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Abstract. The classical Khintchine and Jarńık theorems, generalizations of a consequence of Dirich-
let’s theorem, are fundamental results in the theory of Diophantine approximation. These theorems

are concerned with the size of the set of real numbers for which the partial quotients in their continued

fraction expansions grows with a certain rate. Recently it was observed that the growth of product
of pairs of consecutive partial quotients in the continued fraction expansion of a real number is asso-

ciated with improvements to Dirichlet’s theorem. In this paper we consider the products of several

consecutive partial quotients raised to different powers. Namely, we find the Lebesgue measure and
the Hausdorff dimension of the following set:

Et(ψ) :=

{
x ∈ [0, 1) :

m−1∏
i=0

a
ti
n+i(x) ≥ Ψ(n) for infinitely many n ∈ N

}
,

where ti ∈ R+ for all 0 ≤ i ≤ m− 1, and Ψ : N→ R≥1 is a positive function.

1. Statement of Results

The fundamental objective in the theory of Diophantine approximation is to seek answers to the
question how well an irrational number can be approximated by a rational number? This question in
the one dimensional settings has been well understood as the theory of continued fractions provides
quick and efficient way for finding good rational approximations to irrational numbers. The continued
fraction can be computed by the Guass transformation T : [0, 1)→ [0, 1) defined as

T (0) = 0 and T (x) =
1

x
(mod 1) if x ∈ (0, 1).

Then every x ∈ [0, 1) admits a unique continued fraction expansion

x =
1

a1(x) +
1

a2(x) +
1

a3(x)+...

where an(x) are called the partial quotients of x with

a1(x) =

⌊
1

x

⌋
and an(x) =

⌊
1

Tn(x)

⌋
= a1

(
Tn−1(x)

)
∈ N

for each n ≥ 1 (where b·c stands for the integral part). Equation (1) can also be represented as

x = [a1(x), a2(x), a3(x), . . . , an(x) + Tnx] = [a1(x), a2(x), a3(x), . . .].
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Studying the properties of growth of partial quotients valid for almost all (or almost none) x ∈ [0, 1)
is a major area of investigation within the theory of continued fractions and is referred to as the metrical
theory of continued fractions. Since the partial quotients can be obtained through Gauss map, the
theory has close connections with dynamical systems, ergodic theory and Diophantine approximation.
Historically, the focus has been on the metrical theory of the sets

E(Ψ) := {x ∈ [0, 1) : an(x) ≥ Ψ(n) for infinitely many n ∈ N}

for a given function Ψ : N → R≥1. Borel-Bernstein’s theorem [3, 4] is a fundamental result that
describes the size of the set E(Ψ) in terms of Lebesgue measure.

Theorem 1.1 (Borel-Bernstein, 1911-1912). Let Ψ : N→ R≥1. Then

L
(
E(Ψ)

)
=

{
0 if

∑∞
n=1

1
Ψ(n) < ∞,

1 if
∑∞
n=1

1
Ψ(n) = ∞.

Good [9] and  Luczak [18] were the main contributors to studying the Hausdorff dimension of this
set for Ψ(n) tending to infinity at a polynomial na and super-exponential speeds ab

n

respectively, see
also [8, 11, 22] and references therein. Then the dimension of E(Ψ) was computed by Wang-Wu [24]
for arbitrary Ψ. In what follows, P (T, φ) will stand for the pressure function for the dynamics of the
Gauss map T with potential φ; see §2.3 for a precise definition.

Theorem 1.2 (Wang-Wu, 2008). Let Ψ : N→ R≥1. Denote

(1.1) logB := lim inf
n→∞

log Ψ(n)

n
and log b := lim inf

n→∞

log log Ψ(n)

n
.

Then

dimH E(Ψ) =


1, if B = 1,
inf
{
s ≥ 0 : P

(
T,−s(logB + log |T ′|)

)
≤ 0
}

if 1 < B <∞,
1

1+b if B =∞.

In particular, dimH E(Ψ) > 1/2 if B <∞.

In this paper, we study a generalized form of the set E(Ψ) which has close connections with the
improvements to Dirichlet’s theorem (1842). Namely, in [16] Kleinbock-Wadleigh considered the set

(1.2) E2(Ψ) := {x ∈ [0, 1) : an(x)an+1(x) ≥ Ψ(n) for infinitely many n ∈ N} ,

and found a zero-one law for L
(
E2(Ψ)

)
, see [16, Theorem 3.6]. This result was used to establish

a zero-one law for the sets of ψ-Dirichlet improvable real numbers [16, Theorem 1.8], where ψ is a
positive non-increasing function. See [16, §2] for a connection between (1.2) and the improvements to
Dirichlet’s theorem, and [13, 5, 1] for further results in that direction.

The work of Kleinbock-Wadleigh was followed by Huang-Wu-Xu [12] with both Lebesgue measure
and Hausdorff dimension results for a natural generalization of the set (1.2). Namely, for m ∈ N they
considered

(1.3) Em(Ψ) := {x ∈ [0, 1) : an(x) · · · an+m−1(x) ≥ Ψ(n) for infinitely many n ∈ N} ,

and proved the following
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Theorem 1.3 (Huang-Wu-Xu, 2019). Given Ψ : N→ R≥1,

(a) [12, Theorem 1.5]

L
(
Em(Ψ)

)
=


0 if

∞∑
n

logm−1 Ψ(n)
Ψ(n) < ∞,

1 if
∞∑
n

logm−1 Ψ(n)
Ψ(n) = ∞;

(b) [12, Theorem 1.7]

dimH Em(Ψ) =


1, if B = 1,
inf
{
s ≥ 0 : P (T,−fm(s) logB − s log |T ′|) ≤ 0

}
if 1 < B <∞;

1
1+b if B =∞,

where B, b are as in (1.1), and fm is given by the following iterative formula:

(1.4) f1(s) = s, fk+1(s) =
sfk(s)

1− s+ fk(s)
, k ≥ 1.

In this paper we consider a weighted generalization of (1.3): take t = (t0, . . . , tm−1) ∈ Rm+ and
Ψ : N→ R≥1, and define

Et(Ψ) :=

{
x ∈ [0, 1) :

m−1∏
i=0

atin+i(x) ≥ Ψ(n) for infinitely many n ∈ N

}
.

Clearly Em(Ψ) = E1m(Ψ), where 1m = (1, . . . , 1︸ ︷︷ ︸
m

). Generalizing Theorem 1.3(a), we prove the following

dichotomy statement for the Lebesgue measure of Et(Ψ):

Theorem 1.4. Let Ψ : N→ R≥1. Then

L
(
Et(Ψ)

)
=


0, if

∞∑
n=1

(log Ψ(n))`−1

Ψ(n)1/tmax
<∞,

1 if
∞∑
n=1

(log Ψ(n))`−1

Ψ(n)1/tmax
=∞,

where

(1.5) tmax = max{ti : 0 ≤ i ≤ m− 1}, ` = #{i : ti = tmax}.

A weighted generalization of Theorem 1.3(b) is straightforward in the case when B is either infinite
or equal to 1:

Theorem 1.5. Let Ψ : N→ R≥1, and let B, b be as in (1.1). Then

dimH Et(Ψ) =

{
1 if B = 1,
1

1+b if B =∞.

As for the remaining intermediate case 1 < B < ∞, we are only able to treat the m = 2 case,
characterizing the Hausdorff dimension of sets Et(Ψ) for t = (t0, t1) ∈ R2

+.

Theorem 1.6. Let Ψ : N→ R≥1 be such that 1 < B <∞, and let t = (t0, t1) ∈ R2
+. Then

dimH Et(Ψ) = inf
{
s ≥ 0 : P (T,−s log |T ′| − ft0,t1(s) logB) ≤ 0

}
,

where

(1.6) ft0,t1(s) :=
s2

t0t1 ·max
{
s
t1

+ 1−s
t0
, st0

} .
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Note that f1,1(s) = s2 for all 0 ≤ s ≤ 1, which agrees with the k = 2 case of (1.4). See §8 for an
explanation of why the case m > 2 is much more involved.

Remark 1.7. It is worth highlighting an interesting phenomena here. The Lebesgue measure of the
set Et(Ψ) is independent of the ordering of the exponents, whereas the Hausdorff dimension depends
on it. For instance

f2,1(s) =
s2

1 + s
, and f1,2(s) =

{
s2

2−s if s ≤ 2
3 ;

s
2 if s > 2

3 .

