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ABSTRACT. The classical Khintchine and Jarnik theorems, generalizations of a consequence of Dirich-
let’s theorem, are fundamental results in the theory of Diophantine approximation. These theorems
are concerned with the size of the set of real numbers for which the partial quotients in their continued
fraction expansions grows with a certain rate. Recently it was observed that the growth of product
of pairs of consecutive partial quotients in the continued fraction expansion of a real number is asso-
ciated with improvements to Dirichlet’s theorem. In this paper we consider the products of several
consecutive partial quotients raised to different powers. Namely, we find the Lebesgue measure and
the Hausdorff dimension of the following set:

m—1
E(Y) = {a: €[0,1): H a:f+l.(x) > WU(n) for infinitely many n € N} ,
=0

where t; € R4 forall 0 <i<m —1, and ¥ : N — R> is a positive function.

1. STATEMENT OF RESULTS

The fundamental objective in the theory of Diophantine approximation is to seek answers to the
question how well an irrational number can be approximated by a rational number? This question in
the one dimensional settings has been well understood as the theory of continued fractions provides
quick and efficient way for finding good rational approximations to irrational numbers. The continued
fraction can be computed by the Guass transformation T': [0,1) — [0, 1) defined as

T0)=0 and T(x)= é(mod 1) if ze€(0,1).

Then every z € [0,1) admits a unique continued fraction expansion
1

= 1
a1 (x) +
as(xz) + L

as(x)f'

where a,,(z) are called the partial quotients of x with
1 1
ay(x) = LUJ and a,(x) = L“"(JU)J —a, (T" (z)) €N
for each n > 1 (where || stands for the integral part). Equation (1) can also be represented as

x = [a1(x), az(x), a3(x),...,an(x) + T"x] = [a1(x), az(x), as(z), .. ].
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Studying the properties of growth of partial quotients valid for almost all (or almost none) x € [0, 1)
is a major area of investigation within the theory of continued fractions and is referred to as the metrical
theory of continued fractions. Since the partial quotients can be obtained through Gauss map, the
theory has close connections with dynamical systems, ergodic theory and Diophantine approximation.
Historically, the focus has been on the metrical theory of the sets

E(W) :={z €10,1) : an(z) > ¥(n) for infinitely many n € N}

for a given function ¥ : N — R>;. Borel-Bernstein’s theorem [3, 4] is a fundamental result that
describes the size of the set £(¥) in terms of Lebesgue measure.

Theorem 1.1 (Borel-Bernstein, 1911-1912). Let ¥ : N — Rx>q. Then

1

0 if ZZO: T(n) < 00,
L(S(\I/)) = . 00 ! \Il(l ) _
1 lf anl W = Q.

Good [9] and Luczak [18] were the main contributors to studying the Hausdorff dimension of this
set for U(n) tending to infinity at a polynomial n* and super-exponential speeds a’" respectively, see
also [8, 11, 22] and references therein. Then the dimension of £(¥) was computed by Wang-Wu [24]
for arbitrary ¥. In what follows, P(T, ¢) will stand for the pressure function for the dynamics of the
Gauss map 1" with potential ¢; see §2.3 for a precise definition.

Theorem 1.2 (Wang-Wu, 2008). Let ¥ : N — R>1. Denote

(1.1) log B := lim inf log W(n) and logb := lim inf M.
n—o00 n n—00 n
Then
1, if B=1,
dimg £(¥) = { inf {s >0: P(T,—s(log B+log|T"])) <0} if 1< B < oo,
i if B=oo0.

1+
In particular, dimyg E(¥) > 1/2 if B < 0.

In this paper, we study a generalized form of the set £(¥) which has close connections with the
improvements to Dirichlet’s theorem (1842). Namely, in [16] Kleinbock-Wadleigh considered the set

(1.2) E(T) :={z€10,1) : an(x)an+1(z) > ¥(n) for infinitely many n € N},

and found a zero-one law for £(E(W)), see [16, Theorem 3.6]. This result was used to establish
a zero-one law for the sets of 1-Dirichlet improvable real numbers [16, Theorem 1.8], where ¢ is a
positive non-increasing function. See [16, §2] for a connection between (1.2) and the improvements to
Dirichlet’s theorem, and [13, 5, 1] for further results in that direction.

The work of Kleinbock-Wadleigh was followed by Huang-Wu-Xu [12] with both Lebesgue measure
and Hausdorff dimension results for a natural generalization of the set (1.2). Namely, for m € N they
considered

(1.3) En(U) :={z€[0,1):an(x) - antm-1(x) > ¥(n) for infinitely many n € N},

and proved the following
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Theorem 1.3 (Huang-Wu-Xu, 2019). Given ¥ : N — R>q,
(a) [12, Theorem 1.5]

0 if ZM<O@

E(gm(\ll)) - . logm Ly (n)
(b) [12, Theorem 1.7
1, if B=1,
dimy &, (¥) = inf{s>0: P (T, —fm(s)log B —slog|T’|) <0} if 1< B < oo;
%_H) if B=o0,
where B,b are as in (1.1), and f,, is given by the following iterative formula:
sfi(s)
1.4 = =— " k>1
(1.4) fi(s) =s,  fita(s) T—s+ fr(s) " =
In this paper we consider a weighted generalization of (1.3): take t = (to,...,t;m—1) € R} and
¥ : N —= R>q, and define
m—1
E(T) = {x €10,1) H a, ;(z (n) for infinitely many n € N}
Clearly &, (V) = &3, (¥), where 1, = (1, ..., 1). Generalizing Theorem 1.3(a), we prove the following
——

dichotomy statement for the Lebesgue measure of & (V):
Theorem 1.4. Let ¥ :N — R>;. Then

0. if 3 gt — < oo,

L‘(gt(\l/)) = . O:O (log ¥(n))*~?!

Lo n§1 m =%
where
(1.5) tmax = max{t; : 0 <i<m — 1}, £ =#{i: t; = tmax}-

A weighted generalization of Theorem 1.3(b) is straightforward in the case when B is either infinite
or equal to 1:

Theorem 1.5. Let ¥ : N — Rxq, and let B,b be as in (1.1). Then

1 if B=1
dlmHS v :{ . ’
t( ) %—&-b if B= Q.

As for the remaining intermediate case 1 < B < oo, we are only able to treat the m = 2 case,
characterizing the Hausdorff dimension of sets & (¥) for t = (to,t1) € R3.

Theorem 1.6. Let ¥ : N — Ry be such that 1 < B < 00, and let t = (tg,t1) € Ri, Then
dimy & (¥) = inf {5 > 0: P(T, —slog|T’| — fi,.+, (s)log B) < 0},

where

(L.6) Feoin (5) =
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Note that f11(s) = s? for all 0 < s < 1, which agrees with the k = 2 case of (1.4). See §8 for an
explanation of why the case m > 2 is much more involved.

