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ABSTRACT. Let X =G/Γ, where G is a connected Lie group and Γ is a lattice
in G . Let O be an open subset of X , and let F = {gt : t ≥ 0} be a one-parameter
subsemigroup of G . Consider the set of points in X whose F -orbit misses O;
it has measure zero if the flow is ergodic. It has been conjectured that, as-
suming ergodicity, this set has Hausdorff dimension strictly smaller than the
dimension of X . This conjecture has been proved when X is compact or when
G is a simple Lie group of real rank 1, or, most recently, for certain flows on
the space of lattices. In this paper we prove this conjecture for arbitrary Ad-
diagonalizable flows on irreducible quotients of semisimple Lie groups. The
proof uses exponential mixing of the flow together with the method of inte-
gral inequalities for height functions on G/Γ. We also derive an application to
jointly Dirichlet-Improvable systems of linear forms.

1. INTRODUCTION

1.1. The set-up. Let G be a connected Lie group, and let Γ be a lattice in G .
Denote by X the homogeneous space G/Γ and by µ the G-invariant probability
measure on X . For an unbounded subset F of G and a non-empty open subset
O of X define the sets E(F,O) and Ẽ(F,O) as follows:

E(F,O) := {
x ∈ X : g x ∉O ∀g ∈ F

}
⊂ Ẽ(F,O) := {

x ∈ X : ∃ compact Q ⊂G such that g x ∉O ∀g ∈ F ∖Q
}

= ⋃
compact Q⊂G

E(F ∖Q,O)
(1.1)

of points in X whose F -trajectory always (resp., eventually) stays away from O.
If F is a subgroup or a subsemigroup of G acting ergodically on (X ,µ), then the
set {g x : g ∈ F } is dense for µ-almost all x ∈ X , in particular µ

(
Ẽ(F,O)

)= 0.
The present paper studies the following natural question, asked several years

ago by Mirzakhani: for a subgroup or sub-semigroup F ⊂G , if the set E (F,O) has
measure zero, does it necessarily have less than full Hausdorff dimension? It is
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reasonable to conjecture that the answer is always affirmative; in other words,
that the following ‘Dimension Drop Conjecture’ (DDC) holds:

CONJECTURE (Dimension Drop Conjecture). If F ⊂G is a subsemigroup and O
is an open subset of X , then either E(F,O) has positive measure, or its Hausdorff
dimension is less than the dimension of X .

When X is compact it follows from the variational principle for measure-
theoretic entropy, as outlined in [23, §7]; an effective argument using exponen-
tial mixing was developed in [19]. See also [1, Theorem 1.1 and Corollary 1.3]
which explores the dimension drop phenomenon in a different setting. We re-
mark that in the case when the space is non-compact there exists a conjecture
proposed by Cheung [5]: for any non-quasiunipotent flow on a finite volume
homogeneous space, the set of points whose orbit is divergent has positive codi-
mension.

A standard approach to this circle of problems is to use the phenomenon of
non-escape of mass on homogeneous spaces, going back to the work of Eskin–
Margulis–Mozes and Eskin–Margulis, see [11, 10] and also [15]. This is pre-
cisely how the aforementioned Cheung’s conjecture has been recently verified
by Guan and Shi [13]; see also [2, 25] for some related work. However combining
the non-escape of mass argument with an additional construction taking care
of the compact part of the space is more involved. Previously this was done in
the case when G is a simple Lie group of real rank 1 [9], and then, in the most
recent work of the authors [20], when

X = SLm+n(R)/SLm+n(Z) and

F = {
diag(ent , . . . ,ent ,e−mt , . . . ,e−mt ) : t ≥ 0

}
.

(1.2)

In this paper we generalize the approach of [20] by exhibiting two abstract
assumptions sufficient for the validity of DDC. One takes care of the compact
part of the space, while the other deals with the non-escape of mass.

1.2. Main results. Let now F = {g t : t ≥ 0} be an Ad-diagonalizable one-param-
eter subsemigroup of G . A key role in our approach will be played by the unsta-
ble horospherical subgroup with respect to F , defined as

H := {
g ∈G : dist(g t g g−t ,e) → 0 as t →−∞}

.(1.3)

Equivalently, H is the Lie group whose Lie algebra is a direct sum of eigenspa-
ces of Ad g1 corresponding to eigenvalues with absolute value > 1, see the proof
of Corollary 1.2 in § 2 for more detail. More generally, we will work with con-
nected subgroups P of H normalized by F and will give conditions sufficient for
‘dimension drop along P-orbits’; that is, ensuring a nontrivial upper estimate
for

dim
({

h ∈ P : hx ∈ Ẽ(F,O)
})

,

where x ∈ X is arbitrary, and O is a non-empty open subset of X .
The following theorem, which is the main result of the paper, is phrased

using two abstract conditions, which we call properties (EEP) and (ENDP) of
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the subgroup P relative to the flow (X ,F ). These will be defined and commented
upon in the next subsections.

THEOREM 1.1. Let G be a Lie group, Γ a lattice in G, X =G/Γ, F a one-parameter
Ad-diagonalizable subsemigroup of G, H as in (1.3), and P a subgroup of H
which is normalized by F and has properties (EEP) and (ENDP) with respect to
the flow (X ,F ). Then for any non-empty open subset O of X one has

inf
x∈X

codim
({

h ∈ P : hx ∈ Ẽ(F,O)
})> 0.

The next corollary provides a quite general situation when the above theorem
can be applied:

COROLLARY 1.2. Let

G =
n∏

i=1
Gi and Γ=

n∏
i=1

Γi ,

where each Gi is a connected semisimple Lie group without compact factors, and
each Γi is a non-uniform irreducible lattice in Gi . Let X = G/Γ, and let F be a
one-parameter Ad-diagonalizable subsemigroup of G such that the projection of
F to each Gi is unbounded. Then for any non-empty open subset O of X one has
dim Ẽ(F,O) < dim X ; that is, DDC holds in this generality.

We remark that the main result of [20] in the case (1.2) actually contains an
effective upper bound for the dimension of E(F,O). In the more general set-
up of this paper it is also possible to make our estimates effective. We have
decided not to overcomplicate the exposition with the proof of the stronger
result; however see §10.1 for some indications of the proof.

Another remark is that, similarly to [20], we could have considered cyclic
semigroups F of the form {g t : t ∈Z+}, where g is an Ad-diagonalizable element
of G . Then, after replacing g t with g t in (1.4), the conclusions of Theorem 1.1
and Corollary 1.2 can be established for discrete-time actions, with minor mod-
ifications of the proofs.

1.3. Notation. We start by introducing some notation which will be used through-
out the paper. Fix a right-invariant Riemannian structure on G , and denote by
‘dist’ the corresponding Riemannian metric, using the same notation for the in-
duced Riemannian metric on X . In what follows, if P is a subgroup of G , we will
denote by B P (r ) the open ball in P of radius r centered at the identity element
with respect to the metric on P corresponding to the Riemannian structure in-
duced from G . We will let ν stand for the Haar measure on P normalized so
that ν

(
B P (1)

)= 1. For simplicity, we use B(r ) instead of BG (r ) to denote a ball
of radius r in G centered at the identity element. Also, B(x,ρ) will stand for the
open ball in X centered at x ∈ X of radius ρ.

For x ∈ X denote by πx the map G → X given by πx (g ) := g x, and by r0(x) the
injectivity radius of x:

r0(x) := sup
{
r > 0 : πx is injective on B(r )

}
.
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If K is a subset of X , let us denote by r0(K ) the injectivity radius of K :

r0(K ) := inf
x∈K

r0(x) = sup
{
r > 0 : πx is injective on B(r ) ∀x ∈ K

}
;

it is known that r0(K ) > 0 if and only if K is bounded.
The notation A ≫ B where A and B are quantities depending on certain pa-

rameters, will mean A ≥C B , where C is a constant independent of those param-
eters.

Throughout the proof we will pay close attention to translates of P-orbits in
X by g t . It will be convenient to use the following notation: if f is a function on
P and t ≥ 0, we will define the integral operator I f ,t acting on functions ψ on X
via

(I f ,tψ)(x) :=
∫

P
f (h)ψ(g t hx)dν(h) .(1.4)

In other words, (I f ,tψ)(x) is the integral of ψ with respect to the g t -translate of
the πx -pushforward of the signed measure f dν. When f = 1B for a subset B of
P , we will write

IB ,t :=
∫

B
ψ(g t hx)dν(h)

in place of I1B ,t .

1.4. Exponential mixing and effective equidistribution. The first ingredient of
our proof is the effective equidistribution of g t -translates of P-orbits on X . To
introduce this property we will work with Sobolev spaces of functions on X . Let
us define

C∞
2 (X ):={

h ∈C∞(X ) : ∥h∥ℓ,2 <∞ for any ℓ ∈Z+
}
,

where ∥ ·∥ℓ,2 is the “L2, order ℓ" Sobolev norm (see §4 for more detail). Now let
us introduce the following.

DEFINITION 1.3 ([19]). Say that a subgroup P of G has Effective Equidistribution
Property (EEP) with respect to the flow (X ,F ) if there exist constants a,b,λ> 0
and ℓ ∈N such that for any x ∈ X and t > 0 with

t ≥ a +b log
1

r0(x)
,(1.5)

any f ∈C∞(P ) with supp f ⊂ B P (1) and any ψ ∈C∞
2 (X ) it holds that∣∣∣∣(I f ,tψ)(x)−

∫
P

f dν

∫
X
ψdµ

∣∣∣∣≪ max
(∥∥ψ∥∥

C 1 ,
∥∥ψ∥∥

ℓ,2

) ·∥∥ f
∥∥

Cℓ ·e−λt .(1.6)

Note that the constants a,b in (1.5) and the implicit constant in (1.6) are
allowed to depend on P and F , but not on x, t , f and ψ.

A widely used principle in homogeneous dynamics, which essentially origi-
nated from Margulis’ doctoral thesis, see [24], is the concept that mixing implies
the equidistribution of unstable leaves, that is, the orbits of H as defined in (1.3).
Effective versions of this principle have been exploited in [17, 18]. Specifically,
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let us say that a flow (X ,F ) is exponentially mixing if there exist γ> 0 and ℓ ∈Z+
such that for any ϕ,ψ ∈C∞

2 (X ) and for any t ≥ 0 one has∣∣∣∣(g tϕ,ψ)−
∫

X
ϕdµ

∫
X
ψdµ

∣∣∣∣≪ e−γt
∥∥ϕ∥∥

ℓ,2

∥∥ψ∥∥
ℓ,2.

This property for non-quasiunipotent flows follows from the strong spectral
gap of the regular representation of G , see [17]; the latter is known to hold
for quotients of semisimple Lie groups without compact factors by irreducible
lattices, see [16, p. 285].

The fact that property (EEP) for expanding horospherical subgroups follows
from exponential mixing was established in [19] by a variation of the method
developed in [17]:

THEOREM 1.4 ([19, Theorem 2.5]). Let G be a Lie group, Γ a lattice in G, and let F
be a one-parameter subsemigroup of G whose action on X =G/Γ is exponentially
mixing. Then H as in (1.3) satisfies property (EEP) with respect to the flow (X ,F ).

1.5. Height functions and integral inequalities. The second ingredient of our
proof is studying excursions of g t -translates of P-orbits in X outside of com-
pact subsets. For that it is helpful to have a family of positive functions on X
which grow at infinity and behave nicely with respect to integral operators of
type (1.4). This is done via the method of integral inequalities which goes back
to [11] and [10], and has been recently applied by Guan and Shi [13] to upper
estimates for the Hausdorff dimension of the set of points of X with divergent
g t -trajectories. To state their result, let us say that a non-negative continuous
function u on X is a height function if it is proper, that is u(x) →∞ if and only
if x →∞ in X , and regular, that is there exists a non-empty neighborhood B of
identity in G and C > 0 such that

u(hx) ≤Cu(x) for every h ∈ B and all x ∈ X ;(1.7)

equivalently, if for any bounded B ⊂ G there exists C > 0 such that (1.7) holds.
Also let us say that u satisfies the (c,d)-Margulis inequality with respect to an
operator I : C (X ) →C (X ) if for all x ∈ X one has

(Iu)(x) ≤ cu(x)+d .

See [12, 28], where functions u satisfying the (c,d)-Margulis inequality for some
c < 1 and d ∈ R are called Margulis functions. With this terminology, let us
introduce the following definition.

