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ABSTRACT. Let X = G/T, where G is a connected Lie group and I' is a lattice
in G. Let O be an open subset of X, and let F = {g; : t = 0} be a one-parameter
subsemigroup of G. Consider the set of points in X whose F-orbit misses O;
it has measure zero if the flow is ergodic. It has been conjectured that, as-
suming ergodicity, this set has Hausdorff dimension strictly smaller than the
dimension of X. This conjecture has been proved when X is compact or when
G is a simple Lie group of real rank 1, or, most recently, for certain flows on
the space of lattices. In this paper we prove this conjecture for arbitrary Ad-
diagonalizable flows on irreducible quotients of semisimple Lie groups. The
proof uses exponential mixing of the flow together with the method of inte-
gral inequalities for height functions on G/T. We also derive an application to
jointly Dirichlet-Improvable systems of linear forms.

1. INTRODUCTION

1.1. The set-up. Let G be a connected Lie group, and let I' be a lattice in G.
Denote by X the homogeneous space G/I" and by u the G-invariant probability
measure on X. For an unbounded subset F of G and a non-empty open subset
O of X define the sets E(F, 0) and E(F,O) as follows:

E(FO):={xeX:gx¢OVgeF}
11y < E(F,0):={x€e X:3 compact Q< G such that gx¢ O Vge F~\ Q}
= U E(F\Q,0)

compact QcG
of points in X whose F-trajectory always (resp., eventually) stays away from O.
If F is a subgroup or a subsemigroup of G acting ergodically on (X, u), then the
set {gx: g € F} is dense for u-almost all x € X, in particular M(E(F, O)) =0.
The present paper studies the following natural question, asked several years
ago by Mirzakhani: for a subgroup or sub-semigroup F c G, if the set E(F, O) has
measure zero, does it necessarily have less than full Hausdorff dimension? It is
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reasonable to conjecture that the answer is always affirmative; in other words,
that the following ‘Dimension Drop Conjecture’ (DDC) holds:

CONJECTURE (Dimension Drop Conjecture). If F c G is a subsemigroup and O
is an open subset of X, then either E(F, O) has positive measure, or its Hausdorff
dimension is less than the dimension of X.

When X is compact it follows from the variational principle for measure-
theoretic entropy, as outlined in [23, §7]; an effective argument using exponen-
tial mixing was developed in [19]. See also [1, Theorem 1.1 and Corollary 1.3]
which explores the dimension drop phenomenon in a different setting. We re-
mark that in the case when the space is non-compact there exists a conjecture
proposed by Cheung [5]: for any non-quasiunipotent flow on a finite volume
homogeneous space, the set of points whose orbit is divergent has positive codi-
mension.

A standard approach to this circle of problems is to use the phenomenon of
non-escape of mass on homogeneous spaces, going back to the work of Eskin—
Margulis—-Mozes and Eskin-Margulis, see [11, 10] and also [15]. This is pre-
cisely how the aforementioned Cheung’s conjecture has been recently verified
by Guan and Shi [13]; see also [2, 25] for some related work. However combining
the non-escape of mass argument with an additional construction taking care
of the compact part of the space is more involved. Previously this was done in
the case when G is a simple Lie group of real rank 1 [9], and then, in the most
recent work of the authors [20], when

X =SLy+n(®)/ SLyy+n(Z) and

1.2
(1.2) F ={diag(e™,...,e"" e ™,...,e”™) : r = 0}.

In this paper we generalize the approach of [20] by exhibiting two abstract
assumptions sufficient for the validity of DDC. One takes care of the compact
part of the space, while the other deals with the non-escape of mass.

1.2. Main results. Let now F = {g;: t = 0} be an Ad-diagonalizable one-param-
eter subsemigroup of G. A key role in our approach will be played by the unsta-
ble horospherical subgroup with respect to F, defined as

(1.3) H:={geG:dist(g;gg-+,) — 0 as t - —oo}.

Equivalently, H is the Lie group whose Lie algebra is a direct sum of eigenspa-
ces of Ad g; corresponding to eigenvalues with absolute value > 1, see the proof
of Corollary 1.2 in § 2 for more detail. More generally, we will work with con-
nected subgroups P of H normalized by F and will give conditions sufficient for
‘dimension drop along P-orbits’; that is, ensuring a nontrivial upper estimate
for
dim({he P: hxe E(F0)}),

where x € X is arbitrary, and O is a non-empty open subset of X.

The following theorem, which is the main result of the paper, is phrased
using two abstract conditions, which we call properties (EEP) and (ENDP) of
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the subgroup P relative to the flow (X, F). These will be defined and commented
upon in the next subsections.

THEOREM 1.1. Let G be a Lie group, I a lattice in G, X = G/T', F a one-parameter
Ad-diagonalizable subsemigroup of G, H as in (1.3), and P a subgroup of H
which is normalized by F and has properties (EEP) and (ENDP) with respect to
the flow (X, F). Then for any non-empty open subset O of X one has

inf codim ({he P: hxe E(F, 0)}) >o.
xeX

The next corollary provides a quite general situation when the above theorem
can be applied:

COROLLARY 1.2. Let
n n
G=[]Gi and T=]]T;
i=1 i=1
where each G; is a connected semisimple Lie group without compact factors, and
each T'; is a non-uniform irreducible lattice in G;. Let X = G/T, and let F be a
one-parameter Ad-diagonalizable subsemigroup of G such that the projection of

F to each G; is unbounded. Then for any non-empty open subset O of X one has
dim E(F, O) < dim X; that is, DDC holds in this generality.

We remark that the main result of [20] in the case (1.2) actually contains an
effective upper bound for the dimension of E(F,0). In the more general set-
up of this paper it is also possible to make our estimates effective. We have
decided not to overcomplicate the exposition with the proof of the stronger
result; however see §10.1 for some indications of the proof.

Another remark is that, similarly to [20], we could have considered cyclic
semigroups F of the form {g’: ¢ € Z,}, where g is an Ad-diagonalizable element
of G. Then, after replacing g, with g’ in (1.4), the conclusions of Theorem 1.1
and Corollary 1.2 can be established for discrete-time actions, with minor mod-
ifications of the proofs.

1.3. Notation. We start by introducing some notation which will be used through-
out the paper. Fix a right-invariant Riemannian structure on G, and denote by
‘dist’ the corresponding Riemannian metric, using the same notation for the in-
duced Riemannian metric on X. In what follows, if P is a subgroup of G, we will
denote by B”(r) the open ball in P of radius r centered at the identity element
with respect to the metric on P corresponding to the Riemannian structure in-
duced from G. We will let v stand for the Haar measure on P normalized so
that V(BP(I)) = 1. For simplicity, we use B(r) instead of BC(r) to denote a ball
of radius r in G centered at the identity element. Also, B(x, p) will stand for the
open ball in X centered at x € X of radius p.

For x € X denote by 7, the map G — X given by 7,(g) := gx, and by ry(x) the
injectivity radius of x:

ro(x) :=sup{r >0: 7, is injective on B(r)}.
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If K is a subset of X, let us denote by ry(K) the injectivity radius of K:

ro(K) := iglf(ro(x) =sup{r>0:7, is injective on B(r) Vx€K};

it is known that r¢(K) > 0 if and only if K is bounded.

The notation A > B where A and B are quantities depending on certain pa-
rameters, will mean A = CB, where C is a constant independent of those param-
eters.

Throughout the proof we will pay close attention to translates of P-orbits in
X by g;. It will be convenient to use the following notation: if f is a function on
P and t >0, we will define the integral operator I ; acting on functions ¥ on X
via

(L.4) Uy (0) 1= fp PO (g hx) dvih).

In other words, (Ir,,)(x) is the integral of y with respect to the g;-translate of
the m-pushforward of the signed measure f dv. When f =15 for a subset B of
P, we will write

I, = fB w(ghx) dv(h)

in place of I .

1.4. Exponential mixing and effective equidistribution. The first ingredient of
our proof is the effective equidistribution of g;-translates of P-orbits on X. To
introduce this property we will work with Sobolev spaces of functions on X. Let
us define

C°(X):={h e C®(X):|lhllyp < oo forany ¢ € Z.},

where || - |l¢» is the “I2, order ¢" Sobolev norm (see $4 for more detail). Now let
us introduce the following.

DEFINITION 1.3 ([19]). Say that a subgroup P of G has Effective Equidistribution
Property (EEP) with respect to the flow (X, F) if there exist constants a, b, A >0
and ¢ € N such that for any x € X and ¢ > 0 with

1
(1.5) t=>a+blog—,
8 ro(x)

any f € C®°(P) with supp f < BP(1) and any v € C5°(X) it holds that

<max([ylcvlen) [ Flce e

(1.6) ‘(If,tw)(x)—ffdvf wdu
P X

Note that the constants a,b in (1.5) and the implicit constant in (1.6) are
allowed to depend on P and F, but not on x, ¢, f and .

A widely used principle in homogeneous dynamics, which essentially origi-
nated from Margulis’ doctoral thesis, see [24], is the concept that mixing implies
the equidistribution of unstable leaves, that is, the orbits of H as defined in (1.3).
Effective versions of this principle have been exploited in [17, 18]. Specifically,
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let us say that a flow (X, F) is exponentially mixing if there exist y >0 and £ € Z,
such that for any ¢,y € C3°(X) and for any ¢ = 0 one has

< e_Yt“‘P”&z ”w”m‘

(gtw,w—f wduf ydu
X X

This property for non-quasiunipotent flows follows from the strong spectral
gap of the regular representation of G, see [17]; the latter is known to hold
for quotients of semisimple Lie groups without compact factors by irreducible
lattices, see [16, p. 285].

The fact that property (EEP) for expanding horospherical subgroups follows
from exponential mixing was established in [19] by a variation of the method
developed in [17]:

THEOREM 1.4 ([19, Theorem 2.5]). Let G be a Lie group, I a lattice in G, and let F
be a one-parameter subsemigroup of G whose action on X = G/T is exponentially
mixing. Then H as in (1.3) satisfies property (EEP) with respect to the flow (X, F).