Remark 1.7. It is worth highlighting an interesting phenomena here. The Lebesgue measure of the
set &(V) is independent of the ordering of the exponents, whereas the Hausdorff dimension depends

on it. For instance
2

, and f12(s) = {35

2
It is easy to see that f1(s) < fi2(s) for any 1/2 < s < 1. Since dimyg £ 2)(¥) > dimy E(¥) > 1/2
whenever B < oo (see Theorem 1.2), it follows that in Theorem 1.6 one always has

dimy E2,1)(¥) > dimp €1 2) (V).

2

ifsﬁ%;

ifs>%.

for(s) = %
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2. PRELIMINARIES AND AUXILIARY RESULTS

For completeness we give a brief introduction to Hausdorff measures and dimension. For further
details we refer to the beautiful texts [2, 7].

2.1. Hausdorff measure and dimension.

Let 0 < s € R™ let E C R™. Then, for any p > 0 a countable collection {B;} of balls in R™ with
diameters diam(B;) < p such that E C J; B; is called a p-cover of E. Let

H3(E) = inf ) _ diam(B;)*,

where the infimum is taken over all possible p-covers {B;} of E. It is easy to see that H;(F) increases
as p decreases and so approaches a limit as p — 0. This limit could be zero or infinity, or take a finite
positive value. Accordingly, the s-Hausdor[f measure H*® of E is defined to be

W () = lim 13 (E).

It is easily verified that Hausdorff measure is monotonic and countably sub-additive, and that H* (&) =
0. Thus it is an outer measure on R™. When s = n, H" coincides with standard Lebesgue measure on
R™.

For any subset E one can verify that there exists a unique critical value of s at which H*(E)
‘jumps’ from infinity to zero. The value taken by s at this discontinuity is referred to as the Hausdorff
dimension of E and is denoted by dimy F; i.e.,

dimg F :=inf{s e Ry : H*(F)=0}.

Computing Hausdorff dimension of a set is typically accomplished in two steps: obtaining the upper
and lower bounds separately. Upper bounds often can be handled by finding appropriate coverings.
When dealing with a limsup set, one usually applies the Hausdorff measure version of the famous
Borel-Cantelli lemma (see Lemma 3.10 of [2]):
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Proposition 2.1. Let {B;};>1 be a sequence of measurable sets in R and suppose that,
Zdiam(Bi)s < o0.
i

Then
H*(limsup B;) = 0.
i—00
2.2. Continued fractions and Diophantine approximation.

Suppose that € [0,1) \ Q has continued fraction expansion z = [a1,aq,...], where a,(z) =
[1/T"~Y(z)] for each n > 1. Recall the sequences p, = pn(x), ¢, = gn(x) defined by the recursive
relation (p-1,q-1) = (0,1), (po, g0) = (1,1), and

(2.1) Prnt1 = an1(T)Pn + Pn-1, Gn+1 = an41(2)qn + ¢n—1, 1 >0,
Thus p, = pn(x),qn = gn(z) are determined by the partial quotients aq,...,a,, so we may write
Dn = Dn(@1,...,an), @n = qn(a1,...,a,). When it is clear which partial quotients are involved, we

denote them by p,,, g, for simplicity.
For any integer vector (a1, ...,a,) € N® with n > 1, write
I(a1,...,an) :={z€[0,1) :a1(x) = a1,...,an(x) = an}

for the corresponding ‘cylinder of order n’, i.e. the set of all real numbers in [0, 1) whose continued frac-
tion expansions begin with (aq,...,a,). We will use I,,(z) to denote the nth order cylinder containing
x.

We will frequently use the following well known properties of continued fraction expansions. They
are explained in the standard texts [14, 15].

Proposition 2.2. For any positive integers aj, ..., an, let pn, = pp(a1,...,a,) and ¢, = qn(a, ..., ay,)
be defined recursively by (2.1). Then:
(P1)

Pn PntPn—1
n’ dntqn—1

M’m} if nis odd.
qntdn-1" gn

) if n is even;
In(a1,a9,...,a,) =

Thus, its length is given by
1 1 1
— < |I(a1,...,an)| = ———— < =,
2Q72L " " QH(Qn + Qn—l) qul
since
DPrn—-1Gn — Pndn—1 = (=1)", for all n > 1.
(P3) Foranyn>1, q, > 2(n=1)/2 4nd

1< Gntm (A1, Any b1, . ) <
Qn(alv-”yan)'Qm(blv---abm)

(Ps)
[Te: <o <]Jai+1) <27 [] e
i=1 i=1 i=1

(Py4) there exists a constant K > 1 such that for almost all z € [0,1),
gn(z) < K", for all n sufficiently large.
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Let pug be the Gauss measure given by

1 1

dpg = ——+  —dzx
He log2 (1+x)
It is known that ug is T-invariant; clearly it is equivalent to Lebesgue measure L.
The next proposition concerns the position of a cylinder in [0,1).

Proposition 2.3 (Khintchine, 1963). Let I, = I,(a1,...,a,) be a cylinder of order n, which is
partitioned into sub-cylinders {Ini1(a1,...,an,ant1) : ane1 € N}, When n is odd, these sub-cylinders
are positioned from left to right, as a,41 increases from 1 to co; when n is even, they are positioned
from right to left.

The following result is due to Luczak [18].

Lemma 2.4 (Luczak, 1997). For any b,c > 1, the sets
{x €[0,1) : an(x) > A" for infinitely many n € N} ,
{x €10,1) : an(z) > " for all n> 1} ,

have the same Hausdorff dimension bJ%l.

2.3. Pressure function and Hausdorff dimension.

In this section, we recall a fact that the pressure function with a continuous potential can be
approximated by the pressure functions restricted to the sub-systems in continued fractions. For
more thorough results on pressure function in infinite conformal iterated function systems, see Hanus-
Mauldin-Urbanski [10], Mauldin-Urbaniski [19, 20], or their monograph [21].

Let A be a finite or infinite subset of N. Define
Xa={z€[0,1): an(x) € A, foralln>1}.

Then (X4, T) is a sub-system of ([0,1),T). Let ¢ : [0,1) — R be a real function. The pressure function
restricted to the system (X, 7T) with the potential ¢ is defined by

1
(22) PA(T, ¢) = 1im flog Z Sup eSn¢([a17"'1an+flj]) ,
n—oo N (u,l T a )EA" rEXy

where S,,¢(z) denotes the ergodic sum ¢(z) + -+ - + ¢(T" 'z). When A = N, we denote Py(T, ¢) by
P(T, ®), which is the pressure function that appeared in the introduction.

We will also use the notation

Var,,(¢) :=sup {|¢(z) — ¢(y)| : In(z) = I(y)}

for the nth variation of ¢.
The existence of the limit in the definition of the pressure function (2.2) is guaranteed by the
following proposition [19].

