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Miroslav Kosanić and Marija Ilić

Abstract— In unmanned aerial vehicle (UAV) systems, achiev-
ing extended flight autonomy remains a significant challenge,
even in hybrid systems utilizing both fuel and battery as energy
sources. To extend the flight time, our paper introduces a
novel application of online composite control that achieves
fuel savings through disturbance awareness. Our contributions
include the derivation of a nonlinear model of the energy-
conversion dynamics and its connection with lateral dynamics.
We discuss how these nonlinearities are linearized through time-
scale separation based on the operational rates of drone energy
sources. The effectiveness of our composite control method
is validated through real-world drone flight data. Numerical
results show a reduction in fuel usage of approximately 4.5%
through a disturbance-aware policy. This paper not only ad-
vances the fundamental understanding of composite control
for bilinear time-scale separated systems but also opens new
directions for research in trajectory optimization for hybrid
powertrain systems.

I. INTRODUCTION
Hybrid Powertrain Unmanned Aerial Vehicles (HPUAVs)

have matured across various industries, thanks to their en-
hanced capabilities and extended operational range. Multi-
rotors, as the most prominent HPUAVs, are distinguished
by their simplicity, agility, and ability to execute prolonged
missions. Their diverse applications range from agricultural
operations to sophisticated logistics and infrastructure in-
spection tasks. A critical aspect of leveraging HPUAVs to
their fullest potential is developing holistic dynamic mod-
els encompassing the mechanical, electrical, and chemical
subsystems. Capturing the system behavior of multi-physics
models is important for designing better control algorithms
that ensure optimal performance, safety, and extended auton-
omy. The trade-off is that such modeling adds nonlinearities
to the model, which presents a challenge for linear control.

As discussed in [1] there exist many different drone mod-
eling approaches, all of which result in a nonlinear dynamical
system characterized by four inputs and six degrees of
freedom (three Cartesian coordinates and three orientation
angles). Also, these models usually don’t consider energy
conversion dynamics.

Several works have addressed hierarchical decoupling in
drone control dynamics [2, 3]. In [4] based on the dynamics
decoupling, the model is linearized, and translational control
is bounded in the neighborhood of small Euler angles. In
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work by [5] and [6] the focus was on the linearization of
translational dynamics to enhance trajectory-tracking capa-
bilities. The work of [7] introduces auxiliary controls that
are dependent on Euler angles, offering a subtle approach
to linearization. In the paper, [8] a choice of an alternative
rotation matrix is used for linearization purposes.

While linearization is needed for linear control, another
important aspect that affects drone performance is under-
standing the dynamics of energy sources. Omitting the bat-
tery performance analysis may result in inaccurate estimates
of the real flight time of the drone [9]. The work in [10]
integrates a battery-aware model for an accurate analysis of
drone energy consumption, where the captured relationship
is experimentally derived look-up table. The work presented
in [11] introduced an energetic model for quadrotor UAVs,
which includes the vehicle dynamics, actuator dynamics, and
battery dynamics, integrated with an efficiency function. The
nonlinear optimization objective minimized the energy con-
sumption of a quadrotor, subject to boundary conditions and
feasibility constraints on the system states and control inputs.
Similarly, [12] formulates a combined approach for flight
mission planning and recharging, wherein energy expendi-
ture is subject to environmental meteorological conditions.

Even though cited papers acknowledge and show the
importance of accounting for energy expenditure and the
effects of inaccurate models on trajectory tracking, two
problems arise. First, the models of energy conversion are not
dynamic, and this relationship changes due to environmental
effects. Second, most of the literature focuses on electric-
powered drones, where the problem of trajectory tracking
dynamics is modeled as nonlinear and then linearized based
on hierarchical decoupling, relying on the assumed stability
of mechanical dynamics controllers.

Through the concept of power conservation across the
drone mechanical and powertrain subsystems, we introduce
a novel model that captures energy conversion dynamics
with drone lateral dynamics. By separating drone control into
fast (battery dynamics) and slow (fuel reservoir dynamics)
components, the model becomes linear. Separation is based
on the timescale of the rate at which fuel and battery energy
sources operate compared to drone mechanics.