1.5. Height functions and integral inequalities. The second ingredient of our
proof is studying excursions of g;-translates of P-orbits in X outside of com-
pact subsets. For that it is helpful to have a family of positive functions on X
which grow at infinity and behave nicely with respect to integral operators of
type (1.4). This is done via the method of integral inequalities which goes back
to [11] and [10], and has been recently applied by Guan and Shi [13] to upper
estimates for the Hausdorff dimension of the set of points of X with divergent
g:-trajectories. To state their result, let us say that a non-negative continuous
function u on X is a height function if it is proper, that is u#(x) — oo if and only
if x — oo in X, and regular, that is there exists a non-empty neighborhood B of
identity in G and C > 0 such that

(1.7) u(hx) < Cu(x) for every he B and all x€ X;

equivalently, if for any bounded B < G there exists C > 0 such that (1.7) holds.
Also let us say that u satisfies the (c, d)-Margulis inequality with respect to an
operator I:C(X) — C(X) if for all x € X one has

Tu)(x)<cu(x)+d.

See [12, 28], where functions u satisfying the (c, d)-Margulis inequality for some
¢ <1 and d € R are called Margulis functions. With this terminology, let us
introduce the following definition.

DEFINITION 1.5. Say that a subgroup P of G has Effective Non-Divergence Prop-
erty (ENDP) with respect to the flow (X, F) if there exists 0 < ¢y <1 and £, >0
such that for any ¢ = fy one can find d; > 0 and a height function u; such that
u, satisfies the (co, d)-Margulis inequality with respect to Igr(j ;-

In the course of proving the main result of [20] the above property was shown
in the case (1.2), see [20, Proposition 3.4.]. The proof followed a construction
from [15] and used functions on the space of lattices coming from the work
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of Eskin, Margulis and Mozes [11]. To get more examples, we will quote the
following result from [13] (see also [29, Lemma 4.1]):

THEOREM 1.6 ([13, Lemma 4.3]). Let Let G, I', X and F be as in Corollary 1.2,
let H be as in (1.3), and let B = B (1). Then there exist a, ty > 0 and, for any
t = ty, a height function u; on X and d; € R such that the function u; satisfies an
(e~*!, dy)-Margulis inequality with respect to Ig ;. Consequently, H has property
(ENDP) with respect to (X, F).

We remark that, since the flow (X, F) as in the above theorem is exponen-
tially mixing, the expanding horospherical subgroup H has property (EEP) with
respect to (X, F) as well.

1.6. The structure of the paper. In the next section we state a technical theo-
rem (Theorem 2.1) and show how it implies Theorem 1.1 and Corollary 1.2. The
proof of Theorem 2.1 occupies the bulk of the paper. It has two main ingredi-
ents: one deals with orbits staying inside a fixed compact subset of X, which
are handled in §4-5 with the help of the effective equidistribution assumption.
The other one (§ 6-7) takes care of orbits venturing far away into the cusp of X;
there we use the effective non-divergence property via the method of integral
inequalities for height functions on X. The two ingredients are combined in §8-
9. Some concluding remarks are presented in §10. In particular, §10.3 contains
an application to joint Dirichlet improvement in Diophantine approximation.
Namely, there we define the set Dlgﬁ?n(c) of c-Dirichlet improvable k-tuples of
m x n matrices, and prove that the Hausdorff codimension of DI%?n(c) is pos-
itive whenever ¢ < 1. The case k = 1 was considered in [20] and was derived
from a solution of DDC for the case (1.2).

2. THEOREM 2.1 = THEOREM 1.1 = COROLLARY 1.2

From this point and until the end of §9, we let G be a Lie group, I a lattice in
G, X =GIT, F ={g;: t = 0} a one-parameter Ad-diagonalizable subsemigroup of
G, H the unstable horospherical subgroup relative to F, and P a subgroup of H
which is normalized by F. Throughout the argument we will be assuming that
P satisfies either (EEP) or (ENDP) with respect to the flow (X, F), or, at the end
of the proof, both of the properties.

Let us introduce the following notation: for a non-empty open subset O of X
and r > 0 denote by o, O the inner r-core of O, defined as

2.1 0,0:={x€ X:dist(x,0° > r}.

This is an open subset of O, whose measure is close to (O) for small enough
values of r.

Furthermore, for a closed subset S of X denote by ;S the r-neighborhood
of S, that is,

0,S:={xe X:dist(x,S) <r}.
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In particular, for z € X we have 0,{z} = B(z,r), the open ball of radius r centered
at z. Note that we always have
2.2) 0;Sc (0,(89)  forall Sc X, r>0.

Also define p to be the Lie algebra of P, and let

(2.3) Amin :=min{A: A is an eigenvalue of adg, |}
and
(2.4) Amax := max{A: A is an eigenvalue of adg, |}

Note that all eigenvalues of the restriction of adg, to p, including Amin and Amax,
are positive.

In this section we derive Theorem 1.1 from the following crucial but technical
theorem. It subdivides the argument into two cases: the first one deals with tra-
jectories which venture out of some big compact set Q along certain arithmetic
progressions, while the second, complementary case can be taken care of using
recurrence of trajectories to this compact set Q.

THEOREM 2.1. Let G,I', X,F ={g;: t =0} and P be as in Theorem 1.1, and let
p=dim P. Then there exist
r*,Cl,Cz,d,, b/,/l >0
such that the following holds:
For any 0 < ¢ <1 there exist t >0 and a compact subset Q of X such that:
1. Forallxe X, and for all2 < k €N, the set

(2.5) Sk, t,x):={h€P: gnrhx¢ Q VNeN}
satisfies
(2.6) codim S(k, t, x) = logﬂ.
Amaxkt 4c
2. Forall2<keN, all r satisfying
2.7 e% <r< imin(ro 01Q),7+),

all € [r,% ], all x € X, and for all open subsets O of X we have

) - 8GL Y _ G ok
or 1-c¢ rP

Amaxkt

_ 0
(2.8) codim({he P~ S(k,t,x): hxe E(F0)}) = Klow

We now show how the two estimates are put together.

Proof of Theorem 1.1 assuming Theorem 2.1. Recall that we are given the con-
stants ry,Cy,Co,a’,b’,A >0 such that statements (1), (2) of Theorem 2.1 hold.
Let O be an open subset of X. Define

(2.9 0o:= sup{0<051:u(0490) E%M(O)},
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then put 6 := min(fo, %) and

. 1 1(0) 2)
2.10 = , 071 .
(210 ¢ mm(4e1/2 +1 (128C1 )

Now choose t and Q as in the assumption of Theorem 2.1. Then in view of
(2.10), statement (1) of Theorem 2.1 readily implies that for any 2 < k € N one
has

(2.11) codimS(k, t,Xx) 2m.
Next, let

1
(2.12) = Zmin(rg (01Q),7+,00).

Clearly the second inequality in (2.7) is then satisfied. Now take 2 < ke N
sufficiently large so that

a -kt C (@)
(2.13) e 7 <r and —;e_’”” < %;

this will imply the first inequality in (2.7). Also it is easy to see from (2.12) and
the definition of 6 that 6 € [r, % |; hence (2.8) holds.

Observe that since 6 < 8, in view of (2.9) we have

(2.14) w(o490) = %O).

The definition of ¢ implies

8C; V¢ 8C, n(0)
2.15) 9P 1-c cell e 2ve (2%0) 8
Hence, by combining (2.13), (2.14) and (2.15), we conclude that the numerator
in the right hand side of (2.8) is not less than p(0)/4. Thus (2.8) implies
~ 0]
codim ({h € P\ S(k,t,x): hx € E(F,0)}) = _HO_
A maxkt

Combining it with (2.11), we obtain

©(0)

A maxkt A maxkt’

which is a positive number independent of x. This finishes the proof. O

codim (E(F, 0) n Px) = min (2, u(0)) =

Proof of Corollary 1.2. Let G,T', X and F be as in Corollary 1.2, and let H be as in
(1.3). Let g be the Lie algebra of G, g¢ its complexification, and for A € C, let E3
be the eigenspace of Ad g1 corresponding to A. Let b, h°, h~ be the subalgebras
of g with complexifications:

bc =span(Ey : Al > 1), hg =span(Ey :|A| =1), e =span(Ey : [A] <1).

Note that b is the Lie algebra of H. Moreover, b~ is the Lie algebra of the stable
horospherical subgroup defined by

H :={heG:g/hg_1—east— +oo}.
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Since Ad g; is assumed to be diagonalizable, g is the direct sum of b, h° and h~.
Hence, if we denote the group H~ H® by H, G is locally (at a neighborhood of
identity) a direct product of H and H.

Now let O be a non-empty open subset of X, and fix 0 < p < 1 such that the
following properties are satisfied: the multiplication map Hx H— G is one to
one on BH(p) X BH(p),

(2.16) g:B"(0)g_. < B¥(2p) for any t >0,
and
(2.17) 0290 # D,

Note that (2.16) can be satisfied since F is Ad-diagonalizable and the restric-
tion of the map g — g;88_+, t =0, to H is non-expanding. Also (2.17) can be
achieved, since, in view of (2.1), 0,0 is non-empty when r > 0 is sufficiently
small.

Now in view of (2.17), we can apply Theorem 1.1 with O replaced with 02,0
and conclude that there exists € > 0 such that

(2.18) dim({h e H: hx € E(F,02,0)}) = dim H — & < dim H.

Choose s > 0 such that B(s) is contained in the product Bg(p)BH(p), and for
x € X denote

Ey:={ge€B(s): gxe E(F,0)}.

