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ABSTRACT. We introduce an unrolled quantization UJ (gl(1|1)) of the complex Lie superalgebra
gl(1|1) and use its categories of weight modules to construct and study new three dimensional
non-semisimple topological quantum field theories. These theories are defined on categories
of cobordisms which are decorated by ribbon graphs and cohomology classes and take values
in categories of graded super vector spaces. Computations in these theories are enabled by
a detailed study of the representation theory of UF (gl(1|1)). We argue that by restricting to
subcategories of integral weight modules we obtain topological quantum field theories which
are mathematical models of Chern—Simons theories with gauge supergroups ps((1]1) and U(1]1)
coupled to background flat C*-connections, as studied in the physics literature by Rozansky—Saleur
and Mikhaylov. In particular, we match Verlinde formulae and mapping class group actions on
state spaces of non-generic tori with results in the physics literature. We also obtain explicit
descriptions of state spaces of generic surfaces, including their graded dimensions, which go beyond
results in the physics literature.
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INTRODUCTION

This paper constructs and studies new three dimensional topological quantum field theories
(TQFTSs) from non-semisimple categories of representations of the unrolled quantum group of the
complex Lie superalgebra gl(1|1) and establishes a relationship between these theories and various
supergroup Chern—Simons theories studied in the physics literature. Before stating our results in
more detail, we provide some context.
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Background and motivation. Chern—Simons theory is a three dimensional quantum gauge
theory which was introduced by Witten to give a physical realization of the Jones polynomial
[Wit89a]. The input data is a compact Lie group G, the gauge group, and a class k € H*(BG;7Z),
the level, satisfying a non-degeneracy condition. At the physical level of rigor, Chern—Simons
theory produces invariants of links in closed oriented 3-manifolds which are local in the sense that
they can be computed using cutting and gluing techniques. Witten argued that calculations in
Chern—Simons theory can be made using its boundary conformal field theory, a Wess—Zumino—
Witten theory with target GG, thereby importing techniques from the theories of rational vertex
operator algebras and affine Lie algebras to knot theory and 3-manifold topology. Since the
physical definition of Chern—Simons theory relies on path integrals, it cannot at present be used
to give a mathematical construction of the theory. Motivated by this, Reshetikhin and Turaev
constructed from a modular tensor category C a three dimensional TQFT Z¢ : Cobes — Vectc
which, in particular, encodes invariants of C-colored links in 3-manifolds with the expected locality
properties [RT90, RT91, Tur94]. When G is simple and simply connected, in which case k is
an integer, there is a modular tensor category C(G, k) of semisimplified representations of the
quantum group of gc at a k-dependent root of unity and Z¢(g ) is a mathematical model of
Chern—Simons theory [RT91, And92, TW93, Saw06]. Crucial to the construction of Z¢ is that
modular tensor categories are semisimple, have only finitely many isomorphism classes of simple
objects and have the property that simple objects have non-zero quantum dimension.

Extensions of Chern—Simons theory to more general classes of gauge groups have been proposed
in the physics literature. This includes gauge groups which are non-compact Lie groups and
complex reductive groups [Wit91, BNW91, Guk05, DGLZ09] and Lie supergroups [Wit89b, Hor90,
RS92, RS93, RS94, KS09, GW10, Mik15, MW15]. Such extensions are expected to have applica-
tions to many areas of mathematics and physics, including the Volume Conjecture, logarithmic
conformal field theory and three dimensional quantum gravity. Mathematical constructions of these
extensions have largely been obstructed by technical and conceptual difficulties which appear when
moving beyond compact gauge groups. For example, the Chern—Simons/Wess—Zumino—Witten
correspondence is fundamentally unclear in these extensions, thereby preventing the use of recent
advances in the theory of logarithmic vertex operator algebras [GQS07, QS07, CR13, CMY22].
Since Chern—Simons theories with non-compact gauge groups involve categories of line operators
which are non-semisimple, have infinitely many isomorphism classes of simple objects and have
simple objects with vanishing quantum dimension, there are serious obstructions to applying the
Reshetikhin—Turaev construction.

It is therefore of interest to extend Reshetikhin—Turaev-type constructions beyond modular
tensor categories. Early approaches to such extensions are given in the works of Hennings [Hen96]
and Kerler and Lyubashenko [KL01]. More recently, the first author and collaborators created
a theory of renormalized quantum invariants of low dimensional manifolds [GPMT09, CGPM14,
BCGPM16, DRGPM20, DR22]. Key categorical structures of this theory include relative pre-
modular categories, non-degenerate relative pre-modular categories and relative modular categories
which produce invariants of links, invariants of closed 3-manifolds and three dimensional TQFTs,
respectively. In this paper we focus on relative modular categories, the strongest of these
structures, which are generalizations of modular tensor categories that allow for non-semisimplicity,
infinitely many simple objects and simple objects with vanishing quantum dimension. Roughly
speaking, a relative modular category C is a ribbon category with a modified trace on its ideal of
projective objects, a compatible grading C = € e Cy by an abelian group G and a degree 0 € G
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monoidal action of an abelian group Z. It is required that there exists a sufficiently small subset
X C G such that the full subcategories C; C C, g € G\X, are semisimple and have only finitely
many isomorphism classes of simple objects modulo Z. The associated three dimensional TQFT
Ze Cob?;d — Vecté'gr, constructed by De Renzi [DR22], is defined on a category of admissible
decorated three dimensional cobordisms and takes values in a braided monoidal category of
Z-graded complex vector spaces. When C is in fact a modular tensor category, the theory Z¢
reduces to that of Reshetikhin and Turaev. In general, Z; enjoys many new features not shared by
modular theories, including the ability to distinguish homotopy classes of lens spaces and produce
representations of mapping class groups with interesting properties, such as having Dehn twists
act with infinite order.

Categories of weight modules over unrolled quantum groups of complex simple Lie algebras are
relative modular and their associated TQFTs have been the subject of recent interest [BCGPM16,
DRGPM20, CDGG24, DR22]. The case of unrolled quantum groups of complex Lie superalgebras
is more subtle. For example, depending on the precise class of weight modules being considered,
the Lie superalgebras sl(m|n), m # n, produce categories which are relative modular or only
non-degenerate relative pre-modular [Hal8, AGPM21, GPMR21, Ha22]. The resulting TQFT's
have not been studied. This paper presents the first systematic study of TQFTs arising from
quantum supergroups and suggests that examples arising from higher rank Lie superalgebras
admit natural physical realizations, in contrast to the original expectations of Mikhaylov and
Witten [MW15]. Further examples of (non-degenerate) relative pre-modular categories, some of
which are conjectured to extend to relative modular categories, and their applications to knot
theory and 3-manifold topology can be found in [GPM07, GPM10, AGPM21].

Main results. We construct new examples of relative modular categories using the representation
theory of an unrolled quantization of the complex Lie superalgebra gl(1|1). We study in detail
the resulting TQFTs and connect them to psl(1|1) and U(1]1) Chern—Simons theories and
U(1]1) Wess—Zumino—Witten theory, as studied in the physics literature by Rozansky and Saleur
[RS92, RS93, RS94] and Mikhaylov [Mik15]. We also connect our work to mathematical results
on the quantum topology of gl(1]|1) [FN91, KS91, Res92, Vir06, Sarl5, BI23]. In the remainder of
this introduction we outline the structure of the paper and state the main results.

We begin in Section 1 by establishing our conventions for relative modular categories and
recalling how these categories can be used to define invariants of links and 3-manifolds and,
ultimately, three dimensional TQFTs. Our first main result asserts finite dimensionality of the
state spaces of these field theories under the assumption that the input relative modular category
is TQF'T finite in the sense of Definition 1.15. TQFT finiteness is a relatively weak condition and
is straightforward to verify in concrete examples. For example, a relative modular category which
is locally finite abelian with finitely many projective indecomposable objects modulo Z in each
degree g € G is TQFT finite.

Theorem A (Theorem 1.16). Let C be a relative modular category which is TQFT finite. Then
for each decorated surface S € Cob%d, the state space Z¢(S) € Vectégr is finite dimensional.

Theorem A provides a general reason for the observed finite dimensionality of state spaces in all
known examples, namely those arising from relative modular categories of modules over unrolled
quantum groups of complex simple Lie (super)algebras [BCGPM16, DRGPM20, AGPM21, Ha22]
and those of this paper. Theorem A is proved by exhibiting an explicit, combinatorially defined
spanning set of Z¢(S) using special C-colorings of a fixed spine of S.
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In Section 2 we introduce a non-standard quantization Uf(g[(l\l)) of gl(1]1). The algebra
UE(gl(1]1)) is an unrolled version of standard quantizations of gl(1/1) [Kul89, KT91, Res92], in
the sense of [CGPM15]. Fix ¢ € C\ {0,%1}. The superalgebra U (gl(1]1)) is generated by even
Cartan generators E, G, K*! and odd Serre generators X, Y. The generators G, K*!, X and
Y generate a standard quantization of gl(1|1) while E should be viewed as log, K, although this
relation is not imposed at the level of the algebra. Instead, we consider the category D? of all
weight UZ (gl(1/1))-modules on which K acts by ¢¥. Let also D% C D? be the full subcategory
of weight modules whose G-weights are integral; no integrality of E-weights is assumed. A natural
Hopf superalgebra structure on Uf (gl(1]1)) gives D? and D% the structure of rigid monoidal
categories. We study D? and D%
projective indecomposable objects. The culmination of our results in Section 2 is summarized as

in detail, obtaining complete descriptions of their simple and

follows.

Theorem B (Theorems 2.16, 2.20, 2.22, 2.24). Each category D and D™ admits two distinct
relative modular structures, one of which depends on a positive integer r > 3 which is not divisible
by 4. In particular, D? and DI are generically semisimple ribbon categories. Moreover, DY and
DI gre TQFT finite with respect to any of the above relative modular structures.

When considering the relative modular structures which depend on an integer r, it is natural to
take ¢ to be a primitive rth root of unity. For this reason, we sometimes refer to these relative
modular structures as the root of unity case. See Remark 2.21 for further discussion of this point.
Denote by C either of the categories D? and D™ with any of the relative modular categories of
Theorem B and by Z¢ : Cob%d — Vectéglr the associated TQFT. In all cases, the braided category
Vecté'gr is a graded version of complex super vector spaces.

In the remainder of the paper we study in detail Z¢ (Sections 3-5) and their relationship
to psl(1|1) and U(1]1) Chern—Simons and Wess—Zumino-Witten theories (Section 6). To avoid
cumbersome statements, in the introduction we state precise results only for C = D? with ¢ a
primitive 7" root of unity, 7 > 3 odd. In this case, the category D is graded by G = C/Z x C/Z,
corresponding to (E, G)-weights modulo Z x Z, with X = 3Z/Z x C/Z and Z = Z x Z x Z/2Z. In
the body of the paper we treat all cases of Theorem B.

Our first series of results concerns the Z-graded vector space Z¢(S) = @7 Zc,x(S) assigned
to a decorated surface S € Cob?;d. Part of the data of S is a cohomology class w € H'(Sp; G) on
the underlying closed surface Sy of S. The description of Z¢(S) simplifies considerably when § is
generic in the sense that there exists a simple closed curve v C Sp such that 2w(y) € G\X.

Theorem C (Theorems 3.5 and 4.3). Let S be a decorated connected surface of genus g > 1
without marked points such that 2w is not in the image of H'(So;X) — H*(So;G). For any
(B,b) € G, the partition function of S x 5(1575), the closed decorated 3-manifold obtained by crossing
S with S* and extending w to w @ (B,b), is

r—1 _ _
Zpa(S x 5(13’5)) = (—1)9t1p21 Z(qﬂﬂ _ g Biy2e2,
1=0

1

Moreover, the partition function Zpa(S X S(B B)) and state space Zpq(S) are related through the

Verlinde formula

Zpa(S x 5(1575)) = Z X(ZDpa,(nn,e) (8))q2r(Bn'+bn),
(n,n’)€Z?
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where X(Zpa (nn.0)(S)) denotes the Buler characteristic of the Z/2Z-graded subspace of Zpa(S)
consisting of vectors with Z-degree of the form (n,n’;e).

Theorem C is proved using an explicit surgery presentation of trivial circle fibrations and the
representation theoretic results of Section 2. The strategy of proof is similar to its counterpart
for TQFTs arising from the unrolled quantum group Uf (s1(2)) [BCGPM16]. In the body of the
paper we allow S to carry marked points, in which case Zpq(S x S (15,13)) depends also on b.

To obtain a more detailed understanding of Z¢(S), we first prove in Theorems 3.3 and 4.1 that,
in the present class of examples, the general spanning set of Z¢(S) constructed in Theorem A can
be reduced to a much smaller set. Theorems 3.3 and 4.1 can be seen as vanishing results, asserting
that Z¢(S) is concentrated in a restricted set of Z-degrees. Using these results, we prove that

lim qu(S X S(IB E)) = dim(c qu(S).

B—% ’
Together with Theorem C, this leads to the following explicit description of state spaces of generic
surfaces.

Theorem D (Corollaries 3.7 and 4.5). Let S be a decorated connected surface of genus g > 1
without marked points such that 2w is not in the image of H'(Sp; X) — H(So; G). Then Zpa _k(S)

is trivial unless k = (0,d,d) for some d € [—(g — 1),g9 — 1] NrZ, in which case it is of dimension

r29 (gzﬁ:i”). In particular, the total dimension of Zpa(S) is
L5

. 29 —2
dime Zpa(S) = r?9 g ( >
q( ) n,:_Lg—IJ g — 1-— |n,‘7'

When the cohomology class w is not generic in the above sense, the vector space Z¢(S) is

considerably more complicated. In this setting we restrict attention to the torus, where we again
obtain a complete description of Z¢(S). We prove that Zpq(S) = Z¢o(S) is two dimensional for
arbitrary ¢ (Propositions 3.9 and 3.11) and that Zp«(S) = Z¢0(S) is % + 1 dimensional for ¢q a
primitive " root of unity (Proposition 4.6). The result for arbitrary ¢ is particularly surprising
since it contrasts the conjectured behavior of TQFTs constructed from Uf (sl(2)) [BCGPM16].

We construct explicit bases of Z¢(S) to prove the following result.

Theorem E (Theorems 3.13 and 4.7). Let S be a decorated connected surface of genus one without
marked points such that w(y) € X C G for some oriented simple closed curve . The mapping class
group action of SL(2,7) on Zpa(S) admits an explicit description which, in particular, shows that
the Dehn twist acts with infinite order.

Mapping class group actions with properties similar to those of Theorem E for arbitrary ¢ are
obtained using the representation theory of UqH (s(2)) at a root of unity in [BCGPM16].

For a given ¢, the theories Zps and Zpq,mt are closely related. A priori, the significant difference
in the gradings of these categories- the grading group for D% is much smaller than that of DI-
could lead to significant differences in Zps and Zpg,mt. However, the constraints on the Z-support
of Zpa, as in Theorem D, show that this is not the case. In particular, Theorems C, D and E hold
for the relative modular categories D% with essentially the same proofs.

Finally, in Section 6 we connect our results with the physics literature. When ¢ is arbitrary,
Proposal 6.1 states that Zpgint is Chern—Simons theory with gauge Lie superalgebra ps((1|1),
the two dimensional purely odd Lie superalgebra, as studied by Mikhaylov [Mik15]. We observe
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that Zpe.ins is effectively independent of ¢q. This reflects the physical expectation that, because
psl(1]1) is purely odd, there is no quantization of the level. If instead ¢ is a primitive " root
of unity with r not divisible by 4, then Proposal 6.2 states that Zpq,ine is U(1|1) Chern—Simons
theory at level r, as studied by Rozansky—Saleur and Mikhaylov [RS92, RS93, RS94, Mik15].
More precisely, since psl(1|1) and U(1|1) Chern—Simons theories arise as topological twists of
supersymmetric quantum field theories [RW97, GW10, KS09], they are expected to be examples
of TQFTs valued in derived or differential graded categories and we expect the theories Zpq,int
to be their homological truncations. Proposals 6.1 and 6.2 use in an essential way the group
C* of global symmetries of these supergroup Chern—Simons theories which allows them to be
coupled to background flat C*-connections. As evidence for Proposals 6.1 and 6.2, we match the
Verlinde formulae (Theorem C) and dimension formulae for generic state spaces (Theorem D)
with physical predictions [RS93, RS94, Mik15]. We also match the mapping class group action
of Theorem E with that obtained using U(1]|1) Wess—Zumino-Witten theory [RS93]. Theorem
E is very similar to mapping class group actions obtained using U(1]|1) Chern—Simons theory
[Mik15] and combinatorial quantization [AGPS18]; we give a precise comparison in Section 6.2.
The connection between Zpq¢ and Zpgine and the Alexander polynomial, discussed in Section
3.4, matches the expected connection for U(1]|1) Wess—Zumino—Witten theory [RS92, RS93] and
psl(1]1) and U(1]|1) Chern—Simons theories [RS94, Mik15]. However, the results of this paper go
beyond what has appeared in the physics literature. This includes the construction of a TQFT
and an explicit description of the state spaces of generic surfaces of all genera. As discussed above,
the final point is strictly stronger than the Verlinde formula in isolation.

Creutzig, Dimofte, Garner and the first author proposed in [CDGG24] that the TQFT associated
to the relative modular category of weight modules over the unrolled quantum group Uf (sl(n))
admits a physical realization as the homological truncation of a topological A-twist of 3d N' = 4
Chern—Simons-matter theory with gauge group SU(n). According to Kapustin and Saulina [KS09],
Chern—Simons theory with gauge group a Lie supergroup can be realized as a gauged affine
Rozansky-Witten theory and is therefore a B-twisted mirror of the theories studied in [CDGG24].
Implications of 3d mirror symmetry at the level of TQFTs are conjectured in [CDGG24]. The
results of [BCGPM16] and this paper provide mathematical foundations and calculations for the
A-sides and B-sides, respectively, of these conjectures. It would be interesting to use these results
to study concrete instances of these conjectures.

In a different direction, it would be interesting to study the relationship between the TQFTs of
this paper, constructed from the representation theory of Uf (gl(1]1)), with decategorifications
of the Heegaard Floer theory of [Man19, MR20], constructed from the categorical representation
theory of U, (gl(1]1)™").
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1. PRELIMINARY MATERIAL

Let k be an algebraically closed ground field of characteristic zero.

