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Abstract—This paper addresses the problem of designing op-
timal distributed control in the changing electric energy systems.
We aim to improve the aggregated reactive power inefficiency
of inverter-controlled and power-coupled electrical systems. To
achieve this, we formulate an optimal control problem aimed
at optimizing reactive power and interface mismatch using the
energy state space model. Despite the general complexity of
solving an optimal control problem, we demonstrate that our
proposed model in energy state space admits a linear optimality
condition in the variational form. We demonstrate that this
condition can be decomposed into local state variables and
measurements from adjacent connected components, facilitating
a distributed approach to optimal control design. The variables
exchanged with the neighboring components are technology
agnostic and can be interpreted as costate variables with intuitive
physical meaning. We illustrate the conditions and results of the
distributed optimal control using a small system with controllable
source serving a time-varying power load. Additionally, we
explore voltage regulation in the proposed control design, which
can be implemented using fast switching power electronics.

Index Terms—Energy state space, optimality conditions, dis-
tributed control

I. INTRODUCTION

This paper is motivated by immediate industry needs to
control power electronically-switched equipment, such as bat-
teries, wind and solar power plants, and other forms of fast
storage so that fast control induced system stability (CISS)
problems are avoided [1]. These problems are quite chal-
lenging because they cannot be modeled by making typical
assumptions, such as sub-transient dynamics in wires and
reactive storage components being instantaneous and stable
[2]. Also, one cannot assume real-reactive power decoupling.
Eliminating these two assumptions poses a major challenge to
today’s modeling and control of fast primary dynamics in the
changing industry. On the other hand, solving the problem
is quite relevant because the CISS operating problems are
already seen in actual operations and are known to create real
roadblocks to the deployment and utilization of fast varying
intermittent resources [3].

Distributed control provides a promising way to handle
fast varying component behaviors without the communication
bottlenecks of centralized controllers, or the lack of robust per-
formance with only local control [4]. A number of distributed
control algorithms have been proposed for power systems, but
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lack provable performance, or require very strong conditions
on the system due to the nonlinear nature of components.
The work in [5] requires certain constraints on the underlying
communication network. Reference [6] presents optimal con-
trol conditions that requires the communication of large data
sets between components to achieve global control objectives.
Other works make certain weak coupling assumptions on the
interactions between components [7].

As a way forward, we build on our earlier introduced
modeling in energy space [8]–[10]. The approach is funda-
mentally based on representing each component module with
technology-specific internal state variables, and commonly
shared interaction variables at the interfaces. Two port compo-
nents, like wires and transformers which are typically modeled
as constant impedance are key to capturing the very fast sub-
transients created by fast controlling inverter control. At the
same time, the component interactions represented using these
aggregate variables are shown to be linear.

The utilized aggregate dynamic modeling in energy space
is introduced in Section II. The optimal control problem with
a performance objective being a combination of maximizing
physical efficiency and minimizing dynamic mismatches at the
component interfaces is shown in Section III, and it is shown
that the derived optimal conditions can be implemented in
an entirely distributed manner and support stable distributed
optimal control of sub-transient dynamics in the changing
electric energy systems. Physical intepretations of the derived
control laws is provided in Section IV. Proof-of-concept
simulations are given by considering an inverter-controlled
voltage source providing time varying power by means of an
RLC delivery circuit in Section V. Concluding remarks are
provided in Section VI.

II. BASIC MODELING IN ENERGY STATE SPACE

In this section we recall the basic modeling of general
interconnected multi-agent systems in the energy state space
[8], [9].

A. Definitions in Energy State Space

Consider a general multi-agent system shown in Fig. 1. For
each individual agent-i, its dynamics are determined by

ẋi = hi(xi, ui,mi, ri) (1a)
yi = gi(xi, ui,mi, ri) (1b)

xi(0) = xi,0 (1c)
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where xi are the state variables; ui are the control inputs; mi

are the exogenous disturbances; ri are the adjacent interactions
from agent-j; yi are the outputs.

Fig. 1: Interconnected system comprising two components !1 and
!2 with local controllable input u1, u2 and disturbances m2

Now let’s define the basic energy state variables that will
be used in the modeling based on the effort variables ωi, flow
variables εi, and states xi in Agent-i [11].