In view of the countable stability of Hausdorff dimension, in order to prove the
corollary it suffices to prove that for any x € X,

dimE, <dimX —¢,

where ¢ is as in (2.18); note that E (F,0) can be covered by countably many
sets {gx: g € Ey}, with the maps 7, : Ex — X being Lipschitz and at most finite-
to-one. Since every g € B(s) can be written as g = h'h, where I’ € B (p) and
h e BH(p), for any y € X we can write

dist(g;gx,y) < dist(g[h’hx, grhx) +dist(g hx, y)
= dist(g: ' g-¢ gt hx, grhx) + dist(g:hx, y).
Hence in view of (2.16), g € Ey implies that hx belongs to E(F 02,0), and by
using Wegmann’s Product Theorem [31] we have
dim Ey < dim ({h € B (p): hx € E(F,02,0)} x Bﬁ(p))
<dim({he B"(p): hx € E(F,02,0)}) + dim H

< dimH-e+dimH=dimX —¢.
(2.18)

This ends the proof of the corollary. O
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3. TESSELLATIONS AND BOWEN BOXES

Following [17], say that an open subset V of P is a tessellation domain relative
to a countable subset A of P if

e v(OV)=0;

e Vy1nVy, =@ for different y1,y2 € A;

e« P= Vy.

YEA

Note that P is a connected simply connected nilpotent Lie group. Denote
p:=Lie(P) and p :=dim P. As shown in [17, Proposition 3.3], one can choose a
basis of p such that for any r > 0, exp (rlp), where I, cp is the cube centered at
0 with side length 1 with respect to that basis, is a tessellation domain relative
to some discrete subset of P. Let us denote

(3.1) Vi i=exp (— )
\/_
and choose a countable A, c P such that V; is a tessellation domain relative to
A,
Take 0 < r, < 1/4 such that the exponential map from p to P is 2-bi-Lipschitz
on BP(r,). The latter implies that

r
(3.2) CVrCBP(Z) forany 0 <r <r..

()
16\/p
Also, the measure v and the pushforward of the Lebesgue measure Leb on p are

absolutely continuous with respect to each other with locally bounded Radon—
Nikodym derivative. This implies that there exist 0 < ¢; < ¢, such that

(3.3) c1Leb(A) < v(exp(A)) < c;Leb(A)  Vmeasurable A< BP(1).

In what follows we will be taking 8 = r and approximating Vp by the union of
A,-translates of V,.. The following estimate will be helpful:

LEMMA 3.1. ForanyO<r<0<r,/2

#Hyel,: V,ymV37é®}<—( +8\/_)

Proof. Note that if V,y intersects Vjp, then in view of (3.2) we must have V,y c
0;/2 Vy. Hence, using the fact that V; is a tessellation domain relative to A, we
have

Leb |0
#{yeAr:V,yng;éQ}sM < &2 M

v(Vy)  G3a Leb(4f )
( +2r) 0
e
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where in the second inequality above we were able to use the bi-Lipschitz prop-

erty of exp since

ol =t <

This finishes the proof. O

Q+r)ch(r)
8 o

Recall that all eigenvalues of the restriction of adg, to p are positive. Using
the bi-Lipschitz property of exp, one can conclude that

re_/lmint
diam(g_;V;g;) <2-diam (exp ( 2 Ip))
(3.4 vP
re_lmin[
< 5 foranyO<r<r, and any t =0,

where Anin is as in (2.3). Also let § := Tradg, |p; clearly one then has
(3.5) v(g_1AgH) = e 9ty (A) for any measurable Ac P,

Let us now define a Bowen (¢, r)-box in P to be a set of the form g_,V,yg; for
some y € P and ¢ = 0. The following lemma, analogous to [17, Proposition 3.4]
and [19, Lemma 6.1], gives an upper bound for the number of y € A, such that
the Bowen box g_,V,yg; has non-empty intersection with V;:

LEMMA 3.2. Forany0<r <r,/2 and

log(8/P) )

Amln

(3.6) >
one has
#ye A, g VrygnV, #2) = e (1+ Coe M),

where
op+3 312 .
3.7) Co= P
C1

Proof. Let 0 <r <r,/2. One has:
#{Y€Ar!g—t7r7fgt07r;é®}

=#{yeAr:g-:VrygicVy} +#{)f€ Ar:g—iVyyginoV, # @}.

Since V; is a tessellation domain of P relative to A, the first term in the above

sum is not greater than % = e% while, in view of (3.4), the second term
is not greater than
V( re_ mmt (avr)) 5t Leb (aref/lmin[(a(#ﬁlp)))
(3.8) < e
V(g—tVrgt) ggg v(Vr)

(Here we used the fact that
9r 9r
0re mmz( IP)CB’J( +re ’lmmt)ch( ) cB? (—*)ch(l),
4./p 8 8 16
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hence we can use the 2-bi-Lipschitz property of exp to conclude that
€xp (are Amin? (6(4\/>I]J))) > are mm[ (aVr);

and the estimate (3.3) is applicable.) It is easy to see that the numerator in the
right hand side of (3.8) is not greater than

p P
(—+2re Ami"t) _(_r —2re"1mi“t)

4./p 2P

-1
-
< dretmnlp| —— 4 2pehmint
(MVT

ING

_)'min[( r ) B — 2P+3p3/2( r )pe_lmin[
66 2P 4P
p+3 312
< V(V;)e Mmint)
(3.1) C1
(3.3)
which finishes the proof. O

We conclude the section with a lemma, which is a slight modification of [19,
Lemma 6.4], to be used at the last stage of the proof for switching from coverings
by Bowen boxes to coverings by balls.

LEMMA 3.3. Forany t>0 and any 0 <r < r,, any Bowen (t,r)-box in P can be
covered with at most e PAmax=9)t pails of radius re Amx! here Amax IS as in (2.4).

Proof. Using the 2-bi-Lipschitz property of exp again, one can cover g_,V, g; by

—Amaxt re”Amaxt
Vol

needed to cover Ad(g-) (#ﬁ Ip). The latter can be written as the direct product

re~Amax?

p

axt

. . -Am .
ered by the union of intervals of length ””7 whose total measure is at most

at most as many balls of radius re , as the number of translates of

of intervals Iy, ..., I, where min; Leb(I;) = . Clearly each I; can be cov-

41eb(l;). Hence Ad(g-;) ( Ip) can be covered by at most

4pLeb(Ad(g—t)(ﬁﬁIp)) ~ 4pe—5t(4)p

— 4\/ﬁ — e(leax—(s)l'
re-Mmaxt re—Amaxt \P
Leb (2271 ()
translates of ¢ \/Tax I, which finished the proof of the lemma. O

4. PROPERTY (EEP) AND A MEASURE ESTIMATE

Our goal in this section is to use property (EEP) of P to find a lower bound
for the measure of the sets of the type

4.1) {heV,:ghxe0},

where x € X, O is a subset of X, r > 0 is small enough, and ¢ > 0 is large enough.
This step is similar to [19, Theorem 4.1], where balls in P were used in place of
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tessellation domains V;. For our new proof the use of tessellations is crucial; to
make the paper self-contained we present a complete argument.

We start with the definition of Sobolev spaces. Let L be a Lie group and A a
discrete subgroup of L such that L/A admits an L-invariant measure. Fix a basis
{Y1,..., Yn} for the Lie algebra of L, and, given h e C*°(L/A), keNand ¢ € Z,,
define the “L¥, order ¢" Sobolev norm ll2llg i of h by

def
lhllex S Y. IDRl,

|lal<t

where |- || stands for the L*¥-norm, a = (ay,...,ay) is a multiindex, |a| = Zf\il a;,
and DY is a differential operator of order || which is a monomial in Yi,..., Yy,
namely D% = Yl‘)‘1 ---Yﬁ“’ . This definition depends on the basis, however, a
change of basis would only distort | - [l¢x by a bounded factor. We will also
use the operators D® to define C’ norms of smooth functions f on L/A:

Ifllce:=" sup  IDYf(x)l.
xeL/A, |al<l
We will work with Sobolev spaces of functions on G (letting L = G and A = {e}),
on P (letting G= P and A = {e}), as well on X = G/T.

The next two lemmas provide a way to approximate subsets of G and X re-
spectively by smooth functions. We start with a basic lemma constructing test
functions supported inside small neighborhoods of identity in G. It is an imme-
diate corollary of [14, Lemma 2.6], see also [17, Lemma 2.4.7(b)].

LEMMA 4.1. For each ¢ € Z, there exists Mg,¢ = 1 with the following property:
for any 0 < € < 1 there exists a nonnegative smooth function ¢, on G such that

1. the support of . is contained in B(g);
2. lpelli=1;
3. 9elles < Mge-e™".

The next lemma is a slightly easier version of [19, Lemma 5.2]; we provide
the proof for the sake of completeness. Before stating the lemma, we introduce
the notation 1 to denote the characteristic function of a set E.

LEMMA 4.2. For any ¢ € Z, there exists a constant My > 0 (depending only on ¢
and G) such that for any nonempty open subset O of X and any0 < € <1 one can
find a nonnegative function v, € C*°(X) such that

L. lg,o=sv¥e=<1o;
2. max(|lell o |vellce) < Mee™.

Proof. Let O be a nonempty open subset of X, and let 0 < € < 1. Now take
We = Qg2 * 15,0, Where g is as in Lemma 4.1. It follows from the defini-
tion of ¥, and the normalization [l¢.|l; = 1 that w.(x) < 1 for all x. Also, since
(e/2 is supported on B(e/2), the support of the function v, is contained in
0¢/20¢/20 < O, which implies 1, < 1p. Furthermore, if x € 0.0 and g € B(e/2),
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then gx €0;/20.0<c 0,20, i.e, 1,,,0(gx) = 1. Therefore,

We(x) =fG<pe/2(g)lag,zo(gx) dﬂ(;:fc(l)s/z(g) duc=1.

Hence property (1) holds.
Let @ = (ay,...,an) be such that |a| < ¢. For any x € X we have

|D“ye ()] = [ D (Per2 * 16,,,0) 0] = [ D Pej2 # 16,00
< |D%@er2||, = |l@er2]l 1 < Ma,e(5)7°,
where Mg ¢ is as in Lemma 4.1. Likewise, by Young’s inequality,
[D*yell, < ID%@er2 * 1o,,0l2 < | D per2]|y - [1o.0],
<||D%per2|, < MG,[(%)_/,
which implies (2) with M, = 2! Mg, O

The next lemma is a modification of [19, Lemma 5.3] where we replace balls
of radius r in P with V;; we omit the proof.