1.1. Ribbon categories. We refer the reader to [EGNO15] for background on monoidal categories.

Let C be a k-linear monoidal category. Throughout the paper, we assume that the functor
® : C xC — C is k-bilinear, the monoidal unit I is simple and the k-algebra map k — End¢ (D), k +—
k - Idp, is an isomorphism. If, in addition, C is rigid, braided and has a compatible twist
0 ={0y : V — V}yee, then C is called a k-linear ribbon category. The left and right duality
structure maps are denoted

Sv:Vviev ol  &evy:lo VeV
and
Sy VeV =1, vyl VeV,
respectively, and the braiding is c = {cyw : VO W — W & V}vwee. The quantum dimension of
Velis
qdim V' :QV o cgvve End¢ ().

An object V € C is called regular if EV is an epimorphism.
Our conventions for diagrammatic computations with ribbon categories are that diagrams are
read from left to right, bottom to top and

evy= Vm . cewy= U
E)V_mv y CE)VV:U 4
c = A Oy = T

YTy A\ v Vﬂ’

A morphism f: V1 ®---®V, > W1 ®- - ® W, in C is represented by the diagram

Vil [V

whose box is called a coupon. Following Turaev [Tur94, §1.2], a ribbon graph in an oriented
manifold M is a compact oriented surface embedded in M which decomposes into elementary
pieces consisting of bands, annuli and coupons, and is the thickening of an oriented graph. In
particular, the vertices of the graph which lie in the interior M=M \OM are thickened to coupons.
A C-colored ribbon graph is a ribbon graph whose (thickened) edges are colored by objects of C
and whose coupons are colored by morphisms of C. The intersection of a C-colored ribbon graph
with OM is required to be empty or consist of univalent vertices. In diagrams, we represent the
induced framing of the core of the ribbon graph using the blackboard framing.
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Associated to a k-linear ribbon category C is the Reshetikhin—Turaev ribbon functor Fg : Re — C,
where R is the ribbon category of C-colored ribbon graphs in R? x [0,1] [Tur94, Theorem 1.2.5].
Given a (1,1)-tangle Ty whose open strand is colored by a simple object V' € C, define (Ty) € k
by the following equality in End¢(V):

Fe(Ty) = (Tv) - 1dv .

Two formal k-linear combinations of C-colored ribbon graphs are called skein equivalent if their
images under Fg agree. The corresponding equivalence relation is denoted =.

1.2. Modified traces. Let C be a k-linear ribbon category.

Definition 1.1. An ideal in C is a full subcategory T C C which
(1) is stable under retracts: if W € T and V € C and there exist morphisms f:V — W and
g: W =V such that go f =1dy, then V € Z, and
(2) absorbs tensor products: if U € Z and V € C, thenU @ V € T.

Since C is ribbon, an ideal also absorbs tensor products from the left.

Example 1.2. An object P € C is called projective if every epimorphism V' — P admits a section.
The full subcategory P C C of projective objects is an ideal. <

Let V,W € C. Recall that the right partial trace ptry, : Ende(V @ W) — End¢ (V) is defined by
ptryy (f) = (Idy @ evw) o (f ® Idy+) o (Idy ® coevy).

Definition 1.3 ([GKPM11, §3]). (1) A modified trace (or m-trace) on an ideal Z C C is a
family of k-linear functions t = {ty : End¢(V) — k}yez which satisfies the following:
(a) Cyclicity property: ty(fog) =tw(go f) for all V,W € T and f € Hom¢(W, V) and
g € Hom¢(V, W).
(b) Partial trace property: tyew(f) = tv(ptry (f)) for all V.€ Z, W € C and [ €
Ende(V @ W).
(2) Given an m-trace t on Z, the modified dimension of V € 7 is d(V) =ty (Idy) € k.

1.3. Relative modular categories. We recall a number of definitions from [CGPM14, DR22].

Definition 1.4. Let B be a k-linear category.
(1) A set € = {V; | i € J} of objects of B is dominating if for any V € B there ewist
{i1,...,im} € J and morphisms v, € Homp(V;,,V) and s € Homp(V,V;,) such that
Idy = Y% vk 0 S
(2) A dominating set £ is completely reduced if dimy Homg(V;, V;) = 6; ; for all i,j € J.

Let C be a k-linear ribbon category and Z an additive abelian group. We often view Z as a
discrete monoidal category with object set Z.

Definition 1.5. A free realisation of Z in C is a monoidal functor o : Z — C such that
(1) o(0) =1,
(2) qdimo (k) € {£1} for allk € Z,
(3) Oy1) = Iy for allk € Z, and
(4) for any simple object V- € C, we have V ® (k) ~V if and only if k = 0.

We often identify a free realisation o : Z — C with the collection of objects {o(k)}rez, omitting
from the notation the monoidal coherence data o (k1) ® o(ks) — (k1 + k2), k1, ke € Z.
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Remark 1.6. The definition of a free realisation was first given in [CGPM14, §4.3] with the
condition that qdimo (k) = 1 for all k € Z. Definition 1.5 first appeared in [DR22, §1.3].

Definition 1.7. Let G be an additive abelian group. A G-grading on C is an equivalence of
k-linear categories C ~ @@ ¢ Cy, where {Cy}gec are full subcategories of C satisfying the following
conditions:

(1) I € Cy,

(2) if Ve Cgy, then V* € C_y, and

(3) if V.eCyand V' €Cy, then VR V' € Cyypy.

geG

It follows from the definition that if V' € C;, V' € Cy and Home(V, V') # 0, then g = ¢'. Note
also that the full subcategory Cy C C is ribbon.

Definition 1.8. A subset X of an abelian group G is
(1) symmetric if X = —X and
(2) small if U, (9; + X) # G for all g1,...,9, € G.

Definition 1.9. Let G, Z be abelian groups, X C G a small symmetric subset and C a k-linear
ribbon category with the following data:

(1) a G-grading on C,

(2) a free realisation o of Z in Cy, and

(8) a non-zero m-trace t on the ideal of projective objects of C.

A category C with this data is called a pre-modular G-category relative to (Z,X) if it has the
following properties:

(1) Generic semisimplicity: For every g € G\X, there exists a finite set of regular simple
objects ©(g) :={V; | i € I} such that

O(g)®0o(Z) ={Vi®oa(k)|icly, keZ}

is a completely reduced dominating set for C,.
(2) Compatibility: There exists a bicharacter v : G xZ — k* such that

Colk),V © CVio(k) = Y(9, k) - Idyge (k) (1)
forany ge G,V eCyandkcZ.

Definition 1.10. Let C be a pre-modular G-category relative to (Z,X).
(1) For each g € G\X, the Kirby color of index g is the formal k-linear combination of objects

Qg =Y d(Vi)- Vi

i€l
(2) For each g € G\X and V € C,4, the stabilization coefficients Ay € k are defined by the
skein equivalences

Q'[V 1% ]‘V 1%
QCL;\');A. @iA+.
{ e
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(3) The pre-modular G-category C is called non-degenerate if AL A_ # 0.
As the notation suggests, A4 are independent of g € G\X and V' € C, [CGPM14, Lemma 5.10].

Definition 1.11. A modular G-category relative to (Z,X) is a pre-modular G-category C relative
to (Z,X) for which there exists a scalar ¢ € k*, called the relative modularity parameter, such
that for any g,h € G\X and i,j € I, the skein equivalence

Vi T_ v: 1UJ
d(V;) - = 045 C-
Q&*l)vj M

holds.

The relative modularity parameter satisfies ( = A A_ [DR22, Proposition 1.2]. In particular,
relative modular categories are non-degenerate relative pre-modular.

1.4. Invariants of closed 3-manifolds. Let C be a non-degenerate pre-modular G-category
relative to (Z,X). The data C was used in [CGPM14] to define invariants of decorated 3-manifolds.
We briefly recall this construction. Note that relative modularity in [CGPM14, Definition 4.2] is
what is called relative pre-modularity in Definition 1.9. All manifolds in this paper are assumed
oriented and compact.

A compatible triple (M, T,w) consists of a closed connected 3-manifold M, a C-colored ribbon
graph T C M and a cohomology class w € H'(M \ T;G) such that the C-coloring of T is w-
compatible, in the sense that each oriented edge e of T' is colored by a non-zero object of Cy (),
where m, is the oriented meridian of e. A surgery presentation L C S for M is called computable
for (M, T,w) if one of the following conditions holds:

(1) L # 0 and w(my,) € G\X for all connected components L; of L.
(2) L =0 and there exists an edge e of T' with w(m.) € G\X.

Let R be a C-colored ribbon graph. Suppose that at least one edge of R is colored by a generic
simple object V' € C and let Ty be the (1,1)-ribbon graph obtained from R by cutting an edge
labeled by V. Properties of m-traces imply that

Fo(R) :=tv(Tv) =d(V)(Tv) € k

is a well-defined invariant of R. See [GPMT09, GKPM11]. In [CGPM14, §2] it is shown that F},
can be used to define a Reshetikhin-Turaev-type diffeomorphism invariant of triples (M, T,w).
See equation (3) below.

1.5. A topological quantum field theory extension. When C is a modular G-category relative
to (Z,X), the decorated 3-manifold invariants of Section 1.4 are part of a once-extended topological
quantum field theory (TQFT) [BCGPM16, DR22]. In this paper, we restrict attention to the
truncation of this theory to a non-extended TQFT.
A decorated surface S = (X, {p;}i,w, L) consists of
e a closed surface ¥ with a set * of distinguished base points, exactly one for each connected
component of X,
e a (possibly empty) finite set {p;}; C X\ * of oriented framed C-colored points, where the
coloring of p; is an object of some Cy,,
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e a cohomology class w € HY(X\ {p;}i, %;G) ~ HY(X\ {pi}+; G) such that w(m;) = g;, where
m; is the oriented boundary of a regular neighborhood of p;, and
e a Lagrangian subspace £ C Hy(X;R).

A decorated cobordism M = (M, T,w,m) : S; — Sy between decorated surfaces consists of

e a cobordism M : ¥y — Yo,

e a C-colored ribbon graph T C M whose coloring is compatible with that of the marked
points of S;, j = 1,2,

e a cohomology class w € HY(M \ T, 1 U #2;G) for which T is w-compatible and which
restricts to wj on ¥;, j = 1,2, and

e an integer m € Z called the signature defect.

This data is required to be admissible in the sense that for each connected component M. of M
which is disjoint from the incoming boundary 31, there exists an edge of T' N M, colored by a
projective object or there exists an embedded closed oriented curve v C M, such that w(y) € G\X.

When it will not cause confusion, we refer to S and M simply as surfaces and cobordisms,
respectively.

Decorated surfaces and their diffeomorphism classes of decorated cobordisms form a category
Cob?;d. Disjoint union gives Cobgd a symmetric monoidal structure.

Fix a square root Z € k™ of AL A_ and set § = %. Given a closed cobordism M = (M, T,w, m)

with computable surgery presentation L C S3, define
CGPe(M,T,w,m) =2~ lemWE(LUT) € k. (3)

Here [ is the number of connected components of L, o(L) is the signature of the linking matrix of
L and each component L; of L is colored by the Kirby color €, L) Setting m = 0 in equation
(3) recovers a scalar multiple of the decorated 3-manifold invariants of [CGPM14].

Let Vectuf "8 be the monoidal category of Z-graded vector spaces over k and their degree
preserving morphisms. Let v : Z X Z — {1} be the unique pairing which makes the diagrams

Co(ky).0(k)

o(k1) ® o (k) » o(k2) ® o (k1)

zl Jz , ki,ko € Z

o(k1 + k2) o(ke + k1)

Y (k1,k2) Idg (k) 11g)

commute. The vertical arrows are the monoidal coherence data of the free realisation. The pairing
Z-gr

«y induces a symmetric braiding on Vect,
Theorem 1.12 ([DR22, Theorem 6.2]). A modular G-category C relative to (Z,X) with a choice
2 of square root of AL A_ defines a symmetric monoidal functor Z¢ : Cobf}d — Vectﬂf'gr whose
values on closed cobordisms coincide with CGPec.

The TQFT Z¢, which we denote by Z if it will not cause confusion, can be described as follows.
Given a decorated surface S, let V(S) be the (infinite dimensional) vector space over k with basis
the set of all decorated cobordisms ) — S and V'(S) the vector space with basis the set of all
decorated cobordisms & — (). Define a pairing

(= =) V(S e V() =k, (M M) =CGPc(M o M)
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and let V(S) be the quotient of V(S) by the right kernel of (—, —):
V(S) :=V(S)/kerR(—, —).

The assignment S +— V(S) extends to a functor V : Cobg! — Vect), which, however, is not in
general monoidal. To remedy this, fix go € G and a simple projective object Vg, € Cg4,. For each
k € Z, denote by Si the decorated 2-sphere

S = (52, {(Vyy, 1), (0(k), 1), Vg, 1)}, w0, {0}) € Cobgd

determined by the oriented colored points {(Vy,, 1), (¢(k), 1), (Vy,, —1)} and cohomology class w
uniquely determined by compatibility. See [BCGPM16, §4.5], [DR22, §5.1]. The TQFT state
space of S is defined to be the Z-graded vector space

Z2(8) =P z2(S) (4)

keZ
where Z;(S) = V(S U §k:) Up to monoidal natural isomorphism, Z is independent of go and V.

Lemma 1.13 ([DR22, Lemmas 4.7 and 4.8]). The state space Z(S) satisfies the following
properties.

(1) Let ¥ be the underlying surface of S and M a connected manifold with OM = ¥. Then
the cobordisms {M = (M,T,w,0) : 0 — S}, span V(S).

(2) A k-linear combination ), a;M; of cobordisms M; : ) — S is zero in V(S) if and only if
> ai(Mi, M) =0 for all cobordisms M : S — (.

Although V(S8) is infinite dimensional, Z(S) is finite dimensional in all known examples; see
Section 1.6 below. Moreover, Lemma 1.13 allows one to make finitely many computations to
determine Z(S). The main tools used to do such computations are o-equivalence and skein
equivalence, described in [BCGPM16, §4.1] and [DR22, §4.1].

Given a decorated surface S with underlying surface ¥ and ¢ € H°(3;G), let Idg :S§S — S be
the morphism obtained from the cylinder ¥ x [0, 1] by adding to the pullback of the cohomology
class of S the unique class d¢ which vanishes on cycles of ¥ x [0,1] and takes the value ¢ (*) on
the path * x [0, 1], where * is the basepoint of a connected component of ¥. The group H°(%; G)
acts on V(8) by post-composition with V(Id%). Explicitly, H°(2; G) acts on Z;(S) by

Z(IdZ)v = (e, k)v. (5)

This can be proved in the same way this equality is proved when C is the category of weight
modules over U, (s/(2)) [BCGPM16, Propositions 4.18(3) and 4.28(3)].

Remark 1.14. As mentioned above, CGP¢ is part of a once-extended TQFT Z : Cobacd — Catﬂf "8
Here Cobgd is the bicategory of closed decorated 1-manifolds, their decorated admissible 2-
cobordisms and their equivalence classes of decorated admissible 3-cobordisms with corners and
(v:atuf 8" is the bicategory of Z-graded complete k-linear categories with symmetric monoidal
structure determined by v [DR22, Theorem 6.1]. The value of Z¢ on S' with cohomology class of
holonomy g € G is Morita equivalent to the ideal of projective objects of C; [DR22, Proposition
7.1].
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1.6. Finite dimensionality of TQFT state spaces. Let C be a modular G-category relative to
(Z,X) with associated TQFT Z. In this section we prove that, under mild assumptions on C, the
state spaces of Z are finite dimensional.

An object V' € C is called a direct sum of a finite set of objects {V;}icr of C, denoted V- = @, ; Vi,
if there exist morphisms ¢; € Home(V;, V) and s; € Home(V, V;) which satisfy Idy = >, ;
and sjot; = 0;;1dy;. When C is additive, this notion of direct sum agrees with that of the additive
structure of C. An object V' € C is called indecomposable if V' = @, ; V; implies that there is a
unique ¢ € I such that V ~ V; and V; = 0 if j # 1.

Li O S;

Definition 1.15. A modular G-category C relative to (Z,X) is called TQFT finite if it has the
following properties:

(F1) For each g € G, there exists a finite set { P} e, of projective indecomposables of Cy such
that any projective indecomposable of Cy is isomorphic to P; ® o(k) for some j € J, and
kel.

(F2) For any projective P € C, the vector space Home(o(k), P) is finite dimensional for all
k € Z and non-zero for only finitely many k € Z.

(F'3) The subcategory P C C of projectives is dominated by the set of projective indecomposables.

Since P C C is an ideal, property (F2) implies that Hom¢(V, P) ~ Home (o (0), P ® V*) is finite
dimensional for all V € C and P € P.

It is straightforward to verify that relative modular categories of modules over unrolled quantum
groups of complex simple Lie algebras, as studied in [BCGPM16, DRGPM20], are TQFT finite.
Further examples will be given in Section 2 below.

Theorem 1.16. Let C be a TQFT finite relative modular G-category. Then for any decorated
surface S € Cob%d, the vector space Z(8S) is finite dimensional.

Theorem 1.16 follows directly from Proposition 1.17 below and the definition of the state spaces
of Z, given in equation (4). To formulate Proposition 1.17, let S = (X, {p;}?_;,w, L) € Cobdd.
Write g for the genus of ¥ and ¢; € {+1} and X; € C for the orientation and color of the point
pi, respectively. Fix k € Z. We construct decorated cobordisms (7, T, w,0) : ) — S U gk, and so
vectors in Zi(S), as follows. Let  be a handlebody with boundary ¥ and 77 = n\ é, where B C 1
is a closed 3-ball. Color the boundary component 0B C 07 by (Vy,, 1), (c(k),1) and (Vj,, —1).
When g = 0, let I be the ribbon graph consisting of a single coupon with n + 3 legs attached to
the points {p;}7; and (Vg,,1), (c(k),1) and (Vj,, —1). When g > 1, choose a small 3-ball B3 C n
which contains B and {p;}}"; and let I be an oriented spine of 1\ B which is combinatorially
equivalent to the following oriented trivalent graph:
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Let I the ribbon graph obtained by modifying I by adding a coupon with n + 4 legs:

€1

By convention, we set e; = e441 when g = 1. The orientations of n legs of the coupon are
determined by the orientations {e;}"_; of {p;}"~;. There exists a unique element of H!(7 \ I’; G)
whose restriction to 97 is w on % and is compatible with the coloring of §k. We denote this
cohomology class again by w, although we stress that it depends on the fixed choice of k.
Finally, with the above notation, a C-coloring of I' is called finite projective if the following

conditions hold:

(1) The coloring is w-compatible.

(2) The edges er,...,eg+1, fo, f1,- .., fog—3 are colored by projective indecomposables.