The implications of our paper are three-fold. First, we
showcase through power conservation how to connect me-
chanical dynamics with energy conversion dynamics. Sec-
ond, how the rate at which different energy sources op-
erate affects time-scale separation, and lastly we apply
disturbance-aware tracking control and show a decrease in
fuel usage that results in fuel savings.
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II. NEAR-OPTIMAL CONTROL
Time-critical systems have to adhere to timing constraints,

which if not satisfied can lead to system damage and oper-
ation failure. In the pursuit of efficiency, especially in time-
critical systems affected by disturbances, the theme of near-
optimal composite control remains one of the central topics
in control theory [13]-[14]. Drones as such systems have
to manage and guarantee strict time requirements to ensure
system stability, safety, and reliability. This section outlines
the methodology for decomposing singularly perturbed linear
systems and discusses modifications to the online policy
computed using the Linear-Quadratic Regulator (LQR) in the
presence of disturbances.

A. Composite control

We consider a singularly perturbed linear time-invariant
system

ẋ1 = A11x1 +A12x2 +B1u (1)
ωẋ2 = A21x1 +A22x2 +B2u (2)
y = C1x1 + C2x2 (3)

where ω is a small positive scalar, the state x is formed by the
Rn1 and Rn2 vectors x1, x2, the control u is an Rm vector
and the output y a Rk vector.

The system of Eqs. (1)-(3) is characterized by a two-time-
scale property, manifesting n1 eigenvalues of small magni-
tude O(1) and n2 eigenvalues of large magnitude O(1/ω).
Before achieving a bifurcation of slow and fast dynamics,
system Eq. (1) undergoes an approximate decomposition into
a slow subsystem comprising n1 small eigenvalues and a
fast subsystem encompassing n2 large eigenvalues. Within an
asymptotically stable regime, the system’s transient behavior
is predominantly governed by the fast modes associated
with the large eigenvalues. After the transient phase, these
modes become negligible, and the system’s dynamics are
predominantly attributed to the slow modes. An assumption
of infinitely fast modes, i.e., ω → 0 in Eq. (2), essentially
cancels their influence, thereby simplifying Eqs. (1)-(3) to

ẋ1 = A11x1 +A12x̄2 +B1u, x1(0) = x̄10 (4)
0 = A21x1 +A22x̄2 +B2u (5)
ȳ = C1x1 + C2x̄2 (6)

Overbar denotes the slow part of all respective variables
when ω = 0. Under assumption of A22 to be invertible, x̄2

is expressed as

x̄2 = ↑A→1
22 (A21x̄1 +B2ū) (7)

Substituting into (2), the slow subsystem of (1) is thus
defined as:

ẋs = A0xs +B0us, xs(0) = x1,0 (8)
ys = C0xs +D0us (9)

where xs = x̄1, ys = ȳ1, us = ū and

A0 = A11 ↑A12A
→1
22 A21, B0 = B1 ↑A12A

→1
22 B2,

C0 = C1 ↑ C2A
→1
22 A21, D0 = ↑C2A

→1
22 B2.

To obtain the fast subsystem, we assume that the slow vari-
ables remain invariant during transients of the fast subsystem,
implying ˙̄x2 = 0 and x1 = x̄, are constant. Integrating these
conditions into Eqs. 2 and 3, we obtain

ωẋf = A22xf +B2uf , xf (0) = x2,0 ↑ x̄2(0) (10)
yf = C2xf (11)

where xf = x2 ↑ x̄2, uf = u↑ ū, and yf = y↑ ȳ and thus,
defining the fast subsystem.