Proposition 2.5 (Mauldin-Urbanski, 1999). Let ¢ : [0,1) — R be a real function with Vari(¢) < oo
and Var,(¢) — 0 as n — oo. Then the limit defining Pa(T, @) exists, and the value of Pa(T, )
remains the same even without taking supremum over x € X 4 in (2.2).
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Henceforth, without causing any confusion, when we need to take a point y from a cylinder
I,(a1,...,a,), we always take it as y = p,/q, = [a1,...,ay]. Because all the potentials in the se-
quel satisfy the condition in Proposition 2.2, the pressure function can be expressed as

— 1 1 Sno(lat,....an])
Py(T, ¢) = nl;n;o - log Z e ! .
(a1,...,an)EA™

The following proposition states that in the system of continued fractions the pressure function has
a continuity property when the system ([O7 1),T) is approximated by its sub-systems (X 4, 7). For the
proof, see [10] or [17].

Proposition 2.6 (Hanus-Mauldin-Urbaniski, 2002). Let ¢ : [0,1) — R be a real function with
Vari(¢) < oo and Var,(¢) — 0 as n — co. Then

(1) foranya € R and A C N, Py(T, ¢ + a) = Pa(T, ¢) + a;
(2) P(T,¢) = Pn(T,¢) =sup{Ps(T, ) : A is a finite subset of N}.

Now we specify the potential ¢ which will be related to the dimension of the set &(¥) when
U(n) = B™ for all n > 1.

Let the function f, : be asin (1.6). Then for any s > 0, take the potential as
P(x) = —slog [T"(x)| — fro,1. (s)log B.
For any subset A C N, define
s (A, B) = inf {s >0: Py(T,—slog |T"(z)| — fi,.1,(s)1log B) < 0},

, 1 1\
s;2>(A7B):1nf{szoz 3 (anto,t1<s>><q2(y)> gl},

a1,...,an €A

where y € I,,(a1,...,a,). If A is a finite subset of N, when substitute s by s2)(A, B) in the pressure
function P4 above (or respectively sg) (A, B) in the summation), we will get an equality.

For simplicity,
e when A = N, write s(?)(B) for s®(N, B) and 3%2)(3) for 8%2)(N, B);
e when A = {1,2,..., M} for some integer M > 1, write them as s(?) (M, B) and sﬁ,?)(M,B)
respectively.
Applying Proposition 2.6(2) to the potential 1, one has
Corollary 2.7.
s?(B) = s?(N,B) = sup{s? (A, B) : A is a finite subset of N}.

Then it follows from the definition of pressure function and Corollary 2.7 that
Proposition 2.8. For any M € N, we have
lim s2(M,B) = s (M, B), lim s?(B)=s%(B), lim s (M, B)=s?(B).
n—oo

n
n— 00 M—o0

Proposition 2.9. As a function of B € (1,00), s?)(B) is continuous and
1

: (2) _ : (2) i
g B = L g ) =5

Proof. The proof follows similarly to [24] without much difference. O
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3. PROOF OF THEOREM 1.4

We first recall a dynamical Borel-Cantelli lemma from the paper of Kleinbock-Wadleigh [16, Lemma
3.5], which is essentially taken from the work of Philipp [23] and follows from the effective mixing
property of T.

Lemma 3.1. Fiz k € N. Suppose {A,, : n > 1} is a sequence of sets such that for each n > 1, the set
A, is a countable union of sets of form

E.={ze[0,]]\Q:a1(z) =7r1,...,ax(x) =18}

Then TMx € A, for infinitely many n € N for almost all x or almost no x depending upon the
divergence or convergence of the series >~ juc(Ay) respectively.

For each n > 1 and fixed m > 1, define

m
1) ao={ee [0 > v .
i=1
The set A, can further be written as the union over a collection of m-th order cylinders as
A, = U I (ay,...,am).
(a1,...,am ) EN™: ato a,,’L" L >w(n)

To apply Lemma 3.1, we need only to estimate the Lebesgue measure £ of A,,, which is equivalent to
its Gauss measure p¢g. It follows from Proposition 2.2 that

L(A4,) =< Z Hal %H

al0ay 1 > (n) =1
where the constant involved in < depends only on m.
Lemma 3.2. Let tg,...,t,_1 be an m-tuple of positive real numbers, and define
tmax = max{t; : 0 <i<m—1}, £ =#{i:t; = tmax}
Then for any m > 1 and g > 1, we have

)471

(3.2) Z H D (logi 7

tmax
a, Oa, >g 9

where the constant implied in < depends on m but not on g.
Proof. The summation in (3.2) does not depend upon the ordering of the partial quotients, therefore
without loss of generality we assume that ty > --- > t,,,_1 and then
tmax = to, and ¢ = #{Z : ti = to}.
We prove this lemma by induction on ¢ > 1.

(I) When ¢ = 1, we show that (3.2) holds for all m > 1. Write d = m —£. Then it suffices to show
(3.2) holds for all d > 0. This is done by induction on d.
(Ia) When d =0, i.e. m =1, it is easy to see that (3.2) holds.
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(Ib) Assume that the result holds for d — 1; we show that (3.2) still holds for d. Notice that

m 1 1 m—1 1
> Halal = 2 am(am 1) T > > Hal(

m
a10-~am b>g = 1 am 1>g 1§aﬁ,’;’"1§g a;o--a:n 1 >g/am 1 4=1
tm—1 to
- 1 am . . . .
=g 'm-l + E — (by induction on the inner summation)
o1 am g
1<am <g

1 1

1
Xg tmmt4g oxg o,

where the second last quantity is obtained by noticing that ¢,,—1/ty < 1, so the summation
over a,, converges.

(IT) Assume that £ > 2. As for (I) above, we use induction on d =m — £.
(ITa) When d =0, i.e. m={ and t; =t for all 0 < i < m — 1, we have

Z ﬁ CL1+1

al0am =g =1

1 m—1
g eI P )
afnzg a’?n(am + 1 1<at <g anl aﬁn aﬁn 1>9/llm i=1 al i + 1
g )e=2
=9 Tt Z qil/t , (by induction on inner summation)
1<at, <g ¥ (ar)
1/t 1/t
1 97" 1 (log &—)t-2 . g
= gl/it +/ = W dz, (change variable y = " )
xT
1/t _ -
AL APV
g1/t 1 gl/t y gl/t 91/t

II(b) Assume that the result holds for d — 1. We show that (3.2) still holds for any d. Since ¢
is fixed, it means that

to=---=tp_1>t;> > tm_1.
So,
#{’Lthlztl}:g—l, andt():tl.

