sketched a proof for the scalar rigidity for the
n-dimensional standard round sphere with two antipodal punctures, denoted as
pSnzt˘u, gstq, in dimensions 3 ď n ď 8 (cf. [8] and [9] for the dimension three
case). One key observation made by Gromov is to view the space pSnzt˘u, gstq as
a warped product space

gst “ dr2 ` cosprq2gSn´1

st ,

where r P p´π{2,π{2q and gSn´1

st is the standard round metric on Sn´1. Note
that the dimensional restriction in both of Gromov’s results arises due to the usual
regularity issue encountered in minimal hypersurface theory.

In this paper, we generalize the results of Gromov and prove the scalar curvature
extremality and rigidity for a fairly large class of degenerate warped product spaces
in all dimensions. The main class of warped product spaces we consider is the
following. Let M “ p´c, cq ˆ X be an n-dimensional manifold equipped with the
following warped product metric

g “ dr2 ` ϕprq2gX .

The leaf X is allowed to be the Riemannian product of finitely many spaces from
any of the following classes of closed manifolds:

(i) round spheres of any dimension,

(ii) closed Riemannian manifolds with nonnegative curvature operators and
nonvanishing Euler characteristics, and

(iii) flat tori.

The warping function ϕ is required to be admissible in the following sense.
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Definition 1.1. We say a warping function ϕ is admissible if ϕ satisfies the fol-
lowing properties:

(1) ϕ is log-concave, that is, plogϕq2 ď 0,

(2) ϕprq ą 0 for r P p´c, cq, and limrÑ˘c ϕprq “ 0,

(3) there exists a small ε ą 0 such that ψ1prq ` nψprq2{2 on the interval
pc, c´εq is nondecreasing, and ψ1prq`nψprq2{2 on the interval p´c, ´c`εq
is nonincreasing, where ψ “ plogϕq1 and n “ dim M .

The log-concavity of ϕ is a commonly expected necessary condition for the scalar
curvature extremality and rigidity of warped product spaces. However, the above
definition introduces a new condition (3), which, to the best of the authors’ knowl-
edge, has not been previously considered in the literature regarding scalar curvature
extremality and rigidity. Despite its somewhat technical nature, condition (3) is
shown to be necessary through Example 4.1. More precisely, Example 4.1 shows
that if we drop condition (3), then scalar curvature extremality and rigidity fail for
certain degenerate toric bands with warping functions satisfying conditions (1) and
(2).

Before we state the main theorem of the paper, we recall the definition of spin
maps.

Definition 1.2. A map f : N Ñ M between two oriented manifolds N and M is
called a spin map if the second Stiefel–Whitney classes of TM and TN are related
by

w2pTNq “ f˚pw2pTMqq.

Equivalently, f : N Ñ M is a spin map if TN ‘ f˚TM admits a spin structure.

We have the following main theorem of the paper.

Theorem 1.3. Let M “ p´c, cq ˆ X be an n-dimensional manifold equipped with
the warped product metric

g “ dr2 ` ϕprq2gX

such that

p1q ϕ is admissible in the sense of Definition 1.1 and

p2q pX, gXq is the Riemannian product of finitely many spaces from the classes
(i)–(iii) listed above.

Let pN, sgq be a Riemannian manifold and f : N Ñ M be a smooth spin proper
map with nonzero degree. If f is distance-nonincreasing and Scsg ě f˚Scg, then
Scsg “ f˚Scg. Furthermore, the following hold.

pIq If ϕ is strictly log-concave, that is, plogϕq2 ă 0, then N “ p´c, cq ˆ Y for
some Riemannian manifold pY, gY q and the metric sg “ dr2 `ϕprq2gY , and
the map f respects the product structures.

pIIq If ϕ is strictly log-concave and the metric gX on the leaf X has positive
Ricci curvature, then f is a local isometry.
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Our approach uses the index theory of twisted Dirac operators coupled with
potentials. However, due to the noncompactness of the underlying space and the
incompleteness of the metric, it seems unfeasible to hope for a general index the-
ory on the entire underlying space. To get around this, we focus on codimension
zero compact submanifolds with boundary of the underlying space, where the clas-
sical index theory for manifolds with boundary can be applied. However, this
approach inevitably introduces additional error terms when comparing various geo-
metric quantities, such as scalar curvatures and mean curvatures. To overcome this
difficulty, a key aspect of our proof involves carefully balancing these extra error
terms with the comparison conditions given by our assumptions. We show that the
failure of the conclusions of our main theorem would yield a geometric term that,
via a Poincaré type inequality (Lemma 2.8), ultimately dominates these additional
error terms. This leads to a contradiction, hence proves our theorem.

We remark that the case where the leaf pX, gXq is an odd dimensional sphere or
torus, the vanishing of the Euler characteristic of the leaf imposes an extra difficulty.
When the leaf is an odd dimensional sphere, we follow Llarull’s idea of taking the
direct product with a large circle1 [12, Section 4]. When the leaf is a torus, we pair
the Dirac operator with an almost flat bundle. In both cases, the corresponding
procedure introduces an extra small error term in the relevant curvature estimates.
A key step of our proof is to dominate this extra error term by again a Poincaré
type inequality.

In fact, due to the extra error term caused by introducing an auxiliary circle,
there is a minor gap in Llarull’s proof for the scalar rigidity of a closed standard odd
dimensional sphere [12, Section 4]. We make the observation that the minor gap in
Llarull’s original arugment can be fixed by applying the Poincaré type inequality
we mentioned above.

Theorem 1.4 (Llarull [12]). Let S2k`1 be the p2k `1q-dimensional standard round
sphere. Let pN, sgq be a closed spin Riemannian manifold and f : N Ñ M a smooth
map with nonzero degree. If Scsg ě 2kp2k ` 1q and f is area-nonincreasing, then f
is an isometry.

Of course, if we artificially remove two antipodal points of S2k`1 and view it as
a warped product space, Theorem 1.4 appears to be a special case of Theorem 1.3.
However, it is important to note the different assumptions on the map f . The
map f is only assumed to area-nonincreasing in Theorem 1.4, as opposed to being
distance-nonincreasing in Theorem 1.3. It is worth pointing out that in general
we cannot replace the assumption that f is distance-nonincreasing in Theorem 1.3
by the weaker assumption that f is area-nonincreasing. On the other hand, our
proof shows that Theorem 1.3 still holds under the weaker assumption that f is
distance-nonincreasing along the warping direction and area-nonincreasing along
the leaf direction. More precisely, let us write fpxq “ pr, zq P M “ p´c, cq ˆ X,
and Xr “ tru ˆ X equipped with metric ϕprq2gX . Define P to be the orthogonal
projection from TfpxqM to TfpxqXr. Then instead of being distance-nonincreasing,
we only need to assume the function f in Theorem 1.3 to satisfy that f˚r over N
is 1-Lipschitz and Pf˚ : TxN Ñ TfpxqX is area-nonincreasing for all x P N .

1More precisely, one also needs to consider the smashed product of a sphere with a circle.
Note that the smashed product of an odd dimensional sphere with a circle is an even dimensional
sphere, where the latter has nonzero Euler characteristic.
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In the special case where the leaf X of M “ p´c, cq ˆ X is a flat torus, we have
the following slight improvement of Theorem 1.3.

Theorem 1.5. Let M “ p´c, cq ˆ X be an open manifold and

g “ dr2 ` ϕprq2gX

a warped product metric on M such that

(1) ϕ is admissible in the sense of Definition 1.1, and

(2) pX, gXq is the torus Tn´1 equipped with a flat metric go.

Let pN, sgq be a spin Riemannian manifold and f : N Ñ M be a smooth proper map
with nonzero degree. If the function f˚r over N is of Lipschitz constant at most
1 and Scsg ě f˚Scg, then Scsg “ f˚Scg. Furthermore, if in addition ϕ is strictly
log-concave, that is, plogϕq2 ă 0, then N “ p´c, cq ˆ Y , the map f respects the
product structures, and the metric sg is also a warped product metric of the form

sg “ dr2 ` ϕprq2gY ,

where gY is a flat metric on Y .

Recall that the n-dimensional standard round sphere with two antipodal punc-
tures pSnzt˘u, gstq may be viewed as a warped product space

gst “ dr2 ` cosprq2gSn´1

st ,

where r P p´π{2,π{2q. It is easy to verify that the function ϕprq “ cosprq is
admissible in the sense of Definition 1.1. As a special case of Theorem 1.3, we
have Theorem 1.6, which generalizes the corresponding result of Gromov to all
dimensions.

Theorem 1.6. Assume that n ě 3. Let M be the n-dimensional standard round
sphere with a pair of antipodal points removed. Let pN, sgq be an open spin Rie-
mannian manifold. Let f : N Ñ M be a proper smooth map with nonzero degree.
If f is distance-nonincreasing and Scsg ě npn ´ 1q, then f is an isometry.

We would like to mention that Theorem 1.6 was also obtained independently in
a preprint of Bär-Brendle-Hanke-Wang [1].

So far, we have mainly focused on scalar rigidity results on bands that are degen-
erate at both ends. It is not difficult to see that our techniques can be adapted to
prove the following scalar-and-mean curvature rigidity for warped product spaces
that are degenerate at one end.

Theorem 1.7. Let M “ r´c, cq ˆ X and

g “ dr2 ` ϕprq2gX

a warped product metric on M such that

p1q ϕ is log-concave, that is, ψ :“ plogϕq2 ď 0,

p2q ψ1prq ` nψprq2{2 is nondecreasing near r “ c,

p3q ϕprq ą 0 for r P r´c, cq, and ϕpcq “ 0, and

p4q pX, gXq is the Riemannian product of finitely many spaces from the classes
(i)–(iii) listed above.
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Let pN, sgq be a Riemannian manifold with boundary and f : N Ñ M be a smooth
spin proper map with nonzero degree. If f is distance-nonincreasing, and the scalar
curvature and the mean curvature satisfy

Scsg ě f˚Scg and Hsg ě f˚Hg “ ´pn ´ 1qψp´cq,
then Scsg “ f˚Scg and Hsg “ f˚Hg “ ψpcq. Furthermore, the following hold.

pIq If ϕ is strictly log-concave, then N “ r´c, cq ˆ Y for some Riemannian
manifold pY, gY q and the metric sg “ dr2 `ϕprq2gY , and the map f respects
the product structures.

pIIq If ϕ is strictly log-concave and the metric gX on the leaf X has positive
Ricci curvature, then f is a local isometry.

The following warped metric

dr2 ` ϕprq2gSn´1
st ,

with ϕprq equal to r, sinprq, or sinhprq, represents the metric on the geodesic ball
in the spaces form Euclidean space, standard round sphere, and hyperbolic space,
respectively. It is easy to verify that all three functions r, sinprq and sinhprq are
admissible in the sense of Definition 1.1. As an immediate consequence of Theo-
rem 1.7, we have the following scalar-and-mean curvature rigidity for geodesic balls
in space forms.

Theorem 1.8. Let pM, gq be a geodesic ball in a space form. Let pN, sgq be a spin
Riemannian manifold with boundary and f : N Ñ M a smooth map such that

p1q Scpsgqx ě Scpgqfpxq for all x P N ,

p2q HsgpBNqy ě HgpBMqfpyq for all y P BN ,

p3q f is distance-nonincreasing on N ,

p4q the degree of f is nonzero,

then f is an isometry.

The authors have previously proved the above theorem for geodesic balls in
Euclidean space using a different method [16, Theorem 1.7]. Interestingly, the
approach presented in [16] shows that the above theorem is valid not only for
geodesic balls but also for all strictly convex domains with smooth boundary in
Euclidean space. This raises a natural question: does the above scalar-and-mean
curvature rigidity theorem extend to strictly convex domains with smooth boundary
in hyperbolic space?

This paper is organized as follows. In Section 2, we present some key estimates
for Theorem 1.3, with a specific focus on the case where the leaf X has nonzero
Euler characteristic. In Section 3, we prove the special case of Theorem 1.3 where
the leaf X is a standard round sphere. Consequently, we obtain the scalar curvature
extremality and rigidity for standard round spheres with two antipodal punctures.
In Section 4, we prove the scalar curvature extremality and rigidity for a class of
degenerate toric bands. The general case of Theorem 1.3 then easily follows from
the proofs of the three special cases given in Sections 2, 3 and 4. Additionally, we
give examples of degenerate toric bands to illustrate the necessity of condition (3)
in Definition 1.1. Finally, in Section 5, we prove the scalar-and-mean curvature
rigidity for warped product spaces that are degenerate at one end.
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2. Some estimates and a special case of Theorem 1.3

In this section, we prove some estimates that will be needed in the proof of
Theorem 1.3. In order to make our proof more transparent and also to highlight the
subtleties of different cases, we first demonstrate how these estimates are applied in
the special case of Theorem 1.3 where the leaf X of M is assumed to have nonzero
Euler characteristic. The general case of Theorem 1.3 requires some extra care.
More precisely, we shall deal with the case where the leaf X is an odd dimensional
round sphere in Section 3, and the case where the leaf X is a flat torus in Section 4.
Finally, the general case of Theorem 1.3 will be proved by a combination of the
above three cases.