DEFINITION 1.5. Say that a subgroup P of G has Effective Non-Divergence Prop-
erty (ENDP) with respect to the flow (X ,F ) if there exists 0 < c0 < 1 and t0 > 0
such that for any t ≥ t0 one can find dt > 0 and a height function ut such that
ut satisfies the (c0,dt )-Margulis inequality with respect to IB P (1),t .

In the course of proving the main result of [20] the above property was shown
in the case (1.2), see [20, Proposition 3.4.]. The proof followed a construction
from [15] and used functions on the space of lattices coming from the work
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of Eskin, Margulis and Mozes [11]. To get more examples, we will quote the
following result from [13] (see also [29, Lemma 4.1]):

THEOREM 1.6 ([13, Lemma 4.3]). Let Let G, Γ, X and F be as in Corollary 1.2,
let H be as in (1.3), and let B = B H (1). Then there exist α, t0 > 0 and, for any
t ≥ t0, a height function ut on X and dt ∈R such that the function ut satisfies an
(e−αt ,dt )-Margulis inequality with respect to IB ,t . Consequently, H has property
(ENDP) with respect to (X ,F ).

We remark that, since the flow (X ,F ) as in the above theorem is exponen-
tially mixing, the expanding horospherical subgroup H has property (EEP) with
respect to (X ,F ) as well.

1.6. The structure of the paper. In the next section we state a technical theo-
rem (Theorem 2.1) and show how it implies Theorem 1.1 and Corollary 1.2. The
proof of Theorem 2.1 occupies the bulk of the paper. It has two main ingredi-
ents: one deals with orbits staying inside a fixed compact subset of X , which
are handled in §4–5 with the help of the effective equidistribution assumption.
The other one (§ 6–7) takes care of orbits venturing far away into the cusp of X ;
there we use the effective non-divergence property via the method of integral
inequalities for height functions on X . The two ingredients are combined in §8–
9. Some concluding remarks are presented in §10. In particular, §10.3 contains
an application to joint Dirichlet improvement in Diophantine approximation.
Namely, there we define the set DI(k)

m,n(c) of c-Dirichlet improvable k-tuples of

m ×n matrices, and prove that the Hausdorff codimension of DI(k)
m,n(c) is pos-

itive whenever c < 1. The case k = 1 was considered in [20] and was derived
from a solution of DDC for the case (1.2).

2. THEOREM 2.1 ⇒ THEOREM 1.1 ⇒ COROLLARY 1.2

From this point and until the end of §9, we let G be a Lie group, Γ a lattice in
G , X =G/Γ, F = {g t : t ≥ 0} a one-parameter Ad-diagonalizable subsemigroup of
G , H the unstable horospherical subgroup relative to F , and P a subgroup of H
which is normalized by F . Throughout the argument we will be assuming that
P satisfies either (EEP) or (ENDP) with respect to the flow (X ,F ), or, at the end
of the proof, both of the properties.

Let us introduce the following notation: for a non-empty open subset O of X
and r > 0 denote by σr O the inner r -core of O, defined as

σr O := {
x ∈ X : dist(x,Oc ) > r

}
.(2.1)

This is an open subset of O, whose measure is close to µ(O) for small enough
values of r .

Furthermore, for a closed subset S of X denote by ∂r S the r -neighborhood
of S, that is,

∂r S := {
x ∈ X : dist(x,S) < r

}
.
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In particular, for z ∈ X we have ∂r {z} = B(z,r ), the open ball of radius r centered
at z. Note that we always have

∂r S ⊂ (
σr (Sc )

)c for all S ⊂ X , r > 0.(2.2)

Also define p to be the Lie algebra of P , and let

λmin := min
{
λ : λ is an eigenvalue of adg1 |p

}
(2.3)

and

λmax := max
{
λ : λ is an eigenvalue of adg1 |p

}
.(2.4)

Note that all eigenvalues of the restriction of adg1 to p, including λmin and λmax,
are positive.

In this section we derive Theorem 1.1 from the following crucial but technical
theorem. It subdivides the argument into two cases: the first one deals with tra-
jectories which venture out of some big compact set Q along certain arithmetic
progressions, while the second, complementary case can be taken care of using
recurrence of trajectories to this compact set Q.

THEOREM 2.1. Let G ,Γ, X ,F = {g t : t ≥ 0} and P be as in Theorem 1.1, and let
p = dimP. Then there exist

r∗,C1,C2, a′,b′,λ> 0

such that the following holds:
For any 0 < c < 1 there exist t > 0 and a compact subset Q of X such that:

1. For all x ∈ X , and for all 2 ≤ k ∈N, the set

S(k, t , x) := {
h ∈ P : gN kt hx ∉Q ∀N ∈N

}
(2.5)

satisfies

codimS(k, t , x) ≥ 1

λmaxkt
log

1− c

4c
.(2.6)

2. For all 2 ≤ k ∈N, all r satisfying

e
a′−kt

b′ ≤ r < 1

4
min

(
r0 (∂1Q) ,r∗

)
,(2.7)

all θ ∈ [
r, r∗

2

]
, all x ∈ X , and for all open subsets O of X we have

codim
({

h ∈ P ∖S(k, t , x) : hx ∈ Ẽ(F,O)
})≥ µ

(
σ4θO

)− 8C1
θp

p
c

1−c − C2
r p e−λkt

λmaxkt
.(2.8)

We now show how the two estimates are put together.

Proof of Theorem 1.1 assuming Theorem 2.1. Recall that we are given the con-
stants r∗,C1,C2, a′,b′,λ > 0 such that statements (1), (2) of Theorem 2.1 hold.
Let O be an open subset of X . Define

θO := sup

{
0 < θ ≤ 1 : µ(σ4θO) ≥ 1

2
µ(O)

}
,(2.9)
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then put θ := min(θO , r∗
2 ) and

c := min

(
1

4e1/2 +1
,

(
µ(O)

128C1
·θp

)2)
.(2.10)

Now choose t and Q as in the assumption of Theorem 2.1. Then in view of
(2.10), statement (1) of Theorem 2.1 readily implies that for any 2 ≤ k ∈N one
has

codimS(k, t , x) ≥ 1

2λmaxkt
.(2.11)

Next, let

r := 1

4
min

(
r0 (∂1Q) ,r∗,θO

)
.(2.12)

Clearly the second inequality in (2.7) is then satisfied. Now take 2 ≤ k ∈ N

sufficiently large so that

e
a′−kt

b′ ≤ r and
C2

r p e−λkt ≤ µ(O)

8
;(2.13)

this will imply the first inequality in (2.7). Also it is easy to see from (2.12) and
the definition of θ that θ ∈ [

r, r∗
2

]
; hence (2.8) holds.

Observe that since θ ≤ θO , in view of (2.9) we have

µ
(
σ4θO

)≥ µ(O)

2
.(2.14)

The definition of c implies

8C1

θp

p
c

1− c
<

c<1/2

8C1

θp ·2
p

c ≤
(2.10)

µ(O)

8
.(2.15)

Hence, by combining (2.13), (2.14) and (2.15), we conclude that the numerator
in the right hand side of (2.8) is not less than µ(O)/4. Thus (2.8) implies

codim
(
{h ∈ P ∖S(k, t , x) : hx ∈ Ẽ(F,O)}

)≥ µ(O)

4λmaxkt
.

Combining it with (2.11), we obtain

codim
(
Ẽ(F,O)∩P x

)≥ 1

4λmaxkt
min

(
2,µ(O)

)= µ(O)

4λmaxkt
,

which is a positive number independent of x. This finishes the proof.

Proof of Corollary 1.2. Let G ,Γ, X and F be as in Corollary 1.2, and let H be as in
(1.3). Let g be the Lie algebra of G , gC its complexification, and for λ ∈C, let Eλ

be the eigenspace of Ad g1 corresponding to λ. Let h, h0, h− be the subalgebras
of g with complexifications:

hC = span(Eλ : |λ| > 1), h0
C = span(Eλ : |λ| = 1), h−C = span(Eλ : |λ| < 1).

Note that h is the Lie algebra of H . Moreover, h− is the Lie algebra of the stable
horospherical subgroup defined by

H− := {h ∈G : g t hg−t → e as t →+∞}.
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Since Ad g1 is assumed to be diagonalizable, g is the direct sum of h, h0 and h−.
Hence, if we denote the group H−H 0 by H̃ , G is locally (at a neighborhood of
identity) a direct product of H and H̃ .

Now let O be a non-empty open subset of X , and fix 0 < ρ < 1 such that the
following properties are satisfied: the multiplication map H̃ ×H →G is one to

one on B H̃ (ρ)×B H (ρ),

g t B H̃ (ρ)g−t ⊂ B H̃ (2ρ) for any t ≥ 0,(2.16)

and

σ2ρO ̸=∅.(2.17)

Note that (2.16) can be satisfied since F is Ad-diagonalizable and the restric-
tion of the map g → g t g g−t , t ≥ 0, to H̃ is non-expanding. Also (2.17) can be
achieved, since, in view of (2.1), σr O is non-empty when r > 0 is sufficiently
small.

Now in view of (2.17), we can apply Theorem 1.1 with O replaced with σ2ρO
and conclude that there exists ε> 0 such that

dim
({

h ∈ H : hx ∈ Ẽ(F,σ2ρO)
})= dim H −ε< dim H .(2.18)

Choose s > 0 such that B(s) is contained in the product B H̃ (ρ)B H (ρ), and for
x ∈ X denote

Ex :={
g ∈ B(s) : g x ∈ Ẽ(F,O)

}
.

In view of the countable stability of Hausdorff dimension, in order to prove the
corollary it suffices to prove that for any x ∈ X ,

dimEx ≤ dim X −ε,

where ε is as in (2.18); note that Ẽ(F,O) can be covered by countably many
sets {g x : g ∈ Ex }, with the maps πx : Ex → X being Lipschitz and at most finite-

to-one. Since every g ∈ B(s) can be written as g = h′h, where h′ ∈ B H̃ (ρ) and
h ∈ B H (ρ), for any y ∈ X we can write

dist(g t g x, y) ≤ dist(g t h′hx, g t hx)+dist(g t hx, y)

= dist
(
g t h′g−t g t hx, g t hx

)+dist(g t hx, y).

Hence in view of (2.16), g ∈ Ex implies that hx belongs to E(F,σ2ρO), and by
using Wegmann’s Product Theorem [31] we have

dimEx ≤ dim
(
{h ∈ B H (ρ) : hx ∈ E(F,σ2ρO)}×B H̃ (ρ)

)
≤ dim

(
{h ∈ B H (ρ) : hx ∈ Ẽ(F,σ2ρO)}

)+dim H̃

≤
(2.18)

dim H −ε+dim H̃ = dim X −ε.

This ends the proof of the corollary.
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3. TESSELLATIONS AND BOWEN BOXES

Following [17], say that an open subset V of P is a tessellation domain relative
to a countable subset Λ of P if

• ν(∂V ) = 0;
• V γ1 ∩V γ2 =∅ for different γ1,γ2 ∈Λ;
• P = ⋃

γ∈Λ
V γ.

Note that P is a connected simply connected nilpotent Lie group. Denote
p := Lie(P ) and p := dimP . As shown in [17, Proposition 3.3], one can choose a
basis of p such that for any r > 0, exp

(
r Ip

)
, where Ip ⊂ p is the cube centered at

0 with side length 1 with respect to that basis, is a tessellation domain relative
to some discrete subset of P . Let us denote

Vr := exp

(
r

4
p

p
Ip

)
(3.1)

and choose a countable Λr ⊂ P such that Vr is a tessellation domain relative to
Λr .

Take 0 < r∗ < 1/4 such that the exponential map from p to P is 2-bi-Lipschitz
on Bp(r∗). The latter implies that

B P
( r

16
p

p

)
⊂Vr ⊂ B P

(r

4

)
for any 0 < r ≤ r∗.(3.2)

Also, the measure ν and the pushforward of the Lebesgue measure Leb on p are
absolutely continuous with respect to each other with locally bounded Radon–
Nikodym derivative. This implies that there exist 0 < c1 < c2 such that

c1Leb(A) ≤ ν
(

exp(A)
)≤ c2Leb(A) ∀measurable A ⊂ Bp(1).(3.3)

In what follows we will be taking θ ≥ r and approximating Vθ by the union of
Λr -translates of Vr . The following estimate will be helpful:

LEMMA 3.1. For any 0 < r ≤ θ ≤ r∗/2

#{γ ∈Λr : Vr γ∩Vθ ̸=∅} ≤ c2

c1

(
θ

r
+8

p
p

)p

.