1) Power Injection Pi to Agent-i:

Pi := ω
T
i εi (2)

2) Internal Stored Energy Ei of Agent-i:

Ei :=
1

2
x
T
i Hi xi (3)

3) Internal Stored Energy Et,i in Tangent Space:

Et,i :=
1

2
ẋ
T
i Hi ẋi (4)

4) Internal Dissipation Energy Di of Agent-i:

Di :=
1

2
x
T
i Bi xi (5)

5) Time Constant ϑi of Agent-i [12]:

ϑi :=
Ei

Di
(6)

6) Reactive Power Injection Qi to Agent-i:

Qi :=

∫ (
ω
T
ε̇i → ω̇

T
i εi

)
dt (7)

Note that the definition of reactive power Qi follows from [13],
which is consistent with the ordinary reactive power defined as
the imaginary part of the complex power for the AC system.
Our definition here accounts for more general systems with
non-sinusoidal voltage and current variables.

B. Interaction Model in Energy State Space

Assume that stored energy Ei is a strict convex function, i.e.
Hi ↑ 0, and dissipation energy Di is a strict convex function,
i.e. Bi ↑ 0. Then, agent-i’s interactions with the rest of the
system can be described as follows.

Ėi = P
r,out
i → Ei

ϑi
:= pi (8a)

ṗi = 4Et,i → Q̇
r,out
i (8b)

ż
r,out
i = [P r,out

i , Q̇
r,out
i ]T represents the components interac-

tion with the rest of the system by virtue of its local energy
conversion dynamics. These quantities in steady state after

Fig. 2: Representation for the interconnected system: Incoming
interactions are shown with blue arrows while the outgoing ones by

virtue of local energy conversion dynamics are shown in brown

energy dynamics settle i.e. when Ėi = 0, ṗi = 0 are defined
as the output variables of interest.

yz,i =

[
P

r,t,→
2

Q̇
r,t,→
2

]
=

[ Ei
ωi
4Et,i

]
(9)

When the component is connected to rest of the system, the
energy conversion dynamics in connected components results
in power flows into the component, which can be defined using
the Equations (2) and (7) and are denoted using the vector
ż
r,in
i = [P r,in

i , Q̇
r,in
i ]T .

It is required for the output variables of interest yz,i to
converge to the incoming interaction ż

r,in
i for a feasible

interconnected system [14], [15].

III. OPTIMALITY CONDITIONS FOR DISTRIBUTED
CONTROL IN ENERGY STATE SPACE

In this section we focus on designing optimal control
laws for interconnected multi-agent systems in the energy
state space. Specifically, we consider a two-agent system for
simplicity (shown in Fig. 2), and present its optimal control
law based on the interaction variables between these two
agents. We then present an extension of the derived conditions
to a general multi-agent system.

A. Optimizing Physical Efficiency and Long-Term Interface

Mismatch

As discussed in the previous section, the interaction variable
Q̇

r,out
i can be interpreted as physical efficiency for the inter-

connected multi-agent system [9]. A smaller |Q̇r,out
i | during

transient dynamics means a higher physical efficiency of the
system. Hence, it is natural to seek an optimal control design
which minimizes the accumulated effects of |Q̇r,out

i | during
transient dynamics. On the other hand, the output interaction
variables yz,i of agent-i should follow the incoming interaction
variable ż

r,in when energy dynamics settle. Therefore, their
accumulated difference should also be minimized. The overall
objective function is given as follows.

J =

∫ Thor

t=0

2∑

i=1

ϖi(Q̇
r,out
i )2+ϱi(yz,i→ ż

r,in
i )T (yz,i→ ż

r,in
i )dt

(10)
where t ↓ R is the time variable; Thor ↓ R is a large time
horizon; ϖi and ϱi are the weights associated with the physical
efficiency and the interface mismatch.
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It is subject to the system dynamical equations in the energy
state space

d

dt

[
Ei

pi

]
=

[
0 1
0 0

] [
Ei

pi

]
+

[
0
→1

]
Q̇

r,out
i +

[
0
4

]
Et,i (11)

where subscript i ↓ {1, 2}; the initial conditions are given by
Ei(0) = E

0
i and pi(0) = p

0
i .

If we further define

Aii :=

[
0 1
0 0

]
, Bii := [0 → 1]T , Lii := [0 4]T (12a)

xz,i := [Ei pi]
T
, uz,i := Q̇

r,out
i , fi := Et,i (12b)

xz := [xT
z,1 x

T
z,2]

T
, uz := [uz,1 uz,2]

T
, f := [f1 f2]

T

(12c)

where i ↓ {1, 2}, and consider the integral form of the dy-
namical constraints, then the overall optimal control problem
becomes a standard state regulation problem with the initial
boundary condition as follows.