It is easy to see that f2,1(s) < f1,2(s) for any 1/2 < s < 1. Since dimH E(1,2)(Ψ) ≥ dimH E(Ψ) > 1/2
whenever B <∞ (see Theorem 1.2), it follows that in Theorem 1.6 one always has

dimH E(2,1)(Ψ) > dimH E(1,2)(Ψ).

Acknowledgements. The research of A. Bakhtawar is supported by the ARC grant DP180100201,
of M. Hussain by the ARC grant DP200100994, of D. Kleinbock by the NSF grant DMS-1900560, and
of B. Wang by NSFC (11831007). Part of this work was carried out during the workshop “Ergodic
Theory, Diophantine approximation and related topics” sponsored by the MATRIX Research Institute.

2. Preliminaries and auxiliary results

For completeness we give a brief introduction to Hausdorff measures and dimension. For further
details we refer to the beautiful texts [2, 7].

2.1. Hausdorff measure and dimension.

Let 0 < s ∈ Rn let E ⊂ Rn. Then, for any ρ > 0 a countable collection {Bi} of balls in Rn with
diameters diam(Bi) ≤ ρ such that E ⊂

⋃
iBi is called a ρ-cover of E. Let

Hsρ(E) = inf
∑
i

diam(Bi)
s,

where the infimum is taken over all possible ρ-covers {Bi} of E. It is easy to see that Hsρ(E) increases
as ρ decreases and so approaches a limit as ρ→ 0. This limit could be zero or infinity, or take a finite
positive value. Accordingly, the s-Hausdorff measure Hs of E is defined to be

Hs(E) = lim
ρ→0
Hsρ(E).

It is easily verified that Hausdorff measure is monotonic and countably sub-additive, and that Hs(∅) =
0. Thus it is an outer measure on Rn. When s = n, Hn coincides with standard Lebesgue measure on
Rn.

For any subset E one can verify that there exists a unique critical value of s at which Hs(E)
‘jumps’ from infinity to zero. The value taken by s at this discontinuity is referred to as the Hausdorff
dimension of E and is denoted by dimHE; i.e.,

dimHE := inf {s ∈ R+ : Hs(E) = 0} .

Computing Hausdorff dimension of a set is typically accomplished in two steps: obtaining the upper
and lower bounds separately. Upper bounds often can be handled by finding appropriate coverings.
When dealing with a limsup set, one usually applies the Hausdorff measure version of the famous
Borel-Cantelli lemma (see Lemma 3.10 of [2]):
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Proposition 2.1. Let {Bi}i≥1 be a sequence of measurable sets in R and suppose that,∑
i

diam(Bi)
s < ∞.

Then

Hs(lim sup
i→∞

Bi) = 0.

2.2. Continued fractions and Diophantine approximation.

Suppose that x ∈ [0, 1) r Q has continued fraction expansion x = [a1, a2, . . . ], where an(x) =
b1/Tn−1(x)c for each n ≥ 1. Recall the sequences pn = pn(x), qn = qn(x) defined by the recursive
relation (p−1, q−1) = (0, 1), (p0, q0) = (1, 1), and

(2.1) pn+1 = an+1(x)pn + pn−1, qn+1 = an+1(x)qn + qn−1, n ≥ 0.

Thus pn = pn(x), qn = qn(x) are determined by the partial quotients a1, . . . , an, so we may write
pn = pn(a1, . . . , an), qn = qn(a1, . . . , an). When it is clear which partial quotients are involved, we
denote them by pn, qn for simplicity.

For any integer vector (a1, . . . , an) ∈ Nn with n ≥ 1, write

In(a1, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}
for the corresponding ‘cylinder of order n’, i.e. the set of all real numbers in [0, 1) whose continued frac-
tion expansions begin with (a1, . . . , an). We will use In(x) to denote the nth order cylinder containing
x.

We will frequently use the following well known properties of continued fraction expansions. They
are explained in the standard texts [14, 15].

Proposition 2.2. For any positive integers a1, . . . , an, let pn = pn(a1, . . . , an) and qn = qn(a1, . . . , an)
be defined recursively by (2.1). Then:

(P1)

In(a1, a2, . . . , an) =


[
pn
qn
, pn+pn−1

qn+qn−1

)
if n is even;(

pn+pn−1

qn+qn−1
, pnqn

]
if n is odd.

Thus, its length is given by

1

2q2
n

≤ |In(a1, . . . , an)| = 1

qn(qn + qn−1)
≤ 1

q2
n

,

since

pn−1qn − pnqn−1 = (−1)n, for all n ≥ 1.

(P2) For any n ≥ 1, qn ≥ 2(n−1)/2 and

1 ≤ qn+m(a1, . . . , an, b1, . . . , bm)

qn(a1, . . . , an) · qm(b1, . . . , bm)
≤ 2.

(P3)
n∏
i=1

ai ≤ qn ≤
n∏
i=1

(ai + 1) ≤ 2n
n∏
i=1

ai.

(P4) there exists a constant K > 1 such that for almost all x ∈ [0, 1),

qn(x) ≤ Kn, for all n sufficiently large.
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Let µG be the Gauss measure given by

dµG =
1

log 2
· 1

(1 + x)
dx.

It is known that µG is T -invariant; clearly it is equivalent to Lebesgue measure L.

The next proposition concerns the position of a cylinder in [0, 1).

Proposition 2.3 (Khintchine, 1963). Let In = In(a1, . . . , an) be a cylinder of order n, which is
partitioned into sub-cylinders {In+1(a1, . . . , an, an+1) : an+1 ∈ N}. When n is odd, these sub-cylinders
are positioned from left to right, as an+1 increases from 1 to ∞; when n is even, they are positioned
from right to left.

The following result is due to  Luczak [18].

Lemma 2.4 ( Luczak, 1997). For any b, c > 1, the sets{
x ∈ [0, 1) : an(x) ≥ cb

n

for infinitely many n ∈ N
}
,{

x ∈ [0, 1) : an(x) ≥ cb
n

for all n ≥ 1
}
,

have the same Hausdorff dimension 1
b+1 .

2.3. Pressure function and Hausdorff dimension.

In this section, we recall a fact that the pressure function with a continuous potential can be
approximated by the pressure functions restricted to the sub-systems in continued fractions. For
more thorough results on pressure function in infinite conformal iterated function systems, see Hanus-
Mauldin-Urbański [10], Mauldin-Urbański [19, 20], or their monograph [21].

Let A be a finite or infinite subset of N. Define

XA = {x ∈ [0, 1) : an(x) ∈ A, for all n ≥ 1}.

Then (XA, T ) is a sub-system of ([0, 1), T ). Let φ : [0, 1)→ R be a real function. The pressure function
restricted to the system (XA, T ) with the potential φ is defined by

(2.2) PA(T, φ) = lim
n→∞

1

n
log

∑
(a1,...,an)∈An

sup
x∈XA

eSnφ([a1,...,an+x]) ,

where Snφ(x) denotes the ergodic sum φ(x) + · · · + φ(Tn−1x). When A = N, we denote PN(T, φ) by
P (T, φ), which is the pressure function that appeared in the introduction.

We will also use the notation

Varn(φ) := sup
{
|φ(x)− φ(y)| : In(x) = In(y)

}
for the nth variation of φ.

The existence of the limit in the definition of the pressure function (2.2) is guaranteed by the
following proposition [19].

Proposition 2.5 (Mauldin-Urbański, 1999). Let φ : [0, 1) → R be a real function with Var1(φ) < ∞
and Varn(φ) → 0 as n → ∞. Then the limit defining PA(T, φ) exists, and the value of PA(T, φ)
remains the same even without taking supremum over x ∈ XA in (2.2).
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Henceforth, without causing any confusion, when we need to take a point y from a cylinder
In(a1, . . . , an), we always take it as y = pn/qn = [a1, . . . , an]. Because all the potentials in the se-
quel satisfy the condition in Proposition 2.2, the pressure function can be expressed as

PA(T, φ) = lim
n→∞

1

n
log

∑
(a1,...,an)∈An

eSnφ([a1,...,an]).

The following proposition states that in the system of continued fractions the pressure function has
a continuity property when the system

(
[0, 1), T ) is approximated by its sub-systems (XA, T ). For the

proof, see [10] or [17].

Proposition 2.6 (Hanus-Mauldin-Urbański, 2002). Let φ : [0, 1) → R be a real function with
Var1(φ) <∞ and Varn(φ)→ 0 as n→∞. Then

(1) for any a ∈ R and A ⊂ N, PA(T, φ+ a) = PA(T, φ) + a;

(2) P (T, φ) = PN(T, φ) = sup{PA(T, φ) : A is a finite subset of N}.

