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ABsTRACT. We develop representation theoretic techniques to construct three dimen-
sional non-semisimple topological quantum field theories which model homologically
truncated topological B-twists of abelian Gaiotto—Witten theory with linear matter.
Our constructions are based on relative modular structures on the category of weight
modules over an unrolled quantization of a Lie superalgebra. The Lie superalgebra,
originally defined by Gaiotto and Witten, is associated to a complex symplectic represen-
tation of a metric abelian Lie algebra. The physical theories we model admit alternative
realizations as Chern-Simons-Rozansky-Witten theories and supergroup Chern-Simons
theories and include as particular examples global forms of gl(1|1)-Chern-Simons theory
and toral Chern-Simons theory. Fundamental to our approach is the systematic incor-
poration of non-genuine line operators which source flat connections for the topological
flavour symmetry of the theory.
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INTRODUCTION

We construct three dimensional non-semisimple topological quantum field theories
(TQFTs) which model topological B-twists of Gaiotto—Witten theories with abelian
gauge group and linear hypermultiplet matter. Our constructions are based on the
representation theory of an unrolled quantization of a Lie superalgebra associated to a
symplectic representation of a metric abelian Lie algebra.

Background and motivation. The notion of a topological twist is a tool used by
physicists to extract TQFTs from supersymmetric quantum field theories. Much like the
more familiar two dimensional quantum field theories with N = (2, 2) supersymmetry
and the resulting topological A- and B-models [Wit88b, Wit92], three dimensional
quantum field theories with N = 4 supersymmetry admit two topological twists. The
topological A-twist is a dimensional reduction of the four dimensional twist giving
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rise to Donaldson—-Witten theory [Wit88a] and for gauge theories with Yang-Mills
kinetic term leads to the Coulomb branch constructions of Braverman, Finkelberg
and Nakajima [Nak16, BEN18]. The topological B-twist, as we describe in more detail
below, gives rise to Rozansky—Witten theory [RW97].

By a mechanism originally discovered by Gaiotto and Witten in the study of four
dimensional N = 4 supersymmetric Yang-Mills theory with a spatially varying 6-angle
[GW10], it is possible to construct Chern-Simons-matter theories with N = 4 super-
symmetry, and hence admitting topological twists.! The input data for the simplest
Gaiotto—Witten theories includes a gauge group G and a holomorphic Hamiltonian
G-manifold X satisfying some additional conditions. The A-twists of these theories
were formulated in [KLL09] but are still not well understood. Their B-twists were
first described by Kapustin and Saulina [KS09] and naturally interpolate between
two particularly important three dimensional quantum field theories: they become
Chern-Simons theories when X is a point and Rozansky—Witten theories when G is
a point. Correspondingly, B-twists of these Gaiotto—Witten theories are known as
Chern—Simons-Rozansky—Witten theories.

Chern-Simons theory is a quantum gauge theory defined by its compact gauge Lie
group G and level x € H*(BG;Z) [Wit89]. At a formal level, partition functions in
Chern-Simons theory are invariants of closed oriented 3-manifolds. More generally,
the inclusion of Wilson loops leads to invariants of 3-manifolds containing a link
coloured by representations of G. As such, Chern-Simons theory is a natural physical
setting for many constructions in quantum topology, including the Jones, Kauffman
and HOMFLYPT polynomials. A key feature of Chern-Simons theory is the finite
semisimplicity of its category of (Wilson) line operators. This allows for a physical
understanding of Chern-Simons theory via rational conformal field theory [Wit89,
EMSS89], namely, chiral Wess—Zumino-Witten theory, and underlies its mathematical
construction, in the form of an Atiyah-Segal-style TQFT, as the Reshetikhin—-Turaev
theory of a modular tensor category associated to the pair (G, k) [Tur94]. See [DW90,
FQ93, Fre94], [RT91, AP95] and [JS93, BMO05, Sti08] when G finite, semisimple and
toral, respectively, and [FHLT10, Hen17] for general proposals. When G is simple
simply connected, the relevant modular tensor category is the semisimplified category
of modules over the small quantum group of g¢ at a k-dependent root of unity.