Proof. Note that if Vr γ intersects Vθ, then in view of (3.2) we must have Vr γ⊂
∂r /2Vθ. Hence, using the fact that Vr is a tessellation domain relative to Λr , we
have

#{γ ∈Λr : Vr γ∩Vθ ̸=∅} ≤ ν (∂r /2Vθ)

ν (Vr )
≤

(3.3)

c2

c1
·

Leb
(
∂r

(
θ

4
p

p Ip
))

Leb
(

r
4
p

p Ip
)

= c2

c1
·
(

θ
4
p

p +2r
)p

(
r

4
p

p

)p = c2

c1

(
θ

r
+8

p
p

)p

,
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where in the second inequality above we were able to use the bi-Lipschitz prop-
erty of exp since

∂r
( θ

4
p

p
Ip

)⊂ Bp
(
θ

8
+ r

)
⊂ Bp(r∗).

This finishes the proof.

Recall that all eigenvalues of the restriction of adg1 to p are positive. Using
the bi-Lipschitz property of exp, one can conclude that

diam(g−t Vr g t ) ≤ 2 ·diam

(
exp

(r e−λmint

4
p

p
Ip

))

≤ r e−λmint

2
for any 0 < r ≤ r∗ and any t ≥ 0,

(3.4)

where λmin is as in (2.3). Also let δ := Tradg1 |p; clearly one then has

ν(g−t Ag t ) = e−δtν(A) for any measurable A ⊂ P.(3.5)

Let us now define a Bowen (t ,r )-box in P to be a set of the form g−t Vr γg t for
some γ ∈ P and t ≥ 0. The following lemma, analogous to [17, Proposition 3.4]
and [19, Lemma 6.1], gives an upper bound for the number of γ ∈Λr such that
the Bowen box g−t Vr γg t has non-empty intersection with Vr :

LEMMA 3.2. For any 0 < r ≤ r∗/2 and

t ≥ log(8
p

p)

λmin
,(3.6)

one has
#{γ ∈Λr : g−t Vr γg t ∩Vr ̸=∅} ≤ eδt

(
1+C0e−λmint

)
,

where

C0 := 2p+3p3/2c2

c1
.(3.7)

Proof. Let 0 < r ≤ r∗/2. One has:

#
{
γ ∈Λr : g−t Vr γg t ∩Vr ̸=∅

}
= #

{
γ ∈Λr : g−t Vr γg t ⊂Vr

}+#
{
γ ∈Λr : g−t Vr γg t ∩∂Vr ̸=∅

}
.

Since Vr is a tessellation domain of P relative to Λr , the first term in the above
sum is not greater than ν(Vr )

ν(g−t Vr g t ) = eδt , while, in view of (3.4), the second term
is not greater than

ν
(
∂ r e−λmin t

2

(∂Vr )
)

ν(g−t Vr g t )
≤

(3.3)
(3.5)

c2eδt
Leb

(
∂r e−λmin t

(
∂( r

4
p

p Ip)
))

ν(Vr )
.(3.8)

(Here we used the fact that

∂r e−λmin t

(
r

4
p

p
Ip

)
⊂ Bp

(r

8
+ r e−λmint

)
⊂ Bp

(
9r

8

)
⊂ Bp

(
9r∗
16

)
⊂ Bp(1),
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hence we can use the 2-bi-Lipschitz property of exp to conclude that

exp
(
∂r e−λmin t

(
∂( r

4
p

p Ip)
))⊃ ∂ r e−λmin t

2

(∂Vr ),

and the estimate (3.3) is applicable.) It is easy to see that the numerator in the
right hand side of (3.8) is not greater than(

r

4
p

p
+2r e−λmint

)p

−
(

r

2
p

p
−2r e−λmint

)p

≤
(MVT)

4r e−λmint p

(
r

4
p

p
+2r e−λmint

)p−1

≤
(3.6)

4pr e−λmint
(

r

2
p

p

)p−1

= 2p+3p3/2
(

r

4
p

p

)p

e−λmint

≤
(3.1)
(3.3)

2p+3p3/2

c1
ν(Vr )e−λmint ,

which finishes the proof.

We conclude the section with a lemma, which is a slight modification of [19,
Lemma 6.4], to be used at the last stage of the proof for switching from coverings
by Bowen boxes to coverings by balls.

LEMMA 3.3. For any t > 0 and any 0 < r ≤ r∗, any Bowen (t ,r )-box in P can be
covered with at most e(pλmax−δ)t balls of radius r e−λmaxt , where λmax is as in (2.4).

Proof. Using the 2-bi-Lipschitz property of exp again, one can cover g−t Vr g t by

at most as many balls of radius r e−λmaxt , as the number of translates of r e−λmax tp
p Ip

needed to cover Ad(g−t )
(

r
4
p

p Ip
)
. The latter can be written as the direct product

of intervals I1, . . . , Ip , where mini Leb(Ii ) = r e−λmax t

4
p

p . Clearly each Ii can be cov-

ered by the union of intervals of length r e−λmax tp
p whose total measure is at most

4Leb(Ii ). Hence Ad(g−t )
(

r
4
p

p Ip
)

can be covered by at most

4p Leb
(
Ad(g−t )

( r
4
p

p Ip
))

Leb
(

r e−λmax tp
p Ip

) =
4p e−δt

(
r

4
p

p

)p

(
r e−λmax tp

p

)p = e(pλmax−δ)t

translates of r e−λmax tp
p Ip, which finished the proof of the lemma.

4. PROPERTY (EEP) AND A MEASURE ESTIMATE

Our goal in this section is to use property (EEP) of P to find a lower bound
for the measure of the sets of the type{

h ∈Vr : g t hx ∈O
}
,(4.1)

where x ∈ X , O is a subset of X , r > 0 is small enough, and t > 0 is large enough.
This step is similar to [19, Theorem 4.1], where balls in P were used in place of
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tessellation domains Vr . For our new proof the use of tessellations is crucial; to
make the paper self-contained we present a complete argument.

We start with the definition of Sobolev spaces. Let L be a Lie group and ∆ a
discrete subgroup of L such that L/∆ admits an L-invariant measure. Fix a basis
{Y1, . . . ,YN } for the Lie algebra of L, and, given h ∈ C∞(L/∆), k ∈ N and ℓ ∈ Z+,
define the “Lk , order ℓ" Sobolev norm ∥h∥ℓ,k of h by

∥h∥ℓ,k
def= ∑

|α|≤ℓ

∥Dαh∥k ,

where ∥·∥k stands for the Lk -norm, α= (α1, . . . ,αN ) is a multiindex, |α| =∑N
i=1 αi ,

and Dα is a differential operator of order |α| which is a monomial in Y1, . . . ,YN ,
namely Dα = Y α1

1 · · ·Y αN
N . This definition depends on the basis, however, a

change of basis would only distort ∥ · ∥ℓ,k by a bounded factor. We will also
use the operators Dα to define Cℓ norms of smooth functions f on L/∆:

∥ f ∥Cℓ := sup
x∈L/∆, |α|≤ℓ

|Dα f (x)|.

We will work with Sobolev spaces of functions on G (letting L =G and ∆= {e}),
on P (letting G = P and ∆= {e}), as well on X =G/Γ.

The next two lemmas provide a way to approximate subsets of G and X re-
spectively by smooth functions. We start with a basic lemma constructing test
functions supported inside small neighborhoods of identity in G . It is an imme-
diate corollary of [14, Lemma 2.6], see also [17, Lemma 2.4.7(b)].

LEMMA 4.1. For each ℓ ∈ Z+ there exists MG ,ℓ ≥ 1 with the following property:
for any 0 < ε< 1 there exists a nonnegative smooth function ϕε on G such that

1. the support of ϕε is contained in B(ε);
2. ∥ϕε∥1 = 1;
3. ∥ϕε∥ℓ,1 ≤ MG ,ℓ ·ε−ℓ.

The next lemma is a slightly easier version of [19, Lemma 5.2]; we provide
the proof for the sake of completeness. Before stating the lemma, we introduce
the notation 1E to denote the characteristic function of a set E .

LEMMA 4.2. For any ℓ ∈Z+ there exists a constant Mℓ > 0 (depending only on ℓ

and G) such that for any nonempty open subset O of X and any 0 < ε< 1 one can
find a nonnegative function ψε ∈C∞(X ) such that

1. 1σεO ≤ψε ≤ 1O ;
2. max

(∥∥ψε

∥∥
ℓ,2,

∥∥ψε

∥∥
Cℓ

)≤ Mℓε
−ℓ.

Proof. Let O be a nonempty open subset of X , and let 0 < ε < 1. Now take
ψε = ϕε/2 ∗ 1σε/2O , where ϕε/2 is as in Lemma 4.1. It follows from the defini-
tion of ψε and the normalization ∥ϕε∥1 = 1 that ψε(x) ≤ 1 for all x. Also, since
ϕε/2 is supported on B(ε/2), the support of the function ψε is contained in
∂ε/2σε/2O ⊂ O, which implies ψε ≤ 1O . Furthermore, if x ∈σεO and g ∈ B(ε/2),
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then g x ∈ ∂ε/2σεO ⊂σε/2O, i.e., 1σε/2O(g x) = 1. Therefore,

ψε(x) =
∫

G
ϕε/2(g )1σε/2O(g x)dµG =

∫
G
ϕε/2(g )dµG = 1.

Hence property (1) holds.
Let α= (α1, . . . ,αN ) be such that |α| ≤ ℓ. For any x ∈ X we have∣∣Dαψε(x)

∣∣= ∣∣Dα(ϕε/2 ∗1σε/2O)(x)
∣∣= ∣∣Dαϕε/2 ∗1σε/2O(x)

∣∣
≤ ∥∥Dαϕε/2

∥∥
1 ≤

∥∥ϕε/2
∥∥
ℓ,1 ≤ MG ,ℓ( ε

2 )−ℓ,

where MG ,ℓ is as in Lemma 4.1. Likewise, by Young’s inequality,∥∥Dαψε

∥∥
2 ≤ ∥Dαϕε/2 ∗1σε/2O∥2 ≤

∥∥Dαϕε/2
∥∥

1 ·
∥∥1σε/2O

∥∥
2

≤ ∥∥Dαϕε/2
∥∥

1 ≤ MG ,ℓ( ε
2 )−ℓ,

which implies (2) with Mℓ = 2ℓMG ,ℓ.

The next lemma is a modification of [19, Lemma 5.3] where we replace balls
of radius r in P with Vr ; we omit the proof.

LEMMA 4.3. Let r∗ be as in (3.2). For any ℓ ∈ Z+ there exist constants M ′
ℓ
≥ 1

(depending only on ℓ and P) such that the following holds: for any 0 < ε,r ≤ r∗/2
there exists a function fε : P → [0,1] such that

1. fε = 1 on Vr ;
2. fε = 0 on

(
Vr+ε

)c ;
3. max

(∥∥ fε
∥∥
ℓ,2 ,

∥∥ fε
∥∥

Cℓ

)≤ M ′
ℓ
ε−ℓ.

Here is the main result of the section, which is a modified and improved ver-
sion of [19, Proposition 5.1]. Roughly speaking, it states that for large enough t
the relative measure of h ∈Vr such that g t hx ∈O is not much less than µ(O).

PROPOSITION 4.4. Suppose that P has property (EEP) with respect to the flow
(X ,F ). Then for any open O ⊂ X , any x ∈ X , any

0 < r < 1

2
min

(
r0(x),r∗

)
,(4.2)

and any t satisfying

t ≥ a′+b log
1

r0(x)
(4.3)

one has
ν

(
{h ∈Vr : g t hx ∈O}

)≥ ν (Vr )µ(σe−λ′ t O)−e−λ′t .

Here

λ′ := λ

4ℓ+2
(4.4)

and

a′ := max

(
a,

1

λ′ log
(
MℓM ′

ℓE +pc2
)

,
log 2

r∗
2λ′

)
,(4.5)
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where ℓ,λ, a,b are as in Definition 1.3, E is an implicit constant from (1.6), c2 is
as in (3.3), and Mℓ, M ′

ℓ
are as in Lemmas 4.2 and 4.3.