Notice that

m

1= > e
‘L, aZJrl

ai()' a’an—IZg i=1

m

1
xZalalJrl + Z ? Z HazalJrl

aiozg 1<at0<g a;l (L,'" 1>g/ai0 =2
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For the inner summation, the induction hypothesis is applied to give

-2
(toz 25
~ 17

1
Jr Z ? ' 1/t
1<atO <g (ﬁ)
—2
. . <log gl/iO)
= — + S Vi (bytoztl).

gto P a% g 1/to

1<a,°<g (awia)

So we get the same formula as in case (IIa).

Now observe that
E(T) = {x €[0,1): T" ‘2 € A, for infinitely many n € N} ,

where A,, are as in (3.1). By combining Lemmas 3.1 and 3.2, we conclude that £(&(¥)) is zero or
full according to the convergence or divergence of the series

-1
(log U(n ))
ZE Z \1/( )1/tmax ’
where tpax and £ are as in (1.5). This finishes the proof of Theorem 1.4.

4. HAUSDORFF DIMENSION FOR B =1 OR B = >

In this section we prove Theorem 1.5 by considering the two cases:

e B=1;
e B = oo (for this case, there are three subcases b=1,1 < b < 00, and b = o0).

We start off with the easier case.

4.1. B =1. It is trivial that

E(®) D {z €[0,1) : al? () > ¥(n) for infinitely many n € N} .
It follows from Theorem 1.2 that the set on the right hand side has full Hausdorff dimension. Hence
dimy &(¥) = 1 when B = 1.

2. B = co. There are three subcases.

4.2.1. 1 <b<oo.
By the definition of b, for any ¢ < b,
log log ¥(n) on

>loge, ie. ¥(n) >e
n

for all sufficiently large n which we write as n > 1. Thus for any z € &(¥), there are infinitely many

n such that
H an+z - ?
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then at least for one index 0 < i < m — 1 one has a’ (x) > e <", Thus

n+i
m—1 L
&E(T) C U {x €0,1):alf, (z) > em " forim. n € N}
=0

It follows from Lemma 2.4 that each of the sets on the right hand side have Hausdorff dimension le
irrespective of t;s. Hence dimy & (V) < %H) by the arbitrariness of ¢ < b.
On the other hand, by the definition of b, it follows that for any d > b,
W(n) < e, for infinitely many n € N.
Thus one has
E(T) D {1’ €10,1) :alo > e for all n € N} )
and from Lemma 2.4 we conclude that the Hausdorff dimension of the set on the right hand side is

1/(1+d).

4.2.2. b= co. This case readily follows from the upper bound argument above, that is,

4.2.3. b=1. In this case, for any € > 0, ¥(n) < e(1+9)" for infinitely many n. Then
& (W) D {z €[0,1) : a’ > ¥(n) for infinitely many n € N}
n

> {:17 €[0,1): a’o(x) > 1" for all n e N} .

Hence by using Lemma 2.4, we have

1 1
i >lim——m = —.
dimy &(P) _251(1)1_’_1_’_6 5

For the upper bound, we note that

3=

m—1
H ali i (z) > V(n) = ali,; > ¥(n) for some 0 <7 <m — 1.
=0

Hence
m—1
& (T) C U {m €0,1):ali,, > U(n)w, forim. ne N}.
i=0

Since B = oo, for any A > 1 one has
&(P) C{z€[0,1):a, > A", forim. n e N}.

Hence by letting A — oo and appealing to Proposition 2.9, it follows that dimp & (V) < 1/2.
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5. dimy &(B) FOR m =2 AND 1 < B < 00: AN UPPER BOUND

In the next three sections we specialize to the case m = 2, that is, take t = (¢o,t1), and assume that
1 < B < 00. To prove Theorem 1.6, we first show that the Hausdorff dimension of the set

(5.1) E(B) == {z €0,1) : al(z)all,,(z) > B" for im. n € N}
is equal to
inf {s > 0: P(T,—slog|T"| = fi,,(s)log B) <0},
where fy, 4, is as in (1.6).
We recall that according to Theorem 1.2, the Hausdorff dimension of the one-parameter version of

(5.1), namely the set
{z €[0,1) : an(x)" > B" for im. n € N},

is given by
inf{s >0:P (T,—slog |T'| — tslogB> < O} .
0

This gives the first function f;, defined by
s

fro(s)

Now take a positive number A with 1 < A < B and define

EL(A) = {:E €[0,1):al?(z) < A", all,(z) > fn for im. n € N},
an’' ()
and
El(A):={xz€[0,1):a(x) > A" for im. n € N}.
Then

&(B) C E(A)UEI(A),
From the m = 1 case above, the Hausdorff dimension of the set &{'(A) is given by
(5.2) dimyg & (A) =inf {s > 0: P (T, —slog|T'| — fi,(s)log A) < 0} := 6.
Now we focus on the Hausdorff dimension of &£(A). Since it readily follows from Theorem 1.2

that 1/2 < dimyg &(B) < 1 for 1 < B < oo, we consider the s-Hausdorff measure of £/(A) only for
1/2<s< 1.

Because of the limsup nature of £[(A), there is a natural cover of it. For any integers ai,...,ay,
define

Jn(ah‘..,an) = U In+1(a1,...,an+1).
t ]
n

Then

gAa=0N U U U Jnlas, ... an).

N=1n=N ax,..., ap—1€N CL:LOSA"

By Proposition 2.2, one has

1
t

-1
Bn 1 2o n -1
|Jn(a13 .. '7an)‘ = lqi_lai <at0> ‘| = |:q721—1a7l tlBt1:| )
n

where the constant implied in = can be chosen as 4.
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Thus the s-Hausdorff measure of £(A) can be estimated as

HE(EL(A) <1}\?Bgofz > > alas,. .. a0l

n=N a1,...,an—1EN tQ<An

.. = 2-m 7"
<ipn s Y ¥ [t

n=N ai,...,anp—-1EN afLOSAn

& t ;

—(2—0)g n\ —S

<iminty Y Y w (@)
n=N ay,...,an—1EN Gtﬁo <An
Calculating the summation over a,, gives that
(2-t0) —2s s
Z an " 7 < max {1,Ato (1- 3(27*0))} = mabx{l,A"(lto2 +ir) }

a0 <An

Thus

i)} ’ <Qi—13ﬁ> :
This gives an upper bound of the Hausdorff dimension of the set £{(A) to be

1-2
(5.3) inf {s >0: P<T7 —slog|T"| +max{0, 75 t }1ogA — logB> < 0} = 0s.
1

H*(E¢(A)) < liminf Z Z max{l,An(lgozs

N—oc0
n=N ai,...,an_1EN

Combining (5.2) and (5.3), one gets
dimy &(B) < max{d1,da}.