LEMMA 4.3. Let r* be as in (3.2). For any ¢ € 7, there exist constants M/, > 1
(depending only on ¢ and P) such that the following holds: for any0<e,r <r,/2
there exists a function f; : P — [0,1] such that

1. fe=1lonV,;

2. fe=00n (Vise)S

3. max(| fell 0 | fell oe) = Mye™".

Here is the main result of the section, which is a modified and improved ver-

sion of [19, Proposition 5.1]. Roughly speaking, it states that for large enough ¢
the relative measure of h € V; such that g;hx € O is not much less than u(0).

PROPOSITION 4.4. Suppose that P has property (EEP) with respect to the flow
(X, F). Then for any open O c X, any x € X, any

1
(42) O<r<zmin(r0(x))r*))

and any t satisfying

4.3) t=a +blo
&™)

one has
v(the Vy:ghxe O}) =2 v (Vy) u(o ,-v:0) — e M

Here
A
!

(4.4) A= 72
and

1 log &
(4.5) a':=max|a, — log(M;M,E + pcy), ——

) A/ [ ) ZA/ )
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where ¢, A, a, b are as in Definition 1.3, E is an implicit constant from (1.6), ¢, is
as in (3.3), and My, M; are as in Lemmas 4.2 and 4.3.

Proof of Proposition 4.4. Let O c X be an open subset of X, and take x € X and
r as in (4.2). Now set f =1y, take ¢ as in (4.3) and put € := e 2Vt Note that
(4.3) and (4.5) give

I
4.6 E< —.
(4.6) 5

Now let y, and f, be the functions constructed in Lemmas 4.2 and 4.3 respec-
tively. Then we have

t t

maX(”Ws”Ch ”1/15 ”&2) : ”fe ”Cf : e_A = max(”u/e”C[» ”1//5 ”5’2) . ”fe“ci : e_/l
4.7) < Mpe ' Mye~le™

! !

(4.4)
Furthermore, by (3.2) and (4.6),
(4.8) SUP fo © Vo © Vppre € Vi, © BP().
Also, in view of (4.5) we have a’ = a; hence, inequality (1.5) is satisfied for any

x, t satisfying (4.3). Hence the estimate (1.6) can be applied to v, f, x and t,
and, in view of (4.7), yields

fpfg(h)wg(gthx)dv(h)zfpfgdvfxwg du—M;M,Ee 2",
Thus we have
v({heV,:gthxeO}) = fpf(h)lo(gthx) dv(h)
= | rwetghodvin
> [ g avin- [ 15~ fiav
zfpfe(h)wg(gthx) Av(h) —v(V, v N\ V).

!
r+e 2t

7P

Since by (4.2) and (4.6) we have r + e 2" < r,, it follows that
So in view of (3.3),

I, < B*(1).

v(V

r+e 2V

20"t
r+e r
N V) < cheb( )

4\/p 4yp
1) .

—2M't —2A'n\p— 20"t
< C|l——]| e r+e < cope .
(MVT) 2( ) p( ) 2pb

Jip
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Combining the above computations, we obtain
v({heVr:ghxeO}) = fpfg(h)l//g(gthx) dv(h) - cope 2Vt

zf fgdvf Wedu—MMyEe ' — cype 2Vt
P X

>V (Vy) p(0e0) - (Mg M)E+cyp)e™ V!

=V (V) W0 yov: O) = (M¢MyE + cap) e

> V 7’10 - _A/t. D
(4.5)V( P (o, 0)—e

5. COVERINGS BY BOWEN BOXES
For xe X, t >0, N eN and a subset S of X let us define
(5.1) AN, 1,8):={heV, : g;thxeSYLe{l,...,N}}.

Clearly the set (4.1) studied in the previous section has the same measure as
A}C(t, r,0). Our goal in this section will be to inductively use Proposition 4.4 to
find an effective covering result for the set AY (¢, r,0%). We start with the follow-
ing theorem, which is a modified and improved version of [19, Proposition 5.1]:

THEOREM 5.1. Let P be a subgroup of G that has property (EEP) relative to the

. .. 1
flow (X, F). Then there exist positive constants a', b’ = ogf}—,‘/ﬁ), Cy, A such that for
any open O c X, any

(5.2) 0<r< %min(ro (01/2(09), r*),

any x € 0,(0°), any t satisfying

(5.3) tza +b log%,

and any N €N, the set AxN (t, r, O°) can be covered with at most

Cy N
AN - w0+ —pe"“
r

Bowen (Nt, r)-boxes in P.

We remark that the above theorem, as well as Theorem 5.3 proved later in
this section, is applicable only to the situations when the complement of O is
compact: indeed, otherwise ry (61 /Z(OC)) =0 and (5.2) is never satisfied.

Before we prove the theorem, we need the following lemma:
LEMMA 5.2. Foranyxe X, anyOc X, any0<r <r, and any t >0 we have

v(AL(t,1,0+20))
v(g-tVr &)
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Proof. For any y € P and any hy, hy € V; we have
(5.5) dist(h1ygex, haygex) < dist(hy, hy) < diam(V;) < r/2.

Hence, if
A}C(t) r»Ur/ZO) mg—tVr')/gt # 1%

for y € A, then for some h € V, one has gthxe o0 mvrygtx, and, in view of
(5.5) and 9;/2(0,/20) c O, we can conclude that V,yg;x < O. Thus
A}C(t, rno0c U 8-iVry&n
YEA,
V,yg:ixcO
and (5.4) follows from the definition of V; being a tessellation domain relative
to A;,. O

Proof of Theorem 5.1. Take a’,b, A’ be as in Proposition 4.4, and A, as in (2.3).
Also set
1 log(16./p)
’ F, /1min .
Fix an open O c X, and take r as in (5.2). Also take x € 8,(0°) and ¢ as in (5.3).
First let us show how to derive the desired result for N = 1 from Proposi-
tion 4.4. Observe that

(5.6) b :=max|b

1 2 log(8
¢ > d+blogt > Mgt > b > 288VP)
(5.3) r(5.2) Is (r.<d) .60 Amin

So, by combining Lemma 3.2 with Lemma 5.2, we conclude that A}C(t, r,0° can
be covered with at most

#{YE Ar:giViygnVy # @} —#{Y €A Vrygixc O}
v(Ay(t,1,0,120)
v(g-tVr &)

Bowen (t, r)-boxes in P, where Cy is as in (3.7). Note that whenever x € 9, (0O°),
(4.2) and (4.3) follow from (5.2), (5.3) and (5.6). Moreover, we have

< et (1 + Coe_’lmi“t) —

1 T 1 2
(5.7) At = Vd +Ablog= = — = +log= = log=-.
(5.3) r gg; 2 T (r.<h r

Hence one can apply Proposition 4.4 and conclude that AL(z, r, 0°) can be cov-
ered with at most

At
ot —Amint
"1+ Cye "' — (o, 110720) + ——
0 (0 1101 120) NUA)
ot Amin £ M
< e’ |1+ Cye "™ir* — u(o,0) +
6 0 oo

C
< et (1 — wo,0) + r—;e’”) = N(r, 1)
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Bowen (¢, r)-boxes in P, where A := min(Amin, A') and

4 p
(5.8) Cr:=Cp+ ( \Zﬁ) .
1

Now let g_ [V,ygt be one of the Bowen (¢, r)-boxes in the above cover ﬂhich
has non-empty intersection with AL(z,r,0°). Take any q = g_;hyg,; € §-:V,y8s
then g;qx = hyg:x, hence

{gth qe g_tVrVgt} = {hrgtx: he Vr}.
Consequently,
(5.9) (geg V,yg :g:qx¢ 0} = g AL(t,1,0%7g,.

Note that since diam(vry) <randg_ tvrygt OA}C(I, r,0°) is non-empty, we have
Y8&:x € 8,(0°). Hence, by going through the same procedure, this time using
Y8&:x in place of x, we can cover the set in the left hand side of (5.9) with at most
N(r, t) Bowen (2¢,7)-boxes in P. Therefore, we conclude that the set A2(t,r, 0)
can be covered with at most N(r, £)> Bowen (2¢,r)-boxes in P. By doing this
procedure inductively, we can see that for any N € N, the set AY(¢,r,0°) can be
covered with at most

C
N(r, 0N =N |1 - (o, 00+ e
r
Bowen (Nt,r)-boxes in P. This finishes the proof. O

Next we are going to apply Theorem 5.1 to cover AY(t,r,0) with Bowen
(Nt,0)-boxes, where r <0 < %

THEOREM 5.3. Let P c G have property (EEP) relative to the flow (X, F). Then,
with a',b’,Cy, A as in Theorem 5.1, for any open O c X, any t as in (5.3), any r
such that

(5.10) 0<r< lemin(ro(al(oc)),r*),

any x€0,(0°, any NeN, and any 0 € [r,% |, the set AY (t,r,0°) can be covered
with at most

ca(2r)” 6Nt( G —/lt)N

— = 1- o)+ —

01(9) e ,U(U4e ) rPe

Bowen (Nt,0)-boxes in P.

Proof. Consider the covering of AQ’ (t,r,0° by Bowen boxes
{g-niVovgn: v e Aof.

Let R be one of those boxes, so that

(5.11) RnAY (t,r,0% £ 2.
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Since 0 < r,, in view of (3.4) we have diam(R) < ge"lmiﬂN ! furthermore,

(5.12) Qe rmint < o~ Amnb'logs _ g, -logBypllogs L.
(5.3) ©=<1) 8,/p

Since RNV, # &, it follows that

o

NIVF c 0_r VTCVZT:

Rc aﬁe—/x
2 (5.12) 16vp

min

where in the last inclusion we again use the 2-bi-Lipschitz property of exp.

We now claim that R is contained in AY(#,2r,009(0°)). Indeed, in view of
(5.11) we can find i} := g_n:h1Ygn: € R such that g;;hjx € O forall i € {1,..., N}
(here h; € Vp). Then take any h; ‘= g_nrhoygn: € R, where again hy € Vp, and
for any i € {1,..., N} write

githyx = (§-(N-iychahy ' -1 gith X
€ (g-w-nehahy ' g-inr) O° o) 029~ Amintv-t (O°) < 029 (0°).