2.1. Some estimates. In this section, as a preparation, we first prove a series of
estimates that will be needed later. These estimates are inspired by the work of
[3] and [19]. Let us fix some notation. Let ϕ be a log-concave positive function on
p´c, cq and ψ “ ϕ1{ϕ. We fix a closed sub-interval I0 “ r´a, as in p´c, cq such that

‚ ϕ attains its maximum in the interior of I0,
‚ pψ1 ` nψ2{2q1 ě 0 on pa, cq, and
‚ pψ1 ` nψ2{2q1 ď 0 on p´c, ´aq.

We first prove the following proposition, which is a weaker version of Theo-
rem 1.3.

Proposition 2.1. Let M “ p´c, cq ˆ X be an n-dimensional manifold and

g “ dr2 ` ϕprq2gX

a warped product metric on M such that

p1q ϕ is admissible in the sense of Definition 1.1 and

p2q pX, gXq is a closed Riemannian manifold with nonnegative curvature oper-
ator and nonzero Euler characteristic.

Let N be a (possibly incomplete) Riemannian manifold and f : N Ñ M a smooth
spin proper map with nonzero degree. Then there is no metric sg on N such that

‚ f : pN, sgq Ñ pM, gq is distance-nonincreasing,
‚ Scsg ě f˚Scg, and
‚ Scsg ą f˚Scg `ε1

0 on the preimage of the ε0-neighborhood of I0 ˆX for some
ε0 ą 0 and ε1

0 ą 0.

For each 0 ă λ ă c, we denote by pMλ, gq “ pr´λ,λs ˆ X, gq in M . Recall that
we have denoted by Xr “ tru ˆ X the leaf X at r in M . In general, f´1pXλq may
not be a submanifold of N . But by Sard’s theorem and the transversality theory,
there exists a sequence of positive numbers tλiu with 0 ă λi ă c and λi Ñ c as
i Ñ 8 such that f´1pXλiq is a submanifold of N . Similarly, there exists a sequence
of positive numbers tλ1

iu with 0 ă λ1
i ă c and ´λi Ñ ´c as i Ñ 8 such that

f´1pX´λ1
i
q is a submanifold of N .

Precisely speaking, we should work with the submanifolds r´λ1
i,λis ˆ X of M .

But in order to avoid overload of notation, let us assume without loss of generality
that λi “ λ1

i. Now let us choose λ to be one of the λi’s. In particular, Nλ “ f´1pMλq
is a smooth manifold with boundary, and the map f : N Ñ M restricts to a smooth
spin map f : Nλ Ñ Mλ that maps boundary to boundary. It is clear that the degree
of f : Nλ Ñ Mλ equals to the degree of f : N Ñ M .
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For any ε1, ε ą 0, there exist 0 ă γ ă c and a smooth function

(2.1) ρ : r´γ, γs Ñ r´c, cs
such that

‚ ρp˘γq “ ˘c,
‚ 1 ď ρ1prq ď 1 ` ε1 for r P NεpI0q, where NεpI0q is the ε-neighborhood of I0,

and
‚ ρ1prq “ 1 for r P r´γ, γszNεpI0q.

By construction, if we fix ε and ε1, then |ρprq ´ r| is a positive constant for all r
sufficiently close to ˘γ. We denote this positive constant by κpε, ε1q.

For any λ P r0, γs and µ “ ρpλq, we define

(2.2) hρ : pMλ, gq Ñ pMµ, gq, pr, xq ÞÑ pρprq, xq
for r P r´λ,λs and x P X. Note that }dhρ} ď 1 ` ε and hρ maps the leaf Xr to the
leaf Xρprq.

We shall prove Proposition 2.1 by contradiction. Suppose a metric sg on N as
described in Proposition 2.1 exists. Let us denote

h :“ hρ ˝ f : pNλ, sgq Ñ pMµ, gq,
where the constants ε, ε1,λ, µ appearing in the construction of the function ρ will be
specified later. Set E “ SpTNλ‘h˚TMµq to be the spinor bundle of TNλ‘h˚TMµ

over Nλ, which exists since f is assumed to be a spin map. The Clifford actions of
TNλ and h˚TMµ on E are denoted by sc and c, respectively. Let E be the grading
operator on E.

Let Br be the unit vector in h˚TMµ along the r direction. Let ∇ be the spinorial
connection on E naturally induced by the Levi–Civita connection on N and the
pull-back of the Levi–Civita connection on M . We define a new connection on E
by

(2.3) p∇ξ :“ ∇ξ ` 1

2
cp∇g

h˚ξBrqcpBrq,

where ∇g is the Levi–Civita connection of pM, gq. A straightforward computation
shows that cpBrq is parallel with respect to p∇, that is, p∇cpBrq “ 0.

Let pD be the Dirac operator on E with respect to p∇,

pD “
nÿ

i“1

scpseiq p∇sei

where tseiu1ďiďn is local orthonormal basis of TNλ.
Recall that we have

(2.4) ψ “ ϕ1

ϕ
“ plogϕq1.

From now on, we denote by r : M “ p´c, cq ˆ X Ñ p´c, cq the projection to the
first component, that is, r maps the leaf Xt to t. We set

(2.5) Ψ :“ n

2
¨ ψph˚rq ¨ E ¨ cpBrq,

where h˚r is the function r ˝ h : Nλ Ñ r´µ, µs, and define

(2.6) pDΨ “ pD ` Ψ.
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In the following, we shall consider the Fredholm index of pDΨ subject to an appro-
priate local boundary condition.

Definition 2.2. A section σ of E over Nλ is said to satisfy the local boundary
condition B if

E scpsνqcp¯Brqσ “ ´σ,

on BNλ, where sν is the unit inner normal vectors of BNλ, and ´Br (reps. Br) is the
unit inner normal vector field of Xµ (resp. X´µ).

In the following, we shall consider the index theory of the operator pDΨ on E
over the compact manifold with boundary Nλ, subject to the above boundary
condition B. For the moment, consider the Dirac operator D with respect to the
usual spinorial connection ∇ on E over the manifold Nλ. Note that DB, i.e., the
operator D subject to the boundary condition B, is essentially self-adjoint and
Fredholm, and its Fredholm index is equal to degphq ¨ χpMµq “ degpfq ¨ χpXq ‰ 0.
See for example [13, Section 2.2] and [4] for more details of the computation of
the Fredholm index of DB . Now observe that the operator pDΨ differs from D by
a bounded smooth self-adjoint endomorphism. It follows that pDΨ (subject to the
boundary condition B) is also essentially self-adjoint and Fredholm, and moreover
its Fredholm index equals the Fredholm index of DB .

First we prove some key estimates. Let P : C8pNλ, Eq Ñ C8pNλ, T ˚Nλ b Eq
be the Penrose operator defined by

(2.7) Pξσ :“ p∇ξσ ` 1

n
scp,q pDσ

for all , P TNλ and σ P C8pNλ, Eq. We have the following identity (cf. [2, Section
5.2]):

(2.8) | p∇σ|2 “ |Pσ|2 ` 1

n
| pDσ|2

all σ P C8pNλ, Eq.
Let σ P C8pNλ, Eq be a smooth section of E satisfying the boundary condition

B as given in Definition 2.2. By the definition of pDΨ, we have the pointwise equality

(2.9) x pDΨσ, pDΨσy “ | pDσ|2 ` xΨσ, pDσy ` x pDσ,Ψσy `
`n

2
ψph˚rq

˘2|σ|2

over Nλ. By the Stokes formula, we have

(2.10)

ż

Nλ

| pDσ|2 “
ż

Nλ

x pD2σ,σy `
ż

BNλ

xscpsνq pDσ,σy,

where sν is the inner unit normal vector of BNλ. Note that

(2.11) pD2 “ p∇˚ p∇ ` R,

where R is the curvature endomorphism of E with respect to p∇. See line (2.16) in
the proof of Lemma 2.3 for the precise formula of R. Before that, let us observe
that

(2.12)

ż

Nλ

x p∇˚ p∇σ,σy “
ż

Nλ

| p∇σ|2 `
ż

BNλ

x p∇sνσ,σy

again by the Stokes formula.
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By combining line (2.10), (2.11), (2.12) and (2.8), we obtain that
ż

Nλ

| pDσ|2 “ n

n ´ 1

ż

Nλ

|Pσ|2 ` n

n ´ 1

ż

Nλ

xRσ,σy

` n

n ´ 1

ż

BNλ

xpscpsνq pD ` p∇sνqσ,σy.
(2.13)

We have the following estimate for the term R in line (2.13) above.

Lemma 2.3. If the curvature operator of pX, gXq is nonnegative, then

(2.14) R ě Scsg

4
´ f˚ScgX

4ϕpf˚rq2 .

Proof. For 2-forms of N , we define the Clifford multiplication by

(2.15) scpsei ^ sejq “ scpseiqscpsejq,
where sei, sej P TN are orthogonal. The Clifford multiplication cpwq for a 2-form w
over M is defined similarly.

Let P be the orthogonal projection from TM to TX. By the Bochner–
Lichnerowicz–Weitzenböck formula [10, Ch. II, Theorem 8.17], we have

(2.16) R “ Scsg

4
´ 1

2

ÿ

i,j

x pRpPh˚ swjq, wiyM scp swjq b cpwiq,

where t swju is a local orthonormal basis of 2-forms on N , and twiu is a local or-

thonormal basis of leaf-wise 2-forms on M , and pR “ ϕ´2RX is the leaf-wise curva-
ture operator of M , i.e., pR “ ϕ´2RX is the curvature operator of pX,ϕ2gXq. Since
Br is parallel with respect to p∇, the curvature from M is only located on the leaf
X.

As the curvature operator pR is nonnegative along each leaf, there exists a self-
adjoint L P EndpŹ2TXq such that pR “ L2, that is, x pRwj , wiyM “ xLwj , LwiyM .

Set
sLwk :“

ÿ

i

xLwk, Ph˚ swiyM swi P Ź2TN

and

α “ ϕph˚rq
ϕpf˚rq .

The second term on the right-hand side of (2.16) can be written as

´ 1

2

ÿ

i,j

x pRPh˚ swj , wiyM scp swjq b cpwiq

“ ´1

2

ÿ

i,j,k

xLpPh˚ swjq, wkyM ¨ xLwi, wkyM ¨ scp swjq b cpwiq

“ ´1

2

ÿ

k

scpsLwkq b cpLwkq

“ 1

4

ÿ

k

´
α´2scpsLwkq2 b 1 ` α2 b cpLwkq2 ´

`
α´1scpsLwkq b 1 ` α b cpLwkq

˘2
¯

ě 1

4

ÿ

k

α´2scpsLwkq2 b 1 ` 1

4

ÿ

k

α2 b cpLwkq2,
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where the last inequality follows from the fact that the element

α´1scpsLwkq b 1 ` α b cpLwkq
is skew-symmetric, hence its square is nonpositive.

The same proof for the Lichnerowicz formula (cf. [10, Theorem II.8.8]) shows
that

α2
ÿ

k

cpLwkq2 “ ´α2 h˚Scϕ2gX

2
“ ´α2 h˚ScgX

2ϕph˚rq2 “ ´ f˚ScgX

2ϕpf˚rq2 ,

where by construction we have f˚ScgX “ h˚ScgX . Similarly, by the definition of sL,
we have

ÿ

k

scpsLwkq2 “
ÿ

i,j,k

xLwk, Ph˚ swiyM ¨ xLwk, Ph˚ swjyM ¨ scp swiq b cp swjq

“
ÿ

i,j

x pRpPh˚ swiq, Ph˚ swjyM ¨ scp swiqscp swjq.