It would be reasonable to choose A such that §; = d2 which would give the optimal upper bound of
dimy & (B). Choose A such that the potentials in §; and ds are equal, namely,

fto(s)logAmax{O,l_Qs }logAlogB

0 ty

equivalently
s

t1.ft,(s) + max {0, s—(2s—1) %}

log A = log B.

Then define f;, ;, such that

—fro.:(s) - 1og B = —fi,(s) - log A
giving that (note s > 1/2)
$fto (s sft, (s
(54)  fion(s) = J1o(5) —_ fo(5) _
t1 fio(8) + max {O, s— (28 — l)é} t [fto(s) + max{0, & — ==

Note that (5.4) is the same as (1.6) given in the statement of the Theorem 1.6. As a result, once we
can check that the chosen A is less than B, we will arrive at the final conclusion

dimy & (B) < inf{s > 0: P(T, —slog|T'| — fi,+,(s)log B) < 0}.

We show that A < B in the following lemma.

Lemma 5.1. Forany 0 <s <1,
Jrot1(8) < fio(s), or, equivalently, A < B.
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Proof. Recall (5.4). Then

Jro1(8) < fio(8) <= s < t1f1,(s) + max {0,8 — (28— 1)2}
<:s<t1ft0(s)+s—(25—1):%

t S
= (25— 1) = <ty fio(s) = t1 - —.
to to

The last estimate is nothing but to say 2s — 1 < s, which is clearly true since s < 1.

6. dimp &(B) FOR 1 < B < 00: A LOWER BOUND

To obtain the lower bound, we will construct an appropriate Cantor subset of £;(B) and then apply
the following mass distribution principle [7].

Proposition 6.1 (Mass Distribution Principle). Let u be a probability measure supported on a mea-
surable set IF'. Suppose there are positive constants ¢ and rq such that

M(B(x,r)) <ecr?
for any ball B(x,r) with radius v < rog and center x € F. Then dimg F' > s.

6.1. Preliminaries on the dimension estimate. Recall that

N i _ Sfto(s)
fto(s) tO’ ft07t1(5) t fto(s)—i—max{o,% B 217071 j|’

and write s, for s (B), i.e.
So =inf{s > 0: P(—slog|T"| = fio,t.(s)1log B) < 1}.

We present some facts about this dimension estimate. The following may be trivial, however we
give a rigorous proof to avoid any potential uncertainty. Define

s, = {52 0: P(T,—slog|T"| - > log B) < 0}.
1

Lemma 6.2. When j—; — 23;—;1 <0, one has s, = s,,.
Proof. At first, remember that the pressure function P(T,-) is non-decreasing with respect to the
potential, i.e.
P(T, 1/)1) < P<T7 ¢2)7 if ¢1 < ¢2~
Note that we always have

Sfto (S) _ i
ft07t1 (S) S tl[fto (S) + 0] - tl .
Thus

~s10g|T"| = fuy., (s) log B > —slog|T"| ~ —log B,
1

which implies that
sl < so.

For the other direction of the inequality, we distinguish two cases.
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e When i—;’ —25o-1 < (), Let € > 0 be small such that for any s, —e < s < s, + ¢, we always have

to

S 2s —1

— — 0

tq to <9

and so
s
(6.1) ftot: (8) = ot

1

For any s, — € < s < s,, by the definition of s, we have
P(T,—slog|T"| = fi,1,(s)log B) > 0.
so by (6.1), it follows that

P (T, —slog |T"| — :logB) > 0.
1

This implies s/ > s. By the arbitrariness of s, one has s/ > s,.
e When :—i’ — 28a=1 — (), In this case, one has
So

to
ft07t1 (80) = ?
1

By the continuity of f,:, with respect to s, for any € > 0, choose 0 < § < ¢, such that for any
So — 0 < 8 < 8,
So— €
t
On one hand, by the definition of s,, for any s, —§ < s < s,,

P(Ta *SIOg |T/| - fto,tl (S) logB) > 07

ftmtl (S) >

on the other hand, (since s > s, — ¢)
So
t

—slog [T"| = fuo.1,(s)log B < —(s, — €) log |T"] — 22— “log B,
1

which implies that

So

0< P(T, —slog|T'| — fto’tl(s)logB> < P(T, —(s0 — €) log |T"] — t_ c logB>.
1

Thus s/, > s, — €.

As a result, when

we consider the following subset of & (B):

{x €[0,1):ally,(z) > B", im. n€ N}
which, by Theorem 1.2, is of dimension
s =inf{s > 0: P(T,—slog|T"| — tilogB) <0}
1

Thus
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So in the following, we always assume that

(6.2)

So 28, —1

— = >0,
t to
and then in a small neighborhood of s,, we always have
$f10(8)
ftot.(8) = T
0,t1 tl(fto(s)“i’H*?tol)

6.2. A subset of & (B).

Fix integers M, N sufficiently large such that s := sg)(M, B) is in the small neighborhood of s, so
that 1 > s > 1/2 and (6.2) holds. Then define a real number A such that

(6.3)

fto (S) lOgA = fto,tl (S) IOg B.

It is straightforward to check that fi,(z) > fi,+,(x) forany 0 <z < 1,501 < A < B.

Fix a sequence of largely sparse integers {{ }r>1, say,

O > ettt and take ng = (N 4+ 1, ngpq — g = b1l N +2, VE> 1,

so that the number of integers in the interval (ny + 1,nx11) is a multiple of N. Then define a subset
of &(B) as

Ani Anx

ny ny ng 1/t1 B’n.k 1/t1
E=qz€[0,1): A% <a,,(zr) <247, ( ) §ank+1(a:)<2< ) for all k > 1;

and a,(x) € {1,..., M} for other n € N}.

For ease of notation,

e write

A

write ¢, (a1, ...,an) as ¢, when the partial quotients as, ..., a, are clear. Recall (6.3). Then

1 1
o 2 an) - BV o) > s Ns"

2s
1<ar o <ar N (015 1<ar,an<m IN 70

1/tq
ap = Al/to, a1 = (B) .

use a symbolic space defined as Dy = {@}, and for any n > 1,

Dn:{(al,...,an)eN”:a?’“ < lpti < 207" for 0 <i <1, k>1with ng +1 <n;

and a; € {1,..., M} for otherjgn},

which is just the collection of the prefixes of the points in F.
if an integer n is assumed as a real value £, we mean n = |£] and in D, the term ay, 1, has
a;® choices.
Use U to denote the following collection of finite words:
U={w=(01,...,0n):1<0;, <M, 1<i< N}

In the following, we always use w to denote a word of length N in U.
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6.3. Cantor structure of E.
For any (ay,...,a,) € Dy, define
Jn(ar, ... an) = U Liyi(ar, ... a0, Gnq1)
nt1:(a1,ee50n,0n4+1)EDn 41

and call it a basic cylinder of order n. More precisely, for each k > 0
e when ng + 1 <n < ngy1 — 1 (by viewing ng = 0),
Jn(a17~-~aa7L) = U In+1(a17---aanaan+1)
1<an 1 <M
e whenn =mng41 —1+ifori=0,1,

Jn(alr--aan) = U In+1(a17~--aan;an+1)

g1 g1
a; + <ant+1<20q; +

Then define
]:n: U Jn(al,...,an)
(a1,...,an)EDy,
and call it level n of the Cantor set E. It is clear that

E = Ol}'n: ﬂ U Jnlay, ... an).

n=1 (alv---aan)EDn
We have the following observations about the length and gaps of the basic cylinders.