Note that since 0 < r,/2 < 1/8, we have 01/2(020(0°)) < 3, 0°, which implies
To (61 /2(623(00))) > 10(0,0°). Thus, since (5.10) is satisfied, the following is sat-
isfied as well:

0<2r< %min(ro(él/z(azg(Oc)),r*)).

Consequently, Theorem 5.1, applied to O replaced with o290 and r replaced
with 2r, implies that

v(AY(1,2r,0:6(0%)) (2§Z)V(AXN (1,27, (0290)))
N

C
2 e—/lt
2np

< v(g-ntVargne) - Nt (1 — (o2, (0290)) +

< v(Vy) (1 —p(o490) + 26_“)]\[
6=r) rP

for any x € 0,(0°) € 02,((0290)¢). This forces the number of y € Ay such that

g-niVoygni N AY (t,1,0°) £ @

G A\ AT
to be not greater than (1 — (049 0) + e ) multiplied by

2r_\P
vy elbi) gem(a)p
v(g-NtVogny) B:3) e“”\”cl(%)p C1 6]
This finishes the proof of the theorem. O
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6. ENDP AND ITERATIONS OF MARGULIS INEQUALITY

In the next two sections we let P be a subgroup of G which has property
(ENDP) relative to the F-action on X. Then by the definition one can find
0 < ¢y <1 and ty > 0 such that the following holds: for any ¢ = ¢y one can find a
height function u; and d; > 0 such that u, satisfies the (cy, d;)-Margulis inequal-
ity with respect to Igr(y) ,U; that is,

(61) (IBP(I),[u[) (x) < Co U[(x) + dt.

Let #; > 0 be sufficiently large so that

(6.2) g :BP(ng;cB(ri4) forallo<r<1,t=1,
and set
(6.3) t. ;= max(ty, 1)

In the following proposition, by using inequality (6.1) N times for ¢ suffi-
ciently large, we prove that u; satisfies the (cév , 1ii—tCo)-Malrgulis inequality with
respect to Igr (1,2 ;- The argument is similar to the proof of [28, Theorem 15].

PROPOSITION 6.1. Let {u;} ;>0 be the family of height functions in Definition 1.5,
and let t. be as in (6.3). Then for any t = t. and any N € N, the function u;

. N d;
satisfies the (CO ‘Toa

words, for any t = t., any N €N and any x € X one has

)-Margulis inequality with respect to Igr( ) n;- In other

d;
_CO.

(6.4) (Igry2), Nt te) (%) < €0 up (X) + -

As a corollary, we get the following crucial statement which will be useful in
later sections:

COROLLARY 6.2. Let t) be as in (6.2). Then there exists a height function u and
d > 0 such that for any 0 < c < 1 one can find positive t, = t| such that for any t €
N, the function u satisfies the (c, d)-Margulis inequality with respect to Igr 3) ;.
In other words, for all x € X we have

(65) (IBP(l/Z)‘tu)(x) = Cu(x)+d.

Proof. Let 0 < ¢ < 1, and take ¢y as in Proposition 6.1. Choose N sufficiently
large so that cé\' < ¢, and set

dy,

U:= Uy, bc:= Nty z)tl,d::

63 1-c¢p

Now let t = nt, = nNt, be an element in N#,. Then, by Proposition 6.1 applied
with N replaced by nN, we have

(Igp1/2), WX = Ugp(1/2), e, W) < N ux) +d < ¢ u(x) +d < cu(x) +d.
This finishes the proof. O
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Proof of Proposition 6.1. Given n€N and t > 0, define n,,; : B’ (1)" — P by

Nnt(hy, . hy) = 8-n-1)thnge - hageh

(6.6) _
=hy-h, where h; = g_i-1)chigi-1)r-

Forany neNand ¢ > 0, let v, ; be the pushforward of v|zr ;) via the conjugation
by gns, that is, defined by

(6.7) f‘l’(h) df’n,t(h)=f $(8-nthgni) dv(h)
P BP(1)

for all ¢p € C,(P). For any positive integer n let
Vit = Vp-1,e% - % V1% Vo

be the measure on P defined by the n convolutions. It is easy to see that
vp,: is absolutely continuous with respect to v, and v, ; is the pushforward
of (v| BP(I))®n by the map 7n,,;. These measures were considered in [13], and the
following was shown:

LEMMA 6.3. [13, Lemma 5.5] Forall t = t; as in (6.2), all h€ BP(1/2), and for all
n eN we have %(h) >1.

Using Lemma 6.3, we have for all NeN and all ¢ = #;:

(Ipr(1/2), N W) (X) =f

u(gnehx)dv(h) < f u(gnehx)dvy,(h)
BP(1/2) BP(1/2)

(6.8)
Sf u(gihn -+ gehi1x)dveN (hy,..., hy)
B‘D(I)N

Take 0 < ¢y <1 and f > 0 as in the definition of (ENDP), and let t = ¢, =
max(fy, ). Recall that v(BP(1)) = 1. Since ¢ = ), we can apply (6.1) and for
any i = 2,... conclude that

f u(ghi--- g x)dv® (hy,..., hy)
Bp(l)’

Sfp » (co-ulgehi-1-- gt x) +d;) dv® L (hy,..., hi_1)
(6.9) B _ _
=cOf , u(grhi_l---gthlx)dvm‘l(hl,...,hi_l)+dt-v(BP(1)l‘1)
BP(I)z—l

“co [ ulgihic g AV i)+ d
BP(l)l—l

Let NeN. If N =1, then (6.4) follows immediately from the combination of
(6.1) and (6.8). If N = 2, then by using (6.9) repeatedly and combining with (6.8)
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we obtain

(Igr(1/2), N W) (X) Sf

u(gihn--- g x)dv®" (hy,..., hy)
BP(I)N

< Cév_lf u(grhix) dv(hy) +c) 2d;+-++ cody + d;
(6.10) BP(1)
(651) cévu(x) + cév_ldt + céV_Zdt +---+cods + d;

dy

<cévu(x)+d[(1+co+c§+---)=cévu(x)+ 1
_CO

This finishes the proof. O

7. ENDP AND ESCAPE OF MASS

Fix a height function # on X as in in Corollary 6.2. For M > 0 define the
following sets:

Xomy={xeX:ulx)>M}, Xcpy:i={xeX:u(x)<Mj.

Since u is proper, the sets X< s are compact. Furthermore, since u is regular, by
definition there exists C =1 such that

(7.1) Clu(x) < u(gx) < Cu(x) for all ge B(2) and x € X.

Moreover, it is easy to see from (7.1) that there exists @ > 0 such that for any
t > 0 we have

(7.2) e Y u(x) < u(gex) < e u(x).

Now let 0 < ¢ <1, take d and t. = t; as in Corollary 6.2, and let ¢ € Nz.. Note that
(6.5) immediately implies that if u(x) = %, then

(73) (IBP(I/Z),I’M) (x) <2c- u(x)
Now define
(7.4) lor:= max(%,e‘”).

In the following key proposition, we obtain an upper bound for the measure
of the sets of type Aiv(kt,e,XX;z[i[), where2<keN, 6 € (0,r], and C is as in
(7.1). We will use this measure estimate to derive a covering result for the sets
of type AY (kt’H’X>C3f§,,) in Corollary 7.3.

PROPOSITION 7.1. Forany2<keN, any8 € (0,r.], any NeN, and forany x € X
we have

4c )N max (u(x), d)
G

Proof of Proposition 7.1. Let2<keN, NeN and x € X. Define

(7.5) v(aY (kt,0, X, co02 ) < (1 —

Ze(, N):={ (hn,...., hi) € BPUDNE  ugihn - g1l x) > CE2 Wme (1, N},
We need the following lemma:
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LEMMA 7.2. For all 6 € (0,r.] and for all h € AY(kt,0,X,c2p2 ) one has
n]_VIk,t(h) c Zx(k,N), where ., is defined as in (6.6).

Proof. Let 0 € (0, 1] and let he AY(kt,0, X cope [). Suppose that
nNk,l(hly---;hNk) = h-
Then for any 1 < i < N we have

dist(gix:h, grhik -+~ &) o dist(gikcAnk -+ I, Gikehik -+ 1)

_ {diSt(giktilNk"'ilingikt»e) ifi <N,
0 ifi=N.
Moreover, if i < N one has
dist(giks hnk - Rik+18-ik1r €)
< dist(gikrPik+18-ike € + -+ + dist(gike Ani&—iker €)
(;6) dist(hjg41,e) +dist(g-rhijx+28:, e) + dist(g_2:hix+3821 €)
+ oo+ dist(g-(v-i k-1t ANKE (V-1 k-1t ©)

< 1+ ! + ! + !
62 4 42 4(N=i)k=1

Hence, in view of (7.1), forany 1 =i < N, gjx;hx € Xscee2, implies that

<2.

gihix---grhixe X>C[§[.
This finishes the proof. O

Now let 0 € (0, r,]. Note that in view of (3.2) we have Vg cBP(r./12)c BP(1/2);
moreover, kt = kt; = t;. Thus, by Lemma 7.2 and Lemma 6.3 we have

1% (Aﬁcv(kt’g’X>C2£§t)) S VNk, ¢t (AxN(kt,B, X>C2[%J))

(7.6)
= V®Nk(ZX(ky N)),

where v, ; is defined as in (6.7). So it suffices to estimate V®Nk(Zx(k,N)). De-
fine

s(k,N, x) :=f u(gihne: - g x) dveNE(hy, ..., hne).
Zx(k,N)

Since £.; = e%', in view of (7.1) and (7.2) we have u(g/hg_1---gh1x) > €.
whenever (hy,..., hi) € Z(k,1). Hence,

s(k,1,x)

®k-1
7.7 szsz)kl 1x.,, , (8hi—1--- g X)u(grhi - ghi1x)dv (hy,..., hg—1)

< Zcf u(gihg—1 -+ g x) dv®* 1 (hy, ..., he 1),
BP(1/2)k-1

where the second inequality follows from (7.3) applied with x replaced by
8ihk-1---gM x, and from the fact that ¢, ; = %.
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Again recall that v (B? (1)) = 1. By applying (6.5) we get
f u(gehy—1---grhix) dve* =t (hy, - 1)
BP(1/2)k
<c f (g i) dvF 2 hy, - )+ d-v (BP(1/2) )
BP(1/2)k-2

scf u(ghg_o--- g x)dve*2(hy, - hi_p) +d.
BP(1/2)k2
Therefore, if we apply (6.5) repeatedly, similarly to (6.10) we get

fBP(UZ)“ u(gihy—1---gchix) dv®* Yy, )
(7.8)

d 2
k-1 f— <=
=cv u(x) ¢ < ] max(u(x) d).