We choose a local sg-orthonormal frame se1, . . . , sen of TNλ and a local g-orthonormal
frame e1, . . . , en of TMµ such that Ph˚sei “ µiei with µi ě 0. This can be seen from
the singular value decomposition of the map Ph˚. Then we have Ph˚psei ^ sejq “
µiµjei ^ ej . As f is distance-nonincreasing, it follows from the construction of
the map h that leafwise }dh} ď α. In particular, we have 0 ď µi ď α for each i.
Therefore

(2.17) α´2
ÿ

k

scpsLwkq2 “ ´α´2
ÿ

iăj

µ2
i µ

2
jph˚ pRijjiq ě ´ f˚ScgX

2ϕpf˚rq2 .

This finishes the proof. !

Remark 2.4. If dimM “ 2, Lemma 2.3 becomes

R “ Scsg

4
.

If dimM ě 3, to deduce Lemma 2.3, one may relax the condition that f is distance-
nonincreasing to that Pf˚ : TN Ñ TX is area-nonincreasing. Indeed, in this case,
the singular value decomposition of Ph˚ in the proof of Lemma 2.3 implies that
0 ď µiµj ď α2 for each i ă j. As a consequence, we see that the inequality in line
(2.17) still holds.

Since σ satisfies the boundary condition B, by using the fact that cpνq “ ˘cpBrq
is parallel with respect to p∇, a standard computation shows that

(2.18)

ż

BNλ

xpscpsνq pD ` p∇sνqσ,σy “ 1

2

ż

BNλ

xHsgσ,σy,

where Hsg is the mean curvature of BNλ, cf. [17, Lemma 2.9].
To summarize, we have

ż

Nλ

| pDσ|2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` n

n ´ 1

ż

Nλ

´Scsg

4
´ f˚ScgX

4ϕpf˚rq2
¯

|σ|2

` n

n ´ 1

ż

BNλ

Hsg

2
|σ|2.

(2.19)
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Now we consider the second and third terms on the right-hand side of the equa-
tion from line (2.9). By the Stokes formula, we have

ż

Nλ

xΨσ, pDσy ` x pDσ,Ψσy

“
ż

Nλ

x pDΨσ,σy ` xΨ pDσ,σy `
ż

BNλ

xscpsνqΨσ,σy

“
ż

Nλ

xr pD,Ψsσ,σy `
ż

BNλ

xscpsνqΨσ,σy.

(2.20)

Note that

r pD,Ψs “n

2
sc
`
gradsgpψph˚rqq

˘
¨ E cpBrq “ n

2
ψ1ph˚rq ¨ sc

`
gradsgph˚rq

˘
¨ E cpBrq

ěn

2
ψ1ph˚rq ¨ |gradsgph˚rq|

“n

2
ψ1ph˚rqρ1pf˚rq|gradsgpf˚rq| ě n

2
ψ1ph˚rqρ1pf˚rq.

(2.21)

Here recall that ψ “ ϕ1{ϕ “ plogϕq1 and by assumption we have ψ1 “ plogϕq2 ď 0
and f is distance-nonincreasing.

For the boundary term in line (2.20), we have

xscpsνqΨσ,σy “ ´n

2
ψph˚rqxE scpsνqcpBrqσ,σy.

Note that logϕprq Ñ ´8 as r Ñ ˘c. Since ψ1 “ plogϕq2 ď 0 and the domain of ψ
is a bounded interval, it follows that

(2.22) lim
rÑ˘c

ψprq “ lim
rÑ˘c

plogϕq1prq “ ¯8.

By construction, h˚r “ ˘µ on the components of BNλ. Consequently, when µ is
sufficiently close to c, we have

(2.23) xscpsνqΨσ,σy “ n

2
|ψph˚rq| ¨ |σ|2

on all components of BNλ, since σ satisfies the boundary condition B given in
Definition 2.2.

Proposition 2.5. With the notation above, there is some c0 ą 0

} pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` n

4pn ´ 1q

ż

Nλ

pScsg ´ f˚Scgq|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆXq
p|ψ1ph˚rq| ` c0q|σ|2

`
ż

BNλ

´ n

2pn ´ 1qHsg ` n

2
|ψph˚rq|

¯
|σ|2

(2.24)

for any smooth section σ of E over Nλ satisfying the boundary condition B, where
c0 is independent of ε, ε1 and λ.
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Proof. By applying line (2.19), (2.20), (2.21)and (2.23) to line (2.9), we obtain

} pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2

`
ż

Nλ

´ n

4pn ´ 1q
”
Scsg ´ f˚ScgX

ϕpf˚rq2
ı

` n

2
ψ1ph˚rqρ1pf˚rq ` n2

4
ψph˚rq2

¯
|σ|2

`
ż

BNλ

´ n

2pn ´ 1qHsg ` n

2
|ψph˚rq|

¯
|σ|2.

(2.25)

For the warped product metric g “ dr2 ` ϕ2gX on M , its scalar curvature is given
by the following formula

(2.26)
n

4pn ´ 1qScg “ n

4pn ´ 1q
ScgX

ϕ2
´ n

2
ψ1 ´ n2

4
ψ2.

By our choice of the interval I0 at the beginning of Section 2.1, we have

(2.27)
n

2
ψ1ph˚rq ` n2

4
ψph˚rq2 ě n

2
ψ1pf˚rq ` n2

4
ψpf˚rq2

on Nλzf´1pI0 ˆ Xq, since ρprq is closer to ˘c than r. Inside f´1pI0 ˆ Xq, as the
map h is C8-close to f , line (2.27) essentially becomes an equality but up to a
small error, which is proportional to ε1. More precisely, we have

(2.28)
n

2
ψ1ph˚rq ` n2

4
ψph˚rq2 ě n

2
ψ1pf˚rq ` n2

4
ψpf˚rq2 ´ nc0

2
ε1

on f´1pI0 ˆ Xq for all sufficiently small ε1, where c0 ą 0 is a positive constant that
only depends on the geometry of I0 ˆ X, the geometry of f´1pI0 ˆ Xq, and the
restriction of the map f : N Ñ M on f´1pI0 ˆ Xq. In particular, c0 is independent
of ε, ε1 and λ.

Recall that 1 ď ρ1 ď 1 ` ε1, and furthermore ρ1 “ 1 outside NεpI0q. Now the
proposition easily follows from the above discussion. !

Remark 2.6. In the proof of Proposition 2.5, condition (3) of Definition 1.1, namely
the monotonicity of ψ1 ` nψ2{2 near ˘c, is essential for inequality (2.27) to hold,
which guarantees that the scalar curvature comparison still holds after composing
the map f : N Ñ M with the map hρ from line (2.2). Condition (3) is in fact a
necessary condition, as illustrated by Example 4.1.

Now let us prove Proposition 2.1.

Proof of Proposition 2.1. Let ε “ ε0 given in Proposition 2.1. Given ε1
0 as in Propo-

sition 2.1, we choose ε1 ą 0 such that

(2.29) ε1 ¨ max
rPNεpI0q

n

2
p|ψ1prq| ` c0q ď ε1

0

2
¨ n

4pn ´ 1q ,

where c0 is the positive constant from Proposition 2.5. Note that, by such a choice
of ε1, the sum of the second term and the third term on the right-hand side of (2.24)
becomes nonnegative.

By construction of the function ρ from line (2.1), we have

(2.30) µ “ ρpλq “ λ ` κpε, ε1q
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for all λ sufficiently close to ˘γ. Note that

lim
λÑc´κpε,ε1q

inf
xPBNλ

´ n

2pn ´ 1qHsgpxq ` n

2
|ψph˚rq|

¯
“ `8.

Therefore, there exists λ ă c ´ κpε, ε1q such that

(2.31) inf
xPBNλ

´ n

2pn ´ 1qHsgpxq ` n

2
|ψph˚rq|

¯
ě 1 ą 0.

To summarize, for the ε, ε1,λ, µ chosen above, the right-hand side of the inequality
(2.24) becomes nonnegative.

On the other hand, since Nλ is a compact manifold with boundary and pDΨ only
differs from the Dirac operator associated to E “ SpTNλ ‘ h˚TMµq over Nλ by a

bounded endomorphism, we have that pDΨ subject to the local boundary condition
B is a Fredholm operator, and its Fredholm index equals

Indp pDΨq “ degphq ¨ χpMµq,
where χpMµq is the Euler characteristic of Mµ “ r´µ, µs ˆ X. See the discussion
after Definition 2.2. Note that χpMµq “ χpXq and we have degphq “ degpfq by
construction. Since both degpfq ‰ 0 and χpXq ‰ 0 by assumption, we have

Indp pDΨq “ degphq ¨ χpMµq “ degpfq ¨ χpXq ‰ 0.

It follows that there is a nonzero section σ of E over Nλ satisfying the boundary
condition B such that pDΨσ “ 0. Consequently, Proposition 2.5, together with line
(2.30) and (2.31) above, implies that

0 “ } pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` ε1
0

2

n

4pn ´ 1q

ż

f´1pNεpI0qˆXq
|σ|2 `

ż

BNλ

|σ|2.
(2.32)

It follows that σ “ 0 on f´1pNεpI0q ˆ Xq and Pσ “ 0 on Nλ. Now Pσ “ 0 and
pDΨσ “ 0 imply that

(2.33) p∇ξσ ´ 1

n
scp,qΨσ “ p∇ξσ ` 1

n
scp,q pDσ “ Pσ “ 0

for all , P TNλ. In particular, along any smooth curve Γ in Nλ, σ satisfies the
following homogeneous ordinary differential equation

(2.34) p∇ 9Γσ ´ 1

n
scp 9ΓqΨσ “ 0,

where 9Γ is the tangent vector field of the curve Γ. It follows that σ is smooth on Nλ

and nonzero everywhere. However, we have shown that σ “ 0 on f´1pNεpI0q ˆ Xq.
We have arrived at a contradiction. This finishes the proof. !

2.2. A special case of Theorem 1.3. In this section, we prove the special case of
Theorem 1.3 where the leaf X is assumed to have nonvanishing Euler characteristic.

We first prove a Poincaré type inequality (Lemma 2.8) that will play a key role
in the proofs of our main theorems. We start with the following Poincaré type
inequality in Euclidean spaces.
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Lemma 2.7. Let In “ r0, 1sn “ In´1 ˆ r0, 1s be a cube in Rn and . a positive
integer. Denote K “ In´1 ˆ r0, .s. Let A be a smooth matrix-valued function on
Rn with }A} ď M on K. Then for any smooth vector-valued function α on Rn, we
have

(2.35)

ż

K
|α|2 ď ep2M`1q)

´ ż

In

|α|2 `
ż

K

ˇ̌
ˇ
` d

dxn
` A

˘
α

ˇ̌
ˇ
2¯

.

Proof. Set β “ dα
dxn

` Aα. We have

d

dxn
|α|2 “ 2xα,

dα

dxn
y “ 2xα,βy ´ 2xα, Aαy.

Hence
d

dxn
|α|2 ď 2|α||β| ` 2M |α|2 ď p2M ` 1q|α|2 ` |β|2.

It follows that for any s P r0, 1s and 0 ď d ď . ´ 1, we have
ż

In´1ˆts`du
|α|2 ď ep2M`1qd

ż

In´1ˆtsu
|α|2 ` ep2M`1qps`dq

ż

In´1ˆrs,s`ds
|β|2

ď ep2M`1q)
´ ż

In´1ˆtsu
|α|2 `

ż

K
|β|2

¯
.

(2.36)

Integrating s on r0, 1s, we obtain
ż

In´1ˆrd,1`ds
|α|2 ď ep2M`1q)

´ ż

In´1ˆr0,1s
|α|2 `

ż

K
|β|2

¯
.

By a summation for d “ 0, 1, . . . , . ´ 1, we obtain
ż

K
|α|2 ď ep2M`1q)

´ ż

In

|α|2 `
ż

K
|β|2

¯
.

This finishes the proof. !

Lemma 2.7 easily generalizes from the Euclidean case to the case of general
manifolds.

Lemma 2.8. Let N be an n-dimensional Riemannian manifold and K a compact
connected domain in N . Let E be a Hermitian vector bundle over N equipped with
a connection ∇, which may not preserve the metric. Let x0 be a point in N and
Nδpx0q the δ-neighborhood of x0. Assume Nδpx0q is contained in K. Then there
exist C ą 0 such that

(2.37)

ż

K
|σ|2 ď C

ż

Nδpx0q
|σ|2 ` C

ż

K
|∇σ|2

for any smooth section σ of E over N . Here the constants C only depend on x0, δ
and K.