(3) For each i =1,...,g, the color of ¢; is in the finite set {Pj}jEJw(mEi).

Such a coloring ¢ defines a decorated cobordism (7,7, w,0) : ) — S U §k

Proposition 1.17. Let C be a TQFT finite modular G-category relative to (Z,X). For any
Se Cob%d, the vector space V(S U §k) 1s finite dimensional for oll k € Z and non-zero for only
finitely many k € Z. Moreover, the set of finite projective C-colorings of T” is finite and V(S U §k)
is spanned by the decorated cobordisms {(7,T".,w,0) : ) — SU §k}c, where ¢ runs over the set of
finite projective C-colorings of T”.

Proof. Let S = (X,{pi}l"1,w, L) and 7 be as above. By part (1) of Lemma 1.13, V(S U Sy) is
spanned by {(7,T,w,0) : @ — S}y, where T' C 7] runs over all w-compatible C-colored ribbon
graphs.

Suppose that g = 0. Let (7,7,w,0) € V(S U §k) Isotope all non-trivial parts of T into a 3-ball
and put it into a coupon. The underlying graph is then I, as described before the proposition,
and the coupon is colored by an element of

n
Home (T, Q) X;* @ Vg, @ o(k) @ V). (6)
i=1
The vectors from the statement of the proposition therefore span V(S L §k) The vector space (6)
is isomorphic to
n n
Home (Vg,, ® X' ® Vg, @ 0(k)) ~ Home(o(—F), ®Xzel ® Vg ® Vgt))'
i=1 =1
Since Vy, is projective, property (F2) implies that the vector space on the left hand side of this
isomorphism is finite dimensional for all £ € Z while that on the right is non-zero for only finitely
many k € Z. This completes the proof when g = 0.
Suppose now that g > 1. Define a cell decomposition of 7 into 3-balls By,...,By,_1 and
By = B\ BO3, a 3-ball minus the interior of a smaller 3-ball, by cutting 7 along 3g — 1 disks
D.,....,D Dyy, Dy, ..., Dy,, 4 as follows. The disk Dy, is such that cutting along Dy, leaves

y Hegt1o



U,(gl(1]1)) AND U(1]1) CHERN-SIMONS THEORY 15

By which contains the points {p;}? ; and (Vj,,1),(c(k),1), (Vg,, —1) on its boundary. The
remaining disks are the obvious bounding disks in 7 which intersect I exactly once at the edge by
which they are labeled.

First, we show that V(S L S is spanned by {(#,T%,w,0)}e, where ¢ runs over all w-compatible
C-colorings of I in which the edges er,..., €441, fo,. .., fog—3 are colored by projective inde-
composables. Let (7,T,w,0) : § — S U §k be any decorated cobordism. Let D be one of
Deyy.oosDey vy Dyys ooy Dy, 5. Since Vg, is projective, we can entangle T' with itself (more pre-
cisely, with the edge colored by V) by an isotopy to assume that T intersects D in at least one
edge colored by a projective. Next, we modify T in a neighborhood of D as follows. We can assume
that T intersects D transversally at C-colored points forming a sequence U = ((U1,61), ..., (U, 0t)),
where U; € Cw(meU_) and 0; € {£1} is determined by the orientation of the edge ey,. Since at
least one U; is projective, the tensor product F¢(U) is projective. By property (F3), there exist
projective indecomposables Wy and morphisms fs : Fo(U) — Wy and hg : Wy — Fe(U) such that
ldp, ) = > s hs o fs. This implies that a tubular neighborhood of D which consists of a cylinder
containing ¢ strands colored by the U; is skein equivalent to

> Aw..
o,

By applying these transformations at each disk D we obtain a skein equivalent element which is the

sum of ribbon graphs 7" which meet each D on a unique edge colored by a projective indecomposable.
Moreover, up to skein equivalence, we can replace the contents of each By, B, ..., Byg—1 with a
sum of the same B; with a single coupon. For j > 1, the ball B; has a single trivalent coupon
while By has a coupon with one incoming leg connected to Dy, and n + 3 outgoing legs connected
to points labeled by { X"}, Vy,, o(k) and V. Tt follows that (7, T,w,0) € V(S U Sj) is a linear
combination of decorated cobordisms of the form (7, I, w, 0), where ¢ is an w-compatible C-coloring
such that the colors of the edges e1,...,eg11, fo, .., fog—3 are projective indecomposables.

Next, we show that we can restrict to finitely many colorings of I'' while still preserving the
spanning property. Let ¢ be a C-coloring of I as in the previous paragraph. Consider the pair of
edges (ez, f1) of IV with corresponding projective indecomposable colors W,, and Wy,. Property
(F1) implies that W, ~ P; ® o(k') for some j € J(m,,) and k' € Z. Consider an oriented o (k’)-
colored curve close to the edges es and f; in IV, the orientation chosen to be opposite to that of es.
The union of this curve with I'” is o-equivalent to I’ and, moreover, is skein equivalent to a coloring
of I in which the edges es and f; are colored by We, ® o(K')~! ~ P; and Wy, @ o(k'), respectively.
Repeating this process iteratively for each of the pairs (es, f3), (€4, f5), ..., (€g—1, fag—5), (€g, f29—3)
it follows that the vector corresponding to I'., is proportional in V(S U §k) to a coloring of IV where

the color of each edge €;, i = 2,...,g, is in the finite set {P;};jes Starting from this last

W(mei) :

coloring one can also put a o(k”)-colored curve near the edge e; and all the edges fi, fa, ..., fog—3

to find a skein equivalent element in which the color of e; is in {P;} ;e , and the colors of the

Jo me
edges e;, 1 = 2,...,g, are unchanged. .

Thus, V(S U S) is spanned by {(7, I w,0)}e, where ¢ runs over all finite projective C-colorings
of T”. Tt remains to show that such colorings are finite and non-zero for only finitely many k € Z.
Let ¢ be such a coloring. We showed above that in the cobordism (7, ., w,0) the ball containing

the trivalent vertex with the legs e1, e2 and f; can be represented by a single coupon having one
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incoming leg labeled with P;, for some j € Jw(m61), and two outgoing legs labeled with projective
indecomposables Wy, and Pj for some j' € Juo(m.,)- Property (F1) implies that Wy, ~ Pj» @ o(k’)
for some j” € J,(m, ;) and k' € Z. Thus, colorings of this coupon are elements of

Homc(Pj, Wfl X Pj/) ~ Homc(Pj, Pj// (9] O'(k/) X Pj/) ~ Homc(a(—k'), Pj// X Pj/ X P;),

which is finite dimensional for all j, 5, 7/, k' and non-zero for only finitely many j,j’, 7", k" by
property (F2). Thus, there are only finitely many choices for the coloring Wy, of fi. A similar
argument now shows that the ball containing the trivalent vertex with legs fi, fo and ey has only
finitely many colorings of f» which correspond to non-zero cobordisms. Repeating this process
for the edges f3,..., fog—2 and fy, we see that there are only finitely many colorings for each of
these edges and all the corresponding colorings of coupons are finite dimensional. Finally, consider
By =B\ BD3, which contains a single coupon with one incoming leg and n + 3 outgoing legs. We
have seen that fy must be colored by a projective indecomposable from the finite set

{Pj@o(ki)|j € Jum,,) and k; € Zfori=1,... t}.

Thus, the coupon in By is colored by an element of

Home (P; @ o (ki), () X ® Vy, @ 0(k) © Vi) ~ Home(o(—k), 0(—k:) @ P @ Q) Xi* @ Vg @ Vi)
=1 =1

for some j € J,m ) and k; € Z, 1 =1,...,t, which is finite dimensional and non-zero for only
finitely many k € Z by property (F2). Since there are only finitely many choices of j and k;, it
follows that there are only finitely many k € Z where the coloring I', corresponds to a non-zero
vector in V(S U §k) O

Proposition 1.18. Let C be a modular G-category relative to (Z,X). For any S € Cobg‘}d, the
vector spaces V(S) and V(S U Sq) are isomorphic. Moreover, if C is TQFT finite, then V(S) is
spanned by decorated cobordisms {(n, T/, w,0) : ) — S}., where I is obtained from I by deleting
the three edges attached to §k and c runs over the finite set of all finite projective C-colorings of
.

Proof. In [DR22, Definition 5.2] De Renzi defines decorated cobordisms I/D\S’ . () — Sy and 58’ : 8o —

(. The cobordism D} is the closed 3-ball with an unknotted strand connecting the points (Vj,, 1) and
(Vgo, —1) on its boundary together with the unique compatible cohomology class. The cobordism

—

D3 is defined similarly, by reversing all orientations involved. Up to a factor of 271d(V,,) € k*,
the images of l/)\g’ and 5\8 under V are mutually inverse [DR22, Lemma 5.2]. It follows that
Ids UDP : 8 — SUSp and Ids LIDY : SUS, — S satisty 2 d(V,,)~'V(Ids UD)o(Ids LDy) = 1d
and thereby establish an isomorphism V(S) ~ V(S L Sp).

Assume now that C is TQFT finite. Let (7,I',w,0) : ) — SU Sp be a decorated cobordism,
where ¢ is a finite projective C—Egloring of TV. By Proposition 1.17, such cobordisms span
V(S Sp). The cobordism (Idg LUDg) o (77,I,,w,0) is skein equivalent to a cobordism of the form
(n, T w,0) : ) — S, where ¢ is a finite projective C-coloring of I'. Such colorings therefore span
V(S). An argument similar to that from the proof of Proposition 1.17 shows that the set of finite

Su§0

projective C-colorings of I'” is finite. a
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2. RELATIVE MODULAR CATEGORIES FROM UqE(g[(1|1))

2.1. Conventions for superalgebra. Let Z/2Z = {0,1} be the additive group of order two.
A super vector space is a Z/2Z-graded vector space V = Vi @ V;. The degree of a homogeneous
element v € V is denoted v € Z/27Z. A morphism of super vector spaces of degree d € 7./27 is a
linear map f : V — W which satisfies f(v) = v + d for each homogeneous v € V. A (left) module
over a superalgebra A is a super vector space M together with a superalgebra homomorphism
A — Endg (M) of degree 0. We refer the reader to [DEF199, I-Supersymmetry] for a detailed
discussion of superalgebra.

2.2. The unrolled quantum group of gl(1|1). Let C!I* be the complex super vector space with
one basis vector of degree 0 and one of degree 1. Denote by gl(1]|1) the complex Lie superalgebra
of endomorphisms of C'' with Lie bracket the graded commutator. Motivated by standard
quantizations of gl(1]|1) [Kul89, KT91, Res92, Vir06] and the definition of the unrolled quantum
group of sl(2) [GPMT09, CGPM15], we define an unrolled version of the quantized universal
enveloping algebra of gl(1]1).

Fix i € C\ my/—1Z and set ¢ = " € C\ {0, £1}. For z € C, define ¢* = "*. Let Uf(g[(1|1))
be the unital associative superalgebra over C with generators E, K, K~', G of degree 0 and X,
Y of degree 1 subject to the relations

KK '=K 'K =1,
[K$,E] = [K*,G) = [K*,X] = [K® Y] =0, s € {1}
[E,X] =0, [E,Y] =0, [E,G] =0,

G, X] =X, [G,Y] =-Y,

X2=vY?%2=0.

Note that both E and K are central in U (gl(1]1)). Define a counit €, coproduct A and antipode
S on UF(gl(1]1)) by

AE)=E®1+1®E, AG) =Ge1+18G, AK=K®K,
AX)=X0K'+19X, AY)=Y®1+KQY,

S(E)=—-E, S(G)=-G, S(K)=K™', SX)=-XK, SY)=-YK!

and requiring € and A to be superalgebra homomorphisms and S to be a superalgebra anti-
homomorphism. This gives UF(gl(1]1)) the structure of a Hopf superalgebra. The subalgebra
U,(gl(1]1)) C UqE(g[(l\l)) generated by K™, G, X, Y is a standard quantization of gl(1[1).

2.3. Weight modules. In this section we describe the category of weight modules over U (gl(11)).
See [Vir06, §11], [Sarl5, §3] for studies of module categories for standard quantizations of gl(1|1).
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2.3.1. The category of weight modules. Let V be a Uf(g[(1|1))—module. A homogeneous vector
v € V is called a weight vector if it is a simultaneous eigenvector of E' and G, say, Fv = Agv and
Gv = Agv, in which case A = (Ag, Ag) € C? is the weight of v. A finite dimensional UF (gl(1[1))-
module V is called a weight module if it is a direct sum of weight spaces and Kv = ¢*Fv for
any weight vector v of weight \. Since the action of K on a weight module is determined by
that of E, we often omit it. Let D? be the abelian category of weight UqE(g[(lll))—modules and
their UZ (gl(1]1))-linear maps of degree 0. Unless mentioned otherwise, all U (gl(1[1))-modules
considered in this paper are assumed to be weight modules. The bialgebra structure of U, f (gl(1]1))
gives DY the structure of a monoidal category with monoidal unit the trivial module C.
Given V € DY, let V* € D? be the C-linear dual of V' with Uf(g[(1|1))-module structure

(- f)lv) = (—1)f5”f(S(:U)v), veV, feV* ze Uf(g[(l]l)).
Let {v;}; be a homogeneous basis of V' with dual basis {v}};. Define

vy (f®v)=fv),  coev (1):Zvi®v2‘ (7)
and )
evy (@ f) = (1) f(Kv),  coevy (1) = (-1)"v] @ K 'v;. (8)

i
Keeping in mind that 9; = } and o7 = ¥; in Z/2Z, the maps (8) reflect the Koszul sign rule. Note
that for homogeneous v and f, the evaluation f(v) vanishes unless o = f.

Lemma 2.1. The maps (7) and (8) define a pivotal structure on D9.

Proof. That the maps (7) and (8) are UZF(gl(1]1))-linear and satisfy the snake relations is a
straightforward calculation. For pivotality, we need to verify that for each morphism f:V — W in
D1, its left and right duals W* — V* are equal and that the canonical isomorphisms (V @ W)* —
W* ® V* constructed using left and right dualities are equal. See [EGNO15, §2.10]. In both cases,
the morphisms constructed from left duality are the standard super vector space such morphisms.
That right duality gives the same morphisms follows from the fact that K appears in ev while
K1 appears in coev. ]

With respect to the pivotal structure of Lemma 2.1, the quantum dimension of V' € DY is
qdimV = >, (=1)%vf (Kv;).

Let V,W € D4. Define Yy w € Endc(V ® W) by

’I‘va(v R w) = q—/\EuG—AGuEv ® w,
where v € V and w € W are of weight A and p, respectively. Define ]N%MW € Endc(V @ W) to be
left multiplication by 1+ (¢ — ¢ )(X ® Y)(K ® K~!) and ¢y € Home(V @ W, W ® V) by
cvw = Tvw o Ryw o Yy,

where Ty : VOW - WV, v@w— (—1)"w ® v, is the standard symmetric braiding on the
category of super vector spaces.

Proposition 2.2. The maps {cy,w : VW = W @ V}yweps define a braiding on DI.

Proof. That cyw is a C-linear isomorphism follows from the corresponding statements for 7y
and Ty and the observation that the inverse of Ry is left multiplication by 1 — (¢ — ¢ HX®
Y)(K ® K~1). To verify that cyyy is UqE(g[(1|1))—linear, we verify that it commutes with the
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action of the generators of Uf (gl(1]1)). We give the calculation only for the generator X. Fix
homogeneous vectors v € V' of weight A and w € W of weight u. We compute

cvw(X v @w) = (_1)(ﬂ+1)wq—>\Euc—(Ac+2)uEw Q Xv+ (_1)171Dq—/\E(uG+1)—AcuEXw Qv
+ (=1)P@D (g — g Vg ere— et ey Xy @ Xo
and
ey (v @ w) = (_1)ﬁwq—/\Euc—>\auEw Qv+ (_1)6w+w+iq—/\Eua—/\GuE(q _ q—l)q/\E—uEyw ® Xv
so that

X'Cuw(’L)@w) =

Dt~ ApnG A (q— g HPP P2 XY w @ Xv

)
)

_1)5@q—>\E(HG+1)—>\GuEXw Qv+ (_1)1715+1T)q—>\EMG—>\GuEw ® Xv+
) qhe — g=rE

potatT g ~Asua—(a+Dus (g — g~ (—Y X + —)w® Xv

q—q-

= (=1)70gAeeHDTAGHE Xy @ y 4 (—1)7THTgABRGAGE Y @ Xy +
(—1)PP+@grera=—CatDes (g — =)y Xw @ Xv +

(=1)P@ @+ = Apne=Oa+Due (ghe _ ke @ Xo,

which is equal to cyw (X - v ® w).

Next, consider the hexagon identities, in which we suppress all associators. Let U, V,W € D4.
We verify that cyvew = (Idv ®@cuw) o (cu,v ® Idyw ); verification of the second hexagon identity is
analogous. Fix homogeneous vectors u € U, v € V and w € W of weights A, p and v, respectively.
We compute

covew(u@vw) = (=1)TFDigAsletre) A tve)y gy @y 4 (—1)THEHDEHHD).
q—AE(MG+VG)—>\G(ME+VE)(q _ q—l)q/\E_“E_"EYv R@w®Xu

+(_1)ﬁ+’f}+(ﬁ+i)(17+w+1)q*)\E(NG+VG)*)‘G(NE+VE)(q _ qfl) .
CETVE @ Yw @ Xu.

The image of u ® v ® w under (Idy ®@cyw) o (cyy ® Idw) is

1d (B T) (5T
UR VW Loved (=1)@H @D+ g=Apna=Acke Ae—te (¢ — ¢ Yo @ Xu®w

Id ®cy,w (_1)1_“7(_1)ﬁu_)q—>\E,U4G—/\GHEq—)\EVG—)\GVEU RWw X u
+(_1>m7(_1)(a+1)(w+1)q—AEuG—AGqu—AEVG—AGVEqAE—VE (g — q—l) .
qf,\Equ(Achl)vE(_1)11%(_1)% RYw Xu

+H(= 1) (=) DO () TDD ARG AGHE g AR —1E (g — g7 1)

g eve=Qetveyy @ w @ Xu.

Direct comparison shows that this expression agrees with cyyvew (4 ® v ® w). O

2.3.2. Simple modules. Given z € C, put [z], = q;_—qq:lz' Note that [z], = 0 if and only if

z € ”‘FZ.
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Given (n,b) € ZxCand p € Z/2Z, let 5("”7;1 ,b)p be the one dimensional UF (gl(1]1))-module
with basis vector v of degree p and module structure

nmy/—1
h

Following [Vir06, §11.4], the quantum Kac module of weight (a, a) € C? and degree p € Z/27Z is
the UqE(g[(1|1))—module V(a,a)p with basis vectors v of degree p and v' of degree p+ 1 and

FEv =

v, Gv = bo, Xv =0, Yv=0.