So by combining (7.7) and (7.8) we have
4

(7.9 sk, 1,x) < 1—C -max (u(x),d) for all x € X.
-c

Note that since ¢, ; > %', in view of (7.1), (7.2) and (7.4)

. d
(7.10) (hi,..., hik) € Zy(k, 1) = u(grhi-1i---&hix) =l = -

>d.

Now for any 2 < i € N we can write

s(k,i,x) = f .u(gz hik-+- g x)dv® ™  (hy, ..., hig)

f f u(ghir--- grh1x)
x(kl 1) Zth(l Dk gthlx(k 1)

K Dksts . hi) dvEEVR (g, )

:f sk, 1, gch_nk-- g ) dve VR (hy, b _np)
Ze(kyi—1)

4c

< f ——u(grhi_nk--- g x) dvE TRy, g0
((7.9)) Z(ki-1) 1—¢

4c
=—-sk,i—-1,
¢ -s(tk,i—1,x)

Thus, by repeatedly using the above computation, for any N € N we conclude
that

N-1 N
s(k, N, x) < (i) s(k,1,x) < (i) max (u(x), d).
1-c¢ 79l\l-c

Note that s(k, N, x) = ¢2 ,-v®N¥(Z,(k,N)). Hence (7.5) follows from the above
inequality and (7.6). O
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As a corollary, we get the following crucial covering result:

COROLLARY 7.3. Let P be a subgroup of G with property (ENDP). Then for any
0 < ¢ < 1 there exists t. > 0 such that for all t € Nt; and 2 < k € N satisfying

kt= bg/{i—m‘/ﬁ), allf e (0,r./2], all N €N, and for all x € X, the set

AV (kt,0, X, 02 ) = {he Vg ulguaeh) > C303 Ve 1,.., N}

can be covered with at most
651\””( 4c )Nmax(u(x),d)
v(Vp) 0,

1-c
Bowen (Nkt,0)-balls in P.

Proof. Let 0 < c< 1, take ¢, as in Corollary 6.2, and let t € N¢, and 2 < k€ N be
such that kt = long‘/ﬁ). Also let 8 € (0,7./2], NeN, and x € X. Take a covering
ong with Bowen (Nkt,0)-boxes in P. Now let R be one of the Bowen boxes in
this cover which has non-empty intersection with AxN (kt,H,X>C3 fﬁ,r)‘ Note that
in view of (3.4), we have

diam(R) < Lo tmnkr < @ gtkt O
2 2

TN

So, since R 079 # &, we must have

(7.11) Rcd_ o Vyc Vi,
16,/p

where in the last inclusion we use the 2-bi-Lipschitz property of exp.
Now let he RN Aiv(kt,G,X>C3[§ I). Then

u(gikrhx) > C3€§,t foralll<i<N.

On the other hand, if we denote the center of R by hg, then forall 1 <i < N we
have for all 1’ € R:

gikth/x = (gikth,halg—ikt) 8ikthox

~Amin(N—=i)k
(=0 t) 8ikthox

€ (g—(N—i)ktVHg(N—i)kt) 8ikchox & B (g we
cB(6/2)gixthox < B(1/2)gikshox.

This implies that

(7.12) giktRxcB(l)gjxthxforall1<i<N.

Now in view of (7.11) and (7.12) we can conclude that

(7.13) R AY (k1,26, X, cop2 ).

Therefore, by (7.5) and (7.13) applied with 6 replaced with 26, the set

AxN(kt»eer%,[)

JOURNAL OF MODERN DYNAMICS VOLUME 20, 2024, 441-478



466 DMITRY KLEINBOCK AND SHAHRIAR MIRZADEH

can be covered with at most

v(AiV(kt,ZH,szgil)) (+2£)N max (u(x), d)
<

1-c
V(g-NkeVo8Nk)  V(g-NkiVogNkd) 03,
Nk 4 \Nmax(u(x),d)
(V) (1_0) ez,
Bowen (Nkt,0)-boxes in P. This finishes the proof. O

8. COMBINING THE ESTIMATES OF §5 AND §7

The goal of this section is to describe a method making it possible to put
together properties (EEP) and (ENDP). In the next proposition neither (EEP) nor
(ENDP) are assumed to hold. Instead we will assume certain covering estimates
(similar to those we derived from (EEP) and (ENDP) respectively in the previous
sections) and then combine them to derive an estimate on which our dimension
bound is based. This formalizes the argument which first appeared in [15] and
then was used in [20] to solve DDC in the case (1.2).

PROPOSITION 8.1. Let P be a connected subgroup of H normalized by F. Let
S,Q c X, t satisfying (3.6), r >0, 8 €[r,r./2], and let ki, kz,a1,a> = 1 be given.
Suppose that for any N € N the following two conditions hold:

(a) For all x € 0,(SN Q) the set Af(t, r,SN Q) can be covered with at most
ky e‘sNta{V Bowen (N't,0)-boxes in P.

(b) Forall xedg(SNQ) the set Afcv(t, 0, Q°) can be covered with at most k; e‘”\”aév
Bowen (N't,0)-boxes in P.

Then for all x € 8,(SN Q) the set AY(t,1,S) can be covered with at most
kse®N'al Bowen (Nt,0)-boxes in P, where

0 p
(8.1) k3=(1+C0)2(—+8\/ﬁ) klkg, a3:a1+a2+\/k3a2.
1 \r

Proof. For any h e AQ’ (t,r,S), let us define:
Jn:={jefl,...,N}: gjthx e Q},
and for any J < {1,..., N}, set:
Z():=4he AN (t,r,9) : Iy = J}.
Note that

(8.2) ANernsy= U z

j<il,..., N}
Let J be a subset of {1,..., N}. We can decompose J and [ :={1,..., N} J into
sub-intervals of maximal size Ji,...,/4 and I,..., I so that

!

q q
J= |_|]jandI:|_|I,-.
j=1

i=1
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Hence, we get a partition of the set {1,..., N} as follows:

q q
N} = |_| J ju |_| I;.
j=1 i=1
Now we inductively prove the following

CLAIM 8.2. For any integer L < N, if

l 4
(8.3) {L,...0=|Jjul L
j=1 i=1

then the set Z(J) can be covered with at most

(8.4) kjluﬂ ((1 + CO)Z_j (g + 8\/ﬁ)pk1)du+1 e‘s“alz’{‘ llil_d”azz;:l il

Bowen (Lt,0)-boxes in P, where dj 1, d}' L are defined as follows:
dyr=#{ie{l,...,L}: i<LieJandi+1lel},
dj=#{ie{l,...,.L}: i<Liclandi+1€]}.

Proof of Claim 8.2. We argue by induction on ¢+ ¢'. When ¢+ ¢’ = 1, we have
djr= d}L =0, and there are two cases: either ¢ =1 and {1,...,L} = J;,or ¢' =1
and {1,...,L} = I;. In the first case

Z(J) € Ay (t,1,Q°) € A% (1,60,Q°),
Therefore, condition (b) applied with N = L implies that this set can be covered
with at most
koe oLt L<k1k2(1+C0)—( +8\/_) oLt L
Bowen (Lt,0)-boxes in P. This finishes the proof of the first case.
In the second case, note that
Z()c Ak, 1,5 Q).

Moreover, by condition (a) applied with N =L, AxN (¢,1,SN Q) can be covered by
at most

kie®tak < kyko(1+ co)—

Bowen (Lt,0)-balls in P. This ends the proof of the base of the induction.

In the inductive step, let L' > L be the next integer for which an equation
similar to (8.3) is satisfied. We have two cases. Either

(8.5) ,..,LY=1{1,...,Luly,
or
(8.6) 1,...,L=1{1,...,L}uJps.

We start with the case (8.5). Note that in this case we have
8.7) d],Lr = d]’L +1 and d},L’ = d},L'

JOURNAL OF MODERN DYNAMICS VOLUME 20, 2024, 441-478



468 DMITRY KLEINBOCK AND SHAHRIAR MIRZADEH

By the induction hypothesis, an upper bound for the number of Bowen (Lt,0)-
boxes needed to cover Z(J) is given by (8.4). Then observe that:

¢ In view of (3.6) and Lemma 3.2,
(8.8) 21 (1 + Coe Mminkty < 091 (1 1 Cp)

is an upper bound for the number of Bowen ((L +1) t,B)—boxes needed to
cover an arbitrary Bowen (Lt,0)-box;
¢ In view of Lemma 3.1,

Co 0 p

is an upper bound for the number of Bowen ((L+ 1)¢,7)-boxes needed to
cover an arbitrary Bowen (Lt,0)-box.

Now let B, be a Bowen ((L +1t, r)-box that has non-empty intersection with
Z(]), and let h € B, n Z(J). Since h € Z(J), it follows that g+nshx € SN Q.
Therefore, if we denote the center of B, by hy, we have

(8.10) g hox € V(SN Q) cd,(SNQ).
Moreover, for any h € B, and any positive integer 1 <i < L' — (L+ 1) we have
8w+1+ithx = gir(gu+1ihhy ' 8= w+1)1) (G(L+1)choX).
Since the map h — gu+1)chhy lg_(LH)t sends B, into V, the preceding equality
implies that
{h' €B,:gur1+eth’'xeSNQ Vie(l,...,L' = (L+ D}

L'~(L+1)
< 8-y, oy (LTSN Q) gw+nycho.