Proof. Since K is a compact connected domain in N , there exists a finite cover
of K such that each member of the cover is connected to Nδpx0q via a compact
subspace of N that is diffeomorphic to a Euclidean tube as above. Denote these
compact subspaces by tTiu. Although the metric of Ti is not the Euclidean metric,
it is easy to see that the same inequality in Lemma 2.7 applies to sections of E
over Ti, except the constants appearing in line (2.35) need to be replaced by some
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constants that depend on the geometry of Ti and the geometry of E over Ti. By
summing up the corresponding inequalities over Ti, we have

ż

K
|σ|2 ď C

ż

Nδpx0q
|σ|2 ` C

ż

K
|∇σ|2

for some C ą 0. Here C is a positive constant that only depends on the geometry
of K, the geometry of E over K, and the number of the Ti’s. This finishes the
proof. !

Now let us prove the following special case of Theorem 1.3.

Theorem 2.9. Let M “ p´c, cq ˆ X be an n-dimensional manifold equipped with
the warped product metric

g “ dr2 ` ϕprq2gX

such that

p1q ϕ is admissible in the sense of Definition 1.1,

p2q the curvature operator of pX, gXq is nonnegative, and

p3q X has nonzero Euler characteristic.

Let pN, sgq be a Riemannian manifold and f : N Ñ M a smooth spin proper map with
nonzero degree. If f is distance-nonincreasing and Scsg ě f˚Scg, then Scsg “ f˚Scg.
Furthermore, the following hold.

pIq If ϕ is strictly log-concave, that is, plogϕq2 ă 0, then N “ p´c, cq ˆ Y for
some Riemannian manifold pY, gY q and the metric sg “ dr2 `ϕprq2gY , and
the map f respects the product structures.

pIIq If ϕ is strictly log-concave and the metric gX on the leaf X has positive
Ricci curvature, then f is a local isometry.

Proof.
Scalar extremality. First let us prove the scalar extremality part of the theo-

rem, that is, we first prove that Scsg “ f˚Scg.
Assume on the contrary that Scsg ‰ f˚Scg somewhere. Then there exist x0 P N

and δ ą 0 such that

(2.38) Scsgpxq ě f˚Scgpxq ` δ, @x P Nδpx0q.
Let P be the Penrose operator defined in line (2.7). The exact same proof of

Proposition 2.5 shows that for any sufficiently small ε, ε1 ą 0, we have

} pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` δn

4pn ´ 1q

ż

Nδpx0q
|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆXq
p|ψ1ph˚rq| ` c0q|σ|2

`
ż

BNλ

´ n

2pn ´ 1qHsg ` n

2
|ψph˚rq|

¯
|σ|2,

(2.39)

where c0 is the same constant from Proposition 2.5. Since both degpfq ‰ 0 and
χpXq ‰ 0 by assumption, we have

Indp pDΨq “ degphq ¨ χpMµq “ degpfq ¨ χpXq ‰ 0.

There exists a nonzero section σ of E “ SpTNλ ‘ h˚TMµq over Nλ satisfying the

boundary condition B such that pDΨσ “ 0.
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We define an operator Q : C8pNλ, Eq Ñ C8pNλ, T ˚Nλ b Eq by

(2.40) Qξσ “ p∇ξσ ´ 1

n
scp,qΨσ,

which is a connection on E that may not preserve the metric. Note that pDΨσ “ 0
implies

Pσ “ Qσ.

If we choose ε, ε1 ą 0 to be sufficiently small and λ, µ to satisfy line (2.31) and
(2.30), then every term, except the third term, on the right-hand side of line (2.39)
is nonnegative. Let K be a fixed compact connected domain of N such that K
contains both f´1pNεpI0q ˆ Xq and Nδpx0q. In particular, K does not depend
on the choice of ε, as along as ε is sufficiently small. Note that |ψ1| is uniformly
bounded on the pre-compact set NεpI0q. Without loss of generality, let us say
|ψ1| ď 1 on NεpI0q. Now line (2.39), together with the fact that pDΨσ “ 0 and
Pσ “ Qσ, implies that

(2.41)

$
’’’&

’’’%

ż

Nλ

|Qσ|2 ď ε1pn ´ 1q
2

p1 ` c0q
ż

K
|σ|2,

δ

ż

Nδpx0q
|σ|2 ď 2ε1pn ´ 1qp1 ` c0q

ż

K
|σ|2.

Note that Q only differs from the spinorial connection ∇ on E by an endomorphism,
which is uniformly bounded on K. By Lemma 2.8, there exists a constant C ą 0
such that

(2.42)

ż

K
|σ|2 ď C

ż

Nδpx0q
|σ|2 ` C

ż

K
|Qσ|2.

As we have seen in the proof of Lemma 2.8, the constant C only depends on K and
the geometry of E over K, which is covered by some compact tubes Nδpx0q. Strictly
speaking, the metric of E “ SpTNλ ‘ h˚TMµq, hence its associated Levi-Civita
connection, depends on the map h. But by construction the map h is C8-close to
the map f : N Ñ M . In particular, the metric and its associated connection of E
over the set K are uniformly bounded by some positive constant that is independent
of h. Therefore we may choose C ą 0 independent of ε, ε1,λ and µ.

It follows that we have
ż

K
|σ|2 ď ε1p1 ` c0q

´2Cpn ´ 1q
δ

` Cpn ´ 1q
2

¯
¨
ż

K
|σ|2.

Now we choose ε1 to be sufficiently small so that

ε1p1 ` c0q
´2Cpn ´ 1q

δ
` Cpn ´ 1q

2

¯
ď 1

2
ă 1.

It follows that σ ” 0 on K. By the first line of (2.41), we have Qσ “ 0 everywhere on
Nλ. Hence σ satisfies the homogeneous ordinary differential equation (2.34) along
every curve in Nλ. In particular, σ vanishes everywhere on Nλ, which contradicts
the fact that σ is a nonzero section. This proves the scalar extremality part of the
theorem.

Scalar rigidity. Now let us prove the scalar rigidity part of the theorem. First,
let us prove part (I), that is, we prove that if ϕ is strictly log-concave, then pN, sgq
is also a warped product metric with the same warping function ϕ.
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Let us start with Claim 2.10.

Claim 2.10. Under the given assumption, we have |gradsgpf˚rq| “ 1.

Proof of Claim 2.10. By the assumption that f is distance-nonincreasing, we see
that

|gradsgpf˚rq| ď 1.

Assume on the contrary that

|gradsgpf˚rq| ă 1

somewhere. More precisely, we assume that there exists x0 P N and δ ą 0 such
that

(2.43) |gradsgpf˚rqpxq| ă 1 ´ δ, @x P Nδpx0q.
Recall that we have used the inequality (2.21) in the proof of Proposition 2.5.

If we do not apply the inequality (2.21), then the inequality (2.24) may be written
as follows

} pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` n

4pn ´ 1q

ż

Nλ

pScsg ´ f˚Scgq|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆXq
p|ψ1ph˚rq| ` c0q|σ|2

` n

2

ż

Nλ

|ψ1ph˚rq| ¨
@`
ρ1pf˚rq ´ scpgradsgph˚rqqE cpBrq

˘
σ, σ

D

`
ż

BNλ

´ n

2pn ´ 1qHsg ` n

2
|ψph˚rq|

¯
|σ|2.

(2.44)

In other words, the effect of applying the inequality (2.21) is to eliminate the third
line from the above inequality (2.44). In particular, the above inequality (2.44)
becomes the inequality (2.24) if we apply the inequality (2.21).

Note that

|cpgradsgph˚rqqE cpBrq| “ |cpgradsgph˚rqq| “ ρ1pf˚rq|cpgradsgpf˚rqq| ď ρ1pf˚rq,
where we have used the fact that f is distance-nonincreasing. Therefore, if we
replace the domain of integral Nλ in the third line of the inequality (2.44) with
Nδpx0q, the inequality (2.44) still holds. Since ϕ is strictly log-concave, there exists
δ1 ą 0 that

|ψ1pf˚rq| ą δ1, @x P N2δpx0q.
It follows from line (2.43) that for ε and ε1 sufficiently small, we have

} pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` n

4pn ´ 1q

ż

Nλ

pScsg ´ h˚Scgq|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆXq
p|ψ1ph˚rq| ` c0q|σ|2 ` nδδ1

2

ż

Nδpx0q
|σ|2

`
ż

BNλ

´ n

2pn ´ 1qHsg ` n

2
|ψph˚rq|

¯
|σ|2.

(2.45)

By using Lemma 2.8, the same argument as in the proof for the Scalar extremality
part above shows that the inequality (2.45) leads to a contradiction. This finishes
the proof of the claim. !
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By Claim 2.10, we see that f˚r is a smooth function on N with no critical points,
and moreover f˚pgradsgpf˚rqq “ Br. Therefore, N is diffeomorphic to p´c, cq ˆ Y ,
where Y is the preimage of the leaf Xr0 for some (hence any) r0. Furthermore, it
follows that f : N Ñ M “ p´c, cqˆX preserves the product structures. The metric
sg is now given by

sg “ dr2 ` sgr.

We shall show that sg is indeed a warped product metric.
For notational simplicity, we also denote gradsgpf˚rq by Bsr. We define a tensor

field V P C8pN, TN b TNq by

(2.46) Vξ :“ ∇N
ξ Bsr ´ ψpf˚rq

`
, ´ x,, BsryN ¨ Bsr

˘

for any tangent vector field , of N .

Claim 2.11. We have V ” 0.

Proof of Claim 2.11. Assume on the contrary that V ‰ 0. Then there exists x0 P
N , δ ą 0, and a unit tangent vector field , over Nδpx0q such that

(2.47) |pVξqx| ą δ, @x P Nδpx0q.
By compactness, we assume that

|V | ď C1, and |∇V | ď C1

for some C1 ą 0 on Nδpx0q.
Let us first prove a technical estimate (inequality (2.52)), which will then be

combined with Lemma 2.8 to get a contradiction. Suppose σ is a smooth section
of E over Nλ. We set

(2.48) T “ 1 ´ scpBsrqE cpBrq.
A direct computation shows that

(2.49) rQξ, T s “ scpVξqE cpBrq,
where the operator Q is defined in line (2.40). We may assume without loss of
generality that δ is sufficiently small so that the boundary BNspx0q of Nspx0q is a
smooth hypersurface in Nδpx0q for each 0 ă s ď δ. By the Stokes formula, we have
ż

Nspx0q
|scpVξqσ|2 “

ż

Nspx0q
xpQξT ´ TQξqσ, rQξ, T sσy

“
ż

Nspx0q

`
xQξTσ, rQξ, T sσy ´ xQξσ, T rQξ, T sσy

˘

“
ż

Nspx0q

´
xTσ, rQξ, rQξ, T ssσ ` rQξ, T sQξσy ´ xQξσ, T rQξ, T sσy

¯

`
ż

BNspx0q
xνs, ,yxTσ, rQξ, T sσy,

where νs is the unit inner normal vector of BNspx0q. Note that

rQξ, rQξ, T ss “ rQξ, scpVξqE cpBrqs “ scp∇N
ξ VξqE cpBrq ´ ψph˚rqscp, ^ Vξq.(2.50)
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Therefore, there is C2 ą 0 such that
ż

Nspx0q
|scpVξqσ|2 ďC2

ż

Nspx0q

`
|Tσ||σ| ` |Qξσ||σ| ` |Qξσ||Tσ|

˘

` C2

ż

BNspx0q
|Tσ||σ|.

(2.51)

For x P Nδpx0q, we define F pxq “ δ ´ distpx, x0q, which gives a continuous positive
function on Nδpx0q. We integrate both sides of inequality (2.51) for s P r0, δs. By
changing the order of integration, we obtain

ż

Nδpx0q
F ¨ |scpVξqσ|2 ďC2

ż

Nδpx0q
F ¨

`
|Tσ||σ| ` |Qξσ||σ| ` |Qξσ||Tσ|

˘

` C2

ż

Nδpx0q
|Tσ||σ|.

Therefore, there exists C3 ą 0 such that
ż

N δ
2

px0q
|scpVξqσ|2 ď C3

ż

Nδpx0q

`
|Tσ||σ| ` |Qξσ||σ| ` |Qξσ||Tσ|

˘
.(2.52)

Now suppose that σ is a nonzero section of E over Nλ satisfying the boundary
condition such that pDΨσ “ 0. Let K be a fixed compact connected domain in Nλ

that contains Nδpx0q and f´1pNεpI0q ˆ Xq. By Claim 2.10, we see the integrand
in the third line of the inequality (2.44) becomes

|ψ1ph˚rq| ¨
@`
ρ1pf˚rq ´ scpgradsgph˚rqqE cpBrq

˘
σ, σ

D

“ |ψ1ph˚rq| ¨
@`
ρ1pf˚rq ´ ρ1pf˚rqscpgradsgpf˚rqqE cpBrq

˘
σ, σ

D

“ |ψ1ph˚rq|ρ1pf˚rq ¨
@`

1 ´ scpBsrqE cpBrq
˘
σ, σ

D

“ |ψ1ph˚rq|ρ1pf˚rq ¨ xTσ, σy.
It follows from the inequality (2.44) and Pσ “ Qσ that there is C4 ą 0 such that

(2.53)

$
’’’&

’’’%

ż

Nλ

|Qσ|2 ď C4ε
1
ż

K
|σ|2,

ż

Nλ

xTσ,σy ď C4ε
1
ż

K
|σ|2.

