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ABSTRACT. Let X = G/T', where G is a Lie group and T is a uniform lattice
in G, and let O be an open subset of X. We give an upper estimate for the
Hausdorff dimension of the set of points whose trajectories escape O on average
with frequency ¢, where 0 < § < 1.

1. Introduction. Throughout the paper we let G be a Lie group and I" a lattice
in G, denote by X the homogeneous space G/T" and by p the G-invariant proba-
bility measure on X. Let F :=(g;):er be a one-parameter subgroup of G, and let
F* :=(gt)t>0. For a subset O of X, define

E(F*,0):={x € X : 3t such that g,z ¢ OVt > 1o}

to be the set of x € X eventually escaping O under the action of F*. If the F'*-
action on (X, ) is ergodic, then it follows from Birkhoff’s Ergodic Theorem that
u(E(F +7O)) = 0 as long as O has positive measure. Furthermore, under some
additional assumptions one can obtain upper estimates for the Hausdorff dimension
of E(FT,0). More precisely, one has the following ‘Dimension Drop Conjecture’,
originated from a question asked by Mirzakhani (private communication): if F* C
G is a subsemigroup and O is an open subset of X, then either E(FJF7 O) has positive
measure, or its Hausdorff dimension is less than the dimension of X ¢ When X is
compact, it follows from the variational principle for measure-theoretic entropy, as
outlined in [13, §7]; an effective argument using exponential mixing was developed
in [10]. See [4] (resp., [11, 12]) for the proof of this conjecture for Lie groups of rank
one (resp., higher rank with some additional assumptions). Also note that when F+
is generated by unipotent elements, the conjecture follows from Ratner’s Measure
Classification Theorem and the work of Dani and Margulis (see [14, Lemma 21.2]
and [3, Proposition 2.1].

In this paper we consider trajectories which are allowed to enter O, but not as
frequently as mandated by Birkhoff’s Ergodic Theorem. Namely, for 0 < § < 1
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let us say that a point x € X J-escapes O on average under the action of F'T if it
belongs to the set

T—o0

1 (T
Es(F*t,0) := {xeX:limsupT/ 1oc(gtx)dt25}.
0

Again under the assumption of ergodicity for any measurable O C X Birkhoff’s
Ergodic theorem implies that

1T .
g&fllm@@ﬁ:moy

Hence, the set E5(FT,0) has full measure for any 0 < 6 < p(0O°), and has
measure zero for any 6 > p(O°). Clearly for any § as above one has

Es(F*,0) D Ey(F*,0) > E(FT,0).

Thus one can ask the following questions: under some assumptions, can it be
shown that the set Ej(FT,0) has less than full Hausdorff dimension? is the same
true for Es(F*,0) for some 6 < 1?7

To state our results, we need to introduce some notation. If X is a metric space
with metric ‘dist’, O is a subset of X and r > 0, we will denote by ¢,O the inner
r-core of O, defined as

0.0 = {x € X : dist(z,0°) > r},
and by O the r-neighborhood of O, that is,
0" .= {z e X : dist(z,0) < r}.

The notation A > B (resp., A < B), where A and B are quantities depending
on certain parameters, will mean A < CB, (resp., A > CB), where C is a constant
independent on those parameters but possibly dependent on G, I', F' and a sub-
group P of G that will appear later in Definition 1.4 and Theorem 1.5. Hausdorff
dimension (see Definition 3.1) will be denoted by ‘dim’, and codim A will stand for
the Hausdorff codimension of a set A, that is, the difference between the dimension
of the ambient space and dim A.

Fix a right-invariant Riemannian structure on a Lie group G, and denote by
‘dist’ the corresponding Riemannian metric, using the same notation for the induced
metric on homogeneous spaces of G. In what follows, if P is a subgroup of G, we
will denote by BT (r) the open ball of radius 7 centered at the identity element with
respect to the metric on P corresponding to the Riemannian structure induced from
G B(z, p) will stand for the open ball in X centered at € X of radius p.

Throughout this paper we shall assume that I' is a uniform lattice in G, that is,
X is compact. We note that the methods and results of this paper can be extended
to the noncompact case, however this would require an extra effort controlling the
escape of mass and will be pursued in subsequent work.

For comparison, let us first state the effective dimension estimate from [10]. There
the main tool was the exponential mixing of the action. Namely, let us say that the
flow (X, F'1) is exponentially mixing if there exist v > 0 and ¢ € Z, such that for
any o, € C*(X) and for any ¢t > 0 one has

]@%W—Awméwwkw%wmwu (1.1)



DIMENSION ESTIMATES FOR ESCAPE ON AVERAGE 3

Here and hereafter || - ||, stands for the “L?, order £” Sobolev norm, see e.g. [10,
§2] for a definition and basic facts. Note that the statement in (1.1) is nontrivial
only if ||¢||, and ||¢]|, are finite.