FEv = av, Gv = av, Xv =0, Yov=1,

Ev' = o/, Gv' = (a — 1)V, Yu' =0, X' = [a]qv.
The structure of V(a,a)p is illustrated by the diagram

ol X=la],

V(a,a)s: q/\ S
P v v .
i

In this diagram, and those which follow, the actions of G and E are depicted as loops above and
below the weight vectors, respectively, and an arrow labeled by a generator indicates that it acts
by the identity in the given basis. The module V' («, a)p is simple if and only if o« € C'\ ”\FZ, in

which case the dual vector v € V(a, a); is highest weight and

V(a, a);; ~V(-a,—(a— 1))ﬁ+1. (9)

If instead a@ = 2

h_l, n € Z, then V(a, a)p is indecomposable and fits in the exact sequence

nmy —1 nmy/ —1 nmy—1
P 0= gt = V= @)y > e( ), 0. (10)

Proposition 2.3. Every simple object of DY is isomorphic to exactly one of the modules on the
list

o (™Y=L b); with (n,b) € Z x C and p € Z/2Z,

o V(a,a); with (o,a) € (C\ © h_lZ) x C and p € Z)27.

0— ¢g(

Proof. Let V € D? be simple. Since X? = 0, there exists a highest weight vector v € V, say of
weight A = (Ag, Ag), and V = UF(gl(1]1)) -v. If Yv = 0, then (K — K~ !)v = 0, which implies that
Ap € ™—Z and V ~ e(Ag, A\g)p. If instead Yv # 0, then V =~ V(\g, Ag)s and, by simplicity
and the discussion preceding the proposition, Ag € C\ %FZ. O

Lemma 2.4. The category DY is locally finite.

Proof. That morphism spaces in DY are finite dimensional is clear. To see that DY has finite
length, let V € DY be non-zero. There exists a highest weight vector v € V which generates a
submodule (v) of the form e(Ag, A\g)s with Ap € T h—lz or V(Ag, Ag)s with A\g € C. Using the
filtration (10) of V(Ag, Ag)s if Ap € © h_IZ and simplicity of (v) otherwise, the problem of finding
a Jordan-Holder filtration of V' reduces to that of V/(v), whose dimension is strictly less than
that of V. Iterating this argument completes the proof. O

Proposition 2.5. Ifa € C\ © hle, then V (o, a)y € DY is projective and injective.
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Proof. It follows easily from Lemma 2.4 that D? is multitensor, whence projective objects are
injective [EGNO15, Proposition 6.1.3]. It therefore suffices to prove that V(a,a)s is projective.
There is a UF (gl(1]1))-module isomorphism

Via,a); =~ UqE(g[(lll)) ®yp.20 C(a, a)p,

(al(1[1))

where UZZ%(gl(1]1)) is the subalgebra of UE(gl(1]1)) generated by E, G, K*! and X and C(wv, a);
is the one dimensional weight Uf 20(gl(1]1))-module concentrated in degree p of weight (cv, a) and
on which X acts by zero. Let f : V — W be an epimorphism in D? and ¢ : V(a,a); = W a
non-zero morphism. Since
Hompa (V (v, a)5, W) =~ Hompéo (C(a, a)p, VVIUf’ZO(gf(lll)))’
where Dgo denotes the category of weight Uf =0(gl(1[1))-modules, the map ¢ is determined
(6la1)) in D;O, that is, a highest weight vector w € W of
weight (o, a) and degree p. By assumption, w has a weight vector preimage in Vj, say v. Since
aeC\~ {IZ, we may form v/ = v — [a]q_lFEv € V, which is highest weight of weight («, a) and
degree p. The assignment 1 — v' defines a morphism C(a, a); — VlUE,zo(g[(l'l)) in D, which in
~ q -

turn determines a morphism ¢ : V(a,a); — V in D9, by the argument above. Since f(v') = w,
the map ¢ satisfies f o ¢ = ¢. Hence, V(«, a)p is projective. O

by a morphism C(a,a); — M/|UE,20
q

For later use, define the quantum anti-Kac module of lowest weight («,a) € C? and degree
D € Z/2Z to be the Uf(g[(l]l))—module V(a, a); with basis vectors v’ of degree p and v of degree
P + 1 and module structure

B (91 X a+1

V(a,a)p: v /_\"? :
U\H/u
a Y=[o], a

The module V(a, a); is simple if and only if o ¢ © ﬁ_lZ, in which case V(a,a); ~ V(a,a+ 1)pii-

Ifa= MT‘/_T, n € 7, then V(mh_l ,a)p is indecomposable and fits in the exact sequence

nmy —1 — nmy/—1 a nmw
h h

-1
0— & sa+1)500 = V( )p — & - ,a)p — 0.

Finally, we record that

nmy —1

qdim e B)p = (~1)P" (11)

and qdim V (e, a)p = 0.

2.3.3. Projective indecomposable modules. Given (n,b) € Z x C and p € Z/27Z, let P("’rh_l,b)p
be the UqE(g[(1|1))—m0dule with basis {w,w’, w4, w_}, where w,w’ are of degree p and w,w_
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are of degree p + 1, and module structure

b1
v
W
3 b X Y=
p*T b ) b
w' w -
Kbal_ X
w_

nm\/ —

Here E acts everywhere by Tl and is omitted from the diagram. Setting M; = span{w} and
My = span{w, w4, w_} defines a module filtration 0 C M; C My C M3 = P(mhfl,b)ﬁ with

nmy—1
= ,0)p

M1 2M3/M2 26(

and
nmy/ —1 nmy/ —1

5 b+ 1)51 @ e 7 b= 1)p1.

In this paragraph, fix n € Z and write V' (b); for V(m‘hﬁ, b)p, and similarly for P(b); and
e(b)p. If a basis vector is sent to zero under a map, then we omit it from the notation. There are
morphisms

MQ/Ml ~ 8(

P(b)p — €(b)p, w' v (12)
and (b)s — P(b)p, v — w. The composition
Tury=T 5 P(b)p — €(b)y — P(b)p, w' = w
is nilpotent of order two. There are canonical projections
P(b)y — V(b)p, w' v, wo

and

There are canonical inclusions
V(b+1)541 = P(b)p v w, v —wy

and

V(b—1)541 = P(b)s, Ve wo, v w.

Consider the compositions

a:”‘ﬁ/jl,b,ﬁ 1 P(b)y — V(b)ﬁ — P(b— 1)ﬁ+iv w' —Wy, W- =W
and
a—:ﬂ'}/j,b@ : P(b)p — V(b)p — P(b + 1)13+1, 'l,U/ = w_, Wyt —w.

Proposition 2.6. If ny # no, then

nimyv/—1

namy/ —1
Hompaq (P( 3 7b1)ﬁlaP(QTvb2)132) =0.
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Otherwise, there are isomorphisms

nmy/—1 nmy/—1

Home(P(TJ)l)ﬁuP( n 2)172) =
2 . — _ —
C[xmm,bm]/@fmﬁmﬁl> if (b2, p2) = (b1, p1),
C- anﬂ'\/i b1,p1 Zf (bg,ﬁg) = (bl =+ 17}31 + 1)7
0 otherwise.
; + ¥ _
Moreover, the relations a"’“ﬁ,b;l,ﬁ-i-l o a"“\ﬁ,b,‘ = Fx "”‘F,b,ﬁ hold.

Proof. That z and a™ are the only morphisms follows by analyzing the filtration M, of P(
given above. The remaining statements are clear. O

2.3.4. Tensor products. By comparing weights, it is easy to verify the isomorphisms

nlﬂ\/jl ngﬂ\/jl (n1 +’l7,2)7'('\/7

g(Tvbl)Zﬁ ®E(T’b2)ﬁ2 = ( A bl +b2)p1+p27 (13)
nmy/ —1 nmy/ —1
Viaa)y® "V by~ Vot TV 0t by (14)

and

P ), = PO @ e

nmwy/—1
h )O)ﬁ

Let aj, a9 € C\ W‘/{TZ. If oy + a3 € C\ ”‘/{TZ, then an argument using weight vectors and
the injectivity of generic Kac modules (Proposition 2.5) gives

V(a,a1)p @ V(ag,a2)p, =~ V(o + ag, a1 + az)p 45, © V(ar +ag,a1 +ag —1)5 15,41- (15)

See [Vir06, §11.6.B] for an explicit isomorphism. If instead o + ag = L}{j, n € 7Z, then there is
an isomorphism

I:V(og,a1)p ®V(ag,a2)p, — Ploq +az,a1 + a2 — 1), 45,41 (16)
See [Sarl5, §3]. Explicitly, if v; € V(cy, ai)p, is highest weight and v, = Yv;, then I is defined by
I(X (v ®vy)) = ', I(v1 ® v2) = wy,
I(v] @ vh) = w_, I(v] @ vh) = w.

Lemma 2.7. Let (n,b) € Z x C and p € Z/2Z. The module ]—7("7“/771 b)p is projective indecom-
nﬂr b)

posable and the morphism (12) is the projective cover of &(

Proof. By Proposition 2.6, the only idempotent endomorphisms of P("WF b)p are multiples of
the identity. Hence, P("’T}F, b)p is indecomposable. For any a € C\ ”\hﬁZ, the isomorphism

(16) gives

O N

Since V(a, b+ 1)1 is projective by Proposition 2.5, so too is P (™ =1 b)p. This proves the first
nmy/ —1 b)* 0
h 7P

statement. The second statement follows from the fact that w’ generates P(

Lemma 2.8. The category DY has enough projectives.
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Proof. Let V € DI. For each « € C\ T hflz, there is a surjection

Wv(a,())@@Idv

V(a,0)5 @ V(,0)5 @V CRV=V.
Since V(a, 0)p is projective by Proposition 2.5, so too is V(a,0)5 ® V(a,0)F @ V. O

2.4. Modified traces. We establish the existence of a modified trace on the ideal P? of projectives
of D7 and make some computations required for later use.

The following result can also be proved using the notion of ambidextrous objects introduced in
[GPMT09, GKPM11].

Proposition 2.9. Up to a global scalar, there exists a unique m-trace t on the ideal P C D? of
projective objects.

Proof. By Lemmas 2.4 and 2.8, D? is a locally finite pivotal C-linear tensor category with enough
projectives. It follows that P¢ has a unique non-trivial right m-trace if and only if the projective
cover of the trivial module C ~ £(0,0)g is self-dual [GKPM?22, Corollary 5.6]. By Lemma 2.7, the
projective cover in question is P(0,0)5. For any a € C\ ”‘FZ, the isomorphisms (9) and (16)
give P(0,0)5 ~ V(a, 1)5 ® V(a, 1)%, establishing self-duality. By Proposition 2.2, D? is braided.
Hence, this right m-trace is an m-trace. O

Note that [1], = 1 for all ¢ € C\ {0, £1}. In particular, the module V' (1,0)g is simple projective.
Fix the normalization of the m-trace of Proposition 2.9 by requiring d(V'(1,0)5) = (¢ — ¢~ 1)L
Given V, V' € D1, define

q)V,V’ = (Idvl (%9 Wv) o (CV,V’ &® Idv*) o (CV’,V (%9 Idv*) o (Idv/ & CEVV) S Enqu(V,).

Extend the definition of ®y,y to formal C-linear combinations of objects of D? by bilinearity.
When Endpq (V') ~ C set
V/

SV, V') = <<PV> = (®yy) e C.

Lemma 2.10. Let o, 3,a,b € C and p,5 € Z/27. The following equalities hold:

Dy (5.0, (aa)s = (—1)P T 2O0TaR) o8 (g — =) Tdy 0.
_ (_1\p+1 72(ab+a""‘/jl) a  —ay2
(pP(nTr _l,b)ﬁ,V(a,a)g —( 1)p q h (q q ) IdV(a,a)g

h

S (_1)ﬁ+iq72(a,8+b""571

,8

_ Yo —a-Yd? — =P
V(B.0)5 P(2 L a)s (9= )(¢" = )Ty,

Proof. Using that V(a,a)s is a highest weight module, it is straightforward to verify that
Endpe(V(a,a)s) = C. It follows that @y y(q,q), maps a highest weight vector of V(a,a)s to

a multiple of itself, whence only the diagonal part of the braiding contributes to @y y(4,q4),- Using

this observation, the first two equalities are direct calculations. Turning to the final equality,
Proposition 2.6 implies that

d /= =c1Id, ey +C2T pry—T
V(B8.b)5, P(MmY=L a)s — 1T p(nmy =T gy, TR a5

annihilates the highest weight vector w, we have

for unique c1, ¢y € C. Since ® I
due 1, €2 V(B.0)5, P21 a)

c1 = 0. A direct calculation shows that

nwy/—1
Q)V

(w/) _ (_1)ﬁ+iq72(aﬁ+a ¥ )(q _ qil)(qﬁ . q*'B)w — cow,

(B.0)5,P("=Y=L a)s
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from which the lemma follows. O

In preparation for the next result, we compute some modified dimensions. Let o € C\ 7r\ﬁZ.
Cyclicity of the m-trace implies ty (1,0)5(Pv(a,a),,V(1,0)5) = tV(aa)s (Pv(1,05,V(aa)p)- Using Lemma
2.10 to compute both sides of this equality gives

d(V(a,a)p) = (-1)P(¢" —¢*) " (17)
The isomorphism (9) and equation (17) imply
d(V(e,a)p) = d(V(e, a)p). (18)

Lemma 2.11. Let (n,b) € Z x C and p € Z/2Z. Then d(P(“™=1 b)) = 0 and
D

—1\—1
tpuey=t g (Tamy=1 ) ) = (1) (g =)

Proof. Let a € C\ L{{TZ. The isomorphism (16) gives
nmwy/ — nmy/ —1

Via+ T by @ Vi(a, 1) = PO ),
The partial trace property of the m-trace gives
nmy —1
(P A 0)p) = tvm+@,b)ﬁ®v<ﬂ,1)i(IdV(a+Lﬁ,b),ﬁ®V(f&,1)i)

- tV(aJrLr}{j,b)ﬁ(ptrv(*avl)i (IdV(a+Lﬁ,b)ﬁ ®1dy(-a,1)))

= tV(a+ n-;r\r{jl’b)ﬁ (Idv(a+ nﬁ\F’b)ﬁ) qdim V(—a, 1)1
=0

since qdim V(—a, 1)1 = 0. Turning to the second equality, cyclicity of the m-trace implies

tV(a,a)g((I) ("7?\/7 b5,V (a, ),) :tp(mf\{jab)ﬁ(q)v(a’a)g’p(nﬂ\/i b)p )

Taking the m-trace of the second and third equalities of Lemma 2.10, equating them and solving

fort  ..,—1 ., (z Mr )completes the proof. O
P( h 70')

Lemma 2.12. Let a € C\ W‘{{TZ and I the isomorphism (16). The algebra isomorphism

I* : Endpa (V(a,0)5 ® V (e, 0)5) = Endpa(P(0,0)5), frTofolt
Maps Coevy (a0, © eV (a0, 0 (4= ¢ 1) d(V(e,0)g) - ,05.
Proof. Write V for V(«, 0)5. By Proposition 2.6, there exist ¢, ¢z € C such that
I*(coevy o evy) = ¢ Idp(0,0)5 +¢2%0,0,0- (19)

Since c%vv o QV is nilpotent, ¢; = 0. Taking the m-trace of the left hand side of equation (19)
gives

— — — —
tP(0,0)5 (I*(coevy o evy)) = tygy=(coevy o evy)
— —
= ty (ptrv* (coevy o ev V))

= ty(Ildy)
— 4.
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The first and second equalities follow from the cyclicity and partial trace properties of the m-trace,
respectively, and the third from the snake axioms of left and right dualities after using the canonical
identifications c<0_evv*:c£VV and g;v* :gv. On the other hand, Lemma 2.11 shows that the
m-trace of the right hand side of equation (19) is catp(o,0);(Z0,0,0) = c2(q — g H)~L. Tt follows that
c2=(¢—q ") d(V(a,0)p). O
2.5. Generic semisimplicity and the ribbon structure of D?. Let G = C. For each a € G,

denote by DY, C D? the full subcategory of modules on which E acts by «.

Proposition 2.13. The G-graded category D ~ @ ¢ D& is generically semisimple with small
symmetric subset X = T h_lZ. Moreover, if a € G\X, then {V(a,a)p | a € C, p € Z/2Z} is a
completely reduced dominating set for DE.

Proof. That D? ~ @ ¢ DY is a G-grading follows from the definition of the coproduct and
antipode of Uf(g[(l\l)). Let @ € G\X and V' € D¢ non-zero. As in the proof of Proposition 2.3,

s

h_lZ, this vector generates a submodule
(v) C V isomorphic to V (e, a)p for some a € C and p € Z/27Z which, by Proposition 2.5, is simple
and injective. It follows that there exists a splitting V' ~ V' & (v). Iterating this process shows
that DY is semisimple with the claimed completely reduced dominating set. O

there exists a highest weight vector v € V. Since « ¢

Let 6 : Idps = Idpe be the natural automorphism with components 6y = ptry(cy.y ), V € D9,
Theorem 2.14. The natural automorphism 6 gives DY the structure of a C-linear ribbon category.

Proof. We have already seen in Lemma 2.1 that DY is pivotal and in Proposition 2.2 that DY is
braided. It is automatic that 6 satisfies the balancing conditions. Let (a,a) € C? and p € Z/27Z.
We claim that Oy (q.q), = g 2eata Idy (a,a),- Since Endpa(V(a, a)p) ~ C, it suffices to compute
0 (a,a),v for a highest weight vector v:

Cgvv(a,a)ﬁ

v — vV +od v

CV(a,a)5,V(a,a)p

(_1)ﬁq72aav QU vt + (_1)ﬁ+1q72aa+av/ Qv v*

—
eV V(aa)p —2aa+a
q V.