Now we specify the potential φ which will be related to the dimension of the set Et(Ψ) when
Ψ(n) = Bn for all n ≥ 1.

Let the function ft0,t1 be as in (1.6). Then for any s ≥ 0, take the potential as

ψ(x) = −s log |T ′(x)| − ft0,t1(s) logB.

For any subset A ⊂ N, define

s(2)(A, B) = inf
{
s ≥ 0 : PA(T,−s log |T ′(x)| − ft0,t1(s) logB) ≤ 0

}
,

s(2)
n (A, B) = inf

{
s ≥ 0 :

∑
a1,...,an∈A

(
1

Bnft0,t1
(s)

)(
1

q2
n(y)

)s
≤ 1
}
,

where y ∈ In(a1, . . . , an). If A is a finite subset of N, when substitute s by s(2)(A, B) in the pressure

function PA above (or respectively s
(2)
n (A, B) in the summation), we will get an equality.

For simplicity,

• when A = N, write s(2)(B) for s(2)(N, B) and s
(2)
n (B) for s

(2)
n (N, B);

• when A = {1, 2, . . . ,M} for some integer M ≥ 1, write them as s(2)(M,B) and s
(2)
n (M,B)

respectively.

Applying Proposition 2.6(2) to the potential ψ, one has

Corollary 2.7.

s(2)(B) = s(2)(N, B) = sup{s(2)(A, B) : A is a finite subset of N}.

Then it follows from the definition of pressure function and Corollary 2.7 that

Proposition 2.8. For any M ∈ N, we have

lim
n→∞

s(2)
n (M,B) = s(2)(M,B), lim

n→∞
s(2)
n (B) = s(2)(B), lim

M→∞
s(2)(M,B) = s(2)(B).

Proposition 2.9. As a function of B ∈ (1,∞), s(2)(B) is continuous and

lim
B→1

s(2)(B) = 1, lim
B→∞

s(2)(B) =
1

2
.

Proof. The proof follows similarly to [24] without much difference. �
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3. Proof of Theorem 1.4

We first recall a dynamical Borel-Cantelli lemma from the paper of Kleinbock-Wadleigh [16, Lemma
3.5], which is essentially taken from the work of Philipp [23] and follows from the effective mixing
property of T .

Lemma 3.1. Fix k ∈ N. Suppose {An : n ≥ 1} is a sequence of sets such that for each n ≥ 1, the set
An is a countable union of sets of form

Er = {x ∈ [0, 1] rQ : a1(x) = r1, . . . , ak(x) = rk} .

Then Tnx ∈ An for infinitely many n ∈ N for almost all x or almost no x depending upon the
divergence or convergence of the series

∑∞
n=1µG(An) respectively.

For each n ≥ 1 and fixed m ≥ 1, define

(3.1) An =

{
x ∈ [0, 1) :

m∏
i=1

a
ti−1

i (x) ≥ Ψ(n)

}
.

The set An can further be written as the union over a collection of m-th order cylinders as

An =
⋃

(a1,...,am)∈Nm: a
t0
1 ···a

tm−1
m ≥Ψ(n)

Im(a1, . . . , am).

To apply Lemma 3.1, we need only to estimate the Lebesgue measure L of An, which is equivalent to
its Gauss measure µG. It follows from Proposition 2.2 that

L(An) �
∑

a
t0
1 ···a

tm−1
m ≥Ψ(n)

m∏
i=1

1

ai(ai + 1)
,

where the constant involved in � depends only on m.

Lemma 3.2. Let t0, . . . , tm−1 be an m-tuple of positive real numbers, and define

tmax = max{ti : 0 ≤ i ≤ m− 1}, ` = #{i : ti = tmax}.

Then for any m ≥ 1 and g ≥ 1, we have

(3.2)
∑

a
t0
1 ···a

tm−1
m ≥g

m∏
i=1

1

ai(ai + 1)
� (log g)`−1

g
1

tmax

,

where the constant implied in � depends on m but not on g.

Proof. The summation in (3.2) does not depend upon the ordering of the partial quotients, therefore
without loss of generality we assume that t0 ≥ · · · ≥ tm−1 and then

tmax = t0, and ` = #{i : ti = t0}.

We prove this lemma by induction on ` ≥ 1.

(I) When ` = 1, we show that (3.2) holds for all m ≥ 1. Write d = m− `. Then it suffices to show
(3.2) holds for all d ≥ 0. This is done by induction on d.
(Ia) When d = 0, i.e. m = 1, it is easy to see that (3.2) holds.
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(Ib) Assume that the result holds for d− 1; we show that (3.2) still holds for d. Notice that

∑
a
t0
1 ···a

tm−1
m ≥g

m∏
i=1

1

ai(ai + 1)
�

∑
a
tm−1
m ≥g

1

am(am + 1)
+

∑
1≤a

tm−1
m ≤g

1

a2
m

∑
a
t0
1 ···a

tm−2
m−1 ≥g/a

tm−1
m

m−1∏
i=1

1

ai(ai + 1)

� g−
1

tm−1 +
∑

1≤a
tm−1
m ≤g

1

a2
m

·

(
a
tm−1
m

g

) 1
t0

(by induction on the inner summation)

� g−
1

tm−1 + g−
1
t0 � g−

1
t0 ,

where the second last quantity is obtained by noticing that tm−1/t0 < 1, so the summation
over am converges.

(II) Assume that ` ≥ 2. As for (I) above, we use induction on d = m− `.
(IIa) When d = 0, i.e. m = ` and ti = t for all 0 ≤ i ≤ m− 1, we have

∑
a
t0
1 ···a

tm−1
m ≥g

m∏
i=1

1

ai(ai + 1)

�
∑
atm≥g

1

am(am + 1)
+

∑
1≤atm≤g

1

a2
m

∑
at1···atm−1≥g/atm

m−1∏
i=1

1

ai(ai + 1)

� g−1/t +
∑

1≤atm≤g

1

a2
m

·
(log g

atm
)`−2

( g
atm

)1/t
, (by induction on inner summation)

� 1

g1/t
+

∫ g1/t

1

1

x2
·

(log g1/t

x )`−2

( g
1/t

x )
dx, (change variable y =

g1/t

x
)

� 1

g1/t
+

∫ g1/t

1

1

g1/t
· (log y)`−2

y
dy � 1

g1/t
+

(log g)`−1

g1/t
.

II(b) Assume that the result holds for d− 1. We show that (3.2) still holds for any d. Since `
is fixed, it means that

t0 = · · · = t`−1 > t` ≥ · · · ≥ tm−1.

So,

#{i ≥ 1 : ti = t1} = `− 1, and t0 = t1.

Notice that

I :=
∑

a
t0
1 ···a

tm−1
m ≥g

m∏
i=1

1

ai(ai + 1)

�
∑
a
t0
1 ≥g

1

a1(a1 + 1)
+

∑
1≤at01 ≤g

1

a2
1

∑
a
t1
2 ···a

tm−1
m ≥g/at01

m∏
i=2

1

ai(ai + 1)
.
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For the inner summation, the induction hypothesis is applied to give

I � 1

g
1
t0

+
∑

1≤at01 ≤g

1

a2
1

·

(
log g

a
t0
1

)`−2

(
g

a
t0
1

)1/t1

� 1

g
1
t0

+
∑

1≤at01 ≤g

1

a2
1

·

(
log g1/t0

a1

)`−2

(
g

a
t0
1

)1/t0
(by t0 = t1).

So we get the same formula as in case (IIa).

�

Now observe that

Et(Ψ) =
{
x ∈ [0, 1) : Tn−1x ∈ An for infinitely many n ∈ N

}
,

where An are as in (3.1). By combining Lemmas 3.1 and 3.2, we conclude that L
(
Et(Ψ)

)
is zero or

full according to the convergence or divergence of the series

∞∑
n

L(An) �
∞∑
n

(
log Ψ(n)

)`−1

Ψ(n)1/tmax
,

where tmax and ` are as in (1.5). This finishes the proof of Theorem 1.4.

4. Hausdorff dimension for B = 1 or B =∞

In this section we prove Theorem 1.5 by considering the two cases:

• B = 1;
• B =∞ (for this case, there are three subcases b = 1, 1 < b <∞, and b =∞).

We start off with the easier case.

4.1. B = 1. It is trivial that

Et(Ψ) ⊃
{
x ∈ [0, 1) : at0n (x) ≥ Ψ(n) for infinitely many n ∈ N

}
.

It follows from Theorem 1.2 that the set on the right hand side has full Hausdorff dimension. Hence
dimH Et(Ψ) = 1 when B = 1.