So, in view of the above inclusion and (8.10), we can go through the same proce-

dure and apply condition (a) with N replaced with |Iy1|—1=L"—(L+1) and x
replaced with g +1):hox, and conclude that B, n Z(J) can be covered with at
most

8.11) ey @2 Wera|=Dt gl =1

Bowen (L't,0)-boxes in P. Multiplying the bounds (8.4), (8.8), (8.9) and (8.11),
we conclude that Z(J) can be covered with at most

c (0 p -
6—2(7+8\/ﬁ) e‘s(”f’ﬂ“mcllll[+1| "1+ ¢y
1

dyr+1 !
d +1 ¢y (20\P L ¢ L—dy X5
-k, ((1+Co)—2 (—) kl) 65(“1”6112’:" | May
C1 r

dyp+1 Vi ¢
e(sL/talzizl |I,-|—d]yLr aZj=1 |]]|

d ,+1 0 p
= kg,,ﬁ ((1+C0)%(;+8\/ﬁ) kl) 5
1

(8.7)
Bowen (L't,0)-boxes in P. This ends the proof of the claim in this case.
Next assume (8.6). Note that in this case

(8.12) dpp=dprandd;;, =d; +1.
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Take a covering of Z(J) with Bowen (Lt,0)-boxes in P. Suppose B’ is one of
the Bowen (Lt,60)-boxes in the cover such that B'n Z(J) # @, and let h; be the
center of B’. It is easy to see that B'n Z(J) # & implies:

(8.13) grihixeVy(SNQ) cdg(SNQ).
On the other hand, for any s € B’ and any positive integer 1 <i < L' — L we have
gw+iyehx = gir(gLehhy' g 1) (gLl x).

Hence, since the map h — thhhl‘1 g_1; maps B’ into Vj, the above equality
implies
{h € B, : g(L+l~)thx € Qc Viell,--- ,L/ —L}} C g—LtA{gJL fl;lx (t,@, Qc) thhl

So in view of the above inclusion and (8.13), we can apply condition (b) with
gr+h1x in place of x, and |Jy41| = L' — L in place of N. This way, we get that the
set B'nZ(J) can be covered with at most kgalzj"”‘eé”“‘” Bowen (L't,0)-boxes in
P. From this, combined with the induction hypothesis, we conclude that Z(J)
can be covered with at most

’ p d/_L+1 Vi ¢ )
Jo+ ) t d‘ +1 CZ 9 SLt Zi: |Ii|—d]yL Z': U]l
k2a|2’ 1l g0l k" ((1+C0)c_1 ;+8\/ﬁ ki e’ la a,’”

d ,+1 c (0 P \Gu+l / Z |I;|-d ):Z“ll
= kIt (1+C —(—+8 )k) 6Lt i=1 Lo il
8.12) 2 ( 0) c\r vp| ki
Bowen (L't,0)-boxes in P, finishing the proof of the claim. O
Now by letting L = N, we conclude that Z(J) can be covered with at most
d +1 c (0 P\l _
(8.14) k"N ((1+c0)—2 (— +8\/ﬁ) kl) N1l gl
c\r
Bowen (Nt,0)-boxes in P.
Clearly
(8.15) d;y<din+1.

Also, note that since dj y < max(|I|,1/]), the exponents |I|-djn,|J| —d;n in
(8.14) are non-negative integers. So, in view of (8.2) and (8.14), the set AxN (t,r1,S)
can be covered with at most

d,  +1 c (0 PGl —d
Y kN ((1+C0)C—j(;+8\/ﬁ) kl) Nt gllI= v gl

Jcfl,...,N}
p d;n+1
< Nt Z d]N+2 ((1 CO)_( +8\/ﬁ) kl) allll—dl.NaIZJI
(8.15) J(l,...,N} r
< kgeéNt Z allfl—d/,zv a|2]| k;i],N
Jc{l,...,N}

N=|]|— _
— k3€6Nt Z a, 17 d/,Na|2]| dI'N(kgdg)d]'N
Jc{1,...,N}

Bowen (Nt,0)-boxes in P, where k3 := (1+ Co)i—f (g + Sﬁ)pkl k%.
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To simplify the last expression we will use the following:

LEMMA 8.3. [20, Lemma 5.4] For any ny, np, ns >0 it holds that

N-|Jl-d;n |Jl-d;n _ 2d;n
> n, ng

J<il,..,N}

<(n+ny+ I’lg)N.

Applying the above lemma with n; = a;, n» = a, and n3 = \/k3as, we con-
clude that AY (¢,7,S) can be covered with at most

N
k3€6Nt (al +ay+ k’gdg)

Bowen (N't,0)-boxes in P. The proof of Proposition 8.1 is now complete. O

9. PROOF OF THEOREM 2.1

Given P c G satisfying (ENDP), 0 < c < 1, and ¢ > 0, let us fix a height function
u on X as in Corollary 6.2 and define the compact subset Q. ; of X as follows:

(9.1) Qet:=Xecsp s

where ¢ ; is as in (7.4) and C is as in (7.1).

LEMMA 9.1. Let P be a subgroup of G that has properties (EEP) and (ENDP).
Then there exist constants

a', b/, Cl, Cg,/l >0,
and, given 0 < ¢ < 1 there exists t, > 0 such that the following holds: for all t € Nt,,
0<r<1,2=<keN satisfying

a'—kt

9.2) erv <r< imin(ro (01Qc,t),7+),

any open subset O of X, any N €N and 0 € [r,%], and for all x € 8, (Qc,; N O°),
the set AY (kt,r,0°) can be covered with at most

N
L 801 ye

C C
_le(stt 1_'u(0.490)+r_;e*/1kt Hp -

02r
Bowen (Nkt,0)-boxes in P.

Proof. Let 0 < ¢ < 1, take f, as in Corollary 7.3, and let 0 <r <1, 2 <k eN,
t € Nt be such that (9.2) is satisfied, where a’, b’ are as in Theorem 5.3. Also let
0 € [, %], and take an open subset O of X. Note that the second inequality in
(9.2), together with the fact that ro(9:(0° N Qq,¢)) = 19(01Qc,¢), implies condition
(5.10) with O replaced by Ou Qﬁ, ;- Moreover, condition (5.3) with ¢ replaced by
kt follows from the first inequality in (9.2) . Hence, by applying Theorem 5.3
with O replaced with OuU Q¢ , and r replaced with kt, we get that for all x €
0,(0°N Q) and for all N €N, the set AY (kt,r,0°N Q) can be covered with

at most k;e®V* alV Bowen (Nkt,0)-boxes in P, where

C2 2r p Cz —Akt
9.3 ki=—(—|, ag=1-ulop0)+—e
93) : 01(0) 1=1-p(0490) +

and C,, A are as in Theorem 5.3.
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Moreover, in view of (9.1) and (7.4), for any x € 09(0O° N Qc,¢) € 02Q.,; we have

max(u(x),d) _ max(C*¢2 ,, d)

0, B e, 20,5

cr=

ct
Also, note that

1 log(8
(9.4) kt = a +b'log > b’log >b = M
9.2) Amin
Thus, by applying Corollary 7.3 we get that for all x € d9(0O° N Q,,;) and for all
N e N, the set Aiv(kt,H,Qg,t) can be covered with at most kge‘stt N Bowen
(Nkt,0)-boxes in P, where
ct 4c

(9.5) k2 =—) ay=—.

v (Vp) l1-c
Now we put together the estimates we found to get an estimate for the number
of Bowen (Nkt,0)-boxes needed to cover the set AY (kt,r,0). Observe that

in view of (9.4), we have kt = log;%. So, we can apply Proposition 8.1 with
S=0° Q=0Q,; and kt in place of ¢, and conclude that the set AN (kt,r,0° can
be covered with at most k3e5th N Bowen (Nkt,0)-boxes in P, where k3, as are

as in (8.1), k1, a; are as in (9.3), and ko, ap are as in (9.5).
Finally, we need to estimate kze®Nk? aév from above. We have

ks = (1+C)02(9+8\/_)pk K2
3(8]) oc1 r p| Kiky

2 4
o) 2r C
83)( 0)(71) 8\/_) (0) (V(Va))

2

(9.6) , )
Co p C4 )
< (1+Cy|—=| (2+16
(9;)( ’ 0)( ) (2+16v7) (V(Ve)
c2 (4¢—)p *_q
353)(1+C0)(c) (2+16v7)" ( ) T2’

where C; := 1+ CO% 2+ 16\/ﬁ)’9/2 %C‘l = 1. Furthermore, we have

as (8:1) a)+dax+/ k3 ar

%
< =
& ay+a+ 02p az
9.7
©-D —— O)+C Akt 4c C:  4c
o3 v 1-c V62 1-¢
(9.5)
C2 oAk 8C, ¢
<1- ,U((T4QO) rp t+6—p'1TC.
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Therefore, by combining (9.6) and (9.7) we obtain

N C C 8C, Vc )

SNkt ,N 1 6Nkt 2 Akt 1

]C3€ as Sezpe 1—H(U490)+r—p€ +0—p:

This ends the proof of the lemma. O

Proof of Theorem 2.1. Let0< c< 1. Take t = f;, asin Lemma 9.1, and let Q = Q. ;,
be as in (9.1). Also let O be an open subset of X.

Proof of (1): Take 2 < ke N and x € X. Our goal is to find an upper bound for
the Hausdorff dimension of the set S(k, ¢, x) defined in (2.5). In view of (2.5)
and the countable stability of Hausdorff dimension it suffices to estimate the
dimension of
{hem:gmhxe QVNe N},

which, due to (9.1), coincides with Nyen AY (kt, 5, X2 )-

From Corollary 7.3 applied with 8 = %*, combined with Lemma 3.3 applied
with ¢ replaced by Nkt and r = r2—*, we get that for any N € N the set

r
Ak, X o)

can be covered with at most
eplmaXNk’( 4c )Nmax(u(x),d)
v(Vi,2) f%}t

e—lmaxth

l1-c¢

balls of radius % in P. Hence,

pAmax Nkt max | u(x),d

dim () AY (kt,r—*, Xocop )s lim e _ ik
NeN 2 ot/ N—oo —log 3 e~ AnaNk?
log A& gPAmaxkt 1 l1-¢
T Akt P T Ak O8Tac

Proof of (2): Let2<keN, and x € X. Our goal is to find an upper bound for
the Hausdorff dimension of the set

{he P\ S(k,t,x): hxe E(F*,0)}

Recall that
S(k,t,x)°={h e P: gyrhx € Q for some N e N}.