View D? as generically semisimple as in Proposition 2.13. Using the classification of simples
from Proposition 2.3 and the isomorphism (9), we conclude that 9‘/(,17(1);% = GT/(Q O for all generic
simples, that is, when o € G\X. The assumptions of [GPM18, Theorem 2| are therefore satisfied

and we conclude that 6 is a compatible twist. O

Remark 2.15. Variants of Proposition 2.2 and Theorem 2.14 are known:

(1) Following Kulish [Kul89] and Khoroshkin and Tolstoy [KT91, §7], Viro explained that
Un(gl(1|1)), the h-adic quantum group of gl(1]|1), admits a ribbon structure. In particular,
the category of topological Uy (gl(1]1))-modules is ribbon [Vir06, §11.3].
(2) Sartori proved that the category of finite dimensional weight modules over Uq(gl(1]1)), the
quantum group of gl(1|1) over C(q) with q an indeterminate, is ribbon by transferring the
ribbon structure of Uy (gl(1|1)) [Sarlb, §4.1], following the method of Tanisaki [Tan92, §4].
Our proof of Proposition 2.2 is similar in spirit to that of Sartori [Sarl5], in that the definition of
the ribbon structure of DY is motivated by the form of the universal R-matrix of Up(gl(1]1)). Our
proof of Theorem 2.14 is however different, leveraging the generic semisimplicity of D9Y.
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2.6. Relative modularity of D? for arbitrary q. Continue to denote G=Cand X = T {12 and
view DY as generically semisimple as in Proposition 2.13. Let Z = C x Z/2Z. Then {£(0,b)5} 5 p5)ez
is a free realisation of Z in D{. Indeed, it is immediate that 0-0,6), = Ide(0,p),- The remaining
parts of Definition 1.5 follow from equation (11), the isomorphisms (13) and (14) and Proposition
2.3. For each V € DY, a direct computation gives

—2ab
CVe(0,b)s © Ce(0,0)s,V = 4 1de(p)sv -

Thus, ¢ : G xZ — C*, (a, (b, p)) + ¢ 2%, is a bicharacter satisfying equation (1).

Theorem 2.16. The category DY is a modular G-category relative to (Z = C x Z/27Z,X = ﬁ\%le)
with relative modularity parameter ( = —1. Moreover, D? is TQFT finite.

Proof. As explained above, D? is G-graded and {e(0,b)5} (4 5)cz is a free realisation of Z in Df
satisfying the compatibility condition of Definition 1.9. Proposition 2.9 shows that the full
subcategory of projectives P? C D? has an m-trace. Define ©(«) = {V(«,0)p}, « € G\X. The
isomorphisms (14) show that O(a) ® 0(Z) = {V(«,a)p | a € C, p € Z/27Z} which, by Proposition
2.13, is a completely reduced dominating set for Dg. Thus, D? is a pre-modular G-category relative
to (X, Z).

Next, we find a relative modularity parameter (. Let a, 8 € G\X. Up to isomorphism and
the action of Z, each of the categories D& and Dg have a unique simple object, say V(«,0)5 and
V(B,0)5, respectively. Let f be the morphism corresponding to the left hand side of equation (2)
with Q;, = Qg and V; = V; = V(,0)5 and I : V(a,0)5 ® V(a,0)5 — P(0,0)5 the isomorphism
obtained by combining the isomorphisms (9) and (16). We compute

I"f =d(V(e,0)5) Py, p0,0)
= d(V(a,0)5) d(V(8B,0)5)®v(5,0)5,P(0,0)

= —d(V(,0)5)(¢ — ¢ Do

)

The third equality follows from Lemma 2.10. Lemma 2.12 then gives f = — c%vv(a,o)é o Ef)v(%o)@,

whence ( = —1.

Turning to TQFT finiteness, in the notation of Definition 1.15 we have J, = {V(«,0)5} if
a € G\X and J, = {P(a,0)5} if @ € X, whence property (F1) holds. Since D? is locally finite
abelian (see Lemma 2.4), it is Krull-Schmidt. Properties (F2)-(F3) follow easily from this and the
classification of projective indecomposables from Section 2.3. O

Let o € G\X. The left hand side of the diagram in Definition 1.10 which defines A_ is equal to

d(V(@,0)5)¢ ¢ “ Py (a,0)5,V (0,0); = — 1dv(a,0)55

the two factors of ¢7* being due to the inverse twists in the diagram in Definition 1.10 and the
equality following from Lemma 2.10 and equation (17). Hence, A_ = —1, from which it follows
that A+ =1.

Remark 2.17. Since relative modularity implies non-degenerate relative pre-modularity, Theorem
2.16 implies that DY defines invariants of decorated closed 3-manifolds; see Section 1.4. We expect
that these invariants recover those of Bao and Ito [BI23], who define invariants using a category
closely related to DY, defined using Viro’s g-less subalgebra of Uy (gl(1]1)) [Vir06, §11.7].
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2.7. Relative modularity of D? for ¢ a root of unity. Assume that ¢ is a root of unity. In
this section we endow D? with a relative modular structure different from that of Theorem 2.16.
Since many of the proofs are variations of those from Section 2.6, we will at points be brief.

Fix a positive integer r > 3 and h = 27rf Then the Kac module V(«, a)p is simple if and only

if « € C\ §Z. Let v = gcd(2,r) and set G C/~Z x C/Z. For each (a,a) € G, let D?@ a C DI

be the full subcategory of modules whose weights are congruent to (&, a).

Proposition 2.18. The G-graded category D ~ EB(a a) eG & a) is generically semisimple with
small symmetric subset X = 3Z/7 x C/7. Moreover, if (a, a) € G\X, then {V(a,a)p | (ov,a,p) €
ax ax7Z/2Z} is a completely reduced dominating set for D (@,a)"

Proof. This can be proved in the same was as Proposition 2.13. O

Let Z=7Z x Z x Z/2Z. For (n,n’,p) € Z, we compute

It follows easily from this that

o:72— DL

r
6.0) (n,n’,p) — e(nr, nlg)ﬁ (20)

is a free realisation. For each V € D‘(]_ gy We compute

_ —2(nar+n'al )
cV,E(nr,n’%)g ° Ca(m‘,n’%)g,v - Id

e’ 2)s@V -
Thus,

BGXZ 5T, (@a), (', 8) s g 2T
is a bicharacter satisfying equation (1). Let (&,a) € G\X with chosen lift (ag,ap) € C x C. The
set

. . .. r
9(&76’) = {V(Oéo + 7, a0 +J)(_) ’ 1,] € {077; - 1}}
satisfies ©(@,a) ® 0(Z) = {V(«a,a)p | (o,a,p) € & x a x Z/2Z}, which is a completely reduced
dominating set for an a) by Proposition 2.18.

Lemma 2.19. Let (3,b) € G\X and i,j,k € Z.
(1) The equality (PQ(B’E)J/(Z"]')Z; =0 holds.
(2) If r is not divisible by 4 and 0 < j < % — 1, then the equality

2
_ r
¢Q<5,5>7P(0,j)ﬁ = —dj0(q — ¢ 1) <7> 20,0,0
holds.
(3) The equality (I)Q(B’B),V(i,j)(—)@P(o’k)a =0 holds.

Proof. (1) Using Lemma 2.10 and equation (17), we compute

P05 Vi) = Z d(V(Bo +ym, bo + 1)5) Py (8ytym,bo+n)s,V (i5)5

m,n=0

r_1 -1
v v
- ¥ (Z q—2m) (qPotm — g fommy=1 =2 (BotrmFibo) gfotam (1 _ 2y Td ;.
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If ¢ # 1, then the sum over n vanishes. If ¢** = 1, then the factor 1 — ¢ = 0 vanishes.
In either case, @Q(E’E>7V(i’j)ﬁ vanishes.
(2) Lemma 2.10 gives
1_1 L_l
. _ —2j(Bo+ym)
P9 55, P(04)5 = —(¢—q Z Z q g 55
n=0 m=0

The restriction on the range of j and assumption that 7 is not divisible by 4 implies that
¢ # 1 unless j = 0. The sum over m therefore vanishes unless j = 0, in which case it is
equal to %950,0,(')- This gives the claimed result.
(3) The isomorphisms (15) and (16) give
V(i,5)o ® P(0,k)g ~ V(i,j + k= D)1 & V(i.j + k)g* & V(i +k + 1)1
The desired equality therefore follows from the first part of the lemma and additivity of &
in its right index. O
Theorem 2.20. Assume that r is not divisible by 4. The category D! is a modular C/yZ x C/
Z-category relative to Z = 7 x 7 x Z/2Z with free realization (20) and X = IZ/Z x C/Z with
2
relative modularity parameter ( = — (%) . Moreover, D1 is TQFT finite.
Proof. Relative pre-modularity and TQFT finiteness are proved as in Theorem 2.16, the only

difference being that Proposition 2.18 is used in place of Proposition 2.13. To find a relative
modularity parameter ¢, let (@, a), (3,b) € G\X. In the notation of equation (2), take

T
Qn =Qpp = Zd (Bo + i, b0 + j)a) - V(Bo + i, bo + j)g
1,j=0

and V; = V(o + i1, a0+ J1)g and V; = V(ag + iz, ag + j2)g for some i1, 19, j1,j2 € {0, ..., % —1}.
Write M for V(ag + i1, a0 + j1)g @ V(oo + iz, ao + ja2)5, so that the morphism corresponding to
the left hand side of equation (2) is f € Endpq(M). Using the isomorphisms (15) and (16), we
have

V(y(inr —i2),51 — j2 + 1)g © V(y(i1 —i2),j1 — j2)1  if i1 # io,

I-M=
{P(O)]1]2)(_) lfll = 19.

If 41 # 19, then
I"f = d(V(awo + i1, a0 + j1)0) P 5 5V ((i1—iz) .1 —ja+ 1)o@V (3 (i1 —iz) 1 —j2)1
= d(V(ao + i1, a0 + j1)p) <‘I)Q<g,5)uV(v(il—iz)ﬁjl—jEJrl)é) + (I)Q(é,fn)7V(7(i1_"2)’j1_j2)1)
vanishes by Lemma 2.19(1). If instead i; = 42, then Lemma 2.19(2) gives
I"f = d(V(eo + i1, a0 + j1)5) P s 5, P(0,1—ja)g
0 if j1 # Jo2,
- (%)2 d(V(ao +7it,a0 +51)0) (@ — ¢ Nz 000) if j1 = .

2 —
3 _ T
Using Lemma 2.12, we conclude that f = — (;) COVY (agtryin,aotii)s © €V V(aotvit,aoti) When

2
j1 = jo. It follows that { = — (%) . -
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Let (&,a) € G\X. The left hand side of the diagram in Definition 1.10 which defines A_ is
equal to

r_1
z

D d(V(ag + i, ag + )g)g 0TI ot (001D 2000700 (Lo ks Voo
i,j=0

r_1
Y Qo _ ,—Q0
_ q q 2vij
- Z qOéo-i-’yi _ q—ao—’yiq IdV(O‘O’O)() '

4,j=0
As in the proof of Lemma 2.19(2), the sum over j is zero unless i = 0, so that the last expression
is equal to —% Idy(a,0),- Hence, A_ = —%, from which it follows that A, = %

Remark 2.21. (1) When r is divisible by 4, the pair (G, X) as above with free realization
(20) defines a relative pre-modular structure on D? which, however, is degenerate. Indeed,
A_ =0, as follows from a slight modification of the calculation preceding this remark.
This should be compared with the exclusion of roots of unity of order divisible by 8 for
TQFTSs constructed from Uf (sl(2)) [BCGPM16]. It would be interesting to investigate
the existence of spin TQFTs when r is divisible by 4, as in [BCGPM14].

(2) Consider again the general setting of Section 2.2, so that ¢ need not be a root of unity. Up
to monoidal equivalence, the category DY is independent of ¢. In particular, the relative
modular structure constructed of Theorem 2.20 can be pulled back to a relative modular
structure on D for gy a fixed quantum parameter. In this sense, the relative modular
structure of Theorem 2.20 (or that of Section 2.8.2 below) is not particular to D? for
g a root of unity. Nevertheless, to emphasize the analogy between the constructions of
this paper and standard Reshetikhin—Turaev constructions of Chern—Simons theories with
compact, simple, simply connected gauge group—where the level of the theory is encoded
in the order of the root of unity of the appropriate quantum group—we prefer to work
with a level-dependent quantum parameter ¢, as in this section.

2.8. Integral weight modules. Let D% C D? be the full subcategory of modules whose
G-weights are integral. The results of Sections 2.3 and 2.4 generalize directly to D% with
essentially the same proofs. In particular, there exists an m-trace on the ideal of projectives
Point « DNt which is unique up to a global scalar, which we normalize as for D¢ and D% has a
ribbon structure. The categories D%™ also admit various relative modular structures, summarized
below, which are integral counterparts of those of Sections 2.6 and 2.7.

2.8.1. Relative modularity of DY for arbitrary q. Let G = (C/%Z. For each & € G, let Dg’int C
D" be the full subcategory of modules whose E-weights are congruent to &. Then D% is G-
graded and generically semisimple with X = T hle / %TEZ. The objects {5(27“/hjn )5} ! pez
define a free realisation of Z =Z x Z x Z/27 in Dg’mt and

P : GxZ— CX, (@, (n,n,p)) — 2",
is a bicharacter satisfying equation (1). For each a € G\X, fix a lift ap € C and define ©(a) =
{V(a,0)5}. Then ©(@) ® o(Z) is a completely reduced dominating set for DL™.

Theorem 2.22. The category D™ is a TQFT finite modular (C/%Z-category relative to

(Z = ZXZxZ]2Z,X = ”FZ/%ﬁZ) with relative modularity parameter ( = —1 and
stabilization coefficients AL = £1.
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Remark 2.23. The category D? does not admit a relative pre-modular structure with respect to

2/ —1
h

the smaller grading G = C/ Z, since no compatible bicharacter v exists.

2.8.2. Relative modularity of D™ for q a root of unity. We treat the case of odd roots of unity,

leaving the case of roots of unity of even order not divisible by 4 to the reader. Let r > 3 be an odd
343 ; — 27"\/jl — 2nV/—1 _ ~ q,int q,int
positive integer, h = =~— and g =e~ r . Let G = C/Z. For each a € G, let DZ™" C D™ be

r .
the full subcategory of modules whose E-weights are congruent to &. Then D%t is G-graded and

generically semisimple with X = 3Z/Z. The objects {e(nr, n/ )5} (n p)ez define a free realisation
of Z =7 xZ x Z/2Z in DI'™ and

¥ :GxZ— C¥, (@, (n,n',5)) — ¢~ 2o,

is a bicharacter satisfying equation (1). For each & € G\X, fix a lift ap € C and define O(a) =
{V(ao+1,7)5 4,7 €40,...,7—1}}. Then O(@) ® 0(Z) is a completely reduced dominating set
for D™,

Theorem 2.24. The category D@ is a modular C/Z-category relative to Z = 7. x 7, x 7./27 and
X = %Z/Z with relative modularity parameter ( = —r? and stabilization coefficients Ay = =+r.

Moreover, D@ is TQFT finite.

3. A TQFT FOR ARBITRARY ¢

Work in the setting of Section 2.6, so that ¢ = ¢ € C\ {0,41} and DY is given the relative
modular structure of Theorem 2.16. Fix 2 = +/—1 so that § = —v/—1. The braiding of Vect(lzj'g]r
is determined by the pairing

viZxZ—{£1}, (b1, 51), (b2, P2)) = (—1)PP

In this section we study the TQFT Z : Cob%(t — Vecté'gr associated to D? by Theorem 1.12. Set
go =1 and Vy, = V(1,0)g, in the notation of Section 1.5.

Let (M,T,w,n) : § — § be a morphism in Cob3y. If by(M) > 1, then Z(M,T,w,n) is
holomorphic in w. Indeed, in view of the definition of Fj,,(R) from Section 1.4, it suffices to note
that both (Ty) and d(V(«, a)p) are holomorphic in w; the latter follows from equation (17).

3.1. The state space of a generic surface of genus at least one. Let S = (3,w) be a
decorated connected surface without marked points. Assume that the genus of ¥ is g > 1.

Lemma 3.1. Ifw € H'(X; G) is such that 2w is not in the image of the canonical map H'(X;X) —
HY(X;G), then there exists a handlebody 1 with boundary ¥ which contains an oriented trivalent
spine T with the property that w(m.) € G\X for all edges e of T

Proof. Since the small symmetric subset X is in fact a subgroup of G, the lemma can be proved
in the same way as [BCGPM16, Proposition 6.5] (see also [DR22, Lemma 7.2]) which, moreover,
proves that the spine I' may be taken to be that of Section 1.6. O
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Continue to denote by I the spine from Section 1.6. Consider the graph I obtained by modifying
I' near the vertex incident to e1, ¢4 and fay_3 as follows:

fag—5

.f2g—4

€1

Let H = {(0,0)p, (0,—1)7} = {0,0}, interpreted below as labeling the two summands on the right
hand side of the decomposition (15).

Definition 3.2. A coloring of degree k € Z of Tisa function Col : Edge(f) — D1 assigning to
each e € Edge(T") a simple module V(ae, ae)p,, where (ae,ae,pe) € C x C x Z/2Z is of degree
w(me) € G, that is, ae = w(me), and

Col(el}) = V,, = Col(e™}), Col(e%) = o (k)

such that the following Balancing Condition holds: at each trivalent vertex of f, the algebraic sum
of the colors of the incident edges is in H.

Fix a lift @ € H'(X;C x C x Z/27) of w € H'(X;G) and let
¢;, = {degree k colorings of T | Col(e;) = @(me,), i=1,...,g}.
(

Set € = | |,z €x- A coloring ¢ € € defines a vector v, = (7, T, w,0) € Z_k(S), as explained in
Section 1.6.

Theorem 3.3. Let S = (X,w) be a decorated connected surface without marked points and
underlying surface of genus g > 1 such that 2w is not in the image of the canonical map H'(3;X) —
HY(Z;G). Assume that w is such that w(ey)+go & X. Then {v. | ¢ € €} spans Z_(S). Moreover,

Z_1(8) is trivial unless k = (d,d) for some d € [—g, g] N Z.

Proof. By Lemma 3.1, there exists a handlebody 7 containing a generically colored spine T'.
Proposition 1.17 shows that Z_;(S) is spanned by vectors {(7,I%,w,0)}., where ¢ is a finite
projective DY-coloring of the graph I' from Section 1.6. Since I' is generically colored, all
projective indecomposables in any such coloring are in fact simple. Moreover, the coupon in I' is
colored by a morphism [ € Hompa(Vy,, Vg, ®@ o(k) @ V5 ), where Vi, is the simple module coloring
fo. The associated vector is in the span of vectors of the form {v. | ¢ € €}, as follows from the
skein equivalences

eg+1 go (k) go eg+1 go (k) go eg+1 go o(k) go

1" ) DS
el
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Here we use that that the linear map

@ Hompa (Vy,, W1®V92)®H0m1)q (W3, (Wi®0(k’)_1)®0(k))®H0me (Wi@a(k)_l’ Vf2g—2®%0)
W;
— Hompa (Viy, Vi, , @ Vg @ (k) @ V)

given by f@g®h— (h® Iqu*O®U(k)) o(g® IdVg*O) o f is surjective, where the sum runs over all
simple modules which satisfy the Balancing Condition at each trivalent vertex (coupon). Explicitly,
Wi and W; @ o(k)~" are the colors of €] and €], ,, respectively.