min
∫ Thor

0
u
T
z Duz + x

T
z Mxz + Cuz + f

T
Kf dt (13a)

s.t. xz(t)→ xz(0)→
∫ t

0
Axz +Buz + Lf ds = 0 (13b)

xz(0) = xz,0 (13c)

where C = 8[ϱ2f2 ϱ1f1],K = 16

[
ϱ1 0
0 ϱ2

]
, A =

[
A11 0
0 A22

]
, B =

[
B11 0
0 B22

]
, L =

[
L11 0
0 L22

]
, D =

[
ϖ1 + ϱ2 0

0 ϖ2 + ϱ1T

]
, and

M =





ε1+ε2

ω2
1

ε2

ω1
ε1+ε2

ω1ω2
ε1

ω1
ε2

ω1
ϱ2

ε2

ω2
0

ε1+ε2

ω1ω2
ε2

ω2
ε1+ε2

ω2
2

ε1

ω2
ε1

ω1
0 ε1

ω2
ϱ1




(14)

B. Optimality Conditions in Variational Form

Now let’s consider the Lagrangian function of (13).

L(xz, uz,ς) =

∫ Thor

0
u
T
z Duz + x

T
z Mxz + Cuz + f

T
Kf dt

→
∫ Thor

0
ς
T

(
xz → xz,0 →

∫ t

0
Axz +Buz + Lf ds

)
dt

(15)

where f = f(t) are assumed to be explicitly given; ς is the
vector of Lagrangian multipliers which are L2-functions of
time.

Define the costate of the system by w(t) :=
∫ Thor

t ς(φ) dφ,
with w(Thor) = 0. Substituting this into (15) yields

L(xz, uz, w, ẇ) =

∫ Thor

0
u
T
z Duz + x

T
z Mxz + Cuz + f

T
Kfdt

+

∫ Thor

0
ẇ

T (xz → xz,0)dt+

∫ Thor

0
w

T

Axz +Buz + Lf


dt

(16)

By forcing the partial derivatives of the Lagrangian function
L with respect to xz and uz to 0 we obtain the optimality
conditions in the variational form1.

↼L
↼xz

= ẇ +A
T
w + 2MT

xz = 0 (17a)

↼L
↼uz

= 2DT
uz + C

T +B
T
w = 0 (17b)

Solving Eqt (17b) we reach the optimal control law of uz ,

uz =
→1

2
D

↑T (BT
w + C

T ) (18)

which, in the explicit form, is

uz,1 =
1

2(ϖ1 + ϱ2)
w2 →

4ϱ2

ϖ1 + ϱ2
f2 (19a)

uz,2 =
1

2(ϖ2 + ϱ1)
w4 →

4ϱ1

ϖ2 + ϱ1
f1 (19b)

where w2 and w4 are the second and fourth entries of the
costate vector w.

C. Distributed Optimal Control Law

From Eqt (19) one may notice that the optimal control law
is only related to the costate w and the external input f . In
general, the costates w and the states xz are coupled together
in the ordinary differential equation (ODE) form with two-
boundary conditions. Substituting Eqt (19) into Eqt (11), and
stacking Eqt (17a) below we have

d

dt

[
xz

w

]
=

[
A

↑1
2 BD

↑T
B

T

→2MT →A
T

] [
xz

w

]
+

[
F

0

]
f (20a)

xz(0) = xz,0 (20b)
w(Thor) = 0 (20c)

where

F =


0 4 0 4ε1

ϑ2+ε1

0 4ε2

ϑ1+ε2
0 4

T

However, due to the special sparse linear form A of the
energy state space dynamical equations, we may avoid solving
the two-boundary problem (20) directly, and can express the
costates w in terms of states xz .

Considering Eqt (17a), denote the k-th column of matrix M

by mk, we have, for i ↓ {1, 2}

ẇ2i↑1 = →2mT
2i↑1xz (21a)

ẇ2i = →w2i↑1 → 2mT
2ixz (21b)

Hence, w2 and w4 can be expressed in terms of xz as
follows.

w2(t) = 2

∫ t ∫ s

m
T
1 xz(φ)dφds→ 2

∫ t

m
T
2 xz(s)ds (22a)

w4(t) = 2

∫ t ∫ s

m
T
3 xz(φ)dφds→ 2

∫ t

m
T
4 xz(s)ds (22b)

1In the objective function t appears as an explicit variable in the given
function f . But the partial derivative w.r.t. t does not alter other partial
derivatives. Thus, we omit it here.
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Substituting Eqt (22) into Eqt (19) we obtain the optimal
control law in terms of states xz .

uz,1 =
1

ϖ1 + ϱ2

(∫ ∫
m

T
1 xzdφds→

∫
m

T
2 xzds→ 4ϱ2f2

)