Note that T is a self-adjoint endormorphism and p1 ´ T q2 “ 1. It follows that, at
each point of N , the operator T is a self-adjoint matrix with eigenvalues 0 and 2.
In particular, we have

(2.54) xTσ,σy “ 1

2
|Tσ|2.

From line (2.52), (2.53), (2.54) and the Cauchy–Schwarz inequality, we have

(2.55)

ż

N δ
2

px0q
|scpVξqσ|2 ď C5

?
ε1

ż

K
|σ|2

for some C5 ą 0. Combined with line (2.47), we obtain

(2.56)

ż

N δ
2

px0q
|σ|2 ď C5

?
ε1

δ2

ż

K
|σ|2.
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We emphasize that the constants tCiu1ďiď5 above are independent of the choice
of the parameters ε, ε1,λ, µ that appear in the construction of the map h. By
using Lemma 2.8, we see that the inequality (2.56), together with line (2.53), leads
to a contradiction (cf. the corresponding argument in the proof for the Scalar
extremality part above). This prove Claim 2.11. !

Now that we know V “ 0, that is,

(2.57) ∇N
ξ Bsr “ ψpf˚rq

`
, ´ x,, BsryN ¨ Bsr

˘
,

it follows that the integral curves of Bsr on N are geodesic and the second fundamen-
tal form of the leaf tru ˆ Y is equal to ψ ¨ I, where I stands for the identity matrix.
In other words, all principal curvatures of tru ˆY are equal to ψ. Therefore, pN, sgq
is also a warped product metric. Moreover, since ψ “ ϕ1{ϕ, it follows that sg is of
the form

sg “ dr2 ` ϕ2gY ,

where gY is some Riemannian metric on Y . This proves Scalar rigidity part (I).
Now we prove Scalar rigidity part (II). Denote Yr “ tru ˆ Y . By the proof

of Scalar rigidity part (I) above, the map f maps Yr to Xr. By assumption,
X is Ricci positive and f : Yr Ñ Xr is distance-nonincreasing. To prove Scalar
rigidity part (II), it suffices to show that f˚ : TYr Ñ TXr is an isometry for every
r P p´c, cq.

Assume to the contrary that f˚ is not an isometry for some r0 and y0 P Yr0 .
Consider the singular value decomposition of f˚ : Ty0Yr0 Ñ Tfpy0qXr0 , that is, there
exist orthonormal bases tseiu1ďiďn´1 of Ty0Yr0 and teiu1ďiďn´1 of Tfpy0qXr0 such
that f˚sei “ µiei for some µi P r0, 1s. By our assumption, there exists some i0 such
that

µi0 ď
?

1 ´ δ1

for some δ1 ą 0. Then by definition of the map h, we have h˚sei “ αµivi, where
tviu1ďiďn´1 is an orthonormal basis of Thpy0qXρpr0q and α “ ϕpρpr0qq{ϕpr0q. Com-
pare with the proof of Lemma 2.3 to see how the constant α enters into the esti-
mates. It follows from the above discussion that the inequality (2.17) becomes a
strict inequality. More precisely, at the point pr0, y0q P N , we have

(2.58) α´2
ÿ

k

scpsLwkq2 “ ´α2
ÿ

iăj

µ2
i µ

2
j ph˚ pRijjiq ě ´ f˚ScgX

2ϕpf˚rq2 ` δ1 ¨ f˚RicXpei0q
ϕpf˚rq2 ,

where RicXpei0q is the Ricci curvature of pX, gXq at fpy0q in the direction of ei0 .
By continuity, the inequality (2.58) (but with possibly a smaller δ1) also holds on
a small neighborhood of pr0, y0q in N “ p´c, cq ˆ Y . To summarize, we see that
there exist δ ą 0 and x0 “ pr0, y0q P N such that

(2.59) R ě Scsg

4
´ f˚ScgX

4ϕpf˚rq2 ` δ

on Nδpx0q, where R is the curvature term from line (2.13) (cf. the proof of
Lemma 2.3). Together with the estimates from the proof of Proposition 2.5, this
implies that there exists x0 P N and δ ą 0 such that

n

n ´ 1
R ` n

2
ψ1ph˚rqρ1pf˚rq ` n2

4
ψph˚rq2

ě n

4pn ´ 1q pScsgpxq ´ f˚Scgpxqq ` δ ě δ, @x P Nδpx0q.
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Now we proceed exactly the same way as the proof of Scalar extremality part and
arrive at a contradiction. This proves Scalar rigidity part (II), hence completes
the proof of the theorem. !

3. Scalar curvature rigidity of degenerate spherical bands

In the previous section, we prove a special case of Theorem 1.3 where the leaf
X of M “ p´c, cq ˆ X has nonzero Euler characteristic. In this section, we shall
prove a special case of Theorem 1.3 where the leaf X is a standard round sphere.

Theorem 3.1. Let M “ p´c, cq ˆ X be an n-dimensional manifold equipped with
the warped product metric

g “ dr2 ` ϕprq2gX

such that

p1q ϕ is admissible in the sense of Definition 1.1 and

p2q pX, gXq is the pn ´ 1q-dimensional standard round sphere pSn´1, gSn´1

st q.
Let pN, sgq be a spin Riemannian manifold and f : N Ñ M be a smooth proper
map with nonzero degree. If f is distance-nonincreasing and Scsg ě f˚Scg, then
Scsg “ f˚Scg. Furthermore, if in addition n ě 3 and ϕ is strictly log-concave, then
f is a isometry.

Of course, the case where X is an even dimensional sphere has already been
covered by Theorem 2.9. So it remains to consider the case where X is a standard
odd dimensional sphere. In order to overcome the difficulty caused by the fact
an odd dimensional sphere has vanishing Euler characteristic, we follow Llarull’s
idea and take the direct product with a large circle. But this introduces an extra
small error term in the relevant curvature estimates. A key step of our proof is to
dominate this extra error term by the Poincaré type inequality from Lemma 2.8. As
mentioned in the introduction, due to the extra error term caused by introducing
an auxiliary circle, there is a minor gap in Llarull’s proof for the scalar rigidity of a
closed standard odd dimensional sphere [12, Section 4]. In order to make more clear
how the Poincaré type inequality (Lemma 2.8) enters into our proof of Theorem 3.1,
let us first demonstrate how it can applied to fix this minor gap in Llarull’s proof
for the scalar rigidity of a closed standard odd dimensional sphere.

Theorem 3.2 (Llarull [12]). Let pS2k`1, gstq be the standard round unit sphere of
dimension p2k ` 1q ě 3. Let pN, sgq be a closed spin Riemannian manifold and
f : N Ñ M a smooth map with nonzero degree. If Scsg ě 2kp2k ` 1q and f is
area-nonincreasing, then f is an isometry.

Proof. We first follow closely Llarull’s original proof. Let NˆS1
R be the Riemannian

product of N with the circle S1
R of radius R. Consider the following map

(3.1) pN ˆ S1
R, sg ` R2dθ2q fˆ id

RÝÝÝÑ pS2k`1 ˆ S1, gst ` dθ2q αÝÝÑ S2k`1 ^ S1 “ S2k`2,

where S2k`2 is the standard unit round sphere, f ˆ id
R is given by pf ˆ id

R qpx, θq “
px, ,

R q for all px, θq P N ˆ S1
R, and α is a distance-nonincreasing map of nonzero

degree.
Let us write rf “ α ˝ pf ˆ id

R q. Let E be the following spinor bundle over N ˆ S1
R:

E “ S
´
T pN ˆ S1

Rq ‘ rf˚TS2k`2
¯

.
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Let D be the corresponding Dirac operator for E. By the Bochner–Lichnerowicz–
Weitzenbock formula, we have

(3.2) D2 “ ∇˚∇ ` Scsg

4
` 1

8

ÿ

i,j

ÿ

k,l

x rf˚Rsei,sej ek, ely scpseiqscpsejq b cpekqcpelq,

where teiu is a local orthonormal basis of rf˚TS2k`2, and rf˚R is the curvature

form of rf˚TS2k`2. Here we have used the obvious fact the scalar curvature of
N ˆ S1

R coincides with the scalar curvature Scsg of pN, sgq. If t swju and twiu are

local orthonormal bases of
Ź2T pN ˆ S1

Rq and rf˚Ź2TS2k`2 respectively, then we
can rewrite (3.2) as

(3.3) D2 “ ∇˚∇ ` Scsg

4
´ 1

2

ÿ

k,l

xf˚ swk, wly scp swkq b cpwlq.

We choose a local sg-orthonormal frame se1, . . . , se2k`2 of T pN ˆ S1
Rq, where se2k`2

is tangential to S1
R, and a local g-orthonormal frame e1, . . . , e2k`2 of TS2k`2 such

that rf˚sei “ µiei with µi ě 0. Then we have rf˚psei ^ sejq “ µiµjei ^ej . As rf is area-

nonincreasing, we have µiµj ď 1 for all i ‰ j. Moreover, since rf is 1
R -contracting

along the S1
R direction, we have µ2k`2 ď 1

R . It follows that

D2 ě ∇˚∇ ` Scsg

4
´ 2kp2k ` 1q

4
´ 2k ` 1

2R
.

In particular, we have

(3.4) }Dϕ}2 ě }∇ϕ}2 `
ż

NˆS1
R

´Scsg

4
´ 2kp2k ` 1q

4
´ 2k ` 1

2R

¯
|ϕ|2

for all smooth sections ϕ of E over N ˆ S1
R. So far, we have essentially followed

the same argument of Llarull [12, Section 4]. Note that the Fredholm index of

D is nonzero, in fact, equal to 2 times the degree of rf , where 2 comes from the
Euler characteristic of S2k`2. Therefore there exists a nonzero section σ of E such
that Dσ “ 0. One would like to plug σ into the inequality (3.4) to conclude that
Scsg “ 2kp2k ` 1q. However, a priori, the extra error term ´2k`1

2R prevents us from
directly making such a conclusion. In the following, we shall use the Poincaré type
inequality from Lemma 2.8 to get round this issue.

Let us prove Scsg “ 2kp2k ` 1q by contradiction. Assume to the contrary that
the inequality Scsg ě 2kp2k ` 1q is strict somewhere. Then there are x0 P N and
δ ą 0 such that

Scsgpxq ě 2kp2k ` 1q ` δ, @x P Nδpx0q.
It follows that

ScNˆS1
R

pxq ě 2kp2k ` 1q ` δ, @x P Nδpx0q ˆ S1
R.

We recall that the constants appearing in the Poincaré type inequality from
Lemma 2.8 only depends on the local geometry of N ˆ S1

R and the bundle E, the
number of tubes (as in the proof of Lemma 2.8) that cover N ˆ S1

R and their sizes.

Let rf1 be the map N ˆ S1
1 Ñ S2k`2 for R “ 1, and iR

iR : pN ˆ S1
R, sg ` R2dθ2q Ñ pN ˆ S1

1, sg ` dθ2q
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the identity map (at the level of sets). Let

E1 “ S
´
T pN ˆ S1

1q ‘ rf˚
1 TS2k`2

¯
.