Next, we study the set €. Assume for the moment that ¢ > 2. An element of € can be
constructed as follows. First, for each ¢ = 1,..., g, color e; by (o, a;)p, = @(me,). Next, color the
edges f1, fo,..., fog—3 recursively, beginning with f1, so as to satisfy the Balancing Conditions.
In this way, the colors {(5;, b;)g }i of {fi}: are determined by a tuple (eq, ..., €e2,—3) € {0,1}*2973
through the initial conditions

Bi =1 —az
bi=a1—az+e

and the recursive system

B2i = Bai—1 + qiy1 ’ l<i<g-2
bo; = bai—1 + ajy1 — €2;
and
B2it1 + qira = P ’ l<i<g_o.
boit1 + air2 — €241 = bo;

We solve these equations to obtain

Bai = a1 N | ’ l<i<g_9
bgi =ai + ijl(—l)jej

and
{521;+1:Oé1—04z‘+2 | | ’ 0<i<g_2
boit1 = a1 — ait2 + Z?:ﬁl(—l)]fj‘
Similar considerations give for the parities
21
Bi=p+Y & 1<i<g-2
j=1
and
2i+1
Gyt =P1+Dip2+ Y &, 0<i<g-—2
j=1

It remains to color the edges €41, e; 41 and €. Writing k = (c,7), these colors are subject only
to the four Balancing Conditions:

(a1,a1)p, + go = (&, a)p + €,
(a;]+17 a;+1)ﬁ;+1 + (0’ C)F = (O/la all)ﬁ’l
(a;+17 alg+1)ﬁ;+1 + €6 = (O‘g—i-ly a9+1)ﬁg+1 + 9o

(g1, Qg 41)p,qr + 10 = (g, ag)p, + (B2g-3,b29-3)gogs-
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Here €,€/, 1 € {0,1}. Note that the second Balancing Condition, associated the vertex incident to
eV 1, has no free parameter associated to it, since o (k) is one dimensional. These equations hold if

and only if
293 2g9—3
c=e—€ —pu— (=1)¢;, r=e+ e+t €j
j=1 =1
and
29—3 2g—3
Qgi1 = O, Qg1 = ay + p+ Z(—l)jfjv Pg+1 =P1+ B+ Zgj'
j=1 j=1

Setting d =€ —e—p+ Z?i}g(—l)jej, we have constructed a degree k = (d, d) coloring of . Tt

is immediate that the above construction recovers each element of €. In particular, € is empty
unless k is of the form (d, d) for some d € [—g,g] N Z.
The case g = 1, where e; = fj, can be treated in the same way, leading to the same conclusions.

We omit the details. O

Denote by @k C € the subset of colorings of degree k with € = ¢ = 0, in the notation of the
proof of Theorem 3.3. Set € = [ |, ., €.

Proposition 3.4. Work in the setting of Theorem 3.3. For each d € [—(g — 1),9 — 1] NZ, the
29—2 )

vectors {v. | ¢ € é(d@} form a linearly independent subset of Z_ 4 ) (S) of cardinality (g—l—\d\

Proof. Let k = (d,d). We prove linear independence by modifying the argument from [BCGPM16,
Proposition 6.7]. Let 7. € V(X U §,k) be the vector obtained from v, by reversing the orientation
of n\ B and dualizing the colors of I. The pairing (T, ve,) can be computed as a connected sum
of ©-graphs, as in [BCGPM16, Figure 5]. If ¢; # co, then the Balancing Conditions are not met
for some of these ©-graphs and (v, ,ve,) = 0. If instead ¢; = cg, then all Balancing Conditions are
met and a direct calculation shows that the value of each ©-graph is non-zero, whence (v., v.) # 0.
This proves linear independence.

Turning to the cardinality statement, note that if d > 0, then for each d <[ < g — 1 there are
(i;;) (9;1) elements of &(d,d_) for which exactly [+ d of the elements {eg, €4, ..., €244, 1} are equal
to 1; in such cases necessarily [ of the elements {e1,€3,..., €353} are equal to 1. Together with
similar considerations for d < 0, this gives

g—1-|d|

~ g—1 g—1\ 2g — 2
Canl= X (o) ()= (2 0) -

=0

3.2. Verlinde formula. We compute the value of Z on trivial circle bundles over surfaces and
relate the result to dimensions and Euler characteristics of state spaces of surfaces. This allows us
to deduce a Verlinde formulate for Z. Our approach is motivated by that of [BCGPM16, §6.3].
Let S = (X, {p1,..-,Pn},w, L) be a decorated connected surface of genus g > 0. Since the
Lagrangian £ does not play a role in this section, we henceforth ignore it. For each g € G, let

SxSp=(ExS,T={p1,....pn} x S, wd B),

where we use the canonical isomorphism H'((X x 1)\ T;G) ~ HY (X \ {p;}; G) @ G to extend
we€ HY X\ {pi};G) to w ® B. Assume all colors of S x Sé have degree in G\X. Then Z(S x Sé)
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can be computed by the following surgery presentation:

Qg

Here X; = V(pi, mi)g, is the color of p; and a; = w([ail]), Bi = w([bi]) € G for a symplectic basis
{[ai], [b:]}2_, of Hi(X;Z). By applying equation (2) first to the Qq4,-colored strand and then to
the (1g,-colored strand, we can simplify the surgery presentation using the equalities

& U i d<v<5,o>a>-1OQQ: d(V(3.0)5) Id,
(\-/ V(8,0)5 o :

B

Applying this simplification for ¢ = 1,..., g reduces the link L to an Qg-colored unknot encircled
by n pairwise unlinked unknots colored by Xi,...,X,. After noting that ¢(L) = 0 and using
equation (18), evaluating the simplified diagram gives

Z(S x Sy) = 7772 d(V(8,0)5)° %S ({Xi}, ),
where S’'({X;},Q3) is the scalar associated to the n unlinked unknots. Set

n n n
MZZM, mzzmu QZZ@'-
i=1 i=1 i=1
We use Lemma 2.10 to compute
S'({Xi}, Q) = (—1)" g 2 d(V(5,0)5) "
Upon using equation (17), this gives the final result
2(S x ) = (1) Mg g e, (21)

Since Z(S x § é) is holomorphic in w, we conclude that equation (21) in fact holds whenever the
decorated surface S is admissible.
Define the generating function of Z-graded dimensions of Z(S) by

dim, ) Z(S) = Y (—1)Pdimc Zp 5 (S)t"s".
(b,p)eZ

The sign (—1) reflects the braiding of VectZ #".
The next result is a Verlinde formula for Z.

Theorem 3.5. The equality Z(S x Sé) = dim 25 1y Z(S) holds.
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Proof. Since this is proved similarly to [BCGPM16, Theorem 5.9], we will be brief. Let {e;} be a
homogeneous basis of Z(S). Write (b;, p;) € Z for the degree of e; and {e’} for the corresponding

basis of Z(S). The equality
S x Sé =NgoTyo (Idgl_lldg) oUs

holds in Cob2l, where Ng : SUS — () and Us : § — S LIS denote the cylinder on S, suitably
interpreted, 71, is the braiding of Cob%iq and Idg is as in Section 1.5. Denoting by ug a basis of
Z(0) ~ C, we compute

Z(Sx Shuy = 2(Ns)o Z(m) o (Z2(1dF) @ Tdzz)) 0 Z(Us) (uo)

= Z q_QﬂbiZ(ﬂg) oPY0o T(ei X ei)

= Y (~1Pig " Z(Ng) o PY(e @ ¢y)

= () (—1)Pq " dime 2, 5)(S)) uo,
(b,p)eZ

where P is the monoidal coherence data for Z. The second equality follows from equation (5). [

The right hand side of the equality in Theorem 3.5 can be written more explicitly as
dim-25 1) Z(S) = Y x(Z(p,0)(8))g >,
beC

where x denotes the Euler characteristic of a Z/2Z-graded vector space.

Example 3.6. When n = 0 equation (21) becomes Z(S x Sé) = (-1)97g? —qP)2972 If g > 1,
then Theorem 3.3 implies
g - _
dim ) Z(S) = Y (—1)" dime Z, 5 (S)t’s".
b=—g

Applying Theorem 3.5, we conclude that
dimg Z(8) = dim_1 1) 2(S) = lim__ Z(S x Sp) = 2%972

v/ —1
B—="55

and

1 ifg=1
2(8)) = dim(y 1) 2(S) = lim Z(S x §}) = ’ >
X(2(8)) = dimqy,) 2(5) = fim 2(S x 5j) {o ifg> 2.

We can now give a complete description of state spaces of generic surfaces of genus at least one.

Corollary 3.7. Work in the setting of Theorem 8.3. The vectors {v. | ¢ € €} are a basis of Z(S).

In particular, Z(S) is supported in degrees (d,d) with d € [—(g —1),9 — 1] NZ.
Proof. Using the cardinality statement in Proposition 3.4, we compute

O =G [ 22
€= ¥ Rual= X (,270) -2

d=—(g9-1) d=—(g—1)
which is equal to dim¢ Z(S) by Example 3.6. The corollary now follows from the linear indepen-
dence statement in Proposition 3.4. O
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Remark 3.8. As mentioned in Section 1.5, up to natural isomorphism, Z is independent of the
choice of go and Vj, used to define the decorated 2-spheres §k, k € Z. In particular, by choosing a
suitable gg, we see that the dimension statement in Corollary 3.7 holds without the assumption
w(er) + go & X; see Theorem 3.3.

3.3. The state space of the torus with non-generic cohomology class. Let S' C C be the
unit circle and ¥ = S! x S'. Let S = (3, w, £) be a decoration of ¥ without marked points. The
goal of this section is to give a non-generic counterpart of Corollary 3.7.

Proposition 3.9. Assume that there exists an oriented simple closed curve v in ¥ such that
w(y) € X C G. Then dimg Zp(S) = 2.

Proof. The Lagrangian £ does not affect the proof, so we ignore it. Let B?> C C be the closed unit
disk, n = B? x S and 7 the orientation reversal of n. Consider I' = {0} x S! as a core of 7.

Applying a diffeomorphism if necessary, we can assume that w(mr) = Mf\{j e X, n€Z. Let
I'v. ¢ be the graph I' colored by V' with coupon f € Endp«(V'). Noting that I' coincides with the
ribbon graph I'” of Proposition 1.18, Proposition 2.6 implies that the vectors

{Pn = (nvrP(O)O,IdP((])G)aPn,r = (1, L p(0)g,205) } (22)

span V(S) where, for ease of notation, we have omitted the constant E-weight ””Tﬁ To verify
the linear independence of (22), we pair these vectors with various elements of V'(S).

Let [7jg] be the empty negatively oriented copy of n and [S7j] the vector obtained from [74] by
changing the identification of 9n with S! x S! by the map S : ¥ — ¥ given by S(0,0') = (-0, 0).
Then [S7j] o Py, is S3 with the core of 1 as a P(mr,;1 ,0)g-colored unknot. Using Lemma 2.11,
we find

Replacing P,, with P, , gives
CGPDq([Sﬁ@] o 'in) = .@71 tP(nﬁ}/Tl,O) (mmF’o’()) = —/ —1((] — qil)il.

0
This shows that P, , is non-zero with dual vector (with respect to (—, —)) v/=1(g — ¢~ 1)[ST].
Next, consider the pairing with [77_,,], whose core is colored by &(—"% hfl ,0)5. The composition

[M_,] o Pp gives S? x S! with a knot of the form p x S! colored by

nmy/—1 nmy/—1

h h
The decorated manifold underlying [77_,,] o P,, is therefore skein equivalent to two parallel V(1,0)5-
colored knots in S? x S with opposite orientation. This has a surgery presentation in S® given by
two parallel knots with opposite orientation colored by V'(1,0)5 encircled by an Q;-colored unknot.
Using the modularity condition (equation (2)) and Lemmas 2.11 and 2.12, we compute

P(

,0)g ®e(—

CGPpe([M_ploPp) = 277 ty 1,050V (1,0); (CgVV(l,o)@ o WV(LO)(—))(—U d(V(1,0)5) "
= ~22%(q—q Hd(V(1,0)p) tp(0,0)5(0,0,0) d(V (1, 0)5) "
= 1.

Similarly, pairing [17_,,] with P, . gives a surgery presentation in S3 with a P(0,0)g-colored unknot
with coupon x (5 encircled by an €21-colored unknot. This gives

CGPD‘]([ﬁ—n] © Pn,:v) = _‘@72((] - qil) d(V(17 O)()) tP(0,0)() (x(2)70,(_)) d(V(L 0)(7))71 = 0:
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since 3 | 5 = 0. We conclude that (22) is a basis of V(S).

To complete the proof, recall the isomorphism Zy(S) ~ V(S) of Proposition 1.18. O

For later use, note that the proof of Proposition 3.9 shows that a basis dual to (22) is

{[7-n)s V=1(a — a7 ") [ST]}- (23)
Next, we prove the vanishing of the summands Zj(S) for non-zero k. To do so, we require the
following preliminary result.

Lemma 3.10. Let V € DY with G-weight decomposition V. = @, .c Via]. Then V admits a
G-weight basis B with the property that if v € Y - V]a] N B for some a € C, then v =Yw for some
w e Via]NB.

Proof. Since DY is Krull-Schmidt, it suffices to prove that statement for V indecomposable.
In this case, the G-weight decomposition takes the form V = @;V:o V]a — j] for some a € C
and N € Zxo with each Via — j] non-zero. Choose a basis B* = {v{,...,v] } of V]a]. Then
Y- B*={Yv{,...,Yvj } spans the subspace Y - V[a] C V[a —1]. Let BY* C Y - B% be a basis of
Y - Vl]a] and extend it to a basis B! of V]a — 1]. In the same way, we construct from B! a
basis of B4~2 of V[a — 2] which extends a basis BY*~!1 C Y - B4~! of Y - V[a — 1]. Repeating, we
obtain a basis B = |_|§V:0 B3 of V with the desired properties. O

Proposition 3.11. In the setting of Proposition 3.9, we have Z,(S) =0 if k # 0.

Proof. By Proposition 1.17, the state space Z_j(S) is spanned by finite projective D?-colorings of
I'’. Then ey is colored by P(0,0)5 and the coupon by a composition

P(0,0)2* ~ P(0,1); ® P(0,0)2% @ P(0,—1); = P — V, ® o(k) ® V;i: ~ P(0,b)5,

where P is a projective indecomposable of degree 0 and k = (b,p). By Proposition 2.6, this
morphism is zero unless (b,p) € {(0,0),(£1,1),(£2,0)}. The case k = (0,0) is dealt with
in Proposition 3.9. When k = (£2,0), the state space is spanned by vectors obtained by
coloring I so that its coupon is colored by an element of Hompaq (P(0, 0)%92, Voo @ 0(£2,0) @ Vi ).
When such a vector is paired with any vector, the obtained closed 3-manifold has a surgery
presentation in which the edges leaving the coupon are encircled by a surgery component. Thus,
this surgery presentation is skein equivalent to a graph containing a coupon filled with a morphism
in Hompa (P(0, 0)%92, 0(£2,0)), which is the zero space. Thus, Z(;45)(S) is zero.

Suppose then that k = (1,1); the case k = (—1,1) is analogous. The state space Z 1)(S) is
spanned by the vector v obtained by coloring I'V with P(0,0)5. We claim that v € Z(S) is the
zero vector. By part (2) of Lemma 1.13, it suffices to show that (w,v) = 0 for all w € V'(S).
By isotopy and skein equivalence, the pairing (w,v) can be computed as a sum of evaluations of
diagrams of the form

P(0,0)5
for indecomposables Vi, ..., V; € D? of E-weight 0 and morphisms ¢, 1. Note here the coupon
labeled with ¢ receives contributions from both the vector w € V'(S) and possible surgery
components coming from the pairing. Also, as in the previous step, the edge colored with £(0,1)3
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is obtained from a skein relation removing a coupon with edges colored with V,,£(0,1); and Vo
which in the pairing is encircled by a surgery component and thus can be simplified.

To prove that (w,v) = 0, it suffices to prove that, for any indecomposable V' € DY of E-weight
0 and ¢ € Hompq(£(0,1)1, V* ® V), the sub-diagram

evaluates to zero. While we require this statement only for P = P(0,0)g, we prove that it holds
for all P.

Let V € DY be indecomposable with E-weight 0 and G-weight space decomposition V =
N o Vla —i]. The weight space Va] is homogeneous, say of degree 5 € Z/27Z. Then V]a — 1]
is homogeneous of degree 5+ i. Fix a basis B = |_|§V:0 BT = |_|§-V:0 Ui{vffj} of V of the form
guaranteed by Lemma 3.10 and its proof. Here and below we have written the G-weight of a
vector as a superscript.

The image of a basis vector of £(0, 1); under ¢ takes the form

N
Yo ey eviev (25)
j=0ieBa—i
for some fz-_aﬂ *1 ¢ V*. The restrictions on weights comes from the fact that £(0, 1)1 is concentrated
in G-degree 1. Similar considerations for parity give | fi_aﬂ +1\ = 5+ j + 1. With this notation,

the portion of diagram (24) below the braidings maps a homogeneous vector p € P to

(i Z fretitlg vf_j> ® p.