Proof of Proposition 4.4. Let O ⊂ X be an open subset of X , and take x ∈ X and
r as in (4.2). Now set f = 1Vr , take t as in (4.3) and put ε := e−2λ′t . Note that
(4.3) and (4.5) give

ε≤ r∗
2

.(4.6)

Now let ψε and fε be the functions constructed in Lemmas 4.2 and 4.3 respec-
tively. Then we have

max(∥ψε∥C 1 ,
∥∥ψε

∥∥
ℓ,2) ·∥∥ fε

∥∥
Cℓ ·e−λt ≤ max(∥ψε∥Cℓ ,

∥∥ψε

∥∥
ℓ,2) ·∥∥ fε

∥∥
Cℓ ·e−λt

≤ Mℓε
−ℓM ′

ℓε
−ℓe−λt

= MℓM ′
ℓe4ℓλ′t−λt ≤

(4.4)
MℓM ′

ℓe−2λ′t .

(4.7)

Furthermore, by (3.2) and (4.6),

supp fε ⊂Vr+e−2λ′ t ⊂Vr+ r∗
2
⊂Vr∗ ⊂ B P (1).(4.8)

Also, in view of (4.5) we have a′ ≥ a; hence, inequality (1.5) is satisfied for any
x, t satisfying (4.3). Hence the estimate (1.6) can be applied to ψε, fε, x and t ,
and, in view of (4.7), yields∫

P
fε(h)ψε(g t hx)dν(h) ≥

∫
P

fε dν

∫
X
ψε dµ−MℓM ′

ℓEe−2λ′t .

Thus we have

ν
(
{h ∈Vr : g t hx ∈O}

)=∫
P

f (h)1O(g t hx)dν(h)

≥
∫

P
f (h)ψε(g t hx)dν(h)

≥
∫

P
fε(h)ψε(g t hx)dν(h)−

∫
P
| fε− f |dν

≥
∫

P
fε(h)ψε(g t hx)dν(h)−ν

(
Vr+e−2λ′ t ∖Vr

)
.

Since by (4.2) and (4.6) we have r + e−2λ′t ≤ r∗, it follows that r+e−2λ′ t

4
p

p Ip ⊂ Bp(1).

So in view of (3.3),

ν
(
Vr+e−2λ′ t ∖Vr

)≤ c2Leb

(
r +e−2λ′t

4
p

p
Ip∖

r

4
p

p
Ip

)

≤
(MVT)

c2

(
1√
4p

)p

e−2λ′t p
(
r +e−2λ′t )p−1 ≤ c2pe2λ′t .
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Combining the above computations, we obtain

ν
(
{h ∈Vr : g t hx ∈O}

)≥∫
P

fε(h)ψε(g t hx)dν(h)− c2pe−2λ′t

≥
∫

P
fε dν

∫
X
ψε dµ−MℓM ′

ℓEe−2λ′t − c2pe−2λ′t

≥ ν (Vr )µ(σεO)− (MℓM ′
ℓE + c2p)e−2λ′t

= ν (Vr )µ(σe−2λ′ t O)− (MℓM ′
ℓE + c2p)e−2λ′t

≥
(4.5)

ν (Vr )µ(σe−λ′ t O)−e−λ′t .

5. COVERINGS BY BOWEN BOXES

For x ∈ X , t > 0, N ∈N and a subset S of X let us define

AN
x (t ,r,S) := {

h ∈Vr : gℓt hx ∈ S ∀ℓ ∈ {1, . . . , N }
}
.(5.1)

Clearly the set (4.1) studied in the previous section has the same measure as
A1

x (t ,r,O). Our goal in this section will be to inductively use Proposition 4.4 to
find an effective covering result for the set AN

x (t ,r,Oc ). We start with the follow-
ing theorem, which is a modified and improved version of [19, Proposition 5.1]:

THEOREM 5.1. Let P be a subgroup of G that has property (EEP) relative to the

flow (X ,F ). Then there exist positive constants a′,b′ ≥ log(8
p

p)
λmin

,C2,λ such that for
any open O ⊂ X , any

0 < r < 1

2
min

(
r0

(
∂1/2(Oc )

)
,r∗

)
,(5.2)

any x ∈ ∂r (Oc ), any t satisfying

t ≥ a′+b′ log
1

r
,(5.3)

and any N ∈N, the set AN
x (t ,r,Oc ) can be covered with at most

eδN t
(
1−µ(σr O)+ C2

r p e−λt
)N

Bowen (N t ,r )-boxes in P.

We remark that the above theorem, as well as Theorem 5.3 proved later in
this section, is applicable only to the situations when the complement of O is
compact: indeed, otherwise r0

(
∂1/2(Oc )

)= 0 and (5.2) is never satisfied.

Before we prove the theorem, we need the following lemma:

LEMMA 5.2. For any x ∈ X , any O ⊂ X , any 0 < r ≤ r∗ and any t > 0 we have

#
{
γ ∈Λr : Vr γg t x ⊂O

}
≥ ν

(
A1

x (t ,r,σr /2O)
)

ν(g−t Vr g t )
.(5.4)
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Proof. For any γ ∈ P and any h1,h2 ∈Vr we have

dist
(
h1γg t x,h2γg t x

)≤ dist(h1,h2) ≤ diam(Vr ) ≤ r /2.(5.5)

Hence, if
A1

x (t ,r,σr /2O)∩ g−t Vr γg t ̸=∅
for γ ∈Λr , then for some h ∈Vr one has g t hx ∈σr /2O ∩Vr γg t x, and, in view of
(5.5) and ∂r /2(σr /2O) ⊂O, we can conclude that Vr γg t x ⊂O. Thus

A1
x (t ,r,σr /2O) ⊂ ⋃

γ∈Λr

Vr γg t x⊂O

g−t Vr γg t ,

and (5.4) follows from the definition of Vr being a tessellation domain relative
to Λr .

Proof of Theorem 5.1. Take a′,b,λ′ be as in Proposition 4.4, and λmin as in (2.3).
Also set

b′ := max

(
b,

1

λ′ ,
log(16

p
p)

λmin

)
.(5.6)

Fix an open O ⊂ X , and take r as in (5.2). Also take x ∈ ∂r (Oc ) and t as in (5.3).
First let us show how to derive the desired result for N = 1 from Proposi-

tion 4.4. Observe that

t ≥
(5.3)

a′+b′ log
1

r
≥

(5.2)
b′ log

2

r∗
>

(r∗< 1
4 )

b′ ≥
(5.6)

log(8
p

p)

λmin
.

So, by combining Lemma 3.2 with Lemma 5.2, we conclude that A1
x (t ,r,Oc ) can

be covered with at most

#
{
γ ∈Λr : g−t Vr γg t ∩Vr ̸=∅

}
−#

{
γ ∈Λr : Vr γg t x ⊂O

}
≤ eδt

(
1+C0e−λmint

)
− ν

(
A1

x (t ,r,σr /2O)
)

ν(g−t Vr g t )

Bowen (t ,r )-boxes in P , where C0 is as in (3.7). Note that whenever x ∈ ∂r (Oc ),
(4.2) and (4.3) follow from (5.2), (5.3) and (5.6). Moreover, we have

λ′t ≥
(5.3)

λ′a′+λ′b′ log
1

r
≥

(4.5)
(5.6)

log 2
r∗

2
+ log

1

r
≥

(r∗< 1
4 )

log
2

r
.(5.7)

Hence one can apply Proposition 4.4 and conclude that A1
x (t ,r,Oc ) can be cov-

ered with at most

eδt

(
1+C0e−λmint −µ(σe−λ′ t σr /2O)+ e−λ′t

ν(Vr )

)

≤
(5.7)

eδt

(
1+C0e−λmint −µ(σr O)+ e−λ′t

ν(Vr )

)

≤ eδt
(
1−µ(σr O)+ C2

r p e−λt
)
=: N (r, t )
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Bowen (t ,r )-boxes in P, where λ := min(λmin,λ′) and

C2 :=C0 +
(4
p

p)p

c1
.(5.8)

Now let g−t Vr γg t be one of the Bowen (t ,r )-boxes in the above cover which
has non-empty intersection with A1

x (t ,r,Oc ). Take any q = g−t hγg t ∈ g−t Vr γg t ;
then g t qx = hγg t x, hence{

g t qx : q ∈ g−t Vr γg t

}
=

{
hγg t x : h ∈Vr

}
.

Consequently,

{q ∈ g−t Vr γg t : g2t qx ∉O} = g−t A1
x (t ,r,Oc )γg t .(5.9)

Note that since diam(Vr γ) < r and g−t Vr γg t ∩A1
x (t ,r,Oc ) is non-empty, we have

γg t x ∈ ∂r (Oc ). Hence, by going through the same procedure, this time using
γg t x in place of x, we can cover the set in the left hand side of (5.9) with at most
N (r, t ) Bowen (2t ,r )-boxes in P . Therefore, we conclude that the set A2

x (t ,r,Oc )
can be covered with at most N (r, t )2 Bowen (2t ,r )-boxes in P . By doing this
procedure inductively, we can see that for any N ∈N, the set AN

x (t ,r,Oc ) can be
covered with at most

N (r, t )N = eδN t
(
1−µ(σr O)+ C2

r p e−λt
)N

Bowen (N t ,r )-boxes in P . This finishes the proof.

Next we are going to apply Theorem 5.1 to cover AN
x (t ,r,Oc ) with Bowen

(N t ,θ)-boxes, where r ≤ θ ≤ r∗
2 .

THEOREM 5.3. Let P ⊂ G have property (EEP) relative to the flow (X ,F ). Then,
with a′,b′,C2,λ as in Theorem 5.1, for any open O ⊂ X , any t as in (5.3), any r
such that

0 < r < 1

4
min

(
r0

(
∂1(Oc )

)
,r∗

)
,(5.10)

any x ∈ ∂r (Oc ), any N ∈N, and any θ ∈ [
r, r∗

2

]
, the set AN

x (t ,r,Oc ) can be covered
with at most

c2

c1

(
2r

θ

)p

eδN t
(
1−µ

(
σ4θO

)+ C2

r p e−λt
)N

Bowen (N t ,θ)-boxes in P.

Proof. Consider the covering of AN
x (t ,r,Oc ) by Bowen boxes{

g−N t VθγgN t : γ ∈Λθ

}
.

Let R be one of those boxes, so that

R ∩ AN
x

(
t ,r,Oc) ̸=∅.(5.11)
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Since θ < r∗, in view of (3.4) we have diam(R) ≤ θ
2 e−λminN t ; furthermore,

θe−λmint ≤
(5.3)

θe−λminb′ log 1
r ≤ θe−log(8

p
p) log 1

r ≤
(θ≤1)

r

8
p

p
.(5.12)

Since R ∩Vr ̸=∅, it follows that

R ⊂ ∂ θ
2 e−λminN t Vr ⊂

(5.12)
∂ r

16
p

p
Vr ⊂V2r ,

where in the last inclusion we again use the 2-bi-Lipschitz property of exp.
We now claim that R is contained in AN

x

(
t ,2r ,∂2θ(Oc )

)
. Indeed, in view of

(5.11) we can find h′
1 := g−N t h1γgN t ∈ R such that gi t h′

1x ∈Oc for all i ∈ {1, . . . , N }

(here h1 ∈ Vθ). Then take any h′
2 := g−N t h2γgN t ∈ R, where again h2 ∈ Vθ, and

for any i ∈ {1, . . . , N } write

gi t h′
2x = (g−(N−i )t h2h−1

1 g(N−i )t )gi t h′
1x

∈ (g−(N−i )t h2h−1
1 g(N−i )t )Oc ⊂

(3.4)
∂2θe−λmin(N−i )t (Oc ) ⊂ ∂2θ(Oc ).

Note that since θ ≤ r∗/2 < 1/8, we have ∂1/2
(
∂2θ(Oc )

) ⊂ ∂1Oc , which implies

r0

(
∂1/2

(
∂2θ(Oc )

))≥ r0(∂1Oc ). Thus, since (5.10) is satisfied, the following is sat-

isfied as well:

0 < 2r < 1

2
min

(
r0

(
∂1/2

(
∂2θ(Oc )

)
,r∗

))
.