(23a)

uz,2 =
1

ϖ2 + ϱ1

(∫ ∫
m

T
3 xzdφds→

∫
m

T
4 xzds→ 4ϱ1f1

)

(23b)

D. Extension to General Multi-Agent Systems

Following the same derivation detailed above in a two-
agent system for one with instead n-agents having arbitrary
interconnections results in slight deviations in the optimal
control law. In place of the control being dependent on only
a component’s internal states and those of its neighbors, with
multi-port components, the control law additionally depends
on parameters from components which share neighbors. In
sparsely connected systems, such as in microgrids, this does
not greatly increase the amount of information needed to
be transmitted. However, in densely connected systems, this
leads to needing knowledge of parameters for nearly all
components. This further dependency is due to the nature
of the controller which aims to balance the interactions of
components. As such, each component must have knowledge
of the interactions on the other ports of the component for
the optimal control to be successful. This, however, does not
change what information must be exchanged, just how many
devices must communicate.

IV. PHYSICAL INTERPRETATION AND SIMPLIFICATION OF
OPTIMAL CONTROL LAW

In this section we discuss a few properties and interpreta-
tions of the optimal control law which has been derived in
Section III.

A. Asymptotic Behavior of Optimal Control Law

Consider the optimal control law in terms of the costates
in Eqt (19). In the finite time horizon t ↓ [0, Thor] we recall
that w(Thor) = 0. Thus, the optimal control law should have
a boundary condition.

u1(Thor) =
→4ϱ2

ϖ1 + ϱ2
f2(Thor) (24a)

u2(Thor) =
→4ϱ1

ϖ2 + ϱ1
f1(Thor) (24b)

Now let’s consider when the time horizon goes to infinity,
e.g. Thor ↔ +↗. Then,

lim
Thor↓+↔

w(Thor) = lim
Thor↓+↔

∫ Thor

Thor

ς(φ) dφ = 0 (25)

Fig. 3: Two-Agent Test System Configuration

Therefore, the asymptotic behavior of the optimal control
law is

lim
Thor↓+↔

u1(Thor) = lim
Thor↓+↔

→4ϱ2

ϖ1 + ϱ2
f2(Thor) (26a)

lim
Thor↓+↔

u2(Thor) = lim
Thor↓+↔

→4ϱ1

ϖ2 + ϱ1
f1(Thor) (26b)

If we further assume that ϖ1 = ϖ2 = 0, namely, no
requirement on the minimal control efforts. Then, by abusing
the limit notation, we have

u1(+↗) = →4f2(+↗) (27a)
u2(+↗) = →4f1(+↗) (27b)

Eqt (27) suggests that when we only consider long-term
interface mismatch in the objective function, the terms in
the objective function relating to the sum of Q̇ and 4Et

asymptotically converge to 0.

B. Physical Interpretations of Costates in Energy State Space

From the expressions of control derived for each agent in
Eqt (19), we can write in physical variables the control for the
first agent as

u1 = 1
2(ϑ1+ε2)

w2 → 4ε2

ϑ1+ε2
Et,2

ẇ2 = →w1 → 2ϱ2(P2
r,t,→ → P

r,in
2 )

ẇ1 = ↑2ε1

ω1
(P1

r,t,→ → P
r,in
1 )→ 2ε2

ω1
(P2

r,t,→ → P
r,in
2 )

(28)

Notice that the control is dependent on the co-state variable,
which depends on the instantaneous power mismatch measured
at the interface of each component, and on the stored energy
in tangent space of the second component.

From this physical variable level of the controller, we can
determine a minimal set of information needed to be transmit-
ted between the two components to implement this optimal
controller. First, each component must have knowledge of the
instantaneous real power mismatch on the terminals of each
device. Second, each component must transmit its measure-
ment of energy stored in tangent space to the other component.
Thus, only two pieces of locally measurable information need
to be exchanged between the components.

V. NUMERICAL SIMULATIONS

A. Two-Agent Test System Configurations

The test system used in this paper (shown in Fig. 3)
comprises a controllable source, an RLC circuit, and a variable
power load, a challenging control problem, though feasibility
issues were encountered when the load real power exceeded
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certain levels [16]. The source is controllable in the sense
that its output power can be adjusted according to the demand
variations. This kind of source can be achieved by a DC battery
with fast-switching power electronics converters.