Jj=0eBo—i

In view of the eventual application of gv, weight considerations imply that the only terms of
the double (inverse) braiding of V' with P which can contribute to diagram (24) arise from the
identity in the lower braiding and the term —(¢ — ¢~ 1)(X ® Y)(K ® K~!) in the upper braiding.
It follows that diagram (24) maps p € P to

N
g [T ey (X e ey ) | e xp (26)
Jj=0 ieBa—i
which, since Y2 = 0, is equal to

N
-y (Y ey ) e xp

=0 icBa—i\BY:a—i+1
Fix j € {0,...,N}. A direct computation shows
e ( Z fretitlg sz—j) — (1) vy ( Z Yf et g Uf?_j)-

ieBa—i\BY:a—j+1 ieBe—i\BY,a—j+1
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We claim that the vector 3=,cpa—i\gv.a—j+1 Y f;aﬂ 1 vffj is in fact zero. This will imply that
the previous evaluations, and hence (26), vanish, thereby completing the proof. To prove the
claim, note that since Y annihilates £(0, 1)1, it annihilates the vector (25). This gives the relation

N
0=> 3 (Yfi’“”“ vl 4 (—1)T L et g lequ)

Jj=0ieBa—i

Projecting this relation to the subspace V* ® V[a — j| gives
0= > YL e 30 ()T e v (27)
ieBai icBa—j+1
where we interpret each vf‘Jrl as the zero vector. The decomposition
Ba—j — BY,a—j—‘rl L (Ba—j \BY,a—j—i—l)

established in the proof of Lemma 3.10 allows equation (27) to be rewritten as

= Z Yfifa+j+1 ® ,U;ij_i_
ieBa—i\BY.a=i+1
Z Yf,-_a+j+1 ® U?—j 4 Z (_1)g+jfi—a+j—1+1 2 szq—j+1.
ieBY.a—j+l iepa—itl
The definition of the basis B2~/ implies that the first sum and the sum of the second two sums
vanish independently; the former is the claimed vanishing. O

Remark 3.12. Proposition 3.11 is surprising in view of a conjecture for the TQFTs constructed
from Uf (s1(2)) at an even root of unity not divisible by 8 [BCGPM16, Conjecture 6.4], which
states that non-generic tori state spaces are not concentrated in degree zero. We expect that the
method of proof of Proposition 3.11 can be applied in the setting of Uf (s[(2)) to disprove this
conjecture.

Next, we compute the action of the mapping class group SL(2,Z) of ¥ on Zy(S). Restrict
attention to the case w = 0, so that SL(2,Z) fixes w. Use the basis (22) of Zy(S) and its dual
basis (23) and drop n from the notation, since it is zero.

In general, let S = (X,w = 0,L) be a decorated surface without marked points and trivial
cohomology class and f : ¥ — X an orientation preserving diffeomorphism. Consider the
endomorphism

Np = VAL, .0 0 My) : V(S) = V(S),
where My : (X,w,£) — (8,w, f«L) is the mapping cylinder on f and Ly c . : (3, w, ful) —
(3,w, L) is the decorated cobordism (X x [0, 1], 75w, 0), as defined in [BCGPM16, §3.3.1]. The
assignment f — Ny defines a projective representation of the mapping class group of ¥ on V(S):

NyoN, =6 HRLLa DN,

Here p denotes the Maslov index.

Retuning to the case of the torus, fix an oriented meridian m and oriented longitude [ of ¥ with
intersection number m - I = 1. The elements T" and S given by Dehn twist along m and the map
which sends m to [ and [ to —m, respectively, generate the mapping class group of . Take for
the Lagrangian £ = R - [m]. With this choice, we have u(S.L, L, L) =0 and pu(T:L, L, L) =0, as
in the proof of [BCGPM16, Theorem 6.28]. It follows that Ng = V(Mg) and Ny = V(M7) when
acting on either P, ; or P, .. In other words, there are no corrections by the Maslov index.
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Following the computations in the proof of Proposition 3.9, the composition (7] o NgP, gives
an S3 containing the core of 7 as a P(0,0)g-colored unknot with a coupon labeled by zgp. Using
this, we compute

CGPpa([fg] o NsP2) = 2 g — ¢ 1) 7%

Similarly, we compute CGPpa([S7g] o NsP,) = 0. It follows that [ny] is dual to Z(q — ¢~ ') NPy
However, from the proof of Proposition 3.9, P is dual to [7jy], whence NgP, = 271 (q — ¢ 1)1 P.
Similar computations give CGPpa([7g] 0 NgP) = 0 and

CQPpy([STg] © NsP) = 772 tp(0), (0,0) (- )(d(V(1,0))) " = 1.

Hence, NgP is dual to [STy]. Since v/—1(q — ¢~ 1)P, is also dual to [S7y], we have NgP =
vV—1(q — ¢~ 1)P,. Continuing, a direct calculation gives Op(0); = 1dp(o); +(q — q H)xog. It follows
that NP, = P, and NyP =P + (¢ — ¢ 1) Ps.

Theorem 3.13. In the basis {Py, P} of Zo(S), the mapping class group action is given by

(v ) =)

Moreover, this representation is faithful modulo its center.

S =

Proof. We compute (ST)3 = —/=1(}9) and S? = (}9), so that we have a projective repre-
sentation of SL(2,Z) on Zy(S). It follows that S = —/—15 and T generate a (non-projective)

representation of SL(2,Z). Setting A = (é q_gq ), we have ASA™! = (9 ') and ATA™ = (3 1),

that is, A defines an isomorphism from the representation determined by S and T to the funda-
mental representation, which is faithful. U

3.4. The 4-punctured sphere and the Alexander polynomial. In this section we briefly
explain a connection between Zps and the Alexander polynomial. Incarnations of the Alexander
polynomial in quantum topology are well-known and include Reshetikhin—-Turaev-type construc-
tions from quantizations of sl(n|n), n > 1, [KS91] and gl(1|1) [Res92, Vir06, Sar15]. The point we
wish to emphasize is that the Alexander polynomial emerges from the TQFT Zpq¢ in much the
same way as the Jones polynomial emerges from SU(2) Chern—Simons theory [Wit89a, §4].

Fix (a,a) € (C\ © {12) x C. Let S be the decorated 2-sphere with four V' («, a)g-colored points,
exactly two of which are positively oriented. There is a unique compatible cohomology class w.

Proposition 3.14. The vector space V(S) ~ Zy(S) is two dimensional.

Proof. Set V.=V («,a)s. By Proposition 1.18, the vector space V(S) is spanned by w-compatible
DY-colorings of the ribbon graph I' in B3 consisting of a single coupon with four legs. The coupon
is therefore colored by an element of

Hompq(C, V@V @ V*® V") ~ Endps(P(0,0)5) =~ C[xo,o,(")]/@g,of)%

the first isomorphism following from equation (16) and the second from Proposition 2.6. Hence,
the dimension of V(S§) is at most two.
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Given ¢ € {#1}, denote by M, = (B3 I'r,w,0) € V(S) and M. = (S*\ B? O,,w,0) € V'(S)
the vectors depicted by

Linear independence of the vectors { M, M_} follows by computing
( /+7M+> # 0, <M/—3M+> =0, { Q—’M*> =0, <MI—aM*> # 0.

The vanishings follow from the observation that the CGP invariant of the disjoint union of two
V-colored unknots in S is zero. The non-vanishings follow from the fact that the CGP invariant
of a V-colored Hopf link in S? is non-zero; see Lemma 2.10. O

Let {v,v'} be the weight basis of V(«, a)j from Section 2.3.2. In the basis
fv@v,v@v, v @v,v @0} CVia,a);®@V(a,a),

we compute

q—2aa 0 0 0

0 0 q—2aa+a 0

CV(a,a)5,V(a,a)g — 0 q72aa+oz q—2aa+a(qa _ qfa) 0
0 0 0 _q—2aa+2a

A direct calculation then shows that

2aa— —(2aa— -1 —
q “ acv(ava)ﬁvv(a7a)6 B q ( « a)cV(a,a)(),V(a,a)(, = <qa B q a) IdV(Oc7a)(j®V(Oé,a)(‘) '
Writing Myq € V(S) for the vector obtained by coloring I with Idv (a,a)5@V (a,a)y» the previous
equation becomes the linear relation

q2aafo¢M+ + q7(2aafo¢)M_ _ (qa o qia)MId

in V(S). It follows from this equation that, upon renormalization, Zps defines an invariant
of framed oriented links in S that satisfies the Conway skein relation, as stated in [Vir06,
Eqn. (24)], specialized to t* = ¢®. More precisely, recall from the proof of Theorem 2.14 that
OV (aa); = ¢ 2T Idy (a,0),- Then Fpe(L) = (e Fr (L), where wr(L) is the writhe of
L, is an invariant of V(«, a)g-colored oriented links which satisfies the Conway skein relation.

In [BCGPM16, §6.7], the TQFT constructed from the relative modular category of weight

U, (sl(2))-modules for ¢ a primitive fourth root of unity was shown to encode the multivariable
Alexander polynomial by arguments similar to those above. Moreover, it was shown that this
TQFT evaluates to the canonically normalized Reidemeister torsion on closed 3-manifolds. We
expect these arguments to generalize to the present setting without significant change, thereby
connecting Zpq with Reidemeister torsion. We leave a detailed verification to future work.
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4. A TQFT FOR ROOT OF UNITY ¢

We work in the setting of Section 2.7. Fix a positive integer r > 3 which is not divisible by
4 and set h = 2L et v = ged(2,r). Consider DY with the relative modular structure of

T

Theorem 2.20, so that

G=C/yZ x C/Z, X:%Z/ZXCXZ, Z=7x7x1/2L

with free realization (20) and Ay = +2. Fix 7 = Zv/—1 so that § = —v/—1. The braiding of

Vecté'glr is determined by
v Lx”L— {:l:l}? ((nlanllaﬁl)> (n2>n/27]§2)) = (_1)171132'

In this section we study the TQFT Z : Cobis, — Vecté'gr associated to D? by Theorem 1.12. In
the notation of Section 1.5, we fix

(%,(—J) if r is odd, V(1,0)5 if ris odd,

,0) if r is even, V(2,0)5 if ris even.

As in Section 3, the invariant Z(M) of a morphism M : ) — () in Cob%%}, depends holomorphically
on the cohomology class w appearing in the definition of M.

4.1. The state space of a generic surface of genus at least one. We modify the arguments
of Section 3.1 to construct a spanning set of the state space of a surface of genus at least one.

Let S = (¥,w) be a decorated connected surface without marked points and underlying surface
¥ of genus g > 1. Assume that 2w is not in the image H'(3;X) — H'(X;G). Since X C G is again
a subgroup, Lemma 3.1 continues to hold. Definition 3.2 applies in the present setting, where now
G and o are as in the root of unity case. Fix a lift © € H'(X;C x C x Z/27Z) of w € H*(Z;G) and
let

Q:](;") = {degree k colorings of r | Col(e;) € w(me,) +{(J, k)(‘)}ogj,kgg—l, i=1,...,9}

Theorem 4.1. Let S = (X,w) be a decorated connected surface without marked points and
underlying surface 3 of genus g > 1 such that 2w is not in the image H'(X;X) — HY(%;G).

The set {v. | ¢ € C,(:)} spans Z_(S). Moreover, Z_i(S) is trivial unless k = (0,d,d) for some

Proof. The proof is a variation of that of Theorem 3.3. Note that &(e1) + go ¢ X. The main

2
difference from Theorem 3.3 is that there are now (%) choices for the color of each edge e;,

i=1,...,9. The colors of the edges { f;} and e411 of I are determined by a tuple (e1,. .., €g-3, 1) €

{0,1}*292 through the same recursive system of equations as in the proof of Theorem 3.3. Writing

k= (nr,n = t), the colors of the remaining the edges e} and e, ; are determined by the equations

(a1,a1)p, + go = (&, a)p + €,
(04;+17 a;+1)ﬁ’g+1 + (nr, n/T)f = (O/I’a/l)ﬁ’l
(alg+la alg+1)ﬁ;+1 + 6,5 = (ag+17 ag+1)ﬁg+1 + 90

(g1, @g41)p,qr + 10 = (g, ag)p, + (B2g-3,b29-3)gogs-
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Here €,¢’ € {0,1}. These equations hold if and only if

2g—3 29—
nr =0, n’%—e—e—u—Z(—l)jq, t=e+é+ Z
J=1 Jj=1

The first equation implies that n = 0 while the second implies that L divides € —e—p— Z 29~ - ej O

Denote by C( D Q( ") the Subset of colorings of degree k with ¢ = ¢ = 0, in the notation of the
proof of Theorem 4.1. Set €( = pez C i

Proposition 4.2. Work in the setting of Theorem 4.1. For each d € [—(g —1),9 — 1] N Z,

the vectors {v. | ¢ € ¢lr Odd } form a linearly independent subset of Z_ 44(S) of cardinality

29 9
g—2
(2)" 25
Proof. This is proved in the same way as Proposition 3.4. O

4.2. A Verlinde formula. Consider now the analogue of Section 3.2 for ¢ a root of unity.
Let S = (2, {p1,...,Pn},w) be a decorated connected surface of genus g > 0. Let (3,b) € G
and consider S x S(ﬁ ) =(Ex ST ={p1,...,pn} x SL,w® (B,b)). Assume that all colors of

S x S(B 5 are in G\X. Then Z(S x 5’(15 B)) can be computed as in Section 3.2. The main difference

2 2
is that Kirby colors are now formal linear combination of (%) simple objects and { = — (%) .

Taking this into account, we find

4 “/
Z(S x Sl55) = @292<T)92d (Bo + i, bo + 5)0)* 298" ({Xi}, iz 5):

v 4,7=0

where (8o, b9) € C x C is a chosen lift of (3,b) € G. Write the color of py, as Xy = V (g, mi)g,
With this notation, we have

_ 2g—2 ’TY_ A

Z(S x S(l b)) (— 1)g+1+"+q (;) Z q—2((50+71)m+(bo+J)M)( Bo+vi _ —,30—%)2;1—2—1-71. (28)
i,7=0

By holomorphicity, this equality holds whenever § is admissible.

Define the generating function of Z-graded dimensions of Z(S) by
dim, 4,5 2(S) = Y (—1)Pdimg Z, 0 ) (S5 7.
(n,n',p)eZ

We can now state the Verlinde formula in the present setting.

Theorem 4.3. The equality

Z(8 x 8(3) = dim

(b Z(5)

(a2, 27" 1)
holds.

Proof. This is a direct modification of the proof of Theorem 3.5. The form of the pairing

V:iGxZ T, ((@a), (nn,5) =g T

Bb; )
leads to the replacement of ¢~ 2% with qu(TH’M in the second equality of computation from

the proof of Theorem 3.5. O
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The right hand side of the equality in Theorem 4.3 can be written more explicitly as

dim(q72rb7q72'r671) Z(S) = Z X(Z(n,n’,o) (S)>q_27(57+ ").
(n,n')€Z?

Example 4.4. When n = 0, equation (28) becomes
r—1
Z(S x 5(16 b)) = (—1)9t1p2971 Z(qﬁoﬂ — g Po)29-2,

SxSl

Assume that g > 1 and r is odd. Theorem 4.1 implies dim¢ Z(S) = limg 1 51 Z( ?. )) To
compute the limit, recall the identities
Rty Slfl( 12) ) cos <<N 1)b + a) if b ¢ 27Z,
Z cos(a +nb) = { sin(3) 2 (29)
n=0 N cosa it b e 2nZ
and
, 1 (2N N =
sin?V 9 = 22N< > 22N : ( > cos (2(N — k)0) (30)

where a,b € R and N € Z~. See [PBM86, Eqn. (4.4.1.5)] and [PBMS86, Eqn. (I.1.9)], respectively.
We compute

dimg Z(S) = %971 Z (2 sin ( 1+ z)>>292

. g—2 _ r—1 (g —1— 1y
= r% <299_ 12> + (=1)9t2p2971 kzzo(—l)k <291~c 2> 3 cos (4 (g1 - k)(3 + )>

7

2

g 8 (5 e (51

k=0
rlg—1—k
L]
29 — 2 _ : PR 29 — 2
2 19,2 1
= T9<9_1>+(—1)9 279 E (—1)Y ”7“<g_1_nlr> cos(n'w)
n/=1
|
a 29 —2
= 7% § )
' <g ~1- wv)
n/:_\_gr;lj

The second equality follows from equation (30), the third from equation (29) and the fourth from
writing g — 1 — k = n/r. Similarly, we compute

1 201N\ 2w\ (292
X(Z(S))—éliIBZ(SxS(Bb))—rg ;(28111(T>> — 29 bo1):

the final equality following from [PBM86, Eqn. (4.4.2.1)].
Replacing r with £, the same expressions hold for dim¢ Z(S) and x(Z(S)) when r is even. <

Corollary 4.5. Work in the setting of Theorem 3.3. The vectors {v. | ¢ € E(’”)} are a basis of
Z(8). In particular, Z(8S) is supported in degrees (0,d,d) with d € [-(g—1),g — 1] N 2L
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Proof. Using Proposition 4.2, we compute

|€(7’)| _ Z |€(7’)7 | _ Z r 2g 29 — 2

de[(—g—1),9—1)NZZ d€[(—g—1),9—1)]NZZ

which is equal to dimc¢ Z(S) by Example 4.4. O

4.3. The state space of the torus with non-generic cohomology class. Let ¥ = S! x §!
and S = (X,w, L). Let n = B? x S! with core I' = {0} x S'. We give a non-generic counterpart of
Corollary 4.5.

Proposition 4.6. Assume that there exists an oriented simple closed curve v in ¥ such that

2
w(y) € XC G. Then Z(8S) is concentrated in Z-degree 0 and is of dimension (%) + 1.

Proof. Up to diffeomorphism, we may assume that w(mr) € X. For concreteness, suppose that

w(mr) = (0,0); the case in which r is odd and w(mr) = (3,0) is similar. Given 1 <4 < Z—1land
0<ji< % — 1, denote by M.; ;, P; and P, the vectors in V(S) with underlying 3-manifold 7,

with core is colored by V' (vi, j)g, P(0,4)g and P(0,j)s with coupon x ; 5, respectively. The set

r_q
.
My P 1<i€ T =105 < T - UPe= 3 Pi) (81)
=0

spans V(S), as follows from Propositions 1.18 and 2.6. For linear independence, consider first the
CGP-pairings of [_y (4, j),], a negatively oriented copy of n with meridian colored by V'(vi, j)g,
with the vectors in question.