4.2. B =∞. There are three subcases.

4.2.1. 1 < b <∞.

By the definition of b, for any c < b,

log log Ψ(n)

n
≥ log c, i.e. Ψ(n) ≥ ec

n

for all sufficiently large n which we write as n� 1. Thus for any x ∈ Et(Ψ), there are infinitely many
n such that

m−1∏
i=0

atin+i(x) ≥ ec
n

,
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then at least for one index 0 ≤ i ≤ m− 1 one has atin+i(x) ≥ e 1
m ·c

n

. Thus

Et(Ψ) ⊂
m−1⋃
i=0

{
x ∈ [0, 1) : atin+i(x) ≥ e 1

m ·c
n

for i.m. n ∈ N
}

It follows from Lemma 2.4 that each of the sets on the right hand side have Hausdorff dimension 1
1+c

irrespective of t′is. Hence dimH Et(Ψ) ≤ 1
1+b by the arbitrariness of c < b.

On the other hand, by the definition of b, it follows that for any d > b,

Ψ(n) ≤ ed
n

, for infinitely many n ∈ N.

Thus one has

Et(Ψ) ⊃
{
x ∈ [0, 1) : at0n ≥ ed

n

for all n ∈ N
}
,

and from Lemma 2.4 we conclude that the Hausdorff dimension of the set on the right hand side is
1/(1 + d).

4.2.2. b =∞. This case readily follows from the upper bound argument above, that is,

Et(Ψ) ≤ lim
b→∞

1

b+ 1
= 0.

4.2.3. b = 1. In this case, for any ε > 0, Ψ(n) ≤ e(1+ε)n for infinitely many n. Then

Et(Ψ) ⊃
{
x ∈ [0, 1) : at0n ≥ Ψ(n) for infinitely many n ∈ N

}
⊃
{
x ∈ [0, 1) : at0n (x) ≥ e(1+ε)n for all n ∈ N

}
.

Hence by using Lemma 2.4, we have

dimH Et(Ψ) ≥ lim
ε→0

1

1 + 1 + ε
=

1

2
.

For the upper bound, we note that

m−1∏
i=0

atin+i(x) ≥ Ψ(n) =⇒ atin+i ≥ Ψ(n)
1
m for some 0 ≤ i ≤ m− 1.

Hence

Et(Ψ) ⊆
m−1⋃
i=0

{
x ∈ [0, 1) : atin+i ≥ Ψ(n)

1
m , for i.m. n ∈ N

}
.

Since B =∞, for any A > 1 one has

Et(Ψ) ⊆ {x ∈ [0, 1) : an ≥ An, for i.m. n ∈ N} .

Hence by letting A→∞ and appealing to Proposition 2.9, it follows that dimH Et(Ψ) ≤ 1/2.
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5. dimH Et(B) for m = 2 and 1 < B <∞: an upper bound

In the next three sections we specialize to the case m = 2, that is, take t = (t0, t1), and assume that
1 < B <∞. To prove Theorem 1.6, we first show that the Hausdorff dimension of the set

(5.1) Et(B) :=
{
x ∈ [0, 1) : at0n (x)at1n+1(x) ≥ Bn for i.m. n ∈ N

}
is equal to

inf
{
s ≥ 0 : P

(
T,−s log |T ′| − ft0,t1(s) logB

)
≤ 0
}
,

where ft0,t1 is as in (1.6).

We recall that according to Theorem 1.2, the Hausdorff dimension of the one-parameter version of
(5.1), namely the set {

x ∈ [0, 1) : an(x)t0 ≥ Bn for i.m. n ∈ N
}
,

is given by

inf

{
s ≥ 0 : P

(
T,−s log |T ′| − s

t0
logB

)
≤ 0

}
.

This gives the first function ft0 defined by

ft0(s) =
s

t0
.

Now take a positive number A with 1 < A < B and define

E ′t(A) :=

{
x ∈ [0, 1) : at0n (x) ≤ An, at1n+1(x) ≥ Bn

at0n (x)
for i.m. n ∈ N

}
,

and

E ′′t (A) :=
{
x ∈ [0, 1) : at0n (x) ≥ An for i.m. n ∈ N

}
.

Then
Et(B) ⊂ E ′t(A) ∪ E ′′t (A),

From the m = 1 case above, the Hausdorff dimension of the set E ′′t (A) is given by

(5.2) dimH E ′′t (A) = inf {s ≥ 0 : P (T,−s log |T ′| − ft0(s) logA) ≤ 0} := δ1.

Now we focus on the Hausdorff dimension of E ′t(A). Since it readily follows from Theorem 1.2
that 1/2 < dimH Et(B) < 1 for 1 < B < ∞, we consider the s-Hausdorff measure of E ′t(A) only for
1/2 < s < 1.

Because of the limsup nature of E ′t(A), there is a natural cover of it. For any integers a1, . . . , an,
define

Jn(a1, . . . , an) :=
⋃

an+1: a
t1
n+1≥

Bn

a
t0
n

In+1(a1, . . . , an+1).

Then

E ′t(A) =
∞⋂
N=1

∞⋃
n=N

⋃
a1,...,an−1∈N

⋃
a
t0
n ≤An

Jn(a1, . . . , an).

By Proposition 2.2, one has

|Jn(a1, . . . , an)| �

[
q2
n−1a

2
n

(
Bn

at0n

) 1
t1

]−1

=

[
q2
n−1a

2− t0
t1

n B
n
t1

]−1

,

where the constant implied in � can be chosen as 4.



WEIGHTED PRODUCTS OF MULTIPLE PARTIAL QUOTIENTS 13

Thus the s-Hausdorff measure of E ′t(A) can be estimated as

Hs
(
E ′t(A)

)
≤ lim inf

N→∞

∞∑
n=N

∑
a1,...,an−1∈N

∑
a
t0
n ≤An

|Jn(a1, . . . , an)|s

� lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1∈N

∑
a
t0
n ≤An

[
q2
n−1a

2− t0
t1

n B
n
t1

]−s

� lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1∈N

∑
a
t0
n ≤An

a
−(2− t0

t1
)s

n

(
q2
n−1B

n
t1

)−s
.

Calculating the summation over an gives that∑
a
t0
n ≤An

a
−
(

2− t0
t1

)
s

n � max
{

1, A
n
t0
·
(

1−s(2− t0
t1

)
)}

= max
{

1, An
(

1−2s
t0

+ s
t1

)}
.

Thus

Hs
(
E ′t(A)

)
≤ lim inf

N→∞

∞∑
n=N

∑
a1,...,an−1∈N

max
{

1, An
(

1−2s
t0

+ s
t1

)}
·
(
q2
n−1B

n
t1

)−s
.

This gives an upper bound of the Hausdorff dimension of the set E ′t(A) to be

(5.3) inf

{
s ≥ 0 : P

(
T,−s log |T ′|+ max

{
0,

1− 2s

t0
+
s

t1

}
logA− s

t2
logB

)
≤ 0

}
:= δ2.

Combining (5.2) and (5.3), one gets

dimH Et(B) ≤ max{δ1, δ2}.
It would be reasonable to choose A such that δ1 = δ2 which would give the optimal upper bound of
dimH Et(B). Choose A such that the potentials in δ1 and δ2 are equal, namely,

−ft0(s) logA = max

{
0,

1− 2s

t0
+
s

t1

}
logA− s

t1
logB

equivalently

logA =
s

t1ft0(s) + max
{

0, s− (2s− 1) t1t0

} logB.

Then define ft0,t1 such that
−ft0,t1(s) · logB = −ft0(s) · logA

giving that (note s > 1/2)

ft0,t1(s) =
sft0(s)

t1ft0(s) + max
{

0, s− (2s− 1) t1t0

} =
sft0(s)

t1

[
ft0(s) + max{0, st1 −

2s−1
t0
}
] .(5.4)

Note that (5.4) is the same as (1.6) given in the statement of the Theorem 1.6. As a result, once we
can check that the chosen A is less than B, we will arrive at the final conclusion

dimH Et(B) ≤ inf{s ≥ 0 : P (T,−s log |T ′| − ft0,t1(s) logB) ≤ 0}.

We show that A < B in the following lemma.

Lemma 5.1. For any 0 < s < 1,

ft0,t1(s) < ft0(s), or, equivalently, A < B.
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Proof. Recall (5.4). Then

ft0,t1(s) < ft0(s)⇐⇒ s < t1ft0(s) + max

{
0, s− (2s− 1)

t1
t0

}
⇐= s < t1ft0(s) + s− (2s− 1)

t1
t0

⇐⇒ (2s− 1)
t1
t0
< t1ft0(s) = t1 ·

s

t0
.