Consequently, Theorem 5.1, applied to O replaced with σ2θO and r replaced
with 2r , implies that

ν
(

AN
x

(
t ,2r ,∂2θ(Oc )

)) ≤
(2.2)

ν
(

AN
x

(
t ,2r , (σ2θO)c))

≤ ν(g−N t V2r gN t ) ·eδN t
(
1−µ

(
σ2r (σ2θO)

)+ C2

(2r )p e−λt
)N

≤
(θ≥r )

ν(V2r )

(
1−µ

(
σ4θO

)+ C2

r p e−λt
)N

for any x ∈ ∂r (Oc ) ⊂ ∂2r
(
(σ2θO)c

)
. This forces the number of γ ∈Λθ such that

g−N t VθγgN t ∩ AN
x

(
t ,r,Oc) ̸=∅

to be not greater than
(
1−µ

(
σ4θO

)+ C2
r p e−λt

)N
multiplied by

ν(V2r )

ν(g−N t VθgN t )
≤

(3.3)

c2
( 2r

4
p

p

)p

e−δN t c1
(

θ
4
p

p

)p = c2

c1
eδN t

(
2r

θ

)p

.

This finishes the proof of the theorem.
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6. ENDP AND ITERATIONS OF MARGULIS INEQUALITY

In the next two sections we let P be a subgroup of G which has property
(ENDP) relative to the F -action on X . Then by the definition one can find
0 < c0 < 1 and t0 > 0 such that the following holds: for any t ≥ t0 one can find a
height function ut and dt > 0 such that ut satisfies the (c0,dt )-Margulis inequal-
ity with respect to IB P (1),t ut ; that is,

(IB P (1),t ut )(x) ≤ c0ut (x)+dt .(6.1)

Let t1 > 0 be sufficiently large so that

g−t B P (r )g t ⊂ B P (r /4) for all 0 < r ≤ 1, t ≥ t1,(6.2)

and set

t∗ := max(t0, t1)(6.3)

In the following proposition, by using inequality (6.1) N times for t suffi-

ciently large, we prove that ut satisfies the
(
cN

0 , dt
1−c0

)
-Margulis inequality with

respect to IB P (1/2),N t . The argument is similar to the proof of [28, Theorem 15].

PROPOSITION 6.1. Let {ut }t>0 be the family of height functions in Definition 1.5,
and let t∗ be as in (6.3). Then for any t ≥ t∗ and any N ∈ N, the function ut

satisfies the
(
cN

0 , dt
1−c0

)
-Margulis inequality with respect to IB P (1/2), N t . In other

words, for any t ≥ t∗, any N ∈N and any x ∈ X one has

(IB P (1/2), N t ut )(x) ≤ cN
0 ut (x)+ dt

1− c0
.(6.4)

As a corollary, we get the following crucial statement which will be useful in
later sections:

COROLLARY 6.2. Let t1 be as in (6.2). Then there exists a height function u and
d > 0 such that for any 0 < c < 1 one can find positive tc ≥ t1 such that for any t ∈
Ntc , the function u satisfies the (c,d)-Margulis inequality with respect to IB P (1/2),t .
In other words, for all x ∈ X we have

(IB P (1/2), t u)(x) ≤ cu(x)+d .(6.5)

Proof. Let 0 < c < 1, and take c0 as in Proposition 6.1. Choose N sufficiently
large so that cN

0 ≤ c, and set

u := ut1 , tc := N t∗ ≥
(6.3)

t1, d := dt1

1− c0
.

Now let t = ntc = nN t∗ be an element in Ntc . Then, by Proposition 6.1 applied
with N replaced by nN , we have

(IB P (1/2), t u)(x) = (IB P (1/2),nN t∗u)(x) ≤ cnN
0 u(x)+d ≤ cN

0 u(x)+d ≤ cu(x)+d .

This finishes the proof.
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Proof of Proposition 6.1. Given n ∈N and t > 0, define ηn,t : B P (1)n → P by

ηn,t (h1, . . . ,hn) := g−(n−1)t hn g t · · ·h2g t h1

= h̃n · · · h̃1, where h̃i = g−(i−1)t hi g(i−1)t .
(6.6)

For any n ∈N and t > 0, let ν̃n,t be the pushforward of ν|B P (1) via the conjugation
by gnt , that is, defined by∫

P
φ(h)d ν̃n,t (h) =

∫
B P (1)

φ(g−nt hgnt )dν(h)(6.7)

for all φ ∈Cc (P ). For any positive integer n let

νn,t := ν̃n−1,t ∗·· ·∗ ν̃1,t ∗ ν̃0,t

be the measure on P defined by the n convolutions. It is easy to see that
νn,t is absolutely continuous with respect to ν, and νn,t is the pushforward
of (ν|B P (1))

⊗n by the map ηn,t . These measures were considered in [13], and the
following was shown:

LEMMA 6.3. [13, Lemma 5.5] For all t ≥ t1 as in (6.2), all h ∈ B P (1/2), and for all

n ∈N we have dνn,t

dν (h) ≥ 1.

Using Lemma 6.3, we have for all N ∈N and all t ≥ t1:

(IB P (1/2),N t u)(x) =
∫

B P (1/2)
u(gN t hx)dν(h) ≤

∫
B P (1/2)

u(gN t hx)dνN ,t (h)

≤
∫

B P (1)N
u(g t hN · · ·g t h1x)dν⊗N (h1, . . . ,hN )

(6.8)

Take 0 < c0 < 1 and t0 > 0 as in the definition of (ENDP), and let t ≥ t∗ =
max(t0, t1). Recall that ν

(
B P (1)

) = 1. Since t ≥ t0, we can apply (6.1) and for
any i = 2, . . . conclude that∫

B P (1)i
u(g t hi · · ·g t h1x)dν⊗i (h1, . . . ,hi )

≤
∫

B P (1)i−1

(
c0 ·u(g t hi−1 · · ·g t h1x)+dt

)
dν⊗i−1(h1, . . . ,hi−1)

= c0

∫
B P (1)i−1

u(g t hi−1 · · ·g t h1x)dν⊗i−1(h1, . . . ,hi−1)+dt ·ν
(
B P (1)i−1

)
= c0

∫
B P (1)i−1

u(g t hi−1 · · ·g t h1x)dν⊗i−1(h1, . . . ,hi−1)+dt .

(6.9)

Let N ∈ N. If N = 1, then (6.4) follows immediately from the combination of
(6.1) and (6.8). If N ≥ 2, then by using (6.9) repeatedly and combining with (6.8)
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we obtain

(IB P (1/2),N t u)(x) ≤
∫

B P (1)N
u(g t hN · · ·g t h1x)dν⊗n(h1, . . . ,hN )

≤ cN−1
0

∫
B P (1)

u(g t h1x)dν(h1)+ cN−2
0 dt +·· ·+c0dt +dt

≤
(6.1)

cN
0 u(x)+ cN−1

0 dt + cN−2
0 dt +·· ·+c0dt +dt

< cN
0 u(x)+dt (1+ c0 + c2

0 +·· · ) = cN
0 u(x)+ dt

1− c0
.

(6.10)

This finishes the proof.

7. ENDP AND ESCAPE OF MASS

Fix a height function u on X as in in Corollary 6.2. For M > 0 define the
following sets:

X>M := {x ∈ X : u(x) > M }, X≤M := {x ∈ X : u(x) ≤ M }.

Since u is proper, the sets X≤M are compact. Furthermore, since u is regular, by
definition there exists C ≥ 1 such that

C−1u(x) ≤ u(g x) ≤Cu(x) for all g ∈ B(2) and x ∈ X .(7.1)

Moreover, it is easy to see from (7.1) that there exists α > 0 such that for any
t > 0 we have

e−αt u(x) ≤ u(g t x) ≤ eαt u(x).(7.2)

Now let 0 < c < 1, take d and tc ≥ t1 as in Corollary 6.2, and let t ∈Ntc . Note that
(6.5) immediately implies that if u(x) ≥ d

c , then

(IB P (1/2),t u)(x) ≤ 2c ·u(x).(7.3)

Now define

ℓc,t := max

(
d

c
,eαt

)
.(7.4)

In the following key proposition, we obtain an upper bound for the measure

of the sets of type AN
x

(
kt ,θ, X>C 2ℓ2

c,t

)
, where 2 ≤ k ∈N, θ ∈ (0,r∗], and C is as in

(7.1). We will use this measure estimate to derive a covering result for the sets

of type AN
x

(
kt ,θ, X>C 3ℓ2

c,t

)
in Corollary 7.3.

PROPOSITION 7.1. For any 2 ≤ k ∈N, any θ ∈ (0,r∗], any N ∈N, and for any x ∈ X
we have

ν
(

AN
x

(
kt ,θ, X>C 2ℓ2

c,t

))≤ (
4c

1− c

)N max
(
u(x),d

)
ℓ2

c,t

.(7.5)

Proof of Proposition 7.1. Let 2 ≤ k ∈N, N ∈N and x ∈ X . Define

Zx (k, N ):=
{

(h1, . . . ,hN k ) ∈ B P(1/2)N k : u(g t hnk · · ·g t h1x)>Cℓ2
c,t ∀n ∈ {1, . . . , N }

}
.

We need the following lemma:
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LEMMA 7.2. For all θ ∈ (0,r∗] and for all h ∈ AN
x

(
kt ,θ, X>C 2ℓ2

c,t

)
one has

η−1
N k,t (h) ⊂ Zx (k, N ), where ηN k,t is defined as in (6.6).

Proof. Let θ ∈ (0,r∗] and let h ∈ AN
x

(
kt ,θ, X>C 2ℓ2

c,t

)
. Suppose that

ηN k,t (h1, . . . ,hN k ) = h.

Then for any 1 ≤ i ≤ N we have

dist(gi kt h, g t hi k · · ·g t h1) =
(6.6)

dist(gi kt h̃N k · · · h̃1, gi kt h̃i k · · · h̃1)

=
{

dist(gi kt h̃N k · · · h̃i k+1g−i kt ,e) if i < N ,

0 if i = N .

Moreover, if i < N one has

dist(gi kt h̃N k · · · h̃i k+1g−i kt ,e)

≤ dist(gi kt h̃i k+1g−i kt ,e)+·· ·+dist(gi kt h̃N k g−i kt ,e)

=
(6.6)

dist(hi k+1,e)+dist(g−t hi k+2g t ,e)+dist(g−2t hi k+3g2t ,e)

+ ·· ·+ dist(g−((N−i )k−1)t hN k g((N−i )k−1)t ,e)

≤
(6.2)

1+ 1

4
+ 1

42 +·· · 1

4(N−i )k−1
< 2.

Hence, in view of (7.1), for any 1 ≤ i ≤ N , gi kt hx ∈ X>C 2ℓ2
c,t

implies that

g t hi k · · ·g t h1x ∈ X>Cℓ2
c,t

.

This finishes the proof.

Now let θ ∈ (0,r∗]. Note that in view of (3.2) we have Vθ ⊂ B P (r∗/2) ⊂ B P (1/2);
moreover, kt ≥ ktc ≥ t1. Thus, by Lemma 7.2 and Lemma 6.3 we have

ν
(

AN
x

(
kt ,θ, X>C 2ℓ2

c,t

))≤ νN k, t

(
AN

x

(
kt ,θ, X>C 2ℓ2

c,t

))
≤ ν⊗N k(

Zx (k, N )
)
,

(7.6)

where νN k, t is defined as in (6.7). So it suffices to estimate ν⊗N k
(
Zx (k, N )

)
. De-

fine

s(k, N , x) :=
∫

Zx (k,N )
u(g t hN k · · ·g t h1x)dν⊗N k (h1, . . . ,hN k ).

Since ℓc,t ≥ eαt , in view of (7.1) and (7.2) we have u(g t hk−1 · · ·g t h1x) > ℓc,t

whenever (h1, . . . ,hk ) ∈ Zx (k,1). Hence,

s(k,1, x)

≤
∫

B P (1/2)k−1
1X>ℓc,t

(g t hk−1 · · ·g t h1x)u(g t hk · · ·g t h1x)dν⊗k−1(h1, . . . ,hk−1)

≤ 2c
∫

B P (1/2)k−1
u(g t hk−1 · · ·g t h1x)dν⊗k−1(h1, . . . ,hk−1),

(7.7)

where the second inequality follows from (7.3) applied with x replaced by
g t hk−1 · · ·g t h1x, and from the fact that ℓc,t ≥ d

c .
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Again recall that ν
(
B P (1)

)= 1. By applying (6.5) we get∫
B P (1/2)k−1

u(g t hk−1 · · ·g t h1x)dν⊗k−1(h1, · · · ,hk−1)

≤ c
∫

B P (1/2)k−2
u(g t hk−2 · · ·g t h1x)dν⊗k−2(h1, · · · ,hk−2)+d ·ν

(
B P (1/2)

k−2
)

≤ c
∫

B P (1/2)k−2
u(g t hk−2 · · ·g t h1x)dν⊗k−2(h1, · · · ,hk−2)+d .