B. Online Policy in Presence of Disturbance

Suppose, like in [15] that each of the previously defined
linearly invariant slow and fast subsystems Eqs. (8)-(11) can
be discretized and in the following LTI form

xt+1 = Axt +But + dt, t = 0, 1, . . . , T ↑ 1 (12)

where A ↓ Rn↑n is the system state and B ↓ Rn↑m

is the system input matrix, xt ↓ Rn is the system state
and ut ↓ Rm is the control input, while dt ↓ Rn is an
external disturbance, and T is the time horizon over which
the system is controlled. We focus on the disturbances dt,
which if sparse dt ↔= 0 if and only if t ↓ D, for some
index set D = {t1, t2, . . . , t|D|}, and |D| is cardinality of
the set D. The nonzero disturbances are given by dk = wk,
k ↓ 1, . . . , |D|, and are bounded in ε2 norm by ↗wk↗ ↘ W
≃k.

The objective of the online policy is to minimize the cost

E
d0,...,dT→1

(
xT
TQTxT +

T→1∑

t=0

xT
t Qxt + uT

t Rut

)
(13)

where QT , Q ⇐ 0 and R ⇒ 0 with QT , Q ↓ Rn↑n and
R ↓ Rm↑m.

With disturbances as d = 0, ≃t ↓ [t0, T ], the conventional
LQR control policy assumes a disturbance-free environment,
a simplification that may not be aligned with reality. We
assume that disturbances d are independent with zero mean.
The optimal disturbance-free policy is an LQR controller
[16] of the form ut = ↑Ktxt, for t = [0 . . . T ), where

Kt = (B↓Pt+1B +R)→1B↓Pt+1A (14)

and the Pt comes as the solution of the discrete-time Riccati
equation

Pt = A↓ (
Pt+1 ↑ Pt+1B(B↓Pt+1B +R)→1B↓Pt+1

)
A+Q
(15)

with PT = QT .
In the situation when policy knows the disturbance dt, the

structure of optimal control is modified according to [17].
Under the assumption that the control has complete knowl-
edge (or reliably can predict) of all disturbances d(t), ≃t ↓
[t0, T ], the optimal policy and cost will be
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u↔
t = ↑Ktxt ↑ (B↓Pt+1B +R)→1

⇑B↓(Pt+1dt+1 +
1

2
vt+1) (16)

Vt(x) = x↓Ptx+ v↓t x+ qt (17)
vt = 2A↓Stdt +A↓StP

→1
t+1vt+1 (18)

qt = qt+1 + d↓t St+1dt + v↓t+1P
→1
t+1Stdt

↑
1

4
v↓t+1B(B↓Pt+1B +R)→1B↓vt+1 (19)

St = Pt+1 ↑ Pt+1B(B↓Pt+1B +R)→1B↓Pt+1 (20)

where Vt(x) is the cost-to-go of a state x at time t, and
recurrences vt ↓ Rn, qt ↓ R depend only on the noise dt.

Problem: Extend the flight autonomy of the drone with the
hybrid powertrain by incorporating disturbance knowledge in
the composite near-optimal control. First, derive the model of
the hybrid drone and implement a power disturbance-aware
policy for lateral control. Show the impact of disturbance
knowledge on fuel savings, measured through the percentage
of fuel remaining at the end of the flight compared to the
beginning.

The integration of a battery-aware control is expected to
yield quantifiable benefits in fuel savings when contrasted
with a battery-blind control [18].

III. MODEL DERIVATION AND CONTROL

Our model derivation begins with a detailed examination
of the forces exerted on a drone’s frame, which is funda-
mental to understanding its behavior. The drone mechanical
model incorporates both translational and rotational move-
ments to provide an in-depth understanding of the drone’s
dynamics in flight. Next, we obtain fuel reservoir-engine
dynamics, which we will call fuel flow dynamics, through the
concept of conservation of power, using analogies of multi-
physics domain variables, called effort and flow variables
[19], of each subsystem interface(port) variables. By adding
relevant mechanical equations from the full model, we obtain
the state-space model that captures lateral and fuel dynamics.
Finally, we decompose the model into fast and slow subsys-
tems, for which composite control can be formulated.