The last estimate is nothing but to say 2s− 1 < s, which is clearly true since s < 1.

�

6. dimH Et(B) for 1 < B <∞: a lower bound

To obtain the lower bound, we will construct an appropriate Cantor subset of Et(B) and then apply
the following mass distribution principle [7].

Proposition 6.1 (Mass Distribution Principle). Let µ be a probability measure supported on a mea-
surable set F . Suppose there are positive constants c and r0 such that

µ
(
B(x, r)

)
≤ crs

for any ball B(x, r) with radius r ≤ r0 and center x ∈ F . Then dimH F ≥ s.

6.1. Preliminaries on the dimension estimate. Recall that

ft0(s) =
s

t0
, ft0,t1(s) =

sft0(s)

t1

[
ft0(s) + max{0, st1 −

2s−1
t0
}
] ,

and write so for s(2)(B), i.e.

so = inf {s ≥ 0 : P (−s log |T ′| − ft0,t1(s) logB) ≤ 1} .

We present some facts about this dimension estimate. The following may be trivial, however we
give a rigorous proof to avoid any potential uncertainty. Define

s′o =
{
s ≥ 0 : P (T,−s log |T ′| − s

t1
logB) ≤ 0

}
.

Lemma 6.2. When so
t1
− 2so−1

t0
≤ 0, one has so = s′o.

Proof. At first, remember that the pressure function P (T, ·) is non-decreasing with respect to the
potential, i.e.

P (T, ψ1) ≤ P (T, ψ2), if ψ1 ≤ ψ2.

Note that we always have

ft0,t1(s) ≤ sft0(s)

t1[ft0(s) + 0]
=

s

t1
.

Thus

−s log |T ′| − ft0,t1(s) logB ≥ −s log |T ′| − s

t1
logB,

which implies that

s′o ≤ so.

For the other direction of the inequality, we distinguish two cases.
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• When so
t1
− 2so−1

t0
< 0. Let ε > 0 be small such that for any so− ε < s < so+ ε, we always have

s

t1
− 2s− 1

t0
< 0,

and so

(6.1) ft0,t1(s) =
s

t1
.

For any so − ε < s < so, by the definition of so we have

P
(
T,−s log |T ′| − ft0,t1(s) logB

)
> 0.

so by (6.1), it follows that

P

(
T,−s log |T ′| − s

t1
logB

)
> 0.

This implies s′o ≥ s. By the arbitrariness of s, one has s′o ≥ so.
• When so

t1
− 2so−1

t0
= 0. In this case, one has

ft0,t1(so) =
so
t1
.

By the continuity of ft0,t1 with respect to s, for any ε > 0, choose 0 < δ ≤ ε, such that for any
so − δ < s < so,

ft0,t1(s) >
so − ε
t1

.

On one hand, by the definition of so, for any so − δ < s < so,

P (T,−s log |T ′| − ft0,t1(s) logB) > 0,

on the other hand, (since s > so − ε)

−s log |T ′| − ft0,t1(s) logB < −(so − ε) log |T ′| − so − ε
t1

logB,

which implies that

0 < P
(
T,−s log |T ′| − ft0,t1(s) logB

)
≤ P

(
T,−(so − ε) log |T ′| − so − ε

t1
logB

)
.

Thus s′o ≥ so − ε.

�

As a result, when
so
t1
− 2so − 1

t0
≤ 0,

we consider the following subset of Et(B):{
x ∈ [0, 1) : at1n+1(x) ≥ Bn, i.m. n ∈ N

}
which, by Theorem 1.2, is of dimension

s′o = inf{s ≥ 0 : P (T,−s log |T ′| − s

t1
logB) ≤ 0}.

Thus

dimH Et(B) ≥ s′o = so.
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So in the following, we always assume that

so
t1
− 2so − 1

t0
> 0,

and then in a small neighborhood of so, we always have

(6.2) ft0,t1(s) =
sft0(s)

t1
(
ft0(s) + s

t1
− 2s−1

t0

) .
6.2. A subset of Et(B).

Fix integers M,N sufficiently large such that s := s
(2)
N (M,B) is in the small neighborhood of so so

that 1 > s > 1/2 and (6.2) holds. Then define a real number A such that

(6.3) ft0(s) logA = ft0,t1(s) logB.

It is straightforward to check that ft0(x) > ft0,t1(x) for any 0 < x < 1, so 1 < A < B.

Fix a sequence of largely sparse integers {`k}k≥1, say,

`k � e`1+···+`k−1 , and take n1 = `1N + 1, nk+1 − nk = `k+1N + 2, ∀ k ≥ 1,

so that the number of integers in the interval (nk + 1, nk+1) is a multiple of N . Then define a subset
of Et(B) as

E =

{
x ∈ [0, 1) : A

nk
t0 ≤ ank

(x) < 2A
nk
t0 ,

(
Bnk

Ank

)1/t1

≤ ank+1(x) < 2

(
Bnk

Ank

)1/t1

for all k ≥ 1;

and an(x) ∈ {1, . . . ,M} for other n ∈ N

}
.

For ease of notation,

• write

α0 = A1/t0 , α1 =

(
B

A

)1/t1

.

• write qn(a1, . . . , an) as qn when the partial quotients a1, . . . , an are clear. Recall (6.3). Then

1 =
∑

1≤a1,...,aN≤M

1

q2s
N (a1, . . . , aN ) ·BN ·ft0,t1 (s)

=
∑

1≤a1,...,aN≤M

1

q2s
N · αNs0

.

• use a symbolic space defined as D0 = {∅}, and for any n ≥ 1,

Dn =

{
(a1, . . . , an) ∈ Nn : αnk

i ≤ ank+i < 2αnk
i for 0 ≤ i ≤ 1, k ≥ 1 with nk + i ≤ n;

and aj ∈ {1, . . . ,M} for other j ≤ n

}
,

which is just the collection of the prefixes of the points in E.
• if an integer n is assumed as a real value ξ, we mean n = bξc and in Dn, the term ank+i has
αnk
i choices.

• Use U to denote the following collection of finite words:

U = {w = (σ1, . . . , σN ) : 1 ≤ σi ≤M, 1 ≤ i ≤ N}.
In the following, we always use w to denote a word of length N in U .
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6.3. Cantor structure of E.

For any (a1, . . . , an) ∈ Dn, define

Jn(a1, . . . , an) =
⋃

an+1:(a1,...,an,an+1)∈Dn+1

In+1(a1, . . . , an, an+1)

and call it a basic cylinder of order n. More precisely, for each k ≥ 0

• when nk + 1 ≤ n < nk+1 − 1 (by viewing n0 = 0),

Jn(a1, . . . , an) =
⋃

1≤an+1≤M

In+1(a1, . . . , an, an+1)

• when n = nk+1 − 1 + i for i = 0, 1,

Jn(a1, . . . , an) =
⋃

α
nk+1
i ≤an+1<2α

nk+1
i

In+1(a1, . . . , an, an+1)

Then define
Fn =

⋃
(a1,...,an)∈Dn

Jn(a1, . . . , an)

and call it level n of the Cantor set E. It is clear that

E =
∞⋂
n=1

Fn =
∞⋂
n=1

⋃
(a1,...,an)∈Dn

Jn(a1, . . . , an).

We have the following observations about the length and gaps of the basic cylinders.

Lemma 6.3 (Gap estimation). Denote by Gn(a1, . . . , an) the gap between Jn(a1, . . . , an) and other
basic cylinders of order n. Then

Gn(a1, . . . , an) ≥ 1

M
· |Jn(a1, . . . , an)|.

Proof. This lemma can be observed from the positions of the cylinders in Proposition 2.3. A detailed
proof can be found in [12]. �

Recall the definition of U . Every element x ∈ E can be written as

x = [w
(1)
1 , . . . , w

(1)
`1
, an1 , an1+1,w

(2)
1 , . . . , w

(2)
`2
, an2 , an2+1,

. . . ,w
(k)
1 , . . . , w

(k)
`k
, ank

, ank+1, . . . ],

where w ∈ U and
αnk

0 ≤ ank
< 2αnk

0 , αnk
1 ≤ ank+1 < 2αnk

1 , for all k ≥ 1.

Lemma 6.4 (Estimation on qn(x)). Let nk + 1 < n ≤ nk+1 + 1.

• n = nk + 1 + `N for some 1 ≤ ` ≤ `k+1,

qnk+1+`N (x) ≤

(
2` ·

∏̀
i=1

qN (w
(k+1)
i )

)
·
k∏
t=1

(
2`t+4αnt

0 αnt
1

`t∏
l=1

qN (w
(t)
l )

)
.