We notice that E “ i˚
RE1, and the spinorial connection ∇ on E is the pull-back of

the connection on E1 by iR. Clearly E1 is independent of R, and as R Ñ 8, the
connection on i˚

RE1 becomes flatter in the S1-direction. Thus, the local geometric
data of N ˆ S1

R and the bundle E over N ˆ S1
R are uniformly bounded for any

R ě 1.
Given Nδpx0qĂN , there exist finitely many tubes Ti as in the proof of Lemma 2.8

that contain Nδpx0q and cover N . Then each tube Ti ˆ S1
R contains Nδpx0q ˆ S1

R
and together they cover N ˆ S1

R. The cardinality of the set tTi ˆ S1
Ru is clearly

independent of R. Moreover, the constant appearing in the corresponding Poincaré
type inequality (as in Lemma 2.8) may be chosen so that it only depends on the
size of Ti, in particular, is independent of R, as long as R ě 1. Therefore, it follows
from Lemma 2.8 that there exists C ą 0 (independent of R ě 1) such that

(3.5)

ż

NˆS1
R

|ϕ|2 ď C

ż

Nδpx0qˆS1
R

|ϕ|2 ` C

ż

NˆS1
R

|∇ϕ|2

for all smooth sections ϕ of E.
Since Dσ “ 0, it follows that

0 “ }Dσ}2 ě
ż

NˆS1
R

|∇σ|2 `
ż

NˆS1
R

´Scsg

4
´ 2kp2k ` 1q

4
´ 2k ` 1

2R

¯
|σ|2

ě
ż

NˆS1
R

|∇σ|2 `
ż

Nδpx0qˆS1
R

pδ ´ 2k ` 1

2R
q|σ|2 ´ 2k ` 1

2R

ż

NˆS1
R

|σ|2

ě
´
1 ´ p2k ` 1qC

R

¯ ż

NˆS1
R

|∇σ|2(3.6)

`
´
δ ´ 2k ` 1

2R
´ p2k ` 1qC

2R

¯ ż

Nδpx0qˆS1
R

|σ|2.

Since C is independent of R, for a given sufficiently large R, the above estimates
imply that σ vanishes on Nδpx0q ˆ S1

R and ∇σ vanishes on N ˆ S1
R. This together

with the inequality (3.5) implies that σ vanishes on N ˆ S1
R, which leads to a

contradiction. Therefore, we have proved that Scsg “ 2kp2k ` 1q.
Now since 2k ` 1 ě 3, the proof of the Scalar rigidity part (II) of Theorem 2.9

can be easily adapted to the current setting to show that f is an isometry. Indeed,
assume to the contrary that f is not an isometry. Then there exists y0 P N such that
f˚ : Ty0N Ñ TS2k`1 is not an isometry. Consider the singular value decomposition
of f˚ : Ty0N Ñ Tfpy0qS2k`1, that is, there exist orthonormal bases tseiu1ďiď2k`1 of
Ty0N and teiu1ďiď2k`1 of Tfpy0qS2k`1 such that f˚sei “ µiei for some µi ě 0. Since
2k ` 1 ě 3 and µiµj ď 1 for all i ‰ j, there exist 1 ď α,β ď 2k ` 1 with α ‰ β
such that

µαµβ ă 1.

This together with line (3.3) implies that there is δ1 ą 0 such that

Scsg

4
´ 1

2

ÿ

k,l

xf˚ swk, wly scp swkq b cpwlq ě δ1 ´ 2k ` 1

R
, @x P Nδ1 py0q ˆ S1

R.
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Now by applying the same estimates as in (3.5) and (3.6), we arrive at a contradic-
tion. This finishes the proof. !

Similar remarks also apply to the following improvement of Llraull’s theorem
due to Listing [11].

Theorem 3.3 (Listing [11]). Let pSn, gstq be the standard round unit sphere of odd
dimension n ě 3. Let pN, sgq be a closed spin Riemannian manifold and f : N Ñ M
a smooth map with nonzero degree. If Scsg ě }Ź2f˚} ¨ npn ´ 1q, then there exists a
constant a ą 0 such that f : pN, a ¨ sgq Ñ pSn, gstq is an isometry.

Proof. Let SpTN ‘f˚TSnq be the spinor bundle of TN ‘f˚TSn over N and D its
Dirac operator. For each point y0 P N in N , we pick a singular value decomposition
of f˚ : Ty0N Ñ Tfpy0qSn, that is, there exist orthonormal bases tseiu1ďiďn of Ty0N
and teiu1ďiďn of Tfpy0qSn such that f˚sei “ µiei for some µi ě 0. By the Bochner–
Lichnerowicz–Weitzenböck formula, we have

D2 “ ∇˚∇ ` Scsg

4
` 1

8

ÿ

i‰j

µiµjscpseiqscpsejq b cpeiqcpejq.

We may assume that µ1 ď ¨ ¨ ¨ ď µn. Thus }Ź2f˚} “ µn´1µn, and

(3.7)
Scsg

4
` 1

8

ÿ

i‰j

µiµjscpseiqscpsejq b cpeiqcpejq ě Scsg

4
´ µn´1µn ¨ npn ´ 1q

4
ě 0.

The equality holds if and only if µiµj “ µn´1µn for all i ‰ j. Since n ě 3,
µiµj “ µn´1µn for all i ‰ j implies that

(1) either all µi’s are nonzero and equal to each other,

(2) or µi “ 0 for all 1 ď i ď n ´ 1.

Since n is odd, we consider the product with a large circle as in the proof of
Theorem 3.2. If there exists a point x P N such that condition (1) and condition (2)
above both fail, then line (3.7) becomes a strict inequality in a small neighborhood
of x in N . Now the same argument from the proof of Theorem 3.2 together with
a Poincaré-type inequality leads to a contradiction. To summarize, for any point
x P N , either condition (1) or condition (2) holds at x.

The rest of the proof follows from the same argument in [19, Theorem 1.6 (I)].
Let U be the open set of N where condition (1) holds. Since the degree of f is
nonzero, U is nonempty. Let h “ }Ź2f˚}1{2. Then we have h2 ¨ sg “ f˚gst on U .
By the formula of scalar curvature under conformal change, we have on U

f˚Scgst “ Scsg

h2
´ 2pn ´ 1q

h3
∆h ´ pn ´ 1qpn ´ 4q

h4
|dh|2.

Since Scsg “ h2 ¨ f˚Scgst and h ” 0 on N ´ U , we see that

2hk∆h “ ´pn ´ 4qhk´1|∇h|2

on the entire N for all k ě 1. By the Stokes theorem, we have

0 “
ż

N

`
hk∆h ` x∇phkq,∇hy

˘
“

ż

N

`
hk∆h ` khk´1|∇h|2

˘
.

Therefore ´
k ´ n ´ 4

2

¯ ż

N
hk´1|∇h|2 “ 0
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for all k ě 1. As a result, ∇h ” 0 on N . Therefore, h is a nonzero constant
function, say a, on N . It follows that f : pN, a ¨ sgq Ñ pSn, gstq is a local isometry.
Since n ě 3, the sphere Sn is simply connected. Therefore, f : pN, a ¨ sgq Ñ pSn, gstq
is an isometry. This finishes the proof. !

Now let us prove Theorem 3.1.

Proof of Theorem 3.1. Since an even dimensional sphere has nonzero Euler char-
acteristic, which has already been covered by Theorem 2.9, we shall only focus the
case where X is an odd dimensional standard round sphere. Our proof will be a
combination of the proof of Theorem 3.2 and the proof of Theorem 2.9.

Similar to the proof of Proposition 2.1, for a given 0 ă λ ă c, let Mλ “ r´λ,λsˆ
Sn´1 Ă M . We assume without loss of generality that Nλ “ f´1pMλq is a manifold

with boundary. We denote by #Mλ “ r´λ,λs ˆ Sn, equipped with the metric

rg “ dr2 ` ϕprq2 ¨ gSn

st .

Let Nλ ˆ S1
R be the Riemannian product of pNλ, sgq and the circle S1

R of radius R.
For any ε1, ε ą 0, let ρ be the smooth function given in line (2.1):

(3.8) ρ : r´γ, γs Ñ r´c, cs

such that

‚ ρp˘γq “ ˘c,
‚ 1 ď ρ1prq ď 1 ` ε1 for r P NεpI0q, and
‚ ρ1prq “ 1 for r P r´γ, γszNεpI0q,

where I0 is a subinterval of p´c, cq as given at the beginning of Section 2.1 and
NεpI0q is the ε-neighborhood of I0.

For λ P p0, γq and µ “ ρpλq, we consider the map

rh : pNλ ˆ S1, sg ` R2dθ2q Ñ p#Mµ, rgq

defined as the composition of the following maps

(3.9)

pNλ ˆ S1, sg ` R2dθ2q hˆidÝÝÝÑ pMµ ˆ S1, dr2 ` ϕprq2gSn´1

st ` R2dθ2q
idÝÝÑ pMµ ˆ S1, dr2 ` ϕprq2pgSn´1

st ` dθ2qq
idrˆαÝÝÝÝÑ p#Mµ, rgq,

where h is given in the proof of Proposition 2.1 and α is the map from Sn´1 ˆS1 to
Sn in the proof of Theorem 3.2. By construction, rh is a smooth map with nonzero
degree.

Set E “ SpT pNλ ˆ S1q ‘ rh˚T #Mµq. We impose the same boundary condition
B on sections of E at BNλ ˆ S1 as given in Definition 2.2. Let ∇ be the spinorial
connection on E determined by the Levi-Civita connections of Nλ ˆ S1 and #Mµ. A

new connection p∇ on E is defined as follows

(3.10) p∇ξ “ ∇ξ ` 1

2
cp∇#M

h˚ξBrqcpBrq, @, P C8pNλ ˆ S1, T pNλ ˆ S1qq.
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Let tseiu1ďiďn`1 be a local orthonormal basis of T pNλ ˆ S1q, where tseiu1ďiďn is a
local orthonormal basis of TNλ and sen`1 is an orthonormal basis of TS1. Let pD
be the Dirac operator on E with respect to p∇,

(3.11) pD “
n`1ÿ

i“1

scpseiq p∇sei .

Similar to the proof of Proposition 2.1, we write

(3.12) Ψ “ n

2
ψph˚rq ¨ E cpBrq,

where ψ “ ϕ1{ϕ, and define

(3.13) pDΨ “ pD ` Ψ.

We emphasize that here n is equal to the dimension of #Mµ minus one.

Since χp#Mµq ‰ 0 and degprhq ‰ 0, we have Indp pDΨq ‰ 0, cf. the proof of
Proposition 2.1. Therefore, there exists a nonzero section σ of E satisfying the
boundary condition B such that pDΨσ “ 0.

Note that

(3.14) 0 “ | pDΨσ|2 “ | pDσ|2 `
`
x pDσ,Ψσy ` xΨσ, pDσy

˘
` |Ψσ|2.

By the Bochner–Lichnerowicz–Weitzenböck formula, we have pD2 “ p∇˚ p∇`R. Now
we compute the curvature operator R. Let rP be the orthogonal projection from
T #M onto pBrqK, and P the orthogonal projection from TM onto pBrqK, where

pBrqK is the orthogonal complement of Br in T #M (resp. TM). By the Bochner–
Lichnerowicz–Weitzenbock formula for p∇, we have

(3.15) R “ Scsg

4
´ 1

2ϕph˚rq2
ÿ

iăjďn`1

scpsei ^ sejqcp rP prh˚seiq ^ rP prh˚sejqq,

where the Clifford action of 2-forms is defined by

cpu ^ vq :“ 1

2
pcpuqcpvq ´ cpvqcpuqq.

We claim that

(3.16)
ÿ

iăjďn`1

scpsei ^ sejqcp rP prh˚seiq ^ rP prh˚sejqq ď }Ź2p rPrh˚q}1,

where }Ź2p rPrh˚q}1 denotes the trace norm of the linear map

Ź2p rPrh˚q :
Ź2T pNλ ˆ S1q Ñ Ź2T #Mµ.

Indeed, let us consider the singular value decomposition of
Ź2p rPrh˚q. More pre-

cisely, there exist orthonormal bases tsωku of
Ź2T pNλ ˆ S1q, tωku of

Ź2T #Mµ, and
λk ě 0 for 1 ď k ď npn ` 1q{2 such that

p rPrh˚qsωk “ λkωk.
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Therefore, we have
ÿ

iăjďn`1

scpsei ^ sejqcp rP prh˚seiq ^ rP prh˚sejqq

“
npn`1q{2ÿ

k“1

scpsωkqcpωkqλk ď
npn`1q{2ÿ

k“1

λk “ }Ź2p rPrh˚q}1.

This finishes the proof of the claim.
Recall that h : Nλ Ñ Mµ is given by h “ hρ ˝ f , cf. line (2.2). We define

β : pMµ ˆ S1, sg ` R2dθ2q Ñ p#Mµ, rg “ gSn`1

st q
as the composition of the following maps

pMµ ˆ S1, g ` R2dθ2q idÝÝÑ pMµ ˆ S1, dr2 ` ϕprq2pgSn´1

st ` dθ2qq idrˆαÝÝÝÝÑ p#Mµ, rgq.
Then we have

rh “ β ˝ phρ ˆ idq ˝ f.