Therefore, if we apply (6.5) repeatedly, similarly to (6.10) we get∫
B P (1/2)k−1

u(g t hk−1 · · ·g t h1x)dν⊗k−1(h1, · · · ,hk−1)

≤ ck−1u(x)+ d

1− c
≤ 2

1− c
·max

(
u(x),d

)
.

(7.8)

So by combining (7.7) and (7.8) we have

s(k,1, x) ≤ 4c

1− c
·max

(
u(x),d

)
for all x ∈ X .(7.9)

Note that since ℓc,t ≥ eαt , in view of (7.1), (7.2) and (7.4)

(h1, . . . ,hi k ) ∈ Zx (k, i ) ⇒ u(g t h(i−1)k · · ·g t h1x) ≥ ℓc,t ≥ d

c
≥ d .(7.10)

Now for any 2 ≤ i ∈N we can write

s(k, i , x) =
∫

Zx (k,i )
u(g t hi k · · ·g t h1x)dν⊗i k (h1, . . . ,hi k )

=
∫

Zx (k,i−1)

∫
Zgt h(i−1)k ···gt h1 x (k,1)

u(g t hi k · · ·g t h1x)

dν⊗k (h(i−1)k+1, . . . ,hi k )dν⊗(i−1)k (h1, . . . ,h(i−1)k )

=
∫

Zx (k,i−1)
s(k,1, g t h(i−1)k · · ·g t h1x)dν⊗(i−1)k (h1, . . . ,h(i−1)k )

≤
(7.9)

(7.10)

∫
Zx (k,i−1)

4c

1− c
·u(g t h(i−1)k · · ·g t h1x)dν⊗(i−1)k (h1, . . . ,h(i−1)k )

= 4c

1− c
· s(k, i −1, x)

Thus, by repeatedly using the above computation, for any N ∈N we conclude
that

s(k, N , x) ≤
(

4c

1− c

)N−1

s(k,1, x) ≤
(7.9)

(
4c

1− c

)N

max
(
u(x),d

)
.

Note that s(k, N , x) ≥ ℓ2
c,t ·ν⊗N k

(
Zx (k, N )

)
. Hence (7.5) follows from the above

inequality and (7.6).
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As a corollary, we get the following crucial covering result:

COROLLARY 7.3. Let P be a subgroup of G with property (ENDP). Then for any
0 < c < 1 there exists tc > 0 such that for all t ∈ Ntc and 2 ≤ k ∈ N satisfying

kt ≥ log(8
p

p)
λmin

, all θ ∈ (0,r∗/2], all N ∈N, and for all x ∈ X , the set

AN
x

(
kt ,θ, X>C 3ℓ2

c,t

)= {
h ∈Vθ : u(gi kt hx) >C 3ℓ2

c,t ∀ i ∈ {1, . . . , N }
}

can be covered with at most

eδN kt

ν(Vθ)

(
4c

1− c

)N max
(
u(x),d

)
ℓ2

c,t

Bowen (N kt ,θ)-balls in P.

Proof. Let 0 < c < 1, take tc as in Corollary 6.2, and let t ∈Ntc and 2 ≤ k ∈N be

such that kt ≥ log(8
p

p)
λmin

. Also let θ ∈ (0,r∗/2], N ∈N, and x ∈ X . Take a covering

of Vθ with Bowen (N kt ,θ)-boxes in P . Now let R be one of the Bowen boxes in
this cover which has non-empty intersection with AN

x

(
kt ,θ, X>C 3ℓ2

c,t

)
. Note that

in view of (3.4), we have

diam(R) ≤ θ

2
e−λminN kt ≤ θ

2
e−λminkt ≤ θ

16
p

p
.

So, since R ∩Vθ ̸=∅, we must have

R ⊂ ∂ θ
16

p
p

Vθ ⊂V2θ,(7.11)

where in the last inclusion we use the 2-bi-Lipschitz property of exp.
Now let h ∈ R ∩ AN

x

(
kt ,θ, X>C 3ℓ2

c,t

)
. Then

u(gi kt hx) >C 3ℓ2
c,t for all 1 ≤ i ≤ N .

On the other hand, if we denote the center of R by h0, then for all 1 ≤ i ≤ N we
have for all h′ ∈ R:

gi kt h′x = (
gi kt h′h−1

0 g−i kt
)

gi kt h0x

∈
(
g−(N−i )kt Vθg(N−i )kt

)
gi kt h0x ∈

(3.4)
B

(
θ

2
·e−λmin(N−i )kt

)
gi kt h0x

⊂ B(θ/2)gi kt h0x ⊂ B(1/2)gi kt h0x.

This implies that

gi kt Rx ⊂ B(1)gi kt hx for all 1 ≤ i ≤ N .(7.12)

Now in view of (7.11) and (7.12) we can conclude that

R ⊂ AN
x

(
kt ,2θ, X>C 2ℓ2

c,t

)
.(7.13)

Therefore, by (7.5) and (7.13) applied with θ replaced with 2θ, the set

AN
x

(
kt ,θ, X>C 3ℓ2

c,t

)
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can be covered with at most

ν
(

AN
x

(
kt ,2θ, X>C 2ℓ2

c,t

))
ν(g−N kt VθgN kt )

≤ ( 4c
1−c )N max

(
u(x),d

)
ν(g−N kt VθgN kt ) ·ℓ2

c,t

= eδN kt

ν(Vθ)

(
4c

1− c

)N max
(
u(x),d

)
ℓ2

c,t

Bowen (N kt ,θ)-boxes in P . This finishes the proof.

8. COMBINING THE ESTIMATES OF §5 AND §7

The goal of this section is to describe a method making it possible to put
together properties (EEP) and (ENDP). In the next proposition neither (EEP) nor
(ENDP) are assumed to hold. Instead we will assume certain covering estimates
(similar to those we derived from (EEP) and (ENDP) respectively in the previous
sections) and then combine them to derive an estimate on which our dimension
bound is based. This formalizes the argument which first appeared in [15] and
then was used in [20] to solve DDC in the case (1.2).

PROPOSITION 8.1. Let P be a connected subgroup of H normalized by F . Let
S,Q ⊂ X , t satisfying (3.6), r > 0, θ ∈ [r,r∗/2], and let k1,k2, a1, a2 ≥ 1 be given.
Suppose that for any N ∈N the following two conditions hold:

(a) For all x ∈ ∂r (S ∩Q) the set AN
x (t ,r,S ∩Q) can be covered with at most

k1eδN t aN
1 Bowen (N t ,θ)-boxes in P.

(b) For all x∈∂θ(S∩Q) the set AN
x (t ,θ,Qc ) can be covered with at most k2eδN t aN

2
Bowen (N t ,θ)-boxes in P.

Then for all x ∈ ∂r (S ∩ Q) the set AN
x (t ,r,S) can be covered with at most

k3eδN t aN
3 Bowen (N t ,θ)-boxes in P, where

k3 = (1+C0)
c2

c1

(
θ

r
+8

p
p

)p

k1k2
2 , a3 = a1 +a2 +

√
k3a2.(8.1)

Proof. For any h ∈ AN
x (t ,r,S), let us define:

Jh := {
j ∈ {1, . . . , N } : g j t hx ∈Qc},

and for any J ⊂ {1, . . . , N }, set:

Z (J ) := {
h ∈ AN

x (t ,r,S) : Jh = J
}

.

Note that

AN
x (t ,r,S) = ⋃

J⊂{1,...,N }
Z (J )(8.2)

Let J be a subset of {1, . . . , N }. We can decompose J and I := {1, . . . , N }∖ J into
sub-intervals of maximal size J1, . . . , Jq and I1, . . . , Iq ′ so that

J =
q⊔

j=1
J j and I =

q ′⊔
i=1

Ii .
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Hence, we get a partition of the set {1, . . . , N } as follows:

{1, . . . , N } =
q⊔

j=1
J j ⊔

q ′⊔
i=1

Ii .

Now we inductively prove the following

CLAIM 8.2. For any integer L ≤ N , if

{1, . . . ,L} =
ℓ⊔

j=1
J j ⊔

ℓ′⊔
i=1

Ii ,(8.3)

then the set Z (J ) can be covered with at most

k
d ′

J ,L+1
2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,L+1

eδLt a
∑ℓ′

i=1 |Ii |−d J ,L

1 a
∑ℓ

j=1 |J j |
2(8.4)

Bowen (Lt ,θ)-boxes in P, where d J ,L , d ′
J ,L are defined as follows:

d J ,L := #
{
i ∈ {1, . . . ,L} : i < L, i ∈ J and i +1 ∈ I

}
,

d ′
J ,L := #

{
i ∈ {1, . . . ,L} : i < L, i ∈ I and i +1 ∈ J

}
.

Proof of Claim 8.2. We argue by induction on ℓ+ℓ′. When ℓ+ℓ′ = 1, we have
d J ,L = d ′

J ,L = 0, and there are two cases: either ℓ= 1 and {1, . . . ,L} = J1, or ℓ′ = 1
and {1, . . . ,L} = I1. In the first case

Z (J ) ⊂ AL
x

(
t ,r,Qc)⊂ AL

x

(
t ,θ,Qc) ,

Therefore, condition (b) applied with N = L implies that this set can be covered
with at most

k2eδLt aL
2 < k1k2(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

eδLt aL
2

Bowen (Lt ,θ)-boxes in P . This finishes the proof of the first case.
In the second case, note that

Z (J ) ⊂ AL
x (t ,r,S ∩Q) .

Moreover, by condition (a) applied with N = L, AN
x (t ,r,S ∩Q) can be covered by

at most

k1eδLt aL
1 < k1k2(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

eδLt aL
1

Bowen (Lt ,θ)-balls in P . This ends the proof of the base of the induction.

In the inductive step, let L′ > L be the next integer for which an equation
similar to (8.3) is satisfied. We have two cases. Either

{1, . . . ,L′} = {1, . . . ,L}⊔ Iℓ′+1(8.5)

or

{1, . . . ,L′} = {1, . . . ,L}⊔ Jℓ+1.(8.6)

We start with the case (8.5). Note that in this case we have

d J ,L′ = d J ,L +1 and d ′
J ,L′ = d ′

J ,L .(8.7)
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By the induction hypothesis, an upper bound for the number of Bowen (Lt ,θ)-
boxes needed to cover Z (J ) is given by (8.4). Then observe that:

• In view of (3.6) and Lemma 3.2,

eδt (1+C0e−λminkt ) ≤ eδt (1+C0)(8.8)

is an upper bound for the number of Bowen
(
(L+1)t ,θ

)
-boxes needed to

cover an arbitrary Bowen (Lt ,θ)-box;
• In view of Lemma 3.1,

c2

c1

(
θ

r
+8

p
p

)p

(8.9)

is an upper bound for the number of Bowen
(
(L+1)t ,r

)
-boxes needed to

cover an arbitrary Bowen (Lt ,θ)-box.

Now let Br be a Bowen
(
(L+1)t ,r

)
-box that has non-empty intersection with

Z (J), and let h ∈ Br ∩ Z (J). Since h ∈ Z (J), it follows that g(L+1)t hx ∈ S ∩Q.
Therefore, if we denote the center of Br by h0, we have

g(L+1)t h0x ∈Vr (S ∩Q) ⊂ ∂r (S ∩Q).(8.10)

Moreover, for any h ∈ Br and any positive integer 1 ≤ i ≤ L′− (L+1) we have

g(L+1+i )t hx = gi t (g(L+1)t hh−1
0 g−(L+1)t )(g(L+1)t h0x).