Denote by [_y/(y; j),] @ negatively oriented copy of n with meridian colored by V(vi, j)5. The
decorated manifold underlying [ﬁ_v(%j)é] o M,k has a surgery presentation in S3 given by two
parallel knots of opposite orientation labeled by V (vi, j) and V/(vk, () encircled by an (4 4)-colored
unknot, for any generic (@, a). Using this, we compute

0i k05,€C — —
CGPD‘I([T]—V(’W,])()] o M/yk;’l) = @2 d(V(zYZ,])G) tV(’YL:J)(’)@V('V“J)S (Coevv(’yiaj)ﬁ o ev V(’VZJ)@)
0105, (q — ¢ 1) d(V (vi, 5)p) ¢
22d(V (ap + i, ao + 5)p)
= 5i,k5j,l-

P(0,0)5 (550,0,6)

The first equality follows from the relative modularity condition (2), the second from Lemma
2.12 and the third from Lemma 2.11. The pairing CGPpa([_v (; ;)]
proportional to the modified trace of @Q<a’a>7v(,ﬂ'7j)6®P(D7k)6, which vanishes by part (3) of Lemma
~vij)g) © Pr) = 0. Tt follows that {M.;;}i; are
linearly independent and are linearly independent from {Py, Pj o } -

Continuing, denote by [77_;] a negatively oriented copy of n with meridian colored by £(0,1)g.
Using Lemma 2.11 and part (2) of Lemma 2.19, we compute

o Py) vanishes since it is

2.19. For similar reasons, we have CGPpq([7_y

CGPpa([7_] 0 Pr) = D tp(0,—1) Py ) P(0k—1)5 = O
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and

CGPpa([N_j] 0 Pra) = 2 *tpop-i (xo,kfl,f) o @Q(a,awp(o,k—z)@)

2
_ _ T
= -2%q-q") (,y) tp(0,0) (%5,0.0) Ok

= 0.

Hence, {Py}; are linearly independent and are linearly independent from {Pj ,}r. We claim
that {Py .} spans a one dimensional subspace of V(S). By Proposition 2.6, the endomorphisms
a; o ajil’ﬁﬁ € Endpq(P(0,7); & P(0,7 + 1)541) satisty [a; 5, a;r+1,;5+1] = 20,4p © Tg j115+1- The
vector defined by coloring the core with P(0, )z © P(0,j + 1)5,1 and coupon xg ;5 ® g j+1,541 19
zero, since the coupon is a commutator. On the other hand, this vector is equal to Pz — Pji1,4.

Hence, Pj, = P for all j, k. Finally, in the notation of Section 3.3, we have

CGPpu([ST_i] 0 Pja) = 7't G=0=v=T o) (B Gonay=T o 5) = VR

h

for all j, k. In particular, Z;;é Pjx # 0.

Finally, to prove that Z(S) is concentrated in Z-degree 0, recall from Proposition 1.17 that
Z_1(8S), k € Z, is spanned by finite projective D?-colorings of the ribbon graph I'. In genus 1, the
coupons of I are represented by a composition

V(vi, 7)o ® V(vi, )5 =~ P(0,0)g = P = Vg @ (k) @V ~ P(W,n;)ﬁ

or
P(0,0)2% ~ P(0,1); ® P(0,0)% @ P(0, ~1); = P — Vg, @ o(k) ® V) ~ P(m,nﬁ)ﬁ,
Y
where P is a projective indecomposable of degree (0,0) and k = (n,n’,p). By Proposition 2.6, if
either of these compositions is non-zero, then k£ = 0. O

We claim that the basis dual to (31) is

~1,0<j< % ~1pu{s= YT N e ) (32)
j=0

vy M= 11 < <

=23
2

Most of this statement was verified in the proof of Proposition 4.6. That s pairs trivially with
each P; follows from Lemma 2.11. Using equation (17), we compute

r_q
—=1(g—qg 1) 3
CGPpa(soM,;j) = # Z CGPpa([ST_1] 0 My ;)
Y =0
r_q
— —V_l(qﬁ_q_l).@fl AIZ q*Q‘ﬂ'l(qW’ _ q*%)*l
Y =0

= 0

because ¢~2 # 1 is an " root of unity. Similarly, part (1) of Lemma 2.19 implies that

CGPpa([_;] 0 M4 ;) = 0 for all 4, j,1. This establishes the claim.
Next, we compute the action of the mapping class group of ¥ on Z(S) when w = 0 using the
basis (31) and its dual basis (32). As in Section 3.3, we take £ = R - [m] and find that there are
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no Maslov corrections. Using Lemmas 2.10 and 2.11, we compute
CGPDa([T_y (y1),) © NsMopy) = =@~ q~ Rk

and

q72'yjk
gk — gk

The calculations checking that (32) is a dual basis show that CGPpa(s o NgM.;;) = 0. Using
Lemmas 2.10 and 2.11, we compute

CGPDq([ﬁ—V(’yi,j)a] 0] NSPI) — _@—1q—27il(q7i _ q_,yi)

;10 NsP;) = 0. Using Lemma 2.19(2), we find

CGPpa([_;] 0o NsMyiy) = 27"

and CGPpq ([

T_1

—=1(g — g~ 1) 3 /“T1(q — g~}

CGqu(soNSPl):—(qz g )Zceppq([sﬁ_j}oNSPl):—(q£ )
¥ j=0 v

the only contribution coming from the j = [ summand. Part (3) of Lemma 2.19 implies
CGPpa([M_v (. ),) © NsPz) = 0 while Lemma 2.11 implies

CGPpa([7_;] 0 NsPy) = —@*1(1_57.

Finally, Lemma 2.10 and the fact that {L‘g %

g = 0 for all k& gives

-1

/—1(qg — g1 1
CGPDq(S ¢} N573$) = M Z CGPDq([Sﬁ_j] o NSPZ,:):) =0.

r

v 4,1=0
The above calculations prove the first part of the following result.
Theorem 4.7. Let S be a connected decorated surface of genus one without marked points such

that w(y) € X C G for some oriented simple closed curve v in X. The action of the mapping class
group SL(2,7) on Zpq(S) in the basis (31) is determined by the equations

r_q -1
V=1 & ok 2y i1 V1 ¢
NSM’M :’Ck;oq T 2))M7k’l_ r =0 qw—q*“’ b
) a
r_q
V-1g—q" VI -
NsPj = (i )p, + — > G — g Moy,
5 Y k=0
k0
Y
NsPo = —1 ZPZ
e

and
(q—q")

r

v

NeMyij =g 20 D My NpPy =P+ Poy  NpPy =Py

In particular, the Dehn twist acts with infinite order.
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Proof. It remains to compute the action of the Dehn twist T". Recall from the proof of Theorem 2.14
that Oy ), = q_%(j_%) Idy (i jy,- A similar computation gives 0pg ;) = Idp(g )5 +(q — q_l)azoJﬁ.
The action of T is therefore as stated. The final statement follows from the observation that
NEP; = Py + k4—P,, k > 1. -

~

5. TQFTS FROM INTEGRAL MODULES

The relative modular structures on D% constructed in Sections 2.8.1 and 2.8.2 give inte-
gral counterparts of the TQFTs of Sections 3 and 4. Since the computations for Zpgine are
straightforward modifications of those for Zpq, we limit our discussion to a summary.

5.1. Arbitrary g. Work in the setting of Section 2.8.1 and give D% the relative modular
structure of Theorem 2.22. Fix ¥ = v/—1. The braiding of Vecté'gr is determined by

v LXZ— {i1}7 ((nlanllaﬁl)> (n2>nl27]§2)) = (_1)]71]72'

Since each O(&), @ € G\X, is a singleton, it is straightforward to verify that equation (21) and
the Verlinde formula (Theorem 3.5) hold as written for Zpq,int. A priori, the difference between the
free realisation groups of D% and D, being Zpg,int = Z x Z x Z./27 and Zpa = C x Z/27, could
lead to significant differences between the state spaces of generic surfaces. However, we have seen
in Corollary 3.7 that Zp«(S) is concentrated in integral degrees and spanned by graphs colored by
integral modules. For this reason, when § is of genus g > 1, we obtain canonical isomorphisms

Zpaint (0.4,4)(S) = Zpa (a.a)(S), del-(g—1),9-1NZ (33)

which define an isomorphism Zpq,int (S) >~ Zpq(S) which is compatible with the group homomor-
phism Zpgine — Zpa, (n,n’,p) — (n’,p). The computations of Sections 3.3 and 3.4 go through
with only obvious modifications and no changes to the end results.

5.2. q a root of unity. Work in the setting of Section 2.8.2 with Z and ~ defined as in Section
4. The TQFT Zpgins has the same properties as the TQFT Zpg of Section 4, with analogues
of Theorems 4.1 and 4.3, equation (28) and Proposition 4.6 holding with only obvious changes.
The isomorphism (33) again holds in the current setting, with the additional assumption that
d is divisible by % The computations of Sections 4.3 and 3.4 go through with only obvious
modifications and no changes to the end results.

6. COMPARISON WITH SUPERGROUP CHERN—SIMONS AND WESS—ZUMINO—WITTEN THEORIES
COUPLED TO BACKGROUND FLAT C*X-CONNECTIONS

Let C be a modular G-category relative to (Z, X). Recently, there has been significant interest in
the physics literature in constructing quantum field theories which realize (a differential graded or
derived enhancement of) the TQFT Z [GHN'21, CGP23, CDGG24]. Such a quantum field theory
is expected to admit G as a group of global symmetries so that it can be coupled to background
flat G-connections, thereby producing local invariants of 3-manifolds with flat G-connection. With
this problem in mind, in [CDGG24] a physical quantum field theory Ef}r was constructed as
a topological A-twist of 3d N' = 4 Chern-Simons-matter theory with gauge group SU(n) at
level r — n which conjecturally realizes the TQFT ZU(? (si(n)) associated to the category of weight

Uf (sI(n))-modules at a primitive 2" root of unity. Using sophisticated techniques from quantum
field theory and vertex operators algebras, a number of calculations were made for the theory 7‘2’:47,
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, thereby presenting evidence

and the results were shown to match known properties of ZUH (51(2)
q

for the conjecture when n = 2.

In this section we argue that the TQFTs Zpgine of Sections 5.1 and 5.2 have comparatively
simple physical realizations, namely, as psl(1]1) and U(1]1) Chern—Simons theories, respectively.
Supergroup Chern—Simons theories have the benefit of being formally similar to Chern—Simons
theory with compact gauge group [Wit89a], allowing for the import of intuition from the compact
case. By work of Kapustin and Saulina [KS09], Chern—Simons theories with gauge supergroup
arise as B-twists of 3d N = 4 supersymmetric quantum field theories and, for particular choices of
gauge supergroup, are 3d mirrors of the quantum field theories 7;;‘}7, constructed in [CDGG24].

6.1. ps((1]1) Chern—Simons theory. Let pgl(1]1) be the quotient of gl(1|1) by its center C-(§9)
and psl(1]1) the quotient of pgl(1|1) by the Lie ideal C- (}9). The Lie superalgebra ps((1|1) is
two dimensional, purely odd and abelian. The group C* acts on psl(1|1) with weights +1 and —1.
More generally, GL(2,C) acts on psl(1]|1) by Lie superalgebra automorphisms, but only the action
of the anti-diagonal C* < GL(2,C) lifts to gl(1|1).

Chern—Simons theory with gauge supergroup psl(1|1) was studied by Mikhaylov [Mik15]. Since
psl(1|1) is purely odd, this theory has a number of peculiarities compared to the compact case,

including no quantization of the level and being defined by the Lie superalgebra ps((1|1) without
the choice of an associated Lie supergroup. This theory is closely related to a number of other
well-known models in physics, including the Rozansky—Witten theory of the cotangent bundle
TVC [RW97] and the B-twist of a 3d N = 4 free hypermultiplet [KS09, Mik15, CG19, CDGG24].
The C*-action on psl(1|1) lifts to a global symmetry of psl(1|1) Chern—Simons theory, thereby
allowing for the theory to be coupled to background flat C*-connections.

Proposal 6.1. For arbitrary q, the TQFT Zpqeimnt described in Section 5.1 is the homological
truncation of psl(1|1) Chern—Simons theory coupled to flat C*-connections.

At present, there is no mathematical definition of ps((1]|1) Chern—Simons theory so that Proposal

6.1 cannot be formulated as a theorem. Instead, we offer evidence for the proposal. We identify the

grading group G = C/ QF‘FZ with C* so that the cohomology classes w € H'(—; G) appearing

as decoration data of the category Cobg‘)dq,i,,t can be interpreted as isomorphism classes of flat
C*-connections.

e psl(1|1) Chern—Simons theory admits Wilson operators labeled by a link whose components
are colored by representations of pgl(1]|1) [Mik15, §2.4]. Indeed, the tensor product of the
dynamical psl((1]1)-connection (used to define the ps((1]|1) Chern-Simons Lagrangian) with
the background C*-connection defines a pgl(1]|1)-connection from which Wilson operators
can be constructed, analogously to the construction of Wilson operators in Chern—Simons
theory with compact gauge group [Wit89a, §2.1]. In the notation of Section 2.3, the simple
representations of pgl(1|1) are £(0,b)5, (b,p) € C x Z/2Z. The restriction to integral
modules, b € Z, reflects the desired interpretation of the £(0, 1)5-labeled Wilson loop as an
operator which changes the spin®structure by a single unit [Mik15, §2.4]. In the physical
approach, spin®-structures enter in the definition of the phase of partition functions. Wilson
operators labeled by the projective indecomposables P(0,b); of pgl(1|1) are studied in
[Mik15, §5.3.3].

e psl(1]1) Chern—Simons theory also admits monodromy operators [Mik15, §2.4]. These
operators take as input a framed link L and prescribe the holonomy of the background flat
C*-connection along the meridians of L. More generally, one can combine this operator
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with a Wilson operator to obtain a combined (Wilson/monodromy) operator. In our set up,
the meridian holonomy is captured by the E-weights. Note that F is not a generator of
pgl(1|1). For example, coloring a knot by a simple module V (a, b); € D" corresponds to
the combined operator with prescribed holonomy ¢* # 1 and Wilson factor £(0,);. When
the meridian holonomy is trivial, ¢ = 1, so that a = L‘F for some n € Z, we realize
the combined operator as coloring by the projective indecomposable P (™" h_l ,b)p with a
coupon labeled by its non-zero idempotent. Viewing this data as the projective cover of

E(mh_l ,b)p, as in Lemma 2.7, we see that each simple UqE (gl(1]1))-module corresponds to
a unique combined operator. In particular, enlarging pgl(1]1) to UqE (gl(1]1)) allows for the
incorporation of both Wilson and monodromy operators of psl(1|1) Chern—Simons theory.

e The partition function of trivial circle bundles over surfaces, given by equation (21),
agrees with [Mik15, Eqns. (5.3), (5.8)]. Similarly, the graded dimensions of state spaces of
generic surfaces (Corollary 3.7) agrees with the results of Mikhaylov’s formal application
of geometric quantization to super Chern—Simons theory [Mik15, Eqns. (5.6-7)].

e That the dimension of the degree zero summand Z,(S) of the state space of a non-generic
torus is two (Proposition 3.9) agrees with [Mik15, §5.3.1]. By Proposition 3.11, the sum-
mands Z(S) vanish for non-zero k. On the other hand, Mikhaylov predicted that the state
space of derived ps[(1|1) Chern-Simons theory contains a factor of (A* H'(Sp; C)) [-1], the
degree zero summand of which is H!(Sp; C) ~ C? [Mik15, §5.2]. In view of the expectation
that Z describes the homological truncation of derived ps((1|1) Chern-Simons theory, this
suggests that the summands A" H!(Sy; C) ~ C, k = 0,2, appear only at the derived level.
It is interesting to note that these summands also appear in the state space of the TQFT
of Frohman and Nicas [FN91, Ker03].

e That the mapping class group action on the degree zero state space of non-generic tori
is projectively isomorphic to the fundamental representation of SL(2,7Z) matches with
[Mik15, §5.3.1].

e The results of Section 3.4 match physical expectations that psl(1|1) Chern—Simons theory
recovers the multivariable Alexander polynomial [Mik15, §5.2.2].

6.2. U(1]1) Chern—Simons theory. The physical study of Chern—Simons theories with gauge
supergroups U(1]|1) and GL(1]1) was initiated by Rozansky and Saleur [RS92, RS93, RS94] under
the assumption of the existence of a super generalization of the Chern—Simons/Wess—Zumino—
Witten correspondence. Mikhaylov studied U(1]|1) Chern—Simons theory without reference to
Wess—Zumino—Witten theory, viewing it instead as the orbifold of psl(1]1) Chern—Simons theory
by a finite cyclic group [Mik15, §4.3].

The group C* acts on gl(1|1) by Lie algebra automorphisms with weight decomposition

gl(11)1 =C-Y, gl(11)y=C-G&C-E,  gl(1[1);; =C-X.

This C*-action lifts to a global symmetry of Chern—Simons theories with gauge supergroups
GL(1]1) and U(1|1), allowing each theory to be coupled to flat C*-connections.

Proposal 6.2. For q a primitive r' root of unity, r not divisible by 4, the TQFT Zpqgn: described
in Section 5.2 is the homological truncation of U(1|1) Chern—Simons theory at level r coupled to
flat C*-connections.

We outline evidence for this proposal. For concreteness, suppose that r is odd. Again, we can
identify the grading group G with C*.
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Mirroring the discussion from Section 6.1, the D%"*-coloring of ribbon graphs used in this
paper matches the labelings of the combined Wilson/monodromy operators constructed
in [Mik15, §4.5]. At first sight, there is an ambiguity of whether to view colorings by
simple modules of the form V' (i, j)g, {0 < ¢,7 < r—1}, as Wilson or monodromy operators.
(The integrality of the E-weights of such modules implies that their classical limits lift to
representations of U(1]1), whence can be viewed as labeling Wilson operators.) However,
physical arguments suggest that these two operators coincide for such modules [MW15,
§3.2], [Mik15, §4.5).
The partition function of trivial circle bundles over surfaces, given by equation (28), agrees
with [RS93, Eqn. (123)]. We are not aware of results in the physics literature which
compute the dimension of state spaces of generic surfaces, as in Corollary 4.5.
The dimensions of state spaces of non-generic tori, as computed in Proposition 4.6, agree
with [Mik15, §5.4] and the proposal of Aghaei, Gainutdinov, Pawelkiewicz and Schomerus
[AGPS18], who construct candidate state spaces of non-generic tori using combinatorial
quantization based on the small quantum group of gl(1]1). State spaces of generic tori do
not seem to have been studied in the physics literature.
Let S be a decorated torus without marked points and with trivial cohomology class. The
mapping class group action on Z(S) obtained in Theorem 4.7 agrees with the regularized
mapping class group action obtained using U(1|1) Wess—Zumino-Witten theory [RS93,
§3]. Theorem 4.7 is closely related to the mapping class group actions of [Mik15, §5.4] and
[AGPS18, Eqns. (4.61-3), (4.57-9)]. Explicitly, the relation between the basis (31) and
that of [Mik15, §5.4] is

M «— |L; ) Pj «— |L;) Py — 119 ®[04).

Under this correspondence, the only difference in mapping class group actions is that the
trigonometric factors ¢ — ¢~* in Theorem 4.7 appear inverted in [Mik15, AGPS18].
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