We notice that
rPrh˚ “ p rPβ˚P q ˝ pP phρ ˆ idq˚P q ˝ f˚.

For each r P p´c, cq, we denote by Xr the leaf of M at r, and rXr the leaf of #M at
r. Then for each fixed r, we have

rPβ˚P “ β˚ : T pXr ˆ S1q Ñ T rXr,

and

P phρ ˆ idq˚P “ phρ ˆ idq˚ : T pXr ˆ S1q Ñ T pXρprq ˆ S1q,
as hρ maps the leaf at r to the leaf at ρprq. Therefore, by the Hölder inequality, we
have

}Ź2p rPrh˚q}1 ď}Ź2p rPβ˚P q}1 ¨ }Ź2pP phρ ˆ idq˚P q} ¨ }Ź2f˚}

ďϕph˚rq
ϕpf˚rq ¨ }Ź2p rPβ˚P q}1,

(3.17)

where we have used the fact }Ź2f˚} ď 1 since f is distance-nonincreasing and

}Ź2pP phρ ˆ idq˚P q} “ ϕph˚rq2
ϕpf˚rq2

since hρ maps the leaf at r to the leaf at ρprq.
Now we estimate the trace norm of

Ź2p rPβ˚P q “ Ź2β˚ :
Ź2T pXr ˆ S1q Ñ Ź2T rXr

for each fixed r. Let p be the orthogonal projection

p :
Ź2T pXr ˆ S1q Ñ TXr ^ TS1 “ TXr b TS1.

Note that the range of p has dimension pn ´ 1q, and the orthogonal complement
of the range of p has dimension pn ´ 1qpn ´ 2q{2. We recall that β is distance-
nonincreasing. Therefore

(3.18) }Ź2β˚}1 ď }pŹ2β˚q ˝ p}1 ` }pŹ2β˚q ˝ p1 ´ pq}1 ď pn ´ 1qpn ´ 2q
2

` n ´ 1

R
.
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To summarize, we have shown that

R ěScsg

4
´ 1

2ϕph˚rq2 ¨ ϕph˚rq2
ϕpf˚rq2

´ pn ´ 1qpn ´ 2q
2

` n ´ 1

R

¯

“Scsg

4
´ pn ´ 2qpn ´ 1q

4ϕpf˚rq2 ´ n ´ 1

2Rϕpf˚rq2 .

(3.19)

The estimates for the other three terms in line (3.14) are the same as in the proof
of Proposition 2.1. Recall the operator Q defined on Nλ as given in line (2.40).
Since pDΨσ “ 0, it follows that Pσ “ Qσ. To summarize, we have

0 “
ż

NλˆS1

| pDΨσ|2

ě n

4pn ´ 1q

ż

NλˆS1

|Qσ|2 `
`
Scsg ´ f˚Scg

˘
|σ|2 ´ n ´ 1

2Rϕpf˚rq2 |σ|2

`
ż

BNλˆS1

´ n

2pn ´ 1qHsg ` n

2
|ψpµq|

¯
|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆSn´1qˆS1

p|ψ1ph˚rq| ` c0q|σ|2,

(3.20)

where c0 is independent of ε, ε1,λ, µ and R, and I0 is the interval defined at the be-
ginning of Section 2.1. We remark that we have used condition (3) of Definition 1.1
for the warping function ϕ in the above inequality.

Now we shall prove Scsg “ f˚Scg by contradiction. Assume to the contrary that
the inequality Scsg ě f˚Scg is strict somewhere. More precisely, assume that there
is x0 P N and δ ą 0 such that

Scsgpxq ě f˚Scgpxq ` δ, @x P Nδpx0q.
Let K be a compact connected domain in N containing Nδpx0q and f´1pNεpI0q ˆ
Sn´1q, and rK “ K ˆ S1. For any ε, ε1 below, we always choose λ such that

(3.21)
n

2pn ´ 1qHsg ` n

2
|ψpµq| ě 1 ą 0

on BNλ, where µ “ ρpλq.
Note that, as long as ε and ε1 are sufficiently small, there exists c1 ą 0 (inde-

pendent of ε, ε1,λ and µ) such that |ψ1ph˚rq| ` c0 ď c1 on f´1pNεpI0qq, where I0 is
the interval as chosen in the beginning of Section 2.1. Thus line (3.20) yields that

0 ě n

4pn ´ 1q

ż

NλˆS1

|Qσ|2 ´ n ´ 1

2Rϕpf˚rq2 |σ|2

` nδ

4pn ´ 1q

ż

Nδpx0qˆS1

|σ|2 ´ ε1nc1

2

ż

#K
|σ|2.

(3.22)

It follows that
$
’’’’’&

’’’’’%

ż

NλˆS1

|Qσ|2 ď 2pn ´ 1q2
nR

ż

NλˆS1

1

ϕpf˚rq2 |σ|2 ` 2c1ε
1pn ´ 1q

ż

#K
|σ|2,

δ

ż

Nδpx0qˆS1

|σ|2 ď 2pn ´ 1q2
nR

ż

NλˆS1

1

ϕpf˚rq2 |σ|2 ` 2c1ε
1pn ´ 1q

ż

#K
|σ|2.
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Therefore, we have

2

3

ż

NλˆS1

|Qσ|2 ` 1

3

ż

#K
|Qσ|2 `

ż

Nδpx0qˆS1

|σ|2

ď ε1 ¨ 2c1pn ´ 1q
´
1 ` 1

δ

¯ ż

#K
|σ|2

` 1

R
¨ 2pn ´ 1q2

n

´
1 ` 1

δ

¯
¨ sup

Nλ

1

ϕpf˚rq2 ¨
ż

NλˆS1

|σ|2.

(3.23)

By Lemma 2.8, we have the Poincaré-type inequalities

(3.24)

$
’’’’&

’’’’%

ż

#K
|σ|2 ď C

ż

Nδpx0qˆS1

|σ|2 ` C

ż

#K
|Qσ|2,

ż

NλˆS1

|σ|2 ď C 1
ż

Nδpx0qˆS1

|σ|2 ` C 1
ż

NλˆS1

|Qσ|2.

The readers should not confuse the two constants C and C 1 in the two inequalities
of (3.24) above. The first inequality of (3.24) only requires the geometric data of
f : N Ñ M near K, which is not affected by the S1-direction. Hence the constant
C ą 0 only depends on K and δ, and is independent of ε, ε1,λ, µ and R. The second
inequality of (3.24) requires the geometric data of the entire Nλ. In particular, the
constant C 1 ą 0 may depend on ε, ε1,λ, µ, but is still independent of R.

Now given the compact connected domain K and δ ą 0, we choose ε ą 0 and
ε1 ą 0 small enough so that

2Cc1ε
1pn ´ 1q

´
1 ` 1

δ

¯
ď 1

3
,

and choose λ as in line (3.21). With ε, ε1,λ chosen, the constant C 1 is now fixed.
Finally, since Nλ is also fixed and compact, we choose R large enough so that

1

R
¨ 2C 1pn ´ 1q2

n

´
1 ` 1

δ

¯
¨ sup

Nλ

1

ϕpf˚rq ď 1

3
.

It follows from (3.23) and (3.24) that

1

3

ż

NλˆS1

|Qσ|2 ` 1

3

ż

Nδpx0qˆS1

|σ|2 ď 0.

This together with the second inequality in line (3.24) implies that σ vanishes on
Nλ ˆ S1, which leads to a contradiction. Therefore, we have proved that Scsg “
f˚Scg.

Now if in addition n ě 3 and ϕ is strictly log-concave, then the proof of the
Scalar rigidity part of Theorem 2.9 or the proof of the rigidity part of Theorem 3.2
can be easily adapted to the current setting to show that f is an isometry. We shall
not repeat the details. This completes the proof. !
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4. Scalar curvature rigidity of degenerate toric bands

In this section, we first prove Theorem 1.5, which is an improvement of Theo-
rem 1.3 for the case where the leaf X of M is a flat torus. The general case of
Theorem 1.3 will then follow by a combination of the proofs of Theorems 2.9, 3.1,
and 1.5.

Proof of Theorem 1.5. Without loss of generality, we assume that pn ´ 1q is even.
The case where pn ´ 1q is odd can be proved similarly by taking product with a
circle as in the proof of Theorem 3.1.

The torus Tn´1 is enlargable [6]. More precisely, for any ε ą 0, there exists
a finite-sheeted covering space of Tn´1 (equipped with the lifted metric) which
admits an ε-contracting map onto the standard round sphere Sn´1 such that the
map is constant at infinity and of nonzero degree. In particular, for a finite covering
space Tn´1

Λ of Tn´1, let us denote this ε-contracting map by ϑΛ : Tn´1
Λ Ñ Sn´1.

Let p´c, cq ˆ Sn´1 be the Riemannian product of Sn´1 with the interval p´c, cq.
Consider the map

id ˆ ϑΛ : M “ p´c, cq ˆ Tn´1
Λ Ñ p´c, cq ˆ Sn´1.

Note that the metric of the leaf tru ˆ Tn´1
Λ has to be rescaled by a factor of ϕprq2.

But in any case, for any ε ą 0 and any 0 ă . ă c, there exists a sufficiently large
finite-sheeted covering space Tn´1

Λ of Tn´1 such that

ΘΛ :“ id ˆ ϑΛ : r´., .s ˆ Tn´1
Λ Ñ r´., .s ˆ Sn´1

is ε-contracting and of nonzero degree.
Let NΛ be the covering space over N induced by the covering space

p´c, cq ˆ Tn´1
Λ Ñ M “ p´c, cq ˆ Tn´1

via the map f : N Ñ M . The map f lifts to a map NΛ Ñ p´c, cq ˆ Tn´1
Λ , which we

still denote by f . Let SNΛ be the spinor bundle of pNΛ, sgq. Set h :“ hρ ˝ f as in
line (2.2), where the function ρ is defined similarly as in line (2.1). More precisely,
for any ε1, ε ą 0, there is 0 ă γ ă c and a smooth function

(4.1) ρ : r´γ, γs Ñ r´c, cs
such that

‚ ρp˘γq “ ˘c,
‚ 1 ď ρ1prq ď 1 ` ε1 if r P NεpI0q, and
‚ ρ1prq “ 1 for r P r´γ, γszNεpI0q,

where I0 is a subinterval of p´c, cq chosen as at the beginning of Section 2.1.
Let λ ą 0 be sufficiently close to γ and µ “ ρpλq. We denote by

NΛ,λ “ f´1pr´λ,λs ˆ Tn´1
Λ q

and MΛ,µ “ r´µ, µs ˆ Tn´1
Λ . By a similar discussion as in Section 2.1, without loss

of generality, we may assume that the preimage of Xr is a smooth submanifold of
N for r close enough to ˘c. Therefore, without loss of generality, we may assume
NΛ,λ is a smooth manifold with boundary.

Now let us set E to be the spinor bundle

E “ S
`
TNΛ,λ ‘ pΘΛ ˝ hq˚T pr´µ, µs ˆ Sn´1q

˘
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over NΛ,λ, where T pr´µ, µs ˆ Sn´1q is the tangent bundle of r´µ, µs ˆ Sn´1. By
construction, the pull-back bundle pΘΛ ˝ hq˚T pr´µ, µs ˆ Sn´1q gets arbitrarily flat
over NΛ,λ as Λ becomes sufficiently large. That is, we may assume the curvature
of pΘΛ ˝ hq˚T pr´µ, µs ˆ Sn´1q to be as small as we wish, as long as Λ is sufficiently
large.

Similar to the proof of Proposition 2.1, we consider a specific Dirac opera-
tor together with potential on NΛ,λ as follows. Let Br be the unit vector in
pΘΛ ˝ hq˚T pr´µ, µs ˆ Sn´1q along the direction of r´µ, µs. Let ∇ be the spinorial
connection on E naturally induced by the Levi–Civita connection on N and the
pull-back of the Levi–Civita connection on M . Similar to line (2.3), we introduce
a new connection on E by

p∇ξ :“ ∇ξ ` 1

2
cp∇Sn´1

pΘΛ˝hq˚ξ BrqcpBrq,

where ∇Sn´1
is the Levi–Civita connection of r´µ, µs ˆ Sn´1. Note that, since

r´µ, µs ˆ Sn´1 is a Riemannian product, Br is clearly parallel with respect to the

connection ∇Sn´1
. In other words, the “new” connection p∇ above in fact is equal

to the original connection ∇ on E. We only introduced the new connection so that
our notation is more consistent with that from Section 2.1. Let pD be the Dirac
operator on E with respect to p∇,

pD “
nÿ

i“1

scpseiq p∇sei

where tseiu1ďiďn is local orthonormal basis of TNΛ,λ.
Recall that we have

ψ “ ϕ1

ϕ
“ plogϕq1.