The following is a special case of [10, Theorem 1.1]:

Theorem 1.1. Let G be a Lie group, T' a uniform! lattice in G, X = G/T', and
let F' be a one-parameter Ad-diagonalizable subgroup of G whose action on X is
exponentially mizing. Then there exists r1 > 0 such that for any O C X and any
0<r<ry one has’

(0, 0)
log(1/r) + log (1/u(,0))

An interesting feature of the above estimate is that its left hand side does not
depend on r while the right hand side does, and tends to 0 when r either tends to 0
or becomes large enough. Thus for applications one is left to seek an optimal value
of r. For example when O = B(x, p) one can take r = p/2, producing the estimate

codim E(F*,0) >

(1.2)

_ pdimX
codim E(F*,B(z,p)) > ——— (1.3)

log(1/p)

The main theme of the present paper is replacing the phenomenon of eventual
escape by escape on average. In order to state our main result, we need to introduce
the function ¢ : [0,1] x [0,1] = R by

14 ¥
—s-log * = (1.4)
s

d(y,s) == (1 — s)log 7 _1 7 — 2(1—s)log 1i
2

We will employ the convention O - log% = 0; this way we can see that ¢ is a
continuous function on R?, with

1
#(y,0) = log ¥ for all y, (1.5)
2

hence for any y > 0 one has ¢(y, s) > 0 for small enough (depending on y) s > 0.
The following is our first main theorem:

Theorem 1.2. Let G, ', X and F be as in Theorem 1.1. Then there exists positive

constant r1 such that for any O C X, any 0 <r < ry and any 6 > 0 one has

1(0,:0) - ¢(pu(0,0),v/1 = 6)

log %

codim E5(FT,0) > (1.6)

Thus, if given a subset O of X we define

§o = inf {o <5< 1:6(u0),VIi=0) > o} , (1.7)

IThis is a simplified version of the theorem; in [10] instead of the compactness of X it was
assumed that the complement of O was compact. The latter assumption has been removed in
[11, 12] in many special cases.

2The result in [10] actually involved the slightly smaller set

E(FT,0):={zc X : gz g OVt >0}

of points whose trajectories avoid O, bit it is easy to see that dim E(FT,0) = dim E(F T, 0).
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which is strictly less than 1 whenever p(O) > 0, and if in addition O has non-
empty interior, then for any § > dp one can choose r > 0 small enough to have

¢(1(0,0),v/1—68) > 0. This implies
codim Es(F*,0) > 0 whenever § > 0. (1.8)

Also one can observe that
y
y):_(l_y)l L RN e b SN
o (v 2) BT-T T2 %y <

for any 0 < y < 1; hence dp > 1 — %0)2 > u(0°).

As an example, here is a graph of the function § — ¢(0.8,/1 —¢); thus for
1(0) = £ we get 5o ~ 0.9888.

(0.9888, 0)

0 0.2 0.4 0.6 0.8 1

—-0:6

\\ !

In the special case § = 1, using (1.5) we obtain the following immediate corollary:

Corollary 1.3. Let G, I', X, Ft and r, be as in Theorem 1.2. Then for any
0 <r <ry we have

+0) - log ——7 2
(o, 0) gk% S (o, 0)

codim By (F*,0) >

log % log %

One sees that the above corollary does not produce any improvement of (1.2); on
the contrary, our new dimension bound for escape on average happens to be worse

by a factor of u(c,.O) than the bound for the eventual escape. In the sequel to
the present paper, using some ideas from the work [1] where a similar problem was
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studied for the Teichmiiller geodesic flow, the authors plan to improve the existing
estimates as well as extend the methods to treat non-compact homogeneous spaces.

We also remark that when X is not compact, one can consider the set
EF™P(FY) = () Es(FT.0)
C'CX compact
of points in X with trajectories d-escaping all compact subsets of X. Equiva-
lently one can define E5°"P(F) as the set of 2 € X such that there exists a
sequence Tk — oo and a weak-* limit p* of the sequence of probability measures
f== fo (gex) dt such that p*(X) < 1—4. It is proved in [15, Theorem 1.3]

that whenever G is a connected semisimple Lie group, I' a lattice in G and F* a
one-parameter semigroup contained in one of the simple factors of G, one has

codim (E§”"P(F 1)) > ¢6 for all 0 < 6 < 1,

where ¢ depends only on G and T. See also [7, Remark 2.1] for a special case.

From now on let G, I', X and F* be as in Theorems 1.1 and 1.2. Similarly to the
argument in [10, 11, 12], our main theorem is deduced from a result that estimates

dim Es(F*,0)N Hzx,
where x € X and H is the unstable horospherical subgroup with respect to F'T,
defined as
H:={g€G:ghg_t — e ast— +oo}. (1.9)
More generally, in the theorem below we estimate

dim E5(F*,0) N Px

for x € X and some proper subgroups P of H, namely those which have so-called
Effective Equidistribution Property (EEP) with respect to the flow (X, FT). The
latter property was motivated by [9] and introduced in [10], where it was shown to
hold for H as above under the assumption of exponential midefinitionxing. In what
follows we shall denote by v the Haar measure on P corresponding to the volume
form induced by the Riemannian metric on G. Then we have the following

Definition 1.4. Say that a subgroup P of G has Effective Equidistribution Prop-
erty (EEP) with respect to the flow (X, F*) if P is normalized by F (that is, F is
contained in the normalizer of P), and there exist A > 0, tg > 0 and ¢ € N such
that for any z € X, t > to, f € C*®(P) with supp f € BF(1) and ¢ € C>(X) it
holds that

[ sty iy ~ [ sav [ vdn] <omox (ol 161L) - Wl e
(1.10)

We remark that in [10, 11, 12] this property was defined and used in the more
general set-up of X being non-compact, with additional constraints on the injectiv-
ity radius at points z € X for which (1.10) is satisfied (see §3.2 for more detail).
However when X is compact the injectivity radius is uniformly bounded from below,
hence a possibility to simplify the definition.