A. Drone Dynamics

We analyze the multi-copter configuration of the hex-
acopter. It is assumed in this configuration, that the six
rotors mixing pattern for the thrust command, is such that
odd-numbered rotors have a pitch opposite to the even-
numbered rotors. The angular speed of each rotor is denoted
by ϑi, ≃i ↓ {1, . . . , 6}. The thrust force Ti, for each of the
rotors is given by the equation

Ti = kTϑ
2
i (21)

where kT and kM are constants empirically determined
for a propeller operating under time-stationary environment

conditions. The resulting thrust, the sum of each rotor thrust
is then

Tthrust =
6∑

i

Ti (22)

For our hybrid hexacopter, the motor dynamics are signifi-
cantly faster than the time scales of rigid body dynamics and
aerodynamics. This simplifies the model by assuming that
Ti can be adjusted instantaneously, neglecting the detailed
dynamics of the motors’ response time. From the datasheets
of the ESC, the relationship between the commanded throttle
and each motor thrust output is represented through the
polynomial

p(x) = ↑4600x3 + 10107x2
↑ 1198x+ 472 (23)

where polynomial argument x is the commanded throttle
that determines the thrust force of a motor. The resulting
forces acting on the drone frame along each of its axis, are
as follows

Fx = Tthrust(cos(ϖ) cos(ϱ) + sin(ς) sin(ϖ) sin(ϱ)) (24)
Fy = Tthrust(cos(ϖ) sin(ϱ)↑ sin(ς) sin(ϖ) cos(ϱ)) (25)
Fz = Tthrust(cos(ς) sin(ϖ)) (26)

where ϖ is the pitch, ς is the roll, and ϱ the yaw angle,
are used to calculate how this total thrust vector is oriented
concerning the drone’s body frame. These equations assume
that the total thrust vector is initially aligned with the drone’s
vertical axis and that pitch, roll, and yaw movements tilt this
vector accordingly. This representation simplifies the model
by not considering the individual thrusts and orientations
of each rotor, but instead, it focuses on how the overall
orientation of the drone (as determined by yaw, roll, and
pitch) affects the direction of the total thrust force.

Fig. 1. Reference frames and hexacopter representation

Disturbances acting on a drone’s frame are commonly
modeled using drag force. The general form of drag force is
expressed as

Fdrag,i =
1

2
φv2iCD,iAi (27)

where i ↓ {x, y, z} represents directions in which air drag
acts on the drone body frame. For modeling drag along the
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drone’s body axis, under assumed wind speeds vw,z in the
range 2↑ 8 m/s, a linear drag model is used:

Fdrag,i = bvi (28)

where b is the linear drag coefficient and vi is drone speed
along each of x, y, z axis.

The nonlinear mechanical model, as seen in Fig. 1, is
represented in the body frame of the drone as

mẍ = Fx ↑ Fdragx (29)
mÿ = Fy ↑ Fdragy (30)

mz̈ = Fz ↑mg ↑ Fdragz (31)

Ixς̈ = ↼ω ↑ (ϖ̇ϱ̇(Iy ↑ Iz)) (32)

Iy ϖ̈ = ↼ε ↑ (ς̇ϱ̇(Iz ↑ Ix)) (33)

Izϱ̈ = ↼ϑ ↑ (ς̇ϖ̇(Ix ↑ Iy)) (34)

B. Fuel Reservoir-Engine Dynamics

By adopting a modeling approach that utilizes power
conservation across the power interfaces of these compo-
nents, the complexities associated with modeling the internal
combustion engine and fuel reservoir are circumvented,
eliminating the need to address unmodeled internal dynamics
through an additional nonlinear term. By applying a power
balance across each component we bridge unknown internal
dynamics of hybrid powertrain subsystems:

∑
Pout = ↽

∑
Pin (35)

Eq. (35) tells us that the power flowing into the component
(right-hand side) from the components (left-hand side) is
conserved. For the hybrid powertrain, the chemical power
of fuel must be equal to the power of the engine output