Therefore

{heP\S(k,t,x):thE(F+,O)}:{hEP:thE(F+,O)ﬂ(U g_thQ)}
NeN
c{heP:hxe U g_th(QnE(FJr,O))}
NeN
= J {heP:hxeg N (QnEF*, 0)}.
NeN
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Hence, since Hausdorff dimension is countably stable, to complete the proof of
this part, it suffices to show that for any N € N we have

—/lkt

1 Ve
=

)

_ 1(0490) - -5

9.8) dim{heP:hxe g ni(QNEF*, 0)} <

where Cj,C5,A as in Lemma 9.1.

Now let N € N and suppose r > 0 is such that (2.7) is satisfied, where a’, b’
are as in Lemma 9.1. Note that, since P is normalized by F*, we have P =
g-nktPgnk:- Moreover, V; is a tessellation domain. Hence, by countable stabil-
ity of Hausdorff dimension, in order to prove (9.8), it suffices to show that the
Hausdorff dimension of the set

Ejy.ori={he g i Vi gni: hxe g wu(QnEGF*,0))}

is not greater than the right-hand side of (9.8). For any h € E, we have

N,x,r
Sikt&NkthX = ik (NkehE-NKkt) Nk X € OF VieN,

and at the same time gni:hg-—Nk: € V,. Hence,

(9.9) Ey r € 8-Nki ﬂAgka(kt r,0°) | gnke-

Also, it is easy to see that if E’ N.x,r 18 non-empty, then

gnkix €V, (Qn0°) <, (QnO°).

So by applying Lemma 3.3 with r replaced by 8 and ¢ replaced with ikt, and
Lemma reffirstl with ¢ replaced by kt, we get that for any i € N and any 0 €
[, %], the set Al (kt,r,0% can be covered with at most

8Nkt X
5 e
o2p p r 1-c

balls of radius e mak? i p. Also, note that the Hausdorff dimension is pre-
served by conjugation. So, we have for any 0 € [r, % |:

C . Co _1irr 8C i
_1€plmaxtkt (1_“(0.490) +_2 —Aike | O+1 1 Ve )
r

dlmENx ; (_ dim| g_nkt

ﬂ Agthx (kt' T, OC) gth)

=dim ﬂ Al (kt,r,0)

ENktX
i
10g(02f’ epllmaxlkt (1 u(0-490) /'let_i_%r\/ac) )

< lim .
i—00 —logHe‘Amax’kf

—log(l p(o490) + CZ 2 g Akt | 8C ﬁ)

P 1-¢
)Lmaxkt
-Akt

=p-

H(oa90) = Ge Mk - E T
Amaxkt
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This finishes the proof. O

10. CONCLUDING REMARKS

10.1. Effective estimates. It is a natural problem to effectivize the estimates
showing up in the Dimension Drop Conjecture. Previous work of the authors
on the subject [19, 20] contained explicit estimates, although with no claims of
optimality. Namely, this has been done under the assumption that the comple-
ment of O is compact (in particular, when X is compact), and also in the special
case (1.2).

In the more general set-up of this paper it is also possible to make the esti-
mates effective. This however would require an additional ingredient: finding a
lower bound for the injectivity radii of compact sets {x: u;(x) < M} arising from
condition (ENDP). Such lower bounds can be obtained immediately whenever
the following condition is satisfied: Let P be a subgroup of G that has property
(ENDP), and let {u};>, be the family of height functions as in Definition 1.5;
then there exist positive constants i, m such that

(10.1) ro(x)_1 = mou(x)~™ for every xe X, t = fy.

This condition can be verified in many special cases. For example, in [28, 3]
certain height functions are constructed on homogeneous spaces of semisimple
Lie groups without compact factors, and for these height functions (10.1) is
verified in [28, Proposition 26] and [3, Lemma 6.3] respectively. By using the
same method one can easily show that (10.1) holds for height functions u; as in
Theorem 1.6, and also for the family of height functions constructed in [20] in
the case (1.2). A variation of our argument shows that in the presence of (10.1)
one has
u(0)
O8 il 0T

inf codim ({h € P: hx € E(F,0)}) >
xeX

1

where 0¢ is as in (2.9), and 0< 1, < 3

is a uniform constant independent of O.

10.2. Removing the Ad-diagonalizability condition. We expect that by a slight
modification of the proof of Theorem 1.1 one can show that this theorem holds
when F is an arbitrary one-parameter unbounded subsemigroup of a connected
semisimple Lie group G; namely, the condition that F is Ad-diagonalizable is not
necessary. Indeed, recall the Jordan decomposition of F = {g;}: one can write
g: = krazu;, where Kp = {k;} is bounded, Ar = {a;} is Ad-diagonalizable, and
Ur = {u,} is Ad-unipotent. These subgroups are uniquely determined and com-
mute with each other. If A is trivial (in other words, if F is Ad-quasiunipotent)
and Ur is not, then Ratner’s Measure Classification Theorem and the work of
Dani and Margulis (see [30, Lemma 21.2] and [7, Proposition 2.1]) imply that
whenever O is non-empty, the set E(F, O) is contained in a countable union of
proper submanifolds of X; hence dimension drop takes place in a stronger form.
On the other hand, if Ar is non-trivial, one can modify our argument following
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the lines of [13, §4], where an analog of (ENDP) was considered with (If ;) (x)
as in (1.4) replaced by a family of operators

w()— fp fy(agug™ h)dvh),
and with g running through the centralizer of Ar in G.

10.3. Jointly Dirichlet-improvable systems of linear forms:a dimension bound.
Fix m,n €N and, given c < 1, say that Y € M,;, , is c-Dirichlet improvable if for
all sufficiently large N

there exist p€ 2" and q € Z" \ {0} such that

(10.2)
IYq—pll <cNY™and 0< |q|l < N.

(In this subsection || - || stands for the supremum norm on R™, R” and R"*".)
We let DI, ,(c) be the set of c-Dirichlet improvable Y € My, ,,. Dirichlet’s theo-
rem (see, e.g., [27]) implies that DI, ,,(1) = M,, ,. Davenport and Schmidt [8]
proved that the Lebesgue measure of DI, ,,(c) is zero for any ¢ < 1, and also that
Uec<1DI,»(c) contains the set of badly approximable m x n matrices, which is
known [26] to have full Hausdorff dimension; in other words, dimDI(c) — mn
asc—1.

Recently in [20] a solution of DDC for the case (1.2), that is for the space X of
unimodular lattices in R™*", was used to derive a dimension drop result for the
family {DI,,,,(c)}: namely, that dimDI,, ,(c) < mn whenever ¢ < 1. Moreover,
as explained in [21, Remark 6], a combination of the methods from [20] with
measure estimates obtained in [21] can produce an effective estimate for the
codimension of DI, ,(c). The reduction to dynamics goes back to Davenport,

Schmidt and Dani [6]. It proceeds by assigning an element hy := [I(’)" }:] of

G =SL;+,(R) to Y. Arguing as in [22, Proposition 2.1] or [20, Proof of Theorem
1.5], one can see that Y € DI, ,(c) if and only if hy Z™*" € E(F, O), where

(10.3) o:{AeX: vl = ¢ for auveA\{O}}

(a subset of X with non-empty interior), and X, F are as in (1.2).

Our new Diophantine application is motivated by [4, §2.7], where Beres-
nevich and Velani introduced the notion of jointly singular k-tuples of matrices.
Namely, say that (Y3,...,Y) e M, ,’jm is c-Dirichlet improvable if for all sufficiently
large N

there exist pe 2", q€ Z" . {0} and i € {1,..., k} such that

(10.4)
|Y;q—pll <cN~"™and 0 < |q|| < N.

Denote the set of c-Dirichlet improvable (Y3, ..., Yi) by DI(,E?,Z (¢). Applying Dirich-
let’s theorem for each k, it is easy to see that DI%?n(l) = M,’im. When c <1 one
wants for each large N to improve the conclusion of Dirichlet’s theorem for at
least one of the matrices, and for different IV it does not have to be the same

matrix. If any one matrix within the tuple is c-Dirichlet improvable, then the
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entire k-tuple also possesses this property. However, it should be noted that in
general, the set DI%?n(c) could be much larger than the set

{n,....Ype M’,f’m :Y; € DIy, n(c) for some i =1,...,k}.

This raises a problem of showing some sort of dimension drop, which is achieved
by reducing the problem to a flow on the product of k copies of X as in (1.2).
Indeed, it is not hard to see that the validity of (10.4) for all sufficiently large N

is equivalent to the statement that for all sufficiently large ¢

(10.5) IveZz™ {0} and i €{1,..., k} with [|g hy,v] < cin
In its turn, (10.5) is equivalent to
(gthylzm+",...,gthykz”””) ¢O0x---x0,

where O is as in (10.3). We conclude that (Y3,...,Y;) € DI%ZC?,Z(C) if and only if
(hy,Z™",...,hy, 2™ € E(F®,0x --- x 0), where

k
F®:={(g,....gn:t=0} <[] G
i=1
is acting on X := ]_[f:l X.
Since F™® is a diagonalizable subsemigroup of Hle G whose expanding horo-
spherical subgroup is precisely

k
H® :=T]{hy:Y € Mp,n},

i=1
it follows from Theorem 1.6 that H®) has property (ENDP) with respect to
(X%, F®)  Moreover, since the action of F on X is exponentially mixing, by
using Fubini’s Theorem it is straightforward to check that the action of F*) on
X® is exponentially mixing as well; hence, by Theorem 1.4, H® has property
(ENDP) with respect to (X (k),F k), Therefore, we can apply Theorem 1.1 with
P =H™ and arrive at

THEOREM 10.1. The Hausdorff dimension of DI(,LC?n(c) is strictly less than kmn
foranyc<1 and keN.
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