Theorem 1.5. Let G, I, X, F* be as above. Then there exists o > 0 such that
whenever a connected subgroup P of H has property (EEP) with respect to the flow
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(X, F1), for any non-empty open subset O of X, any 0 <1 < rg, any 0 < 4§ < 1
and any x € X one has

M(O-’I'O) ) ¢(M(U7'O)7 v1-— 5) )

codim (Es(F*,0) N Pz) > Tog I
og =

In the next section we derive Theorem 1.2 from Theorem 1.5, and the rest of
the paper is be dedicated to proving Theorem 1.5. Section 3 contains a discussion
of basic technical constructions needed for the proof, such as Hausdorff dimension
estimates for lim sup sets, tessellations of nilpotent Lie groups and Bowen boxes.
In Section 4 we use property (EEP) to, given a subset S of X, a large T > 0 and
0 < 6 < 1, write down a measure estimate for the set of Ao € P such that the
Birkhoff average % fOT 1s(g:hx) dt > 6. In the subsequent section this estimate is
used to bound the number of Bowen boxes that can cover certain exceptional sets.
Finally, Section 6 contains the conclusion of the proof.

2. Theorem 1.5 = Theorem 1.2. The reduction of Theorem 1.2 to Theorem
1.5 is fairly standard. Let g be a Lie algebra of G, g¢ its complexification, and for
A € C, let Ey be the eigenspace of Ad g; corresponding to A. Let b, h°, h~ be the
subalgebras of g with complexifications:

be = span(Ey : |[A| > 1), b2 =span(E, : |A| = 1), b =span(E) : |\| < 1).
Let H, H°, H~ be the corresponding subgroups of G. Note that H is precisely

the unstable horospherical subgroup with respect to F'* (defined in (1.9)) and H~
is the stable horospherical subgroup defined by:

H™ ={heG:ghg_y — e ast — +oo}.

Recall that in Theorems 1.1 and 1.2 Ad g; is assumed to be diagonalizable over C.
This implies that g¢ is the direct sum of h¢, h% and b, and each of the latter three
subalgebras of gc¢ is a direct sum of their real and imaginary components. Hence g
is the direct sum of b, h and h~, and therefore G is locally (at a neighborhood of
identity) a direct product of H, H® and H~ (in any order).

Denote the group H~ H° by H, and fix 0 < p < 1 with the following properties:

the multiplication map H x H — G is one to one on BH(p) x BH(p), (2.1)

and

9B (r)g_; c BH(2r) forany 0 <r < pandt >0 (2.2)
(the latter can be done since F is A@—diagonalizable and the restriction of the map
g — gtgg—¢, t > 0, to the subgroup P is non-expanding).

Proof of Theorem 1.2 assuming Theorem 1.5. Let p be asin (2.1), (2.2) and define
r1 := min(p, r9), where ro is as in Theorem 1.5. For any 0 < r < r1 choose s such
that

BC(s) c B (r/4)BH (r/4). (2.3)
Now take O C X, and for x € X denote
Es g5 = {g c BG(S) jgx € E(g(F+,O)} . (2.4)

In view of the countable stability of Hausdorff dimension, in order to prove the
theorem it suffices to show that for any = € X,

M(UTO) ) ¢(M(0r0)7 v1-— 6)

codim Eys 5 ¢ > T
log

(2.5)
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Indeed, Es(F*,0) can be covered by countably many sets {gz : g € Es,},
with the quotient maps 7, : B%(s) — X being Lipschitz and one-to-one. Since, in
view of (2.3), every g € B%(s) can be written as g = hh, where h € B (r/4) and
h € BH(r/4), for any y € X we can write

dist(gigz,y) < dist(gihha, gthx) + dist(gihz, y)

. (2.6)
= dist (g:hg—tgihw, gtha) + dist(giha, y).

Hence in view of (2.2), g € Ej5, s implies that hx belongs to E(;(F+,UT/QO),
and by using Wegmann’s Product Theorem [17], which implies that for two metric
spaces X1, X one has dim(X; x X3) = dim(X;)+dim(X3) whenever the Hausdorff
dimension of X5 is equal to its box dimension, we conclude that:

dim B 5., < dim ({h € BY(r/4) : ha € E5(F*,0,,20)} x BH(r/él))
= dim({h € B¥(r/4) : hx € Es;(F*,0,/50)}) + dim H.
Since (X, F'1) is exponentially mixing, by [10, Theorem 2.6] H has (EEP) with

respect to (X, F'T). Therefore, by Theorem 1.5 applied to O replaced by o, 120 and
r replaced with /4 we have for any 0 < r < r;

codim{h € B¥(r/4) : hx € E5(F*,0,/20)}
1(0,407/20) - ¢ (1(0,/40,/20), VI = 3)

2.7)