Pe = wTe = ↽(·)Pc = ↑↽(·)ḟHLV (36)

where ḟ is the flow of the fuel from the reservoir to the
engine, HLV is the lower heating value of the fuel (J/kg), and
↽ is the coefficient of energy domain conversion efficiency.
Engine output with added battery power is equal to the power
needed by electrical motors

Pel = vi = ⇀(·)(Pe + Pb) (37)

where Pe is the power directly supplied by the engine to
the motors, and Pb is the power taken from the engine by
the battery. The electrical motor power is equal to the linear
combination along each axis of mechanical power of the
drone

Pmech = ↑

∑

i

ϱiFivi = ⇁(·)Pel (38)

where ϱi is the linear power coefficient, Fi is the amplitude
of force exerted by the rotors of the drone, vi is the amplitude
of the drone speed in the body reference frame along each
axis i ↓ {x, y, z}. Finally, the model of the reservoir fuel
flow is

ḟ = ↑α(·)Fxvx ↑ β(·)Fyvy ↑ ▷(·)Pb ↑
1

Tf
f (39)

where α(·), β(·), and ▷(·) combine and have a meaning
of the power transmission coefficients (accumulated system
inefficiencies) along the power flow of the powertrain. Con-
tinuing, we drop the brackets and treat α, β, ▷ as constants.
Equation (39) has a bilinear nature as its terms are made of
products of forces (control) and velocities(states). We moved
the altitude z-axis out of Eq. (39) as stabilization of the z-
axis along with rotational dynamics is controlled through the
battery source. For slower dynamics like lateral dynamics,
the battery source is seen as a disturbance that takes the
power from the engine.

C. Lateral-Fuel Dynamics

Based on the previous sections’ derivations, we finally
form the state-space representation of the model that captures
the dynamics of the drone along the z-axis of its body frame
and has a connection with fuel reservoir dynamics

ẋ = vx, x(0) = x0

(40)
ẏ = vy, y(0) = y0

(41)

v̇x =
1

m
Fx ↑

bx
m

vx, vx(0) = vx,0

(42)

v̇y =
1

m
Fy ↑

by
m

vy, vy(0) = vy,0

(43)

ḟ = ↑αFxvx ↑ βFyvy ↑ ▷Pb ↑
1

Tf
f, f(0) = f0

(44)
For bilinear model Eqs. (40)-(44), we assume that the

rotational dynamics of the drone are stable and have settled
[3]. The drone’s autopilot commanded thrust shows through
Fx and Fy , Eqs. (24)-(25), and in our model these forces
act as control inputs ux and uy . Product of ux and state
vx, and analogously uy and vy is power delivered to lateral
movement of the drone. Simultaneously, as a portion of the
engine power is delivered to the battery, the battery power
oscillations will be viewed as a disturbance df = Pb.

D. Fast Battery Linearizes Bilinear System

The integration of a fast energy source such as a battery
and a slow energy source like a fuel generator provides a
foundation for timescale separation. The battery, character-
ized by its rapid response and high power density, is capable
of supplying instantaneous power demands, thus accommo-
dating the fast dynamics of the drone’s power requirements
during maneuvers and transient operations. Conversely, the
fuel generator, as it has a higher energy density and slower
dynamic response, serves as a steady and reliable energy
source for sustaining prolonged flight operations. Hybrid
dual-energy source architecture enables the separation of
timescales in the power management system. This enables
the separation of timescales in Eqs. (40)-(44), where the fast
dynamics influenced by the battery are seen as constant rel-
ative to the slower dynamics governed by the fuel generator,
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and vice-versa. Under the influence of a bounded battery
disturbance, we derive composite control for the system (40)-
(44) that can be first rewritten as

ẋ = vx, x(0) = x0 (45)
ẏ = vy, y(0) = y0 (46)

v̇x =
1

m
ux ↑

bx
m

vx, vx(0) = vx,0 (47)

v̇y =
1

m
uy ↑

by
m

vy, vy(0) = vy,0 (48)

ḟ = ↑αuxvx ↑ βuyvy ↑ ▷df ↑
1

Tf
f f(0) = f0 (49)

where df is a battery-bound disturbance. Based on the the
time-scale separation, we observe that the slow subsystem
becomes a linear model as ω → 0, and from the fast
subsystem (45)-(48) we obtain

vx =
ux

bx
(50)

vy =
uy

by
(51)

as the timescale becomes stretched O(t/ω) → O(↼) due the
property of the timescale separation.