• n = nk+1,

qnk+1
(x) ≤

2`k+1+2α
nk+1

0 ·
`k+1∏
i=1

qN (w
(k+1)
i )

 · k∏
t=1

(
2`t+4αnt

0 αnt
1

`t∏
l=1

qN (w
(t)
l )

)
.
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• n = nk+1 + 1,

qnk+1+1(x) ≤
k+1∏
t=1

(
2`t+4αnt

0 αnt
1

`t∏
l=1

qN (w
(t)
l )

)
.

• for any n with nk + 1 + (`− 1)N < n < nk + 1 + `N ,

1

(M + 1)N
· qnk+1+`N (x) ≤ qn(x) ≤ (M + 1)N · qnk+1+(`−1)N (x).

Proof. Use the second item in Proposition 2.2 recursively to get the first estimation. More precisely,

qnk+1+`N (x) ≤

(
2` ·

∏̀
i=1

qN (w
(k+1)
i )

)
· qnk+1(x)

≤

(
2` ·

∏̀
i=1

qN (w
(k+1)
i )

)
·

(
2`k+4αnk

0 αnk
1

`k∏
l=1

qN (w
(k)
l )

)
· qnk−1+1(x).

For the next two, one just use

qn+1 = an+1qn + qn−1 ≤ (an+1 + 1)qn.

For the last item, note that the partial quotients

1 ≤ an ≤M, for all nk + 1 + (`− 1)N < n < nk + 1 + `N.

�

We estimate the length of basic cylinders Jn(x) for all n ≥ 1. For nk + 1 ≤ n < nk+1 − 1, we have

|Jn(x)| =
∣∣∣∣pn + pn−1

qn + qn−1
− (M + 1)pn + pn−1

(M + 1)qn + qn−1

∣∣∣∣ =
M

(qn + qn−1)((M + 1)qn + qn−1)
≥ 1

8q2
n

,

and similarly,

1

αnk
0 q2

nk−1(x)
> |Jnk−1(x)| ≥ 1

8αnk
0 q2

nk−1(x)
,

1

αnk
1 q2

nk
(x)

> |Jnk
(x)| ≥ 1

8αnk
1 q2

nk
(x)

.

Consequently, we have

Lemma 6.5 (Length estimation). Let nk − 1 ≤ n < nk+1 − 1.

• For n = nk − 1 = nk−1 + 1 + `kN ,

|Jnk−1(x)| ≥ 1

23αnk
0

·

(
1

22`k
·
`k∏
i=1

1

q2
N (w

(k)
i )

)
·

[
k−1∏
t=1

(
1

22`t+8
· 1

α2nt
0 α2nt

1

·
`t∏
l=1

1

q2
N (w

(t)
l )

)]
.

• for n = nk,

|Jnk
(x)| ≥ 1

28
·
(

1

αnk
0 αnk

1

· |Jnk−1(x)|
)
.

• for n = nk + 1,

|Jnk+1(x)| ≥ 1

28
· 1

αnk
0 α2nk

1

· |Jnk−1(x)|.

• for each 1 ≤ ` < `k+1,

|Jnk+1+`N (x)| ≥ 1

23
·

(
1

22`
·
∏̀
i=1

1

q2
N (w

(k+1)
i )

)
·

[
k∏
t=1

(
1

22`t+4
· 1

α2nt
0 α2nt

1

·
`t∏
l=1

1

q2
N (w

(t)
l )

)]
.
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• for nk + 1 + (`− 1)N < n < nk + 1 + `N with 1 ≤ ` ≤ `k+1,

|Jn(x)| ≥ c · |Jnk+1+(`−1)N (x)|,

where c = c(M,N) is an absolute constant.

6.4. Mass distribution.

We define a probability measure supported on the Cantor set E. Still express an element x ∈ E as

x = [w
(1)
1 , . . . , w

(1)
`1
,an1

, an1+1, w
(2)
1 , . . . , w

(2)
`2
, an2

, an2+1,

. . . , w
(k)
1 , . . . , w

(k)
`k
, ank

, ank+1, . . . ],

where w ∈ U and

αnk
0 ≤ ank

< 2αnk
0 , αnk

1 ≤ ank+1 < 2αnk
1 for all k ≥ 1.

We define a measure µ along the basic intervals Jn(x) containing x as follows.

• Let n ≤ n1 + 1.
– for each 1 ≤ ` ≤ `1, define

µ
(
JN`(x)

)
=
∏̀
i=1

1

qN (w
(1)
i )2s · αsN0

.

Because of the arbitrariness of x, this defines the measure on all basic cylinders of order
`N .

– for each integer n with (`− 1)N < n < `N for some 1 ≤ ` ≤ `1, define

µ
(
Jn(x)

)
=

∑
J`N⊂Jn(x)

µ
(
J`N

)
,

where the summation is over all basic cylinders of order `N contained in Jn(x). This
is designed to ensure the consistency of a measure and defines the measure on the basic
cylinders of order up to n1 − 1.

– for each 0 ≤ i ≤ 1, define

µ
(
Jn1+i(x)

)
=

i∏
j=0

1

αnj
· µ
(
Jn1−1(x)

)
=

`1∏
l=1

1

qN (w
(1)
l )2s · αsN0

·
i∏

j=0

1

αnj
.

• Let nk + 1 < n ≤ nk+1 + 1. Assume the measure of all basic intervals of order nk + 1 has been
defined.

– for each 1 ≤ ` ≤ `k+1, define

µ
(
Jnk+1+N`(x)

)
=
∏̀
i=1

1

qN (w
(k+1)
i )2s · αsN0

· µ
(
Jnk+1(x)

)
=

[∏̀
i=1

1

qN (w
(k+1)
i )2s · αsN0

]
·

[
k∏
t=1

(
1

αnt
0 αnt

1

`t∏
l=1

1

q2s
N (w

(t)
l ) · αsN0

)]
.(6.4)

– for each integer n with nk + 1 + (`−1)N < n < nk + 1 + `N for some 1 ≤ ` ≤ `k+1, define

µ
(
Jn(x)

)
=

∑
Jnk+1+`N⊂Jn(x)

µ(Jnk+1+`N ).

This defines the measure on the basic cylinders of order up to nk+1 − 1.
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– for each 0 ≤ i ≤ 1, define

µ
(
Jnk+1+i(x)

)
=

i∏
j=0

1

α
nk+1

j

· µ
(
Jnk+1−1(x)

)
.(6.5)

Look at (6.4) for the measure of a basic cylinder of order nk + 1 + `N and its predecessor of order
nk + 1 + (`− 1)N : the former has more one term than the latter, i.e. the term

1

q2s
N (w

(k+1)
` )αsN0

which is uniformly bounded by some constant depending on M,N,B. Thus there is an absolute
constant c = c(M,N,B) > 0 such that for each integer n with

• when nk + 1 + (`− 1)N ≤ n ≤ nk + 1 + `N ,

µ
(
Jn(x)

)
≥ c · µ

(
Jnk+1+(`−1)N (x)

)
.

• when nk + 1 ≤ n < nk+1 − 1,

(6.6) µ
(
Jn+1(x)

)
≥ c · µ

(
Jn(x)

)
.

6.5. Hölder exponent of µ for basic cylinders.

We begin with some simple relations between A and B and beyond.

Lemma 6.6. Recall the real number A and the integer N given before in (6.3). Then

•
(

1

α1α2
0

)s
=

1

α0
· 1

αs0
, equivalently

1

α0
=

(
1

α0α1

)s
;

• 1

α0α1
· 1

αs0
≤
(

1

α2
0α

2
1

)s
equivalently

1

α0α1
≤
(

1

α0α2
1

)s
;

• Let ε > 0. Then we can choose an integer N so large and {`k} so sparse that

22`k+8 ≤
(

2(N−1)`k
)ε

and `kN ≥ (1− ε)nk for all k ≥ 1.

Proof. Recall that we are in the case when

ft0,t1(s) =
sft0(s)

t1

[
ft0(s) + s

t1
− 2s−1

t0

] =
sft0(s)

t1

[
s
t1

+ 1−s
t0

] .
Thus, by recalling the choice of A, it follows that(

1

α1α2
0

)s
=

1

α0
· 1

αs0
⇐⇒ αs1 = α1−s

0 ⇐⇒
(
B

A

) s
t1

= A
1−s
t0

⇐⇒ s

t1
logB =

(
s

t1
+

1− s
t0

)
logA

⇐⇒ s

t1
logB =

sft0(s)

t1ft0,t1(s)
logA

⇐⇒ ft0,t1(s) logB = ft0(s) logA,

where the last equality is just how A was chosen.