Since the map h → g(L+1)t hh−1
0 g−(L+1)t sends Br into Vr , the preceding equality

implies that {
h′ ∈ Br : g(L+1+i )t h′x ∈ S ∩Q ∀ i ∈ {1, . . . ,L′− (L+1)}

}
⊂ g−(L+1)t AL′−(L+1)

g(L+1)t h0x (t ,r,S ∩Q) g(L+1)t h0.

So, in view of the above inclusion and (8.10), we can go through the same proce-

dure and apply condition (a) with N replaced with |Iℓ′+1|−1 = L′− (L+1) and x
replaced with g(L+1)t h0x, and conclude that Br ∩ Z (J) can be covered with at
most

k1eδ(|Iℓ′+1|−1)t a
|Iℓ′+1|−1
1(8.11)

Bowen (L′t ,θ)-boxes in P . Multiplying the bounds (8.4), (8.8), (8.9) and (8.11),
we conclude that Z (J ) can be covered with at most

c2

c1

(
θ

r
+8

p
p

)p

eδ(|Iℓ′+1|−1)t a
|Iℓ′+1|−1
1 (1+C0)

·k
d ′

J ,L+1
2

(
(1+C0)

c2

c1

(
2θ

r

)p

k1

)d J ,L+1

eδ(L+1)t a
∑ℓ′

i=1 |Ii |−d J ,L

1 a
∑ℓ

j=1 |J j |
2

=
(8.7)

k
d ′

J ,L′+1

2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,L′+1

eδL′t a
∑ℓ′

i=1 |Ii |−d J ,L′
1 a

∑ℓ
j=1 |J j |

2

Bowen (L′t ,θ)-boxes in P . This ends the proof of the claim in this case.

Next assume (8.6). Note that in this case

d J ,L′ = d J ,L and d ′
J ,L′ = d ′

J ,L +1.(8.12)
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Take a covering of Z (J) with Bowen (Lt ,θ)-boxes in P . Suppose B ′ is one of
the Bowen (Lt ,θ)-boxes in the cover such that B ′∩ Z (J) ̸=∅, and let h1 be the
center of B ′. It is easy to see that B ′∩Z (J ) ̸=∅ implies:

gLt h1x ∈Vθ(S ∩Q) ⊂ ∂θ(S ∩Q).(8.13)

On the other hand, for any s ∈ B ′ and any positive integer 1 ≤ i ≤ L′−L we have

g(L+i )t h1x = gi t (gLt hh−1
1 g−Lt )(gLt h1x).

Hence, since the map h → gLt hh−1
1 g−Lt maps B ′ into Vθ, the above equality

implies{
h ∈ B ′ : g(L+i )t hx ∈Qc ∀ i ∈ {1, · · · ,L′−L}

}⊂ g−Lt AL′−L
gLt h1x

(
t ,θ,Qc)gLt h1

So in view of the above inclusion and (8.13), we can apply condition (b) with
gLt h1x in place of x, and |Jℓ+1| = L′−L in place of N . This way, we get that the
set B ′∩Z (J ) can be covered with at most k2a|Jℓ+1|

2 eδ|Jℓ+1|t Bowen (L′t ,θ)-boxes in
P . From this, combined with the induction hypothesis, we conclude that Z (J)
can be covered with at most

k2a|Jℓ+1|
2 eδ|Jℓ+1|t ·k

d ′
J ,L+1

2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,L+1

eδLt a
∑ℓ′

i=1 |Ii |−d J ,L

1 a
∑ℓ

j=1 |J j |
2

=
(8.12)

k
d ′

J ,L′+1

2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,L′+1

eδL′t a
∑ℓ′

i=1 |Ii |−d J ,L

1 a
∑ℓ+1

j=1 |J j |
2

Bowen (L′t ,θ)-boxes in P , finishing the proof of the claim.

Now by letting L = N , we conclude that Z (J ) can be covered with at most

k
d ′

J ,N+1
2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,N+1

eδN t a
|I |−d J ,N

1 a|J |
2(8.14)

Bowen (N t ,θ)-boxes in P .
Clearly

d ′
J ,N ≤ d J ,N +1.(8.15)

Also, note that since d J ,N ≤ max(|I |, |J |), the exponents |I | −d J ,N , |J | −d J ,N in
(8.14) are non-negative integers. So, in view of (8.2) and (8.14), the set AN

x (t ,r,S)
can be covered with at most∑

J⊂{1,...,N }
k

d ′
J ,N+1

2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,N+1

eδN t a
|I |−d J ,N

1 a|J |
2

≤
(8.15)

eδN t
∑

J⊂{1,...,N }
k

d J ,N+2
2

(
(1+C0)

c2

c1

(
θ

r
+8

p
p

)p

k1

)d J ,N+1

a
|I |−d J ,N

1 a|J |
2

≤ k3eδN t
∑

J⊂{1,...,N }
a
|I |−d J ,N

1 a|J |
2 k

d J ,N

3

= k3eδN t
∑

J⊂{1,...,N }
a

N−|J |−d J ,N

1 a
|J |−d J ,N

2 (k3a2)d J ,N

Bowen (N t ,θ)-boxes in P , where k3 := (1+C0) c2
c1

(
θ
r +8

p
p

)p
k1k2

2 .
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To simplify the last expression we will use the following:

LEMMA 8.3. [20, Lemma 5.4] For any n1,n2,n3 > 0 it holds that∑
J⊂{1,...,N }

n
N−|J |−d J ,N

1 n
|J |−d J ,N

2 n
2d J ,N

3 ≤ (n1 +n2 +n3)N .

Applying the above lemma with n1 = a1, n2 = a2 and n3 =
√

k3a3, we con-
clude that AN

x (t ,r,S) can be covered with at most

k3eδN t
(
a1 +a2 +

√
k3a3

)N

Bowen (N t ,θ)-boxes in P . The proof of Proposition 8.1 is now complete.

9. PROOF OF THEOREM 2.1

Given P ⊂G satisfying (ENDP), 0 < c < 1, and t > 0, let us fix a height function
u on X as in Corollary 6.2 and define the compact subset Qc,t of X as follows:

Qc,t := X≤C 3ℓ2
c,t

,(9.1)

where ℓc,t is as in (7.4) and C is as in (7.1).

LEMMA 9.1. Let P be a subgroup of G that has properties (EEP) and (ENDP).
Then there exist constants

a′,b′,C1,C2,λ> 0,

and, given 0 < c < 1 there exists tc > 0 such that the following holds: for all t ∈Ntc ,
0 < r < 1, 2 ≤ k ∈N satisfying

e
a′−kt

b′ ≤ r < 1

4
min

(
r0

(
∂1Qc,t

)
,r∗

)
,(9.2)

any open subset O of X , any N ∈N and θ ∈ [
r, r∗

2

]
, and for all x ∈ ∂r

(
Qc,t ∩Oc

)
,

the set AN
x (kt ,r,Oc ) can be covered with at most

C1

θ2p eδN kt
(
1−µ

(
σ4θO

)+ C2

r p e−λkt + 8C1

θp

p
c

1− c

)N

Bowen (N kt ,θ)-boxes in P.

Proof. Let 0 < c < 1, take tc as in Corollary 7.3, and let 0 < r < 1, 2 ≤ k ∈ N,
t ∈Ntc be such that (9.2) is satisfied, where a′,b′ are as in Theorem 5.3. Also let
θ ∈ [

r, r∗
2

]
, and take an open subset O of X . Note that the second inequality in

(9.2), together with the fact that r0
(
∂1(Oc ∩Qc,t )

)≥ r0(∂1Qc,t ), implies condition
(5.10) with O replaced by O ∪Qc

c,t . Moreover, condition (5.3) with t replaced by
kt follows from the first inequality in (9.2) . Hence, by applying Theorem 5.3
with O replaced with O ∪Qc

c,t and t replaced with kt , we get that for all x ∈
∂r (Oc ∩Qc,t ) and for all N ∈N, the set AN

x

(
kt ,r,Oc ∩Qc,t

)
can be covered with

at most k1eδN kt aN
1 Bowen (N kt ,θ)-boxes in P , where

k1 = c2

c1

(
2r

θ

)p

, a1 = 1−µ
(
σ4θO

)+ C2

r p e−λkt(9.3)

and C2,λ are as in Theorem 5.3.
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Moreover, in view of (9.1) and (7.4), for any x ∈ ∂θ(Oc ∩Qc,t ) ⊂ ∂2Qc,t we have

max(u(x),d)

ℓ2
c,t

≤ max(C 4ℓ2
c,t ,d)

ℓ2
c,t

=
ℓ2

c,t≥ℓc,t>d
C 4.

Also, note that

kt ≥
(9.2)

a′+b′ log
1

r
> b′ log

1

r
> b′ ≥ log(8

p
p)

λmin
.(9.4)

Thus, by applying Corollary 7.3 we get that for all x ∈ ∂θ(Oc ∩Qc,t ) and for all
N ∈ N, the set AN

x

(
kt ,θ,Qc

c,t

)
can be covered with at most k2eδN kt aN

2 Bowen
(N kt ,θ)-boxes in P , where

k2 = C 4

ν (Vθ)
, a2 = 4c

1− c
.(9.5)

Now we put together the estimates we found to get an estimate for the number
of Bowen (N kt ,θ)-boxes needed to cover the set AN

x (kt ,r,Oc ). Observe that

in view of (9.4), we have kt ≥ log(8
p

p)
λmin

. So, we can apply Proposition 8.1 with

S =Oc , Q =Qc,t and kt in place of t , and conclude that the set AN
x (kt ,r,Oc ) can

be covered with at most k3eδN kt aN
3 Bowen (N kt ,θ)-boxes in P , where k3, a3 are

as in (8.1), k1, a1 are as in (9.3), and k2, a2 are as in (9.5).
Finally, we need to estimate k3eδN kt aN

3 from above. We have

k3 =
(8.1)

(1+C0)
c2

c1

(
θ

r
+8

p
p

)p

k1k2
2

=
(9.3)
(9.5)

(1+C0)

(
c2

c1

)2 (
θ

r
+8

p
p

)p (
2r

θ

)p (
C 4

ν (Vθ)

)2

≤
(θ≥r )

(1+C0)

(
c2

c1

)2 (
2+16

p
p

)p
(

C 4

ν (Vθ)

)2

≤
(3.3)

(1+C0)

(
c2

c1

)2 (
2+16

p
p

)p
(

(4
p

p)p

c1θp C 4
)2

= C 2
1

θ2p ,

(9.6)

where C1 :=p
1+C0

c2
c1

(
2+16

p
p

)p/2 (4
p

p)p

c1
C 4 ≥ 1. Furthermore, we have

a3 =
(8.1)

a1 +a2 +
√

k3a2

≤
(9.6)

a1 +a2 +
√

C 2
1

θ2p ·a2

=
(9.3)
(9.5)

1−µ
(
σ4θO

)+ C2

r p e−λkt + 4c

1− c
+

√
C 2

1

θ2p · 4c

1− c

≤ 1−µ
(
σ4θO

)+ C2

r p e−λkt + 8C1

θp ·
p

c

1− c
.

(9.7)
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Therefore, by combining (9.6) and (9.7) we obtain

k3eδN kt aN
3 ≤ C1

θ2p eδN kt
(
1−µ

(
σ4θO

)+ C2

r p e−λkt + 8C1

θp

p
c

1− c

)N

.

This ends the proof of the lemma.

Proof of Theorem 2.1. Let 0 < c < 1. Take t = tc as in Lemma 9.1, and let Q =Qc,tc

be as in (9.1). Also let O be an open subset of X .

Proof of (1): Take 2 ≤ k ∈N and x ∈ X . Our goal is to find an upper bound for
the Hausdorff dimension of the set S(k, t , x) defined in (2.5). In view of (2.5)
and the countable stability of Hausdorff dimension it suffices to estimate the
dimension of {

h ∈Vr∗/2 : gN kt hx ∉Q ∀N ∈N
}

,

which, due to (9.1), coincides with
⋂

N∈N AN
x

(
kt , r∗

2 , X>C 3ℓ2
c,t

)
.