We denote by r : M “ p´c, cq ˆ X Ñ p´c, cq the projection to the first component,
that is, r maps the leaf Xt to t. We set

Ψ :“ n

2
¨ ψph˚rq ¨ E ¨ cpBrq,

where E is the Z2-grading on E and h˚r is the function r ˝ h : Nλ Ñ r´µ, µs. We
define

(4.2) pDΨ :“ pD ` Ψ

and impose the same boundary condition B as in Definition 2.2.
Since both degpΘΛ ˝ hq ‰ 0 and χpSn´1q “ 2 ‰ 0, we have

Indp pDΨq “ degpΘΛ ˝ hq ¨ χpr´µ, µs ˆ Sn´1q ‰ 0.

There exists a nonzero section σ of E over NΛ,λ satisfying the boundary condition

B such that pDΨσ “ 0.
Now let us prove Scsg “ f˚Scg by contradiction. Indeed, we shall show that pDΨ is

invertible if the inequality Scsg ě f˚Scg is strict somewhere on N . By construction,
the curvature of pΘΛ ˝ hq˚T pr´µ, µs ˆ Sn´1q is arbitrarily small, as long as Λ is
sufficiently large. Therefore, if σ is a nonzero section of E satisfying the boundary
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condition B and pDΨσ “ 0, then the same proof of Proposition 2.5 shows that

0 “
ż

NΛ,λ

| pDΨσ|2 ě n

4pn ´ 1q

ż

NΛ,λ

|Qσ|2 ` pScsg ´ f˚Scgq|σ|2 ´ CΛ|σ|2

`
ż

BNΛ,λ

´ n

2pn ´ 1qHsg ` n

2
|ψpµq|

¯
|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆTn´1q
p|ψ1ph˚rq| ` c0q|σ|2,

(4.3)

where c0 is the same constant as line (2.28) and CΛ is a positive constant such that
CΛ Ñ 0 as Λ Ñ 8. We emphasize that we have used condition (3) of Definition 1.1
for the warping function ϕ in the above inequality (4.3). On the other hand, in the
current case, the proof of the above inequality (4.3) does not require Lemma 2.3.
This is because the scalar curvature of M is calculated only using the potential Ψ in
the current case, and the curvature term coming from pΘΛ ˝ hq˚T pr´µ, µs ˆ Sn´1q
is arbitrarily small and has been reflected in the constant CΛ during the estimates.

Suppose that there is a point x0 P N such that Scsg ą f˚Scg ` δ on Nδpx0q. Let
Λx0 Ă NΛ be the preimage of x0 via the covering map NΛ Ñ N . Then we also
have Scsg ą f˚Scg ` δ on NδpΛx0q.

Fix a compact set K in N that contains Nδpx0q and f´1pNεpI0q ˆ Xq, and we
denote by KΛ the preimage of K in NΛ. Given ε ą 0 and ε1 ą 0, we choose λ ą 0
such that

(4.4)
n

2pn ´ 1qHsg ` n

2
|ψpµq| ě 1 ą 0,

where µ “ ρpλq. Without loss of generality, we may assume that |ψ1| ď 1 on NεpI0q.
It follows from the inequality (4.3) that

(4.5)

$
’’’&

’’’%

ż

NΛ,λ

|Qσ|2 ď p1 ` c0qε1pn ´ 1q
2

ż

KΛ

|σ|2 ` CΛ

ż

NΛ,λ

|σ|2,

δ

ż

NδpΛx0q
|σ|2 ď 2p1 ` c0qε1pn ´ 1q

ż

KΛ

|σ|2 ` CΛ

ż

NΛ,λ

|σ|2.

By Lemma 2.8, we have the following inequalities

(4.6)

$
’’’&

’’’%

ż

KΛ

|σ|2 ď C

ż

NδpΛx0q
|σ|2 ` C

ż

KΛ

|Qσ|2,
ż

NΛ,λ

|σ|2 ď C 1
ż

KΛ

|σ|2 ` C 1
ż

NΛ,λ

|Qσ|2,

for some C ą 0 and C 1 ą 0. Note that there is d ą 0 such that the d-neighborhood
of Λx0 in NΛ covers KΛ, where d is independent of Λ. Moreover, the geometric data
of E over NΛ restricted on KΛ are also independent of Λ. Therefore, the constant
C ą 0 in the first line of (4.6) is independent of ε, ε1,λ and especially independent
of Λ. The constant C 1 in the second line of (4.6) is also independent of Λ, but may
depend on ε, ε1,λ, as one of the integrals takes place on the entire NΛ,λ.

Now we first choose ε and ε1 to be sufficiently small according to C, then choose
λ ą 0 such that the inequality (4.4) holds, and finally choose Λ to be sufficiently
large according to C 1. It is not difficult to see that an appropriate choice of ε, ε1,λ
and Λ leads to a contradiction. See for example the argument towards the end of
the proof of Theorem 3.1. This finishes the proof of the equality Scsg “ f˚Scg.
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If in addition ϕ is strictly log-concave, then the proof of the Scalar rigidity
part of Theorem 2.9 can be easily adapted to the current setting to show that
N “ p´c, cq ˆ Y , the map f respects the product structures, and the metric sg is
also a warped product metric of the form

sg “ dr2 ` ϕprq2gY ,

where gY is a metric on Y . It remains to show that gY is flat.
As we have showed that Scsg “ f˚Scg, the standard formula for the scalar cur-

vature of warped product metrics (cf. line (2.26)) shows that gY is scalar flat,
that is, ScgY ” 0. Note that Y maps to Tn´1 with nonzero degree. Therefore Y
is enlargable [6]. It then follows from a theorem of Gromov and Lawson that Y
does not admit a metric of positive scalar curvature, and any metric of nonnegative
scalar curvature on Y is flat [6, Theorem A][10, Chapter IV, Proposition 5.8]. This
finishes the proof. !

Now the general case of Theorem 1.3 follows from a combination of the proofs
of Theorem 2.9, Theorem 3.1 and Theorem 1.5.

As we have seen in various steps of the proof of Theorem 1.3, the notion of ad-
missible warping functions, introduced in Definition 1.1, is crucial for the validity
of scalar curvature extremality and rigidity of degenerate warped product spaces.
The log-concavity of ϕ is a commonly expected necessary condition for the scalar
curvature extremality and rigidity of warped product spaces. However, condition
(3) of Definition 1.1 is new and has not been previously considered in the litera-
ture regarding scalar curvature extremality and rigidity. Example 4.1 shows that
condition (3) in fact is necessary. More precisely, Example 4.1 shows that if we
drop condition (3), then scalar curvature extremality and rigidity fail for certain
degenerate toric bands with warping functions satisfying conditions (1) and (2).

Example 4.1. Let b be a positive number. Let X be a flat torus Tn´1 and
M “ p´π{2,π{2q ˆ Tn´1, which carries a warped product metric

g “ dr2 ` cos2bprqgTn´1

with the warping function ϕprq “ cosbprq. A direct computation shows that

ψ :“ plogϕq1 “ ´b tanprq,
ψ1 “ plogϕq2 “ ´b sec2prq,

and

Scg “ ´2pn ´ 1qpψ1 ` n

2
ψ2q “ pn ´ 1q

`
bp2 ´ nbq tan2 r ` 2b

˘
.

In particular, ϕ is strictly log-concave; and ϕprq ą 0 for r P p´π{2,π{2q such that
limrÑ˘π ϕprq “ 0. Therefore ϕ satisfies conditions (1) and (2) of Definition 1.1. In
the present case, ϕ satisfies condition (3) of Definition 1.1:

#
pψ1 ` nψ2{2q1 ď 0 near r “ ´π{2
pψ1 ` nψ2{2q1 ě 0 near r “ π{2

if and only if b ě 2{n.
Now assume that b ă 1{n and choose sb P pb, 1{nq. Consider the following warped

product metric

sg “ dr2 ` cos2
sbprqgTn´1
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on M . Note that the function r is 1-Lipschitz with respect to both sg and g. Hence
all assumptions, except condition (3) of Definition 1.1, of Theorem 1.5 are satisfied
by pN, sgq :“ pM, sgq and pM, gq. However, a direct computation shows that

Scsg ´ Scg “ pn ´ 1q
`sbp2 ´ nsbq ´ bp2 ´ nbq

˘
tan2 r ` 2pn ´ 1qpsb ´ bq ą 0.

Therefore, the above choice of b and sb gives a counter-example of Theorem 1.5, if
we drop condition (3) in Definition 1.1.

We observe that the warping function ϕprq “ cosbprq in Example 4.1 satisfies
conditions (1) and (2) of Definition 1.1 for all b ą 0. It satisfies condition (3)
of Definition 1.1 if and only if b ě 2{n. However, in Example 4.1, we have chosen
b ă 1{n in order to demonstrate the necessity of condition (3). This raises a natural
question.

Question 4.2. Does scalar curvature rigidity hold for M “ p´π{2,π{2q ˆ Tn´1

equipped with the warped product metric

g “ dr2 ` cos2bprqgTn´1

when 1{n ď b ă 2{n?

5. Scalar-mean rigidity of warped product spaces

In this section, we prove Theorem 1.7. The proof is a straightforward adaption
of the proof of Theorem 1.3.

Proof of Theorem 1.7. For simplicity, we shall only focus on the case where the leaf
X has nonzero Euler characteristic. The general case can be dealt with similarly
as the general case of Theorem 1.3.

As the main ingredients of the proof are very similar to those used in the proof
Theorem 1.3, we shall be brief. We start from the function ρ as given in line (2.1)
except that ρ is defined to equal the identity map near ´c this time.

We retain the same notation from the proofs of Proposition 2.1 and Theorem 2.9.
Note that BNλ consists of two parts, where B´Nλ “ BN is mapped to t´cu ˆ X,
and the remaining part B`Nλ is mapped to tµu ˆ X. Let σ be a nonzero section of
the spinor bundle E satisfying the boundary condition B and pDΨσ “ 0. Then by
Proposition 2.5, we have

0 “ } pDΨσ}2 ě n

n ´ 1

ż

Nλ

|Pσ|2 ` n

4pn ´ 1q

ż

Nλ

pScsg ´ f˚Scgq|σ|2

´ ε1n
2

ż

f´1pNεpI0qˆXq
p|ψ1ph˚rq| ` c0q|σ|2

` n

2pn ´ 1q

ż

B´Nλ

`
Hsg ´ f˚Hg

˘
|σ|2

`
ż

B`Nλ

´ n

2pn ´ 1qHsg ` n

2
|ψph˚rq|

¯
|σ|2.

(5.1)

The equality of scalar curvature Scsg “ f˚Scg follows from the same argument
of Theorem 2.9. Indeed, otherwise the inequality of scalar curvature Scsg ě f˚Scg

is strict somewhere, then line (5.1) and Lemma 2.8 lead to a contradiction.
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Now let us prove Hsg “ f˚Hg. Suppose to the contrary that the inequality
Hsg ě f˚Hg is strict somewhere on B´Nλ “ BN . That is, there is a small open
subset N in BN such that Hsg ě f˚Hg ` δ on N for some δ ą 0. Let K be a
compact connected domain in Nλ containing both BN and f´1pNεpI0q ˆ Xq. Then
an obvious modification of the proof of Lemma 2.8 shows that

(5.2)

ż

K
|σ|2 ď C

ż

N
|σ|2 ` C

ż

K
|∇σ|2

for some C ą 0 independent of the parameters ε, ε1,λ, µ that appear in the con-
struction of the function h : Nλ Ñ Mµ. Indeed, the inequality (5.2) follows from
the same proof of Lemma 2.7 and Lemma 2.8, except that we replace line (2.36) by

(5.3)

ż

In´1ˆttu
|α|2 ď ep2M`1q)

´ ż

In´1ˆt0u
|α|2 `

ż

K
|β|2

¯
,

for smooth function α over Rn and β “ dα
dxn

` Aα, and integrate with respect to
t P r0, .s as in the proof of Lemma 2.7. Now the inequality (5.2), together with line
(5.1), shows that σ vanishes on Nλ, which contradicts the fact that σ is nonzero.
This proves that Hsg “ f˚Hg.

The scalar rigidity part of the theorem follows by the same argument as the
Scalar rigidity part of Theorem 2.9. This completes the proof. !
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