We now obtain the reduced ”slow” order linear model

ḟs = ↑αux,svx ↑ βuy,svy ↑ ▷df ↑
1

Tf
fs (52)

For this subsystem, we implement the slow policy us =
[ux,s, uy,s]T which can be blind or aware of battery distur-
bance. The ”fast” system has the same form as Eqs. (42)-
(43), and computed policy uf = [ux,f , uy,f ]T will always be
blind towards battery disturbance. In the context of battery
disturbance, fast control is LQR regulation. Together, slow
and fast control at each timestep form an online composite
policy uc = uf + us

IV. NUMERICAL RESULT
For the parameters of the system given in Tables (I-II),

we compare the leftover fuel at the end of the flight of two
online LQR policies against the unknown policy that was
implemented during data collection experiments. The first of
the two policies is the LQR without disturbance information,
which we call ”blind” and the second is ”aware” LQR, as it
has information about battery power disturbance on the fuel
flow. We use time-scale separated models from the previous
section with a discretization time-step of !T = 0.1 s.
The LQR controller quadratic cost terms are set to Qf =
QTf = diag([1, 1, 1, 1]), and Rf = diag([1, 1]) for the fast
subsystem, and Qs = QTs = 0.1, and Rs = diag([0.1, 0.1])
for the slow subsystem. Once controls for subsystems are
computed separately, Eqs. (8)-(11), we add them and apply
them to the model of the whole system Eqs. (45)-(49).
Constraints on the maximal rate of change of states come
from data, ensuring the control actions respect the system’s
physical limitations.

In Fig. 2, the lateral drone trajectory in the xy-plane
during the cruise period of the flight mission is shown. The
trajectory shows red dashed arrows in the direction of the

drone’s lateral movement. The green dot is the start, and
the blue dot end point of the cruise phase. The trajectory
contains loops and changes in direction and the path does not
appear to be smooth, indicating that the drone experienced
disturbances and that the lateral control policy was not
optimized. Following on our hypothesis, Fig. 3 shows how
LQR control policies have more leftover fuel at the end of the
flight compared to the unknown policy. In Fig. 4 we observe
how composite control saved approximately 3.5 ↑ 4.5%
of the fuel level compared to the beginning of the cruise
flight phase, with the blind policy on the lower-end and
disturbance-aware policy as the best fuel-saving policy.

TABLE I
FAST SUBSYSTEM PARAMETERS AND THEIR UNITS

Fast Subsystem Parameters
m [kg] bx [N·s/m] by [N·s/m]
20.8953 1.7046 1.6218

TABLE II
SLOW SUBSYSTEM PARAMETERS AND THEIR UNITS

Slow Subsystem Parameters
ω [l/sW] ε [l/sW] ϑ [l/sW] Tf [1/s]
0.005594 0.003626 0.0025 396.2434

Fig. 2. Lateral trajectory of the drone with unknown control from flight
mission measurements

V. CONCLUSION
Our paper proposes a novel model that captures the inter-

action of lateral dynamics and powertrain energy conversion
dynamics. We emphasize how different rates of operation
of energy sources play a distinct role in the linearization of
the derived nonlinear model. This leads to the application of
near-optimal composite control with disturbance awareness
through which we show reduced fuel consumption. The
downside of the disturbance-aware LQR is dependence on
the accurate system model and reliable disturbance prediction
which we plan to further explore and relax in the future.
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Fig. 3. Leftover fuel during the flight

Fig. 4. Fuel saving comparison a) battery blind policy b) battery aware
policy
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