Substitute the first equality into the second claim, it is nothing but to say

αs1 ≤ α1.
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The last claim is trivial. �

We compare the measure and length of Jn(x).

(1) Let n = nk − 1 which is equal to nk−1 + 1 + `kN . Recall (6.4) with k replaced by k − 1, and
then take ` = `k. Summing over the product on α0 and using the third item in Lemma 6.6, it follows
that

µ
(
Jnk−1(x)

)
≤
(

1

αnks
0

)1−ε
[
`k∏
i=1

1

qN (w
(k)
i )2s

]
·

[
k−1∏
t=1

(( 1

αnt
0 αnt

1 αnts
0

)1−ε `t∏
l=1

1

q2s
N (w

(t)
l )

)]
.

Then using the second item in Lemma 6.6 by changing α1+s
0 α1 to (α2

0α
2
1)s, one has

µ
(
Jnk−1(x)

)
≤
(

1

αnks
0

)1−ε
[
`k∏
i=1

1

qN (w
(k)
i )2s

]
·

[
k−1∏
t=1

(( 1

α2nt
0 α2nt

1

)s(1−ε) `t∏
l=1

1

q2s
N (w

(t)
l )

)]
.

At last, by the third item in Lemma 6.6, we have

`t∏
l=1

1

q2s
N (w

(t)
l )
≤

(
1

22`t+8
·
`t∏
l=1

1

q2
N (w

(t)
l )

)s(1−ε)
.

Finally, by comparing with the length of Jnk−1(x) (Lemma 6.5), we arrive at

µ
(
Jnk−1(x)

)
≤ 8 · |Jnk−1(x)|s(1−ε).

(2) Let n = nk. Recall (6.5). By the first item in Lemma 6.6,

µ
(
Jnk

(x)
)

=
1

αnk
0

· µ
(
Jnk−1(x)

)
≤ 8 · 1

αnk
0

· |Jnk−1(x)|s(1−ε)

≤ 8 ·
(

1

αnk
0 αnk

1

·
∣∣Jnk−1(x)

∣∣)s(1−ε) .
By comparing with the length of Jnk

(x) (Lemma 6.5), we arrive at

µ
(
Jnk

(x)
)
≤ 211 ·

∣∣Jnk
(x)
∣∣s(1−ε).

(3) Let n = nk + 1. Recall (6.5). By the second item in Lemma 6.6,

µ
(
Jnk+1(x)

)
=

1

αnk
0 αnk

1

· µ
(
Jnk−1(x)

)
≤ 8 · 1

αnk
0 αnk

1

·
∣∣Jnk−1(x)

∣∣s(1−ε)
≤ 8 ·

(
1

αnk
0 α2nk

1

·
∣∣Jnk−1(x)

∣∣)s(1−ε) .
By comparing with the length of Jnk+1(x) (Lemma 6.5), we arrive at

µ
(
Jnk+1(x)

)
≤ 211 ·

∣∣Jnk+1(x)
∣∣s(1−ε).

(4) Let n = nk + 1 + `N for some 1 ≤ ` < `k+1. Compare Lemma 6.5 and the formula (6.4). In
(6.4), after deleting the term αsN0 in the first product and changing α1+s

0 α1 to (α2
0α

2
1)s in the second

product, we will arrive at

µ
(
Jnk+1+`N (x)

)
≤ 211 ·

∣∣Jnk+1+`N (x)
∣∣s(1−ε).

(5) For other n, let 1 ≤ ` ≤ `k be the integer such that

nk + 1 + (`− 1)N ≤ n < nk + 1 + `N.
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Then

µ
(
Jn(x)

)
≤ µ

(
Jnk+1+(`−1)N (x)

)
≤ 211 ·

∣∣Jnk+1+(`−1)N (x)
∣∣s(1−ε) ≤ 211 · c−1 ·

∣∣Jn(x)
∣∣s(1−ε),

where for the last inequality we have used Lemma 6.5 for the equivalence of the lengths of the two
basic cylinders.

In a summary, we have show that for some absolute constant c1, for any n ≥ 1 and x ∈ E,

µ
(
Jn(x)

)
≤ c1 ·

∣∣Jn(x)
∣∣s(1−ε).(6.7)

6.6. Hölder exponent of µ for a general ball.

Recall Lemma 6.3 about the relation between the gap and the length of the basic cylinders:

Gn(x) ≥ 1

M
· |Jn(x)|.

We consider the measure of a general ball B(x, r) with x ∈ E and r small. Let n be the integer such
that

Gn+1(x) ≤ r < Gn(x).

Then the ball B(x, r) can only intersect one basic cylinder of order n, i.e. the basic cylinder Jn(x),
and so all the basic cylinders of order n+ 1 for which B(x, r) can intersect are all contained in Jn(x).

Let k be the integer such that

nk−1 + 1 ≤ n ≤ nk.

(1) Let nk−1 + 1 ≤ n < nk − 1. By (6.6) and (6.7), it follows that

µ
(
B(x, r)

)
≤ µ

(
Jn(x)

)
≤ c · µ

(
Jn+1(x)

)
≤ c · c1 ·

∣∣Jn+1(x)
∣∣s(1−ε)

≤ c · c1 ·M ·
(
Gn+1(x)

)s(1−ε) ≤ c · c1 ·M · rs(1−ε).
(2) Let n = nk − 1. The ball B(x, r) can only intersect the basic cylinder Jnk−1(x) of order nk − 1.

Now we consider how many basic cylinders of order nk contained in Jnk−1(x) and with non-empty
intersecting with the ball B(x, r).

We write a basic cylinder of order nk contained in Jnk−1(x) as

Jnk
(u, a), for some αnk

0 ≤ a < 2αnk
0 .

It is trivial that for each a, the basic cylinder Jnk
(u, a) is contained in the cylinder Ink

(u, a) and the
latter interval is of length

1

qnk
(qnk

+ qnk−1)
≥ 1

8
· 1

q2
nk−1(u)α2nk

0

.

• Let

r <
1

8
· 1

q2
nk−1(u)α2nk

0

.

Then the ball B(x, r) can intersect at most three cylinders Ink
(u, a) and so three basic cylinders

Jnk
(u, a). Note that all those basic cylinder are of the same µ-measure, thus

µ
(
B(x, r)

)
≤ 3µ

(
Jnk

(x)
)
≤ 3 · c1 · |Jnk

(x)|s(1−ε)

≤ 3 · c1 ·M ·Gn+1(x)s(1−ε) ≤ 3 · c1 ·M · rs(1−ε).
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• Let

r ≥ 1

8
· 1

q2
nk−1(u)α2nk

0

.

The number of cylinders Ink
(u, a) for which the ball B(x, r) can intersect is at most

16r · q2
nk−1(u)α2nk

0 + 2 ≤ 25 · r · q2
nk−1(u)α2nk

0 ,

so at most this number of basic cylinders of order nk for which the ball B(x, r) can intersect.
Thus

µ
(
B(x, r)

)
≤ min

{
µ
(
Jnk−1(x)

)
, 25 · r · q2

nk−1(u)α2nk
0 · 1

αnk
0

· µ
(
Jnk−1(x)

)}
≤ c1 · |Jnk−1(x)|s(1−ε) ·min

{
1, 25 · r · q2

nk−1(u)αnk
0

}
≤ c1 ·

(
1

qnk−1(u)2αnk
0

)s(1−ε)
· 11−s(1−ε) ·

(
25 · r · q2

nk−1(u)αnk
0

)s(1−ε)
= c2 · rs(1−ε).

(3) Let n = nk. By changing nk− 1 and α0 in case (2) to nk and α1 respectively and then following
the same argument as in case (2), we can arrive the same conclusion.

6.7. Conclusion.

Thus by applying the mass distribution principle (Proposition 6.1), it yields that

dimHE ≥ s(1− ε).
Since E ⊆ Et(B) and ε, s are arbitrary, we conclude that

dimH Et(B) ≥ so.

7. Completing the proof of Theorem 1.6

Upper bound. For any ε > 0, one has

Ψ(n) ≥ (B − ε)n for all n� 1.

Thus

Et(Ψ) ⊂
{
x ∈ [0, 1) : at0n (x)at1n+1(x) ≥ (B − ε)n, i.m. n ∈ N

}
.

Therefore,
dimH Et(Ψ) ≤ so(B − ε).