B. Optimal Controller

Our optimal controller is designed based on the interaction
variables between these two agents. The model utilized for
simulations is shown below:

diL1
dt = →R1

L1
iL1 +

1
L1

(u1 → v1) iL1(0) = iL1,0

dv1
dt = 1

2i1

(
Ṗ

r,in
1 → Q̇

r,in
1

)
v1(0) = v

v2 = PL
i2

di2
dt = 1

2v2

(
Ṗ

r,in
2 + Q̇

r,in
2

)
i2(0) = i2,0

(29)

The incoming interactions driving each of the agents are
given as

ż
r,in
1 = →ż

r,out
2 = →

[
PL

ϖ

2PL
ω

i2
di2
dt → Ṗ

ϖ
L

]

ż
r,in
2 = →ż

r,out
1 = →

[
p1 +

E1
ω1

4Et,1 → dp1

dt

]

= →


L1iL1
diL1
dt +R1iL1

2

2L1


diL1
dt

2 → d
dt


L1iL1

diL1
dt




(30)

The energy space optimal control uz,1 = Q̇
r,out
1 is mapped

back to the physical controllable voltage source u1 shown in
Fig. 3 through a dynamical map shown below [15]:

du1

dt
=

1

i1

(
→u1

di1

dt
+ 4Et,1 → P1

r,out +
p1

ϑ1
→ uz,1

)
(31)

where we specify the initial condition at u1(0) = u1,0.

C. Numerical Results for Stabilization

In this section, we demonstrate the controlling performance
of our proposed optimal controller in stabilizing the system of
Fig. 3 in response to the time varying power load in Fig. 4. The
simulation results are plotted in Fig. 5. Since the controller
is designed in the energy state space, it responds directly
to power variations, leaving voltage unregulated. Hence, the
controllers’ dynamics show large voltage drift across the
capacitor. That said, the controller does successfully stabilize
the system over the entire operating time. Additionally, the
optimal controller consumes low levels of reactive power, as
measured in Volt-Amperes reactive (V Ar), in accomplishing
stabilization.

D. Optimal Controller with Voltage Regulation

From the above simulation results shown in Fig. 5 as was
discussed prior, the voltage across the capacitor experiences
high levels of drift as the voltage is left unregulated. To further
regulate the voltage performance, in this part we introduce a
voltage-regulated optimal controller. The change is only in
terms of the mapping from the energy space control to the
physical control. Let v

ϖ
1 denote the reference voltage. Then,

Fig. 4: Time-Varying Load

(a) Control Voltage u1

(b) Voltage across capacitor

(c) IntVar Qr,out
1

Fig. 5: Control Performance for Stabilization at Time-Varying
Power Load

the mapping resulting in a regulating optimal control is given
as in [15]:

du1

dt
=

1

i1

(
→u1

di1
dt + 4Et,1 → P1

r,out

+p1

ω1
→ uz,1 +

v1
ω

v1
2
dv1
dt P1

r,in

)
(32)

where we specify initial condition u1(0) = u1,0. This
controller approaches the original optimal controller when
v1 ↔ v

ϖ
1 .

E. Numerical Results for Regulation

In this part, a voltage reference of vϖ = 80V is utilized. We
demonstrate our proposed voltage-regulated optimal controller
in the time-varying load scenario in Fig. 4. The simulation
results are plotted in Fig. 6. The voltage dynamics across
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(a) Control Voltage u1

(b) Voltage across capacitor

(c) IntVar Qr,out
1

Fig. 6: Control Performance for Regulation at Time-Varying Power
Load

the capacitor show very limited drifting phenomenon, validat-
ing the well-functioning voltage regulation of the proposed
controller. Additionally, the controller consumes low levels
of reactive power, though more than was required in the
unregulated case indicating higher levels of controller effort
are required to achieve regulation.

VI. CONCLUSION

This paper focused on designing optimal distributed control
for multi-agent energy systems. We aimed at minimizing
an aggregated objective of reactive power inefficiency and
interface mismatch. Instead of working in the traditional state
space, we explored the coupled real-reactive power dynamics
in the energy state space, and derived the optimality conditions
in the variational form. Due to the locally interactive nature
among adjacent agents of the energy state space modeling, the
optimal control design from these conditions can be naturally
implemented in a distributed manner. The controller was
implemented on a controllable source, RLC circuit system with
a variable power load. Simulation results show the controller
is able to stabilize the system with minimal reactive power
consumption, though with capacitor voltage drift. To maintain
the voltage level across the internal capacitor, we further intro-
duced voltage regulation. In this paper, only the two-agent case
was implemented. A future research direction is implementing

the optimal control law in a larger system to demonstrate the
communication needs in a more interconnected system.
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