Lemma 6.3 (Gap estimation). Denote by Gp(a1,...,an) the gap between J,(a1,...,a,) and other
basic cylinders of order n. Then
1
Gnlay,...,an) > v | Jn(ar, ... an)l.
Proof. This lemma can be observed from the positions of the cylinders in Proposition 2.3. A detailed
proof can be found in [12]. O

Recall the definition of Y. Every element x € E can be written as
(1) (1) (2) (2)

T = [’(1)1 a"'awgl y Any s Gny4+1,W1 a"'awgz y gy Qng 41,
(k) (k)
SWp Wy g Qnpt1s - - - |

where w € U and
ag® <ap, <200, al* <ap,+1 <2a7F, forall k>1.

Lemma 6.4 (Estimation on ¢, (z)). Let np+1<n <ngyq + 1.
e n=n;+1+¢N for somel <l < Vi1,

Y/ £y
k ne Nt
G s14en (@) < (2‘ T an (! *”)) 11 (2‘t+4a0 o} quw;“)) .
=1

t=1 =1
® N ="k,

Ly 0
n k+1 n.e n
an_H (fE) S 2Zk+1+2a0k+1 . H (JN(UQ( + )) 3 H <2Zt+4a0ta1t HqN(wl(t))> ]

i=1 t=1 =1
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e n=nr+1,
k+1

an+1+1 < H (2514-404711 Ny HqN ) .

o for any n withnk+1+(€—1)N<n<nk+1+€N,

1
W np+14+en (@) < gnlz) < (M + 1)N Qg1+ (—1)N (2).

Proof. Use the second item in Proposition 2.2 recursively to get the first estimation. More precisely,

an+1+£N (2[ Hq (kJrl) ) 'an+1($)
(2Z Hq (kﬂ)) (26”4 o ""HQN ) ) Gy +1(T).

For the next two, one just use
Gnt+1 = Gnt1qn + Gn—1 < (ant1 + 1)gn
For the last item, note that the partial quotients
1<a, <M, forallny+1+ (¢ —1)N <n<ny+1+¢N.
O

We estimate the length of basic cylinders J,,(z) for all n > 1. For ng + 1 <n < ngy1 — 1, we have
T (2)| = DPn + Pn—1 (M + 1)pn + pr—1 - M > 1

Gn+ 1 M+ +dn1|  (@n+gu-1)(M+1)gn +gn_1) ~ 8¢2°

and similarly,

1 1 1
—— > |J,. —1(x)| > , > |J, > -
@@ Iz gma e e T2 e

Consequently, we have
Lemma 6.5 (Length estimation). Let ny —1 <mn < ngyq — 1.
e Form=np—1=ngp_1+ 1+ N,

Ly k—1 In
1 1 1 1
Jn 1z 2 " - . . . .
| k 1( )| 23@0k <22€k H qN( (k) ) [H (226,—}-8 a%ntognt H 2 ( l(t))>‘|

i=1 t=1 1=1 Iy (W

e forn =ny,
o form=mn;+1,
o foreach 1 </l < /{1,

‘ 1 k 1 1 O
| Jn14en (@)| = 53 : e .
k 23 22€ bt q z(k-‘,—l ) tl;[ 926, +4 Oég taf t H q2 (w(t))

=1 4N\"]
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o forng+14+ (L —1)N<n<np+1+/IN withl <l </lp4q,

| Jn ()] > ¢ |n 141N (7)),

where ¢ = ¢(M, N) is an absolute constant.

6.4. Mass distribution.

We define a probability measure supported on the Cantor set E. Still express an element = € E as

= & (1) (2) (2)
T = wl ,...7’11)21 7an17an1+1uw1 7"'7w[2 7an27an2+17

(k) (k) ]

W Wy Ay G g -
where w € U and
agt <ap, <20p%, o <ap,41 <2a7*F forall k> 1.

We define a measure p along the basic intervals J,(x) containing x as follows.

o Let n <nj—+1.
— for each 1 < ¢ < ¢4, define

J4

1
n(ne@) =] —g 57—
i=1 QN(wz(l))Qs o
Because of the arbitrariness of x, this defines the measure on all basic cylinders of order
{N.

— for each integer n with (¢ — 1)N < n < {N for some 1 < ¢ < {1, define

p(n@) = > ulden),

Jen CJn(z)

where the summation is over all basic cylinders of order ¢N contained in .J,(z). This
is designed to ensure the consistency of a measure and defines the measure on the basic
cylinders of order up to n; — 1.

— for each 0 <7 < 1, define

) A i
1 1 1

/‘(Jnlﬂ'(if)) = — '/J(Jnlq(x)) = - . —.
],1;[() o ll;[l qN(wl(l))zs . a(s)N 3‘1;[0 ar

o Let n +1 <n <mngyq1+ 1. Assume the measure of all basic intervals of order ny + 1 has been
defined.
— for each 1 < £ < lj41, define

¢
1
(Jnp+14n0(2)) = i (Tny41(2)
( k ) E qN(w£k+1))28 . OCSN ( k )
¢ k 0
1 1 1
(6.4) = H ] : [H( ne My H >‘| :
i=1 QN(wng))zs 'O‘(S)N =1 \ %0 Y qzz\}s(wz(t)) : a(S)N

— for each integer n with ngy + 1+ ({—1)N <n < ni+14+£N for some 1 < £ < {1, define
M(Jn(x)) = Z M(Jnk-&-l-&-éN)'
Jng+14en CIn ()

This defines the measure on the basic cylinders of order up to ng4q1 — 1.



20 A. BAKHTAWAR, M. HUSSAIN, D. KLEINBOCK, AND B-W. WANG

— for each 0 <7 <1, define

(65) /’L(Jnk+1+i(‘r)) = H ﬁ 'M(Jnk-m*l(x))'

j=0 "3

Look at (6.4) for the measure of a basic cylinder of order ny + 1 + ¢N and its predecessor of order
ng + 14 (£ — 1)N: the former has more one term than the latter, i.e. the term

1

) k+1 )
iy )ag"

which is uniformly bounded by some constant depending on M, N, B. Thus there is an absolute
constant ¢ = ¢(M, N, B) > 0 such that for each integer n with

e whenng+1+ (0 —1)N <n<mng+1+¢N,

M(Jn(x)) >c: ﬂ(«]nk+1+(e—1)1v($))-
e when ni +1<n <mngp1 —1,

(6.6) ((Jns1(2)) > ¢ p(Jn(@)).