Recall Proposition 2.9 for the continuity of so = so(B) with respect to B. Then by letting ε→ 0, the
upper bound for dimH Et(Ψ) follows.

Lower bound. The argument for the lower bound of Et(Ψ) is almost the same as for Et(B) given
in last section. So we only give the outline of the proof and mark some minor differences.

Recall the definition of so(B) and Lemma 6.2. If so(B)
t1
− 2so(B)−1

t0
≤ 0, then by Theorem 1.2 and

Lemma 6.2 it follows that

dimH Et(Ψ) ≥ dimH

{
x ∈ [0, 1) : at1n+1(x) ≥ Ψ(n), i.m. n ∈ N

}
= so(B).

Then we are in the remaining case when

(7.1)
so(B)

t1
− 2so(B)− 1

t0
> 0.
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At first, choose a real number B̃ > B close enough to B such that (7.1) is still true when replacing

B by B̃. Secondly fix integers M,N sufficiently large such that s := s
(2)
N

(
M, B̃

)
is in a small enough

neighborhood of so(B̃) so that 1 > s > 1/2, and (6.2) holds. At last define a real number Ã such that

ft0(s) log Ã = ft0,t1(s) log B̃.

By the definition of B, one can choose a sparse enough sequence of integers {nk}k≥1 such that

Ψ(nk) ≤ B̃nk for all k ≥ 1.

Thus

Et(Ψ) ⊃
{
x ∈ [0, 1) : at0nk

(x)at1nk+1(x) ≥ B̃nk for all k ≥ 1
}
.

So we are almost in the same situation as when proving the lower bound for dimH Et(B). The only

difference, besides the notational differences (A,B) 7→ (Ã, B̃), is that the number of the integers in the
interval (nk + 1, nk+1) may not be a multiple of N .

Therefore, for all k ≥ 1, write (shifting the indices from n0 + 1 to 0)

(nk − 1)− (nk−1 + 1) = `kN + ik for some 0 ≤ ik < N,

and define a Cantor subset of Et(Ψ) as

Ẽ =

{
x ∈ [0, 1) : Ã

nk
t0 ≤ ank

(x) < 2Ã
nk
t0 ,

(
B̃nk

Ãnk

)1/t1

≤ ank+1(x) < 2

(
B̃nk

Ãnk

)1/t1

for all k ≥ 1;

ank+2(x) = · · · = ank+1+ik+1
(x) = 2 for all k ≥ 0;

and an(x) ∈ {1, . . . ,M} for other n ∈ N

}
.

Use the same notation as in Section 6:

U = {w = (σ1, . . . , σN ) : 1 ≤ σi ≤M, 1 ≤ i ≤ N}

and

α0 = Ã1/t0 , α1 =

(
B̃

Ã

)1/t1

,

and define Jn(x) in the same way.

A generic element x ∈ Ẽ can be written as

x =
[
η(1), w

(1)
1 , . . . , w

(1)
`1
, an1

, an1+1, η
(2), w

(2)
1 , . . . , w

(2)
`2
, an2

, an2+1,

. . . , η(k), w
(k)
1 , . . . , w

(k)
`k
, ank

, ank+1, . . .
]
,

where η(k) = (2, . . . , 2︸ ︷︷ ︸
ik

), w ∈ U , and

αnk
0 ≤ ank

< 2αnk
0 , αnk

1 ≤ ank+1 < 2αnk
1 for all k ≥ 1.

Recall that s = s
(2)
N (M, B̃). We define the measure of the basic intervals Jn(x) containing x as

follows. Note that for all x ∈ Ẽ their partial quotients an(x) have only one choice for all

nk + 1 < n ≤ nk + 1 + ik+1, with k ≥ 0.
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So when defining a mass distribution µ on Ẽ, one must have that

µ
(
Jn(x)

)
= µ

(
Jnk+1(x)

)
, for all nk + 1 < n ≤ nk + 1 + ik+1.

Except such a restriction, we define the measure on Ẽ in the way as did in Section 6:

Let nk + 1 < n ≤ nk+1 + 1. Assume the measure of all basic intervals of order nk + 1 has been
defined.

• for each nk + 1 < n ≤ nk + 1 + ik+1, define

µ
(
Jn(x)

)
= µ

(
Jnk+1(x)

)
,

• for each 1 ≤ ` ≤ `k+1, define

µ
(
Jnk+1+ik+1+N`(x)

)
=
∏̀
i=1

1

qN (w
(k+1)
i )2s · αsN1

· µ
(
Jnk+1+ik+1

(x)
)
.

• for each integer n with nk+1+ik+1 +(`−1)N < n < nk+1+ik+1 +`N for some 1 ≤ ` ≤ `k+1,
define

µ
(
Jn(x)

)
=

∑
Jnk+1+ik+1+`N⊂Jn(x)

µ(Jnk+1+ik+1+`N ).

• for each 0 ≤ i ≤ 1, define

µ
(
Jnk+1+i(x)

)
=

i∏
j=0

1

α
nk+1

j

· µ
(
Jnk+1

(x)
)
.

Then we will use the mass distribution principle (Proposition 6.1) to reach our conclusion that

dimH Et(Ψ) ≥ so(B).

So the remaining task is to compare the µ-measure of a ball B(x, r) with r. The gap estimation
(Lemma 6.3) is still true without any change and the estimation on qn(x) (Lemma 6.4) is similar just
by adding some terms of the power of 2. Then the remaining argument can proceed as in Section 6
with some obvious modifications. We omit the details.

8. Final Comments

One might wonder to extend Theorem 1.6 to all m ≥ 2. Our methods for the upper bound
calculations extend easily to any m, but the major difficulty lies in establishing the lower bound
and proving that it is equal to the upper bound estimate. To be precise, it is possible to prove the
following formula:

Theorem 8.1. Let Ψ : N→ R≥1 be such that 1 < B <∞. Then

dimH Et(Ψ) ≤ inf{s ≥ 0 : P (T,−s log |T ′| − ft0,...,tm−1(s) logB) ≤ 0} for all m, but
dimH Et(Ψ) ≥ inf{s ≥ 0 : P (T,−s log |T ′| − ft0,t1(s) logB) ≤ 0},
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where ft0,...,tm−1
(s) is given by the following iterative procedure with the starting value as ft0(s) = s

t0
,

and

ft0,...,t`(s) =
sft0,...,t`−1

(s)

t`ft0,...,t`−1
(s) + max

{
0, s− (2s− 1) t`ti , 0 ≤ i ≤ `− 1

}
=

sft0,...,t`−1
(s)

t`ft0,...,t`−1
(s) + max

{
0, s− (2s− 1) t`

max0≤i≤`−1 ti

} .

We believe that, for 1 < B <∞,

dimH Et(Ψ) ≥ inf{s ≥ 0 : P (T,−s log |T ′| − ft0,...,tm−1
(s) logB) ≤ 0}

should hold. From the definition of the functions ft0,...,t`−1
, the appearance of the expression

max0≤i≤`−1 ti in it means that the partial quotients corresponding to some exponents ti will not con-
tribute to the dimension. Thus the major difficulty is to figure out which partial quotients contribute
essentially to the dimension and which are not.
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[19] D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems. Proc. London

Math. Soc.(3) 73 (1996), 105–154. MR 1387085

[20] , Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer.
Math. Soc. 351 (1999), 4995–5025. MR 1487636

[21] , Graph directed Markov systems. Geometry and dynamics of limit sets, Cambridge Tracts in Mathematics

148, Cambridge University Press, Cambridge, 2003. MR 2003772
[22] C. G. Moorthy, A problem of Good on Hausdorff dimension, Mathematika 39 (1992), no. 2, 244–246. MR 1203280

[23] W. Philipp, Some metrical theorems in number theory, Pacific J. Math. 20 (1967), 109–127.
[24] B. Wang and J. Wu, Hausdorff dimension of certain sets arising in continued fraction expansions, Adv. Math. 218

(2008), no. 5, 1319–1339. MR 2419924

Ayreena Bakhtawar, School of Mathematics and Statistics, University of New South Wales, Sydney,

NSW 2052, Australia

Email address: a.bakhtawar@unsw.edu.au

Mumtaz Hussain, La Trobe University, Bendigo 3552, Australia.

Email address: m.hussain@latrobe.edu.au

Dmitry Kleinbock, Brandeis University, Waltham MA 02454-9110.

Email address: kleinboc@brandeis.edu

Bao-wei Wang, School of Mathematics and Statistics, Huazhong University of Science and Technology,

430074 Wuhan, China

Email address: bwei wang@hust.edu.cn