>

log ¢ (2.8)
> 1(0,0) - d)(N(UTO)a v1— 5) > w(0,0) - d’(#(arO)» v1— 5)
log % log % ’
Now from (2.7) and (2.8) we conclude that (2.5) is satisfied, which finishes the
proof. 0

3. Auxillary facts.

3.1. Hausdorff dimension of limsup sets. The exceptional sets we study in this

paper are of the form A = limsup Ay, that is
N—oc0

A= U A
N>1n>N

for a sequence of subsets Ay .
First, we recall the definition of the Hausdorff dimension. Let A be a subset of
a metric space Y. For any p, 8 > 0, we define

'Hf(A) = inf {Z diam(I)? : U is a cover of A by balls of diameter < p} .
Ieu

Then, the S-dimensional Hausdorff measure of A is defined to be
HP(A) = lim 1O (A).
p—0

Definition 3.1. The Hausdorff dimension of a subset A of a metric space Y is
equal to

dim(A) =inf {8 >0:H (A) =0} =sup{B>0: H’(A) = oo} .
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Lemma 3.2. Let {An}y>; be a collection of subsets of Y. Suppose there exist
constants C >0, 0 < p <1, Ny € N, and a sequence {an}n>1 such that for each
N > Ny, the set An can be covered with at most p~*~N balls of radius Cp™N. Then

iminf ap.
N—oc0 N—oo

dim (lim sup AN) <l

Proof. Let A :=limsup Ay and « := liminf a; without loss of generality we can
N—o0 N—o0

assume that « < oo and ay — « as N — oo. Take f > a; we will show that
HP(A) = 0, which will imply the lemma. For any ¢ € (0,1), let N¢ > Ny be a
natural number such that p= < ¢ and |ay — a| < ﬂ%a for all N > Ng. Notice
that V¢ tends to infinity as £ goes to 0. Take N > N¢ and denote by Oy a cover
of the set Ay by balls of radius Cp” such that #Op, the number of balls in the
cover Oy, is at most p*O‘NN. Then O = UN>N& Oy is a cover of A for which the
following holds: -

Y diam(B)? = Y > diam(B)? < (20)7 > #0y - pN

Beo N>N¢ BEOy N>Ne¢
< (20)5 Z p(B—OéN)N < (20)5 Z pB;aN
N>Ne¢ N>N¢
5;‘1]\]5
< (QC)ﬁLﬁ_a 00
1—p—=
This implies that H?(A) = 0, and the conclusion of the lemma follows. O

3.2. Choosing r. Recall that as part of the proof of Theorem 1.5 we need to define
a bound ry for possible values of r. This bound will come from two ingredients.
Namely, we define

1
=g min(rg, '), (3.1)

where
e 0 <1’ < 1/41is chosen so that for any Lie subalgebra p of g the exponential
map from p to P = exp(p) is 2-bi-Lipischitz on BP(r’); in particular, we will
have
BF(2r) > exp (B*(r)) D B”(r/2) for any 0 < r <7’ (3.2)
o 7o :=19(X) = inf{ro(x) : € X}, where
ro(z) := sup{r > 0 : the map 7, : g — gz is injective on B(r)}

(the injectivity radius of x). Note that ro > 0 since X is assumed to be
compact.

3.3. Tessellations of P. Now let P be a connected subgroup of H normalized by
F*. and let v be a Haar measure on P.

Definition 3.3. Following [8], say that an open subset V' of P is a tessellation
domain for P relative to a countable subset A of P if

e v(OV) = 0;

e V1 NV = @ for different 71,72 € A;

e P=J Vn.
YEA



DIMENSION ESTIMATES FOR ESCAPE ON AVERAGE 9

Note that P is a connected simply connected nilpotent Lie group. Denote p :=
Lie(P) and L := dim P, and fix a Haar measure v on P. As shown in [8, Proposition
3.3], one can choose a basis of p such that for any r > 0, exp (rI,), where I, C p is
the cube centered at 0 with side length 1 with respect to that basis, is a tessellation
domain relative to some discrete subset A of H. Let us denote

r
Vi,=exp| ——=1, ),

rmer <4ﬁ ”)
and choose a countable A, C P such that V, is a tessellation domain relative to A,.

Then, since L > 1, it follows from (3.2) that for any 0 < r < 7’ one has

cV,cB” (2) . (3.4)

(3.3)

r
B (o)
16V'L
3.4. Bowen boxes. Note that the measure v and the pushforward of the Lebesgue
measure Leb on p by the exponential map are absolutely continuous with respect

to each other with locally bounded Radon—Nikodym derivative. This implies that
there exists 0 < ¢; < ¢ such that

c1 Leb(A) < v(exp(A)) < czLeb(A) Vmeasurable A C BP(1) (3.5)

(note that since P is nilpotent, the map exp : p — P is a diffeomorphism).
Define
Amin := min{|A| : A is an eigenvalue of ad, |, } (3.6)
and
Amax = max{|A| : A is an eigenvalue of adg, |} (3.7)
Note that A, > 0 since P C H. Using the bi-Lipschitz property of exp, we can
conclude that

diam(g_Vyg:) < 2 - d ( re ot
iam(g_V,g:) < 2 - diam | exp <7 )>
t t 4\/}3 p

(3.8)
re~Amint
ST for any 0 < r <7’ and any t > 0.
Also let n := Tradyg, |p; clearly one then has
v(g_+Bg:) = e "'v(B) for any measurable B C P. (3.9)

Let us now define a Bowen (t,r)-box in P to be a set of the form g_;V,~g; for
some v € P and t > 0. Our approach to estimating Hausdorff dimension of various
subsets of P will be through covering them by Bowen boxes. We are going to need
three results proved in [12]. The first one, a slight modification of [8, Proposition
3.4], gives an upper bound for the number of v € A, such that the Bowen box
g—tVrvg: has non-empty intersection with V,.:

Lemma 3.4. [12, Lemma 4.1] There exists co > 0 such that for any 0 <r <71’ and

for any t > if’i,s

#{veN g Vivg NV, £ 2} <e™ (1+ Coe_)\"‘i"t) .