From Corollary 7.3 applied with θ = r∗
2 , combined with Lemma 3.3 applied

with t replaced by N kt and r = r∗
2 , we get that for any N ∈N the set

AN
x

(
kt ,

r∗
2

, X>C 3ℓ2
c,t

)
can be covered with at most

epλmaxN kt

ν(Vr∗/2)

(
4c

1− c

)N max
(
u(x),d

)
ℓ2

c,t

balls of radius r∗
2 e−λmaxN kt in P . Hence,

dim
⋂

N∈N
AN

x

(
kt ,

r∗
2

, X>C 3ℓ2
c,t

)
≤ lim

N→∞

log

(
epλmaxN kt

ν(Vr∗/2) ( 4c
1−c )N max

(
u(x),d

)
ℓ2

c,t

)
− log r∗

2 e−λmaxN kt

= log 4c
1−c epλmaxkt

λmaxkt
= p − 1

λmaxkt
log

1− c

4c
.

Proof of (2): Let 2 ≤ k ∈N, and x ∈ X . Our goal is to find an upper bound for
the Hausdorff dimension of the set{

h ∈ P ∖S(k, t , x) : hx ∈ Ẽ(F+,O)
}

Recall that
S(k, t , x)c = {

h ∈ P : gN kt hx ∈Q for some N ∈N
}
.

Therefore{
h ∈ P ∖S(k, t , x) : hx ∈ Ẽ(F+,O)

}={
h ∈ P : hx ∈ Ẽ(F+,O)

⋂( ⋃
N∈N

g−N ktQ

)}
⊂

{
h ∈ P : hx ∈ ⋃

N∈N
g−N kt

(
Q ∩ Ẽ(F+,O)

)}
= ⋃

N∈N

{
h ∈ P : hx ∈ g−N kt

(
Q ∩ Ẽ(F+,O)

)}
.
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Hence, since Hausdorff dimension is countably stable, to complete the proof of
this part, it suffices to show that for any N ∈N we have

dim
{
h∈P : hx ∈ g−N kt

(
Q ∩ Ẽ(F+,O)

)}≤ p − µ
(
σ4θO

)− C2
r p e−λkt − 8C1

θp

p
c

1−c

λmaxkt
,(9.8)

where C1,C2,λ as in Lemma 9.1.

Now let N ∈ N and suppose r > 0 is such that (2.7) is satisfied, where a′,b′
are as in Lemma 9.1. Note that, since P is normalized by F+, we have P =
g−N kt P gN kt . Moreover, Vr is a tessellation domain. Hence, by countable stabil-
ity of Hausdorff dimension, in order to prove (9.8), it suffices to show that the
Hausdorff dimension of the set

E ′
N ,x,r :=

{
h ∈ g−N kt Vr gN kt : hx ∈ g−N kt

(
Q ∩ Ẽ(F+,O)

)}
is not greater than the right-hand side of (9.8). For any h ∈ E ′

N ,x,r we have

gi kt gN kt hx = gi kt (gN kt hg−N kt )gN kt x ∈Oc ∀ i ∈N,

and at the same time gN kt hg−N kt ∈Vr . Hence,

E ′
N ,x,r ⊂ g−N kt

(⋂
i∈N

Ai
gN kt x

(
kt ,r,Oc))gN kt .(9.9)

Also, it is easy to see that if E ′
N ,x,r is non-empty, then

gN kt x ∈Vr
(
Q ∩Oc)⊂ ∂r

(
Q ∩Oc) .

So by applying Lemma 3.3 with r replaced by θ and t replaced with i kt , and
Lemma reffirst1 with t replaced by kt , we get that for any i ∈ N and any θ ∈[
r, r∗

2

]
, the set Ai

gN kt x (kt ,r,Oc ) can be covered with at most

C1

θ2p epλmaxi kt
(
1−µ

(
σ4θO

)+ C2

r p e−λi kt + 8C1

θp

p
c

1− c

)i

balls of radius θe−λmaxi kt in P . Also, note that the Hausdorff dimension is pre-
served by conjugation. So, we have for any θ ∈ [

r, r∗
2

]
:

dimE ′
N ,x,r ≤

(9.9)
dim

(
g−N kt

(⋂
i∈N

Ai
gN kt x

(
kt ,r,Oc))gN kt

)
=dim

⋂
i∈N

Ai
gN kt x

(
kt ,r,Oc)

≤ lim
i→∞

log

(
C1
θ2p ·epλmaxi kt ·

(
1−µ

(
σ4θO

)+ C2
r p e−λi kt + 8C1

θp

p
c

1−c

)i
)

− logθe−λmaxi kt

= p −
− log

(
1−µ

(
σ4θO

)+ C2
r p e−λkt + 8C1

θp

p
c

1−c

)
λmaxkt

≤ p − µ
(
σ4θO

)− C2
r p e−λkt − 8C1

θp

p
c

1−c

λmaxkt
.
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This finishes the proof.

10. CONCLUDING REMARKS

10.1. Effective estimates. It is a natural problem to effectivize the estimates
showing up in the Dimension Drop Conjecture. Previous work of the authors
on the subject [19, 20] contained explicit estimates, although with no claims of
optimality. Namely, this has been done under the assumption that the comple-
ment of O is compact (in particular, when X is compact), and also in the special
case (1.2).

In the more general set-up of this paper it is also possible to make the esti-
mates effective. This however would require an additional ingredient: finding a
lower bound for the injectivity radii of compact sets {x : ut (x) ≤ M } arising from
condition (ENDP). Such lower bounds can be obtained immediately whenever
the following condition is satisfied: Let P be a subgroup of G that has property
(ENDP), and let {ut }t≥t0 be the family of height functions as in Definition 1.5;
then there exist positive constants m0,m such that

r0(x)−1 ≥ m0ut (x)−m for every x ∈ X , t ≥ t0.(10.1)

This condition can be verified in many special cases. For example, in [28, 3]
certain height functions are constructed on homogeneous spaces of semisimple
Lie groups without compact factors, and for these height functions (10.1) is
verified in [28, Proposition 26] and [3, Lemma 6.3] respectively. By using the
same method one can easily show that (10.1) holds for height functions ut as in
Theorem 1.6, and also for the family of height functions constructed in [20] in
the case (1.2). A variation of our argument shows that in the presence of (10.1)
one has

inf
x∈X

codim
({

h ∈ P : hx ∈ Ẽ(F,O)
})≫ µ(O)

log 1
min(θO ,µ(O),r1)

,

where θO is as in (2.9), and 0 < r1 < 1
2 is a uniform constant independent of O.

10.2. Removing the Ad-diagonalizability condition. We expect that by a slight
modification of the proof of Theorem 1.1 one can show that this theorem holds
when F is an arbitrary one-parameter unbounded subsemigroup of a connected
semisimple Lie group G ; namely, the condition that F is Ad-diagonalizable is not
necessary. Indeed, recall the Jordan decomposition of F = {g t }: one can write
g t = kt at ut , where KF = {kt } is bounded, AF = {at } is Ad-diagonalizable, and
UF = {ut } is Ad-unipotent. These subgroups are uniquely determined and com-
mute with each other. If AF is trivial (in other words, if F is Ad-quasiunipotent)
and UF is not, then Ratner’s Measure Classification Theorem and the work of
Dani and Margulis (see [30, Lemma 21.2] and [7, Proposition 2.1]) imply that
whenever O is non-empty, the set Ẽ(F,O) is contained in a countable union of
proper submanifolds of X ; hence dimension drop takes place in a stronger form.
On the other hand, if AF is non-trivial, one can modify our argument following
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the lines of [13, §4], where an analog of (ENDP) was considered with (I f ,tψ)(x)
as in (1.4) replaced by a family of operators

ψ(·) 7→
∫

P
f (h)ψ(at g ut g−1h ·)dν(h),

and with g running through the centralizer of AF in G .

10.3. Jointly Dirichlet-improvable systems of linear forms:a dimension bound.
Fix m,n ∈N and, given c ≤ 1, say that Y ∈ Mm,n is c-Dirichlet improvable if for
all sufficiently large N

there exist p ∈Zm and q ∈Zn ∖ {0} such that

∥Y q−p∥ < cN−n/m and 0 < ∥q∥ < N .
(10.2)

(In this subsection ∥ · ∥ stands for the supremum norm on Rm , Rn and Rm+n .)
We let DIm,n(c) be the set of c-Dirichlet improvable Y ∈ Mm,n . Dirichlet’s theo-
rem (see, e.g., [27]) implies that DIm,n(1) = Mm,n . Davenport and Schmidt [8]
proved that the Lebesgue measure of DIm,n(c) is zero for any c < 1, and also that⋃

c<1 DIm,n(c) contains the set of badly approximable m ×n matrices, which is
known [26] to have full Hausdorff dimension; in other words, dimDI(c) → mn
as c → 1.

Recently in [20] a solution of DDC for the case (1.2), that is for the space X of
unimodular lattices in Rm+n , was used to derive a dimension drop result for the
family {DIm,n(c)}: namely, that dimDIm,n(c) < mn whenever c < 1. Moreover,
as explained in [21, Remark 6], a combination of the methods from [20] with
measure estimates obtained in [21] can produce an effective estimate for the
codimension of DIm,n(c). The reduction to dynamics goes back to Davenport,

Schmidt and Dani [6]. It proceeds by assigning an element hY :=
[

Im Y
0 In

]
of

G = SLm+n(R) to Y . Arguing as in [22, Proposition 2.1] or [20, Proof of Theorem
1.5], one can see that Y ∈ DIm,n(c) if and only if hY Zm+n ∈ Ẽ(F,O), where

O =
{
Λ ∈ X : ∥v∥ ≥ c

m
m+n for all v ∈Λ∖ {0}

}
(10.3)

(a subset of X with non-empty interior), and X , F are as in (1.2).
Our new Diophantine application is motivated by [4, §2.7], where Beres-

nevich and Velani introduced the notion of jointly singular k-tuples of matrices.
Namely, say that (Y1, . . . ,Yk ) ∈ M k

n,m is c-Dirichlet improvable if for all sufficiently
large N

there exist p ∈Zm , q ∈Zn ∖ {0} and i ∈ {1, . . . ,k} such that

|Yi q−p∥ < cN−n/m and 0 < ∥q∥ < N .
(10.4)

Denote the set of c-Dirichlet improvable (Y1, . . . ,Yk ) by DI(k)
m,n(c). Applying Dirich-

let’s theorem for each k, it is easy to see that DI(k)
m,n(1) = M k

n,m . When c < 1 one
wants for each large N to improve the conclusion of Dirichlet’s theorem for at
least one of the matrices, and for different N it does not have to be the same
matrix. If any one matrix within the tuple is c-Dirichlet improvable, then the
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entire k-tuple also possesses this property. However, it should be noted that in
general, the set DI(k)

m,n(c) could be much larger than the set{
(Y1, . . . ,Yk ) ∈ M k

n,m : Yi ∈ DIm,n(c) for some i = 1, . . . ,k
}
.

This raises a problem of showing some sort of dimension drop, which is achieved
by reducing the problem to a flow on the product of k copies of X as in (1.2).
Indeed, it is not hard to see that the validity of (10.4) for all sufficiently large N
is equivalent to the statement that for all sufficiently large t

∃v ∈Zm+n ∖ {0} and i ∈ {1, . . . ,k} with ∥g t hYi v∥ < c
m

m+n .(10.5)

In its turn, (10.5) is equivalent to

(g t hY1Z
m+n , . . . , g t hYkZ

m+n) ∉O ×·· ·×O,

where O is as in (10.3). We conclude that (Y1, . . . ,Yk ) ∈ DI(k)
m,n(c) if and only if

(hY1Z
m+n , . . . ,hYkZ

m+n) ∈ Ẽ(F (k),O ×·· ·×O), where

F (k) := {
(g t , . . . , g t ) : t ≥ 0

}⊂ k∏
i=1

G

is acting on X (k) :=∏k
i=1 X .

Since F (k) is a diagonalizable subsemigroup of
∏k

i=1 G whose expanding horo-
spherical subgroup is precisely

H (k) :=
k∏

i=1

{
hY : Y ∈ Mm,n

}
,

it follows from Theorem 1.6 that H (k) has property (ENDP) with respect to
(X (k),F (k)). Moreover, since the action of F on X is exponentially mixing, by
using Fubini’s Theorem it is straightforward to check that the action of F (k) on
X (k) is exponentially mixing as well; hence, by Theorem 1.4, H (k) has property
(ENDP) with respect to (X (k),F (k)). Therefore, we can apply Theorem 1.1 with
P = H (k) and arrive at

THEOREM 10.1. The Hausdorff dimension of DI(k)
m,n(c) is strictly less than kmn

for any c < 1 and k ∈N.
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