6.5. Holder exponent of i for basic cylinders.

We begin with some simple relations between A and B and beyond.

Lemma 6.6. Recall the real number A and the integer N given before in (6.3). Then

1\’ 1 1 . 1 1\’
° 5| =——, equivalently — = ;
[e5Ke%) (eI e 7} (7)) Qoo

11 I : 1 1y’
=< == equivalently < 5 |
ooy o ajay Qo Qoaq

e Let € > 0. Then we can choose an integer N so large and {{} so sparse that

226x+8 < (2(1\]_1)2")€ and LN > (1 —e€)ni, for all k > 1.

Proof. Recall that we are in the case when
_ 5.t (5) _ 8fi(s)
ftmtl (S) o s 2s5—1 o s 1-s|
ty [fto(s)+ 6 } t [a + % }
Thus, by recalling the choice of A, it follows that

1 ’ 1 1 s 1—s B ﬁ 1=s
5 =— —<4=aj=q) "= |~ =A%
a1 oy o A

1—
<:>510ng(8+ s)logA
t1 t1 to

= ilogB = Sfté(s)logfl
21 t1 fto,t: (S)
= fio.1.(8)log B = fi,(s)log A,
where the last equality is just how A was chosen.
Substitute the first equality into the second claim, it is nothing but to say

af <oy.
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The last claim is trivial. O

We compare the measure and length of J,, ().

(1) Let n = ny — 1 which is equal to ng_1 + 1 + ¢, N. Recall (6.4) with k replaced by k — 1, and
then take ¢ = f. Summing over the product on ag and using the third item in Lemma 6.6, it follows

that
R A T = 1 e 1]
o) = () || \I Grarar) W)

Li=1 QN(wi Lt=1 =1 49N (wz

Then using the second item in Lemma 6.6 by changing af™a; to (aga?)?®, one has

1\l [& 1 T [kt 1 s(l—e) bt 1 )
st < () I ] [0 ()™ M)

i1 an (w; )% ] [ =1 ax (w,

At last, by the third item in Lemma 6.6, we have

Zf, et

1 1 1 s(1—e)
< . .
H 2s (wl(t)) - (22&4-8 H 2 (t))>

1=1 49N =1 q% (wy

Finally, by comparing with the length of .J,,, —1(z) (Lemma 6.5), we arrive at
p(Tn—1 (@) < 8- | Ty ()7,

(2) Let n = ng. Recall (6.5). By the first item in Lemma 6.6,

1 ) 3
:U’(Jnk(x)) = a(’)‘k . N(Jnkfl(‘r)) <8- Oéigk . |Jnk—1($)|s(l )

1 s(l—e)
<8 (qrap Poi@l)

1

By comparing with the length of J,, () (Lemma 6.5), we arrive at
s(l—e)
,U(Jnk(x)) < 2!t !Jnk($)| .

(3) Let n = ny + 1. Recall (6.5). By the second item in Lemma 6.6,

1 1 s
/’L(J”k"rl('r)) = agka?k '/vL(Jnk—l(I)) <8-: W ’ ’J7Lk—1(x)|

1 s(1—e)

1

(1—e)

By comparing with the length of J,, 11(z) (Lemma 6.5), we arrive at
s(1—e)
M(Jnk+1(fl,‘)) < 2!t |Jnk+1(x)‘g :

(4) Let n = ng, + 1 4+ N for some 1 < £ < £;41. Compare Lemma 6.5 and the formula (6.4). In
(6.4), after deleting the term o™ in the first product and changing aj™a; to (aZa?)® in the second
product, we will arrive at

5(1—e¢
(o s14en(x)) <2'F- !Jnk+1+€N($)’6( ),

(5) For other n, let 1 < £ < {;, be the integer such that
ng+1+(L—-—1)N<n<ng+1+¢N.
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Then

s(1—e)

(@) < i1 (@) < 2% [Ty e nn @)1 <28 e (@)1,

where for the last inequality we have used Lemma 6.5 for the equivalence of the lengths of the two
basic cylinders.

In a summary, we have show that for some absolute constant ¢y, for any n > 1 and x € F,

(6.7) pw(Jn(z)) <1 |Jn(x)|s(17€).

6.6. Holder exponent of i for a general ball.

Recall Lemma 6.3 about the relation between the gap and the length of the basic cylinders:
1
Gn(z) 2 37 - [Jn(@)]-

We consider the measure of a general ball B(x,r) with € F and r small. Let n be the integer such
that

Gri1(z) <1 < Gp(x).

Then the ball B(z,r) can only intersect one basic cylinder of order n, i.e. the basic cylinder J,(z),
and so all the basic cylinders of order n + 1 for which B(z,r) can intersect are all contained in J, (z).

Let k be the integer such that
ne—1+1<n<nyg.

(1) Let ng—1 +1 <n < ni — 1. By (6.6) and (6.7), it follows that

p(B(x,r)) < p(Ju(@)) < e p(Jngi(2)) <c-er- | Jnga(@)]
<coep M- (Gn+1(x))s(1—f) )

s(1—e)

(2) Let n = ng — 1. The ball B(z,r) can only intersect the basic cylinder J,, —1(x) of order ng — 1.
Now we consider how many basic cylinders of order ny contained in J,, _1(x) and with non-empty
intersecting with the ball B(z,r).

We write a basic cylinder of order ny contained in J,, —1(z) as
Iy, (u, @), for some aj* < a < 2a*.

It is trivial that for each a, the basic cylinder J,, (u,a) is contained in the cylinder I,,, (u,a) and the

latter interval is of length
1

o Let

Then the ball B(z,r) can intersect at most three cylinders I,,, (u, a) and so three basic cylinders
Jn, (u,a). Note that all those basic cylinder are of the same py-measure, thus

p(B(z,r)) < 3u(Jny (2)) <31 - | Ty ()27
<3-c1 M- Grp(2)°179 <3¢y - M- o179,
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o Let
1 1
QT2 N 2nk”
8 an—l(u)ao

The number of cylinders I, (u, a) for which the ball B(z,r) can intersect is at most

r >

167 - qgk—l(u)agnk +2<2%. 7. qzrl(U)agnk,

so at most this number of basic cylinders of order ny for which the ball B(x,r) can intersect.
Thus

p(B) < min (i (@), 200 ()

< ex [ no (@) cmin {1,275 2, (w)agt |

1 s(1—e)

s(1—e)
<c | ——— Ll-s(i—e) . (25 e 721 (u a"’“)
- <an—1(U)2ao’“> Ty —1(u)ag

= ¢y - 170,

(3) Let n = ny. By changing ny — 1 and «p in case (2) to nj and «; respectively and then following
the same argument as in case (2), we can arrive the same conclusion.
6.7. Conclusion.
Thus by applying the mass distribution principle (Proposition 6.1), it yields that
dimyg E > s(1 —¢).
Since E C & (B) and ¢, s are arbitrary, we conclude that

dimyg E(B) > s,.