The second one gives us an upper bound for the number of balls of radius re=Amax?t

needed to cover a Bowen box.

Lemma 3.5. [12, Lemma 7.4] There exists C; > 0 such that for any 0 < r < 1
and any t > 0, any Bowen (t,r)-box in P can be covered with at most CyePmaxL—m)t
balls in P of radius re=Amaxt,
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The third result is a direct consequence of property (EEP); it is a simplified
version of [12, Proposition 4.4].

Proposition 3.6. Let F'™ be a one-parameter subsemigroup of G and P a subgroup
of G with property (EEP) with respect to F*. Then there exist t; > 1 and X >0
such that for any open O C X, any x € X, any r < ry and any t > t1 one has

v({h €V, : gthx € O}) > v (V) p(o,-x0) — e .

4. Effective equidistribution of translates and a measure estimate. From
now on we will work with F* and P as in Theorem 1.5, and for the rest of the paper
fix a positive r < 1o, where ry is as in (3.1). Note that by the countable stability
of Hausdorff dimension, in order to prove Theorem 1.5 it suffices, for a subset O
of X and 0 < § < 1, to get a uniform (in € X) upper bound for the Hausdorff
dimension of the set

Sz’(;(O) = {h eV, : hx e E(s(F+,O)}

1T (4.1)
=qh eV, :limsup —/ loc(gihz)dt > 6 » .
T— o0 T 0

For this it will be convenient to discretize the above definition. Namely let
us introduce the following notation: given 7' > 0, a subset S of X, z € X and
0 < 6 < 1, let us define

T
Az s(T,S) = {h eV, %/ 1s(gehx) dt > 5} . (4.2)
0

In the following proposition we find the relation between the set S, 5(O) and the
family of sets {A,; s(NT, 0} nen.
Proposition 4.1. For any T > 0 and any © € X and we have

Sz5(0) = limsup A, s(NT,0°)
NeN, N—oo

Proof. In view of definition of S, 5(O), it suffices, for a fixed T' > 0, to prove that

1 (R 1 NT
lim sup — loc<(gshz)dt = limsup — lo<(g:hz) dt
R~>oop R /0 o-(g:h) NEN, N—I>)oo NT /0 0 (g:hz)

1 NT
= lim sup — lo<(g:hx) dt.
No—o0 Nzgo NT /0 © (gt )

Let Ng € N, and let R > NyT. Then one can find N > Ny and 0 < R’ < T such
that R = NT + R’. Hence

1 R 1 NT+R'
— loe = loec
R/o o<(gthx) dt NT+R’/O oc(geha) dt

1 NT+R'
SW / 106(gthI) dt
0

1 NT NT+R'
= — IOC(gth$) dt+ / loc (gchE) dt
NT /0 NT

1 [N 1
— loe (gehz) dt + —
(1pe<1, R'<T) NT/o o (gehe) di + N

1 [NT 1
< = 1oe(gihz) dt + —.
(N>No) NT/o o(geha) No
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Therefore, we get

1 (R 1 NT
lim sup — lo<(gihz)dt < lim sup — lo<(g:hx) dt.
R—)oop R /0 o=(gehe) dt < No—o0 N>113/0 NT / o=(geh)

The reverse inequality is obvious. O
The next proposition gives an upper estimate for the measure of A, 5(7,0°). We
will use it in §5 to obtain an upper bound for the number of Bowen (r, T')-boxes in

P needed to cover this set (see Corollary 5.2).

Proposition 4.2. Forallz € X, 0<e <1, for any open O C X and for all

1. 2 1, 4L logs
T > T, := max (tl, v log pt ylog AW E (4.3)
where ¢1 is as in (3.5) and t1, N are as in Proposition 3.0, one has
1 T +1
v(Ap1—-(T,0)) > v (Vy) (1 - = (1 — (07 /20) + T )) . (4.4)

Proof. Let x,e,0 and T be as above. Then by definition we have:

T
V(Agc,l_E(T7 O)) =v ({h eV,.: % ; lo(gthx)dt > 1 — 6})

v(Vy)—v ({h ev,.: ;/OT loc(gihx) dt>£}> (4.5)

>v (V) — Z/(Ax,g(T, OC)).

Our goal is to estimate the right-hand side of (4.5) from below. We have:

V(Ao (T,0°) = v ({h Vi / Lo (gohe) dt > })

loc(gihx) dv(h) dt
(Markov’s 1nequahty) ET/ / @ gt ( )

5T ; v({h €V, :ghx € O°})dt (4.6)
:ELT </OTTV({]”L€ V, : gtha € O°}) dt
+ /TV({hE Vi : githx € OC})dt> .

Note that

/TT v({h eV, :gthxr € O} )dt < T, -v(V;), (4.7)
0
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and, since T;. > t1, by applying Proposition 3.6 we get

T
/ v({h €V, :ghx € O°}) dt

"

:/T(V(VT)—V({hEVT:gtthO}))dt

T
T i
< [ (v (1= (o, wm, 0) + € at (48)
T
ef/\'T,,.
<T-v (V) (L= ilo,vn,0)) + —
67)\’TT
<T-v(V,) (1= pu(o,,50)) +
5T (1= uo20) +

It remains to observe that (4.3), in combination with (3.3) and (3.5), also implies
1,

that % < v(V;). Hence (4.4) follows from (4.5), (4.6), (4.7) and (4.8). O

5. A covering result. In this section we will prove a covering result for the sets of
the form A, s(NT,O¢). Then, by using Proposition 4.1 and Lemma 3.2, in the next
section we will obtain an upper estimate for the Hausdorff dimension of S, s(O).

We start with the following lemma:
Lemma 5.1. Let O be an open subset of X, and let 0 < € < 1. Then for any

T>0,veA,ze€ X, any0 < a < e and for any Bowen (r,T)-box B = g_1V,vgr
which has non-empty intersection with the set Ay 1_o (T, 04,0), we have

BN Ay (T,0° = @.

Proof. Let O be an open subset of X and let v € A,.. Consider the Bowen (r, T')-box

B =g _7V.vgr. Let x € X, take p € B, and assume that g;pzr € 04,0 for some

0<t<T. Any p’ € B is of the form p’ = hp where h € g_1(V;. - V.)gr. (Here we

use the fact that V. = V.71, which is a simple consequence of (3.3).) Thus we have
90'® = gihg—19epx € g—(v—1y(Vi - Vi )g(1—1) 910

(6) BG(Zre*)‘“‘i“(Tft)) : BG(Qrei/\mm(Tit))gtpx
3.8

S BG(4r)gtpgc

which, in view of (3.4), implies that dist(g:p'x, g:pr) < 4r. Hence gip'z € O. Now
assume in addition that 0 < @ < e <1 and p € A, 1-4(T,04,0); then

1/Tl ( ’:E)dt—l—l/Tl( 'z) dt
T/, 0<\gtP = T ), o\gtp

1 (T
SI_T/ logolgpr)dt<1—(1—a)=a<e.
0

Therefore, if B has non-empty intersection with A, 1_o (T, 04,0), then for any
p’ € B we have p’ ¢ A, .(T,0°). This ends the proof. O

Now, by combining the previous lemma with Lemma 3.4 and Proposition 4.2
we obtain the following corollary which is a covering result for the sets of type
Ay (T,0°):
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Corollary 5.2. Let T, be as in (4.3). Then for any 0 < e < 1, any T > T, any
x € X, and for any open subset O of X, the set Ay (T, O°) can be covered with at

e’ C(T,0) Bowen (T, r)-boxes in P, where

T +1
rt L et T

most

g

C(T,0) :=1— u(o5:0) + (5.1)

Proof. Let 0 <e < 1,0<a<e, T >T,, € X, and let O be an open subset of
X. Then we have:

#{’Y €A, : ngVr'YgT N Am,s(Tv OC) 7é @}
< #H{veh g rViygrnV, # o}

Lemma 5.1
- #{’Y S AT : ngVr’YgT N Az,lfa(Ta U4TO) ?A @}
< e (1 + coe*’\‘“i“T) —#{veA 1 9-7Viygr N Az 1-a(T,04,0) # &}

Lemma 3.4
V(Aw,l—oz(T7 U4r0))
v(g-1rVrgr)

T, +1
< e (1 + coe_’\“““T) — e (1 —a”t. (1 — p(0y)204;0) + + ))

Proposﬂion 4.2 T

< e (1 + coe™MminT) —
Defintion 3.3

e’
< —C(T,0).
(5.1) «
Now since 0 < a < € was arbitrary, by letting « approach ¢ we get that
Ay e(T,0°) can be covered with at most EZT C(T,0) Bowen (T,r)-boxes in P, as
desired. O

Next we will need a generalized version of the definition (4.2) of sets A, s(T, S).
Namely, given S C X, z€ X, T >0,0<d <1 and J C N, let us define

1 T
Ay s(T,S,J) = heVT:—/ ls(gehz)dt >8 YieJy. (5.2)
' T Ji-1yr

Clearly A, (T, S) = A, 5(T,S,{1}). Using the above corollary inductively, in
the following proposition we obtain a covering result for the sets of the form (5.2).

Proposition 5.3. Let O be a non-empty open subset of X, and let T, be as in
(4.3). Then for all0<e< 1, T>T.,, N€Zy, JC{l,...,N}, and for allz € X,
the set Ay (T,0°,J) can be covered with at most

C(1,0)

[]
e™T (5 > (1 + coe*AI“iI‘T)N7|J| (5.3)

Bowen (NT,r)-bozes in P.