7. COMPLETING THE PROOF OF THEOREM 1.6

UPPER BOUND. For any € > 0, one has
U(n) > (B—¢)" foralln>1.
Thus
& (T) C {x € [0,1) : a'(z)al,, (z) > (B— )", im. n e N}.
Therefore,
dimyg E(P) < s,(B — ¢).
Recall Proposition 2.9 for the continuity of s, = s,(B) with respect to B. Then by letting ¢ — 0, the
upper bound for dimy & (¥) follows.

LOWER BOUND. The argument for the lower bound of & (V) is almost the same as for &(B) given
in last section. So we only give the outline of the proof and mark some minor differences.

Recall the definition of s,(B) and Lemma 6.2. If % - %f)_l < 0, then by Theorem 1.2 and
Lemma 6.2 it follows that

dimy &(¥) > dimy {x €[0,1):ally,(z) > ¥(n), im. n € N} = $o(B).
Then we are in the remaining case when
So(B) _ 2s,(B) — 1
t to

> 0.

(7.1)
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At first, choose a real number B > B close enough to B such that (7.1) is still true when replacing
B by B. Secondly fix integers M, N sufficiently large such that s := 35\2,) (M, B) is in a small enough
neighborhood of s,(B) so that 1 > s > 1/2, and (6.2) holds. At last define a real number A such that

f1o(s) log A = fto.12(8) log B.
By the definition of B, one can choose a sparse enough sequence of integers {n}r>1 such that
W(ny) < B™ for all k > 1.
Thus
&(w) 5 {z €[0,1) : al, (w)al 11 (x) > B for all k> 1},

So we are almost in the same situation as when proving the lower bound for dimy & (B). The only
difference, besides the notational differences (A, B) — (A, B), is that the number of the integers in the
interval (ny + 1, nk41) may not be a multiple of N.

Therefore, for all k > 1, write (shifting the indices from ng + 1 to 0)
(nk — 1) — (le_l + 1) =l N + i, for some 0 < i < N,
and define a Cantor subset of &(¥) as
~ 1/t1 ~ 1/t1
~ ~h g Bk Bk
E={z€0,1): A% <ay,(r)<24%, T < ap,1(x) <2 T for all k > 1;

Uny42(2) = -+ = Gnyt14ip,, (2) =2 for all k > 0;

and ay(z) € {1,..., M} for other n € N}.

Use the same notation as in Section 6:

U={w=(01,...,0n5):1<0; <M, 1<i<N}

~\ 1/t
ag = A/t CY1=< > ,
and define J,(x) in the same way.
A generic element x € E can be written as
(1) @ ,,@ (2)

_ [0 (1)
T = [77( )7w1 7"~7w¢1 y Qnys Any 41, 107, Wy 7"~7we2 s Angy Ang 41,
k (k) (k)
()7w1 ]’

5"'7wék 7ank7ank+1?"'

and

|

e,
where n®) = (2,...,2), w € U, and
——
ik

ag® < ap, <200, al* < ap,+1 < 2a7* forall k> 1.

Recall that s = 55\2,)(M ,B). We define the measure of the basic intervals J, () containing z as

follows. Note that for all z € E their partial quotients a, () have only one choice for all

ng+1<n<ng+1+ig, with k>0.



WEIGHTED PRODUCTS OF MULTIPLE PARTIAL QUOTIENTS 25

So when defining a mass distribution p on E, one must have that
M(Jn(a:)) = M(JnkJr](.'I;)), forall ng +1<n<ng+14ig.

Except such a restriction, we define the measure on E in the way as did in Section 6:

Let ny +1 < n < ngy1 + 1. Assume the measure of all basic intervals of order ny + 1 has been
defined.

e for each ny +1 <n < ng + 1+ ix41, define

M(Jn(w)) = M(anrl(x))’
e for each 1 < ¢ < {y1, define

4
/L(Jnk+1+ik+1+N£(m)) = H

i=1

1

(w(k+1))25 ] a‘{N ’ :LL(Jnk+1+ik+1 (x))

e for each integer n with ng+1+ig1+({—1)N < n < ng+14igp1+EN for some 1 < 0 < lp4q,
define

,Uf(Jn(x)) = Z ,U'(Jnk+1+ik+1+ZN)'

Jnp+1+ip 1 +eN CIn(x)
e for each 0 <7 <1, define
Lo
(T i(@)) = H PR (T (2)).
j=0 7
Then we will use the mass distribution principle (Proposition 6.1) to reach our conclusion that

dimyg & (V) > s,(B).

So the remaining task is to compare the p-measure of a ball B(xz,r) with r. The gap estimation
(Lemma 6.3) is still true without any change and the estimation on ¢, (z) (Lemma 6.4) is similar just
by adding some terms of the power of 2. Then the remaining argument can proceed as in Section 6
with some obvious modifications. We omit the details.

8. FINAL COMMENTS

One might wonder to extend Theorem 1.6 to all m > 2. Our methods for the upper bound
calculations extend easily to any m, but the major difficulty lies in establishing the lower bound
and proving that it is equal to the upper bound estimate. To be precise, it is possible to prove the
following formula:

Theorem 8.1. Let ¥ : N — Ry be such that 1 < B < oo. Then

dimy &(¥) < inf{s > 0: P(T,—slog|T'| — fi,,....t.._. (s)log B) < 0} for all m, but
dimy &(V) >inf{s > 0: P(T, —slog |T’| — fi,.+,(s)log B) < 0},
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where fiy 1. (8) is given by the following iterative procedure with the starting value as fi,(s) = &

to?

and

5fto,te_r(S)
Jtonete(s) = S ¢ )
tofio,... 1o, (8) + max {O,s —(2s—-1)2,0<i<l— 1}

_ Sftow--,tzq(s)
tofio,.. to_, (8) + max {0, s—(2s — 1)t72}

maxo<i<e—1 ti

We believe that, for 1 < B < oo,

should hold. From the definition of the functions fy,,

dimy & (V) > inf{s > 0: P(T, —slog |T"| — ft,....t.._.(s)log B) < 0}

.te_,, the appearance of the expression

maXg<i<¢—1 t; in it means that the partial quotients corresponding to some exponents ¢; will not con-
tribute to the dimension. Thus the major difficulty is to figure out which partial quotients contribute
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