Proof. Let 0 <e < 1,let T > T,, and let z € X. We argue by induction on N; the
base case is given by N = 0 and J = &, which makes the quantity (5.3) equal to 1.
This makes sense, since A, (7,0, J) = V,, which is precisely a (0, r)-box.

Now take an arbitrary N € N and let J' := J \ {N}. By the induction assump-
tion, the set A, .(T,0°,J") can be covered with at most

|J']| ,
eNN=1T <C(1;’O)> (1 + coe_A"““T)N_l_u | (5~4)
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Bowen ((N - T, r)—boxes in P. Now let g_(n_1)rVrvg(n—1)r be one of the
Bowen ((N —1)T,r)-boxes in the above cover which has non-empty intersection with
Ape((N=1)T,0¢,J"). Take any q = g_(n—1)rhYg(N—1)T € 9—(N—1)TVYI(N-1)T>
and consider two cases.

e If Ne J,sothat |J'|=|J|—1and N —1—|J'|= N — |J|, write

1 NT 1 NT
T Loe(giqr) dt = T/ Loe (g¢(9—(n—1yrhyg(n—1)T)T) dt
(N—1)T (N—1)T

1 T
=7 / o< (g9:h(vg(v—1)r)) dt.
0

Consequently,

1 NT
q€ g (N-1)TVeVIN-1)T * T/ loc(giqr) dt > ¢
(N-1)T

1 [T (5.5)
=gN-nryheV,: T/ Lo (geh(Ygn—1yr)) dt > € p YgN—1)T
0
=9(N-1)T A'Yg(N—l)TJ;;E(T’ T, Oc)’yg(Nfl)T~
Hence, by applying Corollary 5.2 with yg(x_1)r® in place of z, we can
17|

cover the set in the left hand side of (5.5) with at most e"” (@

(NT,r)-boxes in P. Therefore the number of Bowen (NT,r)-boxes needed

c 7 r(caon! .. e
to cover A, (T,0¢°,J) is at most e” <f) times the quantity in (5.3),
which is precisely (5.4).

o If N ¢ J, so that |J'| =|J] and N —1—|J'| = N — 1 — |J|, the argument
is even clearer. By Lemma 3.4, g_nv_1)7V;r7g(n—1)r can be covered by at
most eT (1 + coefAmi“T) Bowen (NT,r)-boxes. Hence the number of Bowen
(NT,r)-boxes needed to cover A, .(T,0¢, J) is at most e (1 + coe~rminT)
times the quantity in (5.3), which again is precisely (5.4).

Bowen

O

Recall that our goal in this section is to find a covering result for the sets of the
form A, s(NT,O°). The following lemma reduces this task to a covering result for
the sets of the form A, .(T,0°,J) for 0 <e <dand J C {1,...,N}.

Lemma 5.4. Forany S C X, N e N, T >0,z € X, 0< 6§ <1, and for any
0<e<d
A, 5(NT,S) C U A, (T, S,J)
JC{1, NE|J[>T(1-122) N

Proof. Let N e Ny r >0, T >0,z € Xand 0 < e < § < 1. Also let h €
Az s(NT,S), and define
E:={je{l,...,N}:h¢ A, (T, S {j})}.
Then
1

NT
<— 1
6_NT/O s(gihx) dt
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5 SEY [N PSP SR (e
== — 1s(gehx) dt + — —/ 1s(gihx) dt
N jeE T Jg-vr N Je{l,...N}~E T Jg-nr

1 1 1
gN.|E|.5+N~|{1,...,N}\E|:N(|E|'€+N*|ED'

This implies

1-9§

1—¢

Note that it follows immediately from the definition of E that h is an element

of Ay« (T, S, {1,...,N} ~ E) Hence, in view of the above inequality we conclude
that

|E| < N.

he U A, (T, S,J),
JC{1,...N}:|J|>[(1-=2)N]
finishing the proof of the lemma. O

From the above lemma combined with Proposition 5.3 we get the following crucial
covering result:

Corollary 5.5. Let Cy be as in Lemma 3.5, 0 < § <1, 0 <r < ry, and let T, be
as in (4.3). Then for any x € X, any N € N, any T > T}, and for any 0 < e < ¢
the set Ay s(NT,0°) can be covered with at most

N r(1-1=2)m N-T(1-1=2)N)
ClexmaxLNTQ(l 1—6)N1>'<C(Z’O)> (1 cpe ) VIO
T 1—¢

(5.6)

balls in P of radius re= maxNT

Proof. Let z € X, N €¢ N, T > T,., and let 0 < € < §. By the above lemma we
have:

A, s(NT,0°) U A, (T,0°,J).
JC{1,....,N}:|J|>[(1-1=2)N]

Now note that for any J C {1,..., N}, if we take any subset J' of J, then it
follows immediately that A, .(T,0° J) C Ay (T,0° J"). Therefore, the above
inclusion yields the following inclusion:

A, 5(NT,0°) C U A, (T, 0° ).
Jc{1,..N}:|J|=[(1—1=2)N]

Also, by Lemma 3.5, every Bowen (NT,r)-boxes in P can be covered with at
most CpePmaxL=mNT Khallg in P of radius re *»axNT_ From this, combined with
Proposition 5.3 and the above inclusion we can conclude the proof. O

6. Proof of Theorem 1.5.

Proof of Theorem 1.5. Let O be an open subset of X, x € X, and let § > 0. In
view of countable stability of Hausdorff dimension, it suffices to show that for any
0 <r <ry, we have

codim S, 5(0) >




16 DMITRY KLEINBOCK AND SHAHRIAR MIRZADEH

where S;5(0) is as in (4.1) and ¢ is as in (1.4). In order to prove the above
statement, it is evident that it suffices to demonstrate that for any 0 < r < ro/5 we
have

/1’(057”0) : ¢ (N(J5TO)7 V13— 6)
log % '
If p(05-0) = 0, then the above statement follows immediately. So in this proof

we assume always that pu(os.0) > 0. We start with the following combinatorial
lemma:

codim S, 5(0) >

(6.1)

Lemma 6.1. Let m = m(n) < n be a function of n such that lim, ., ™ = z for
some fized constant 0 < z < 1. Then

()=o)

m

s (1) (1) o)

Proof. Note that lim,, o, ”* = z < 1 implies that both m and n—m tend to infinity
as n goes to infinity; moreover, lim, o, “-™ = 1 — 2. Hence, by using Stirling’s
approximation we have:

where

= 7 = (1+o(1))

V2mm()m m
= (14 0(1)) m (%)m (nfm>

- (7)" (2%)

=o(1)B(%)",

n

where the third equality above follows from the fact that

. n . 1 .oon n 1 1
lim ——— = lim — lim — - lim =0--- =0.
n—oo 2rm(n —m) n—o0 2MN n—oo M n—oo N — M z 1—=z
O
Now given 0 < € < § set
1-6 1-6 0—=2
=1- =1- = . .
: 1—e¢ = ¢ 1—-2 1-=2 (6:3)

Lemma 6.1, applied with n replaced with N and m replaced with [zN], then
implies that there exists Ng = Ny(z) € N such that

([Z]JVV]) <B ((ZJQVWN for all N > No. (6.4)

Take 0 < r < ry/5 and T, asin (4.3), and let T > T;.. By combining Corollary 5.5
with (6.4) we get that for any N > Ny and any 0 < £ < 4,

A, s(NT,0°) can be covered with at most

6.5
CpetNAmaxT . g0 balls in P of radius reAmaxNT (6.5)
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where .
[:N1\ (C(T,0)\ ~ I i
5N3:B( N . 6 (l-l-coe T) N
Note that we have
. C(T,0)\* L 1z
Jim By = B(z)- <(€)> (1+ coe™PminT) (6.6)

In view of (6.3), (6.5), (6.6) and Proposition 4.1, by applying Lemma 3.2 with
e *maxT in place of p, x\fsfj}:,ﬂ + L+ % in place of ay and r in place of C,
we conclude that for any 0 < z < ¢ the Hausdorff dimension of the set S, 5(O) is
bounded from above by

N <B(Z) (C(T(SO)(i_Z)) Z (1+ cOe‘Am‘“T)l_z>

1 C(T,0)(1 — 2)\* [ 1+ coerminT 1—2
(6.2) * Amax 1’ 8 (( 2(6 — 2) 1

This shows that our objective should be to find z € (0,d) and T > T, such that
the value of

% (z log (C’(Ti%)_(f)zﬂ + (1 —2)log (Hcloe_imnT)>

is the largest possible. We are going to approximate the maximum by first choosing
T in a convenient way. Take T, > 1 sufficiently large so that for any 7" > T, one
has

L+

) 1
coe ™ T < T (6.7)
(note that Ty depends only on G, Fy and P), and set
8T,
T := — 15 ). 6.8
ma <M L ) (6.5)

Then

1 - 1+ T, < 2T, < M(O‘5TO)7
T T - T ~ 4
which, in combination with (6.7), yields

L 1 w(o5-0)
L4cpe min? <14 — <14 520
co¢ - I 4

and

T - +1 A
C(T, O) =1- p,(0'57~0) + T+ + cpe AminT

1(05,:0) + p(o5-0) —1— M(USTO)-

<1- O

Therefore for T' as in (6.8) the codimension of S; 5(0) is for any 0 < z < ¢
bounded from below by

1 z(0 — z) ) 1—2
- zlog( + (1 =2)log | — 5
o\ 2 ) T

Note that the second summand in the above expression is always negative; thus
it makes sense to try choosing 0 < z < § in a way that ensures that the first
summand is maximized and is positive if possible (this condition could prove to be
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unsuccessful for any 0 < z < §, contingent upon p(o5,.0) and §; in this case we will
not achieve a dimension drop).
We will solve the latter problem approximately by finding 0 < 2z < § which

z(f:zz) . An elementary calculus exercise shows that for that one

should take z =1 — /1 — 4, so that % = (1 —+/1-10)2 Denoting s =+/1—46
and y = p(o5,0), we get an estimate

. 1 (1-s)? 8
codim S, 5(0) > Nl ((1 —5) 10g<1_32,) + slog (1 T y>>

maximizes the ratio

4
() AmaxT(b(y’S)'
It remains to observe that
8T, log & log 5i
L —— L —T= < —T
©.8) p(05:0) (43) w(o5:0) r<221720 pi(05.0)
thus (6.1) follows, which ends the proof of Theorem 1.5. O
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