Much less understood is Rozansky-Witten theory, a topological B-twist of a N = 4 su-
persymmetric o0-model with target a holomorphic symplectic manifold (X, w) [RW97].
In view of its central role in three dimensional mirror symmetry [IS96] and related
mathematics [Tel14, BF19], it is an important open problem to construct Rozansky-
Witten theory as a TQFT. A significant obstacle to doing so is that Rozansky—Witten
theory is neither finite nor semisimple: its category of line operators is expected to
be the 2-periodic dg derived category of coherent sheaves on X [KRS09]. On the
other hand, the lack of finiteness and semisimplicity leads to rich mathematical struc-
tures in the theory. Derived Lie theoretic aspects of Rozansky—Witten theory were
studied in [Kap99, Kon99], formalizing the intuition that Rozansky—Witten theory
is a fermionic analogue of Chern-Simons theory, with X and w playing the roles of
(the classifying stack of) G and «, respectively. Perturbative studies of Rozansky—
Witten theory are found in [QZ09, QZ10, RW10, CLL17]. The structure of topolog-
ical boundary conditions and defects in Rozansky—-Witten theory was explored in

1Gaiotto and Witten consider the theory on a four manifold of the form I x M3 and study its dynamics
when the Yang-Mills 0-angle varies along I in a way that preserves the maximal amount of supersymme-
try. Three dimensional Chern-Simons theories with A/ = 4 supersymmetry play a central role in realizing
domain wall solutions where the 6-angle jumps at some chosen point (or points) on I.
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[KRS09, KR10, Tel20, OR23] and led, via the Cobordism Hypothesis [Lur09], to the
construction of partially defined TQFTs when X a cotangent bundle using derived
algebraic geometry [BFN10] and X = TYC" using categories of matrix factorizations
[BCR23, BCFR23].

The Chern-Simons-Rozansky—Witten theories of [KS09] are an amalgam of these
two theories. We assume that (X, w) admits an action of a compact Lie group G by
holomorphic Hamiltonian automorphisms. As described in [GW10], it is only possible
to couple Chern-Simons gauge fields to this flavour symmetry G when it satisfies the
Fundamental Identity, discussed below. When the theory has a linear target space, that
is, X is a complex symplectic representation of G, the Fundamental Identity allows for
the construction of a complex Lie superalgebra gy from the complexified Lie algebra
gc of G and X. The resulting Chern-Simons-Rozansky—-Witten theory is equivalent
to a supergroup Chern-Simons theory based on a global form of gx. Perturbative
aspects of Chern-Simons-Rozansky-Witten theory were studied in [KQZ13], where it
was reformulated as an AKSZ theory [AKSZ97]. In view of the utility of the boundary
Wess—Zumino-Witten models in ordinary Chern-Simons theories, the first author
recently proposed boundary logarithmic vertex operator algebras whose modules
model the categories of line operators in A- and B-twisted Gaiotto—Witten theories
[Gar23], building on earlier work in the setting of three dimensional N/ = 4 gauge
theories with Yang—Mills kinetic term [CG19, CCG19].

Main results. We construct three dimensional non-semisimple TQFTs which model
B-twisted Gaiotto-Witten theory with the following input data:

e Gauge group G =T, a connected abelian Lie group with metric .
e Hypermultiplet matter representation X = TYR ~ R@®R", a linear holomorphic
symplectic manifold, where R is a complex representation of T.

Since the gauge group is abelian and the target is linear, we call these theories linear
abelian Gaiotto—Witten theories. In this introduction, and most of the paper, we
assume that T is non-trivial. See Section 5.3 for the case of trivial T. The input data is
required to satisfy the Fundamental Identity along with further technical conditions
(Assumptions A, B and C in the body of the paper). As indicated above, the theory
we construct can alternatively be seen as the Chern-Simons-Rozansky—-Witten theory
of the Hamiltonian T-manifold TYR at level x or the Chern-Simons theory whose
gauge Lie supergroup has complexified Lie superalgebra ty, defined below, and bosonic
subgroup T. Unlike the standard Atiyah-Segal-style TQFTs, the TQFTs we consider
in this paper are defined on a non-rigid category of bordisms which are decorated by
suitably generic cohomology classes; see the discussion preceding Theorem 2 below.

Our approach to non-semisimple TQFT is via the theory of relative modular ten-
sor categories [CGPM14, DR22]. As reviewed in Section 1, this theory yields a non-
finite, non-semisimple generalization of the Reshetikhin—-Turaev construction of a
TQFT from a modular tensor category [Tur94]. Relative modular categories have been
used successfully to model topological A-twists of certain three dimensional N = 4
Chern-Simons-matter theories [BCGPM16, CDGG24] and U(1|1)-Chern-Simons the-
ory [GY22]; the Rozansky—Witten-theoretic analysis of [GHN*21] is expected to be
related to the construction of [CDGG24] by three dimensional mirror symmetry. The
fundamental new idea in physical realizations of relative modular categories is the
introduction of background fields coupling to flavour symmetries of the underlying
physical theory [Gail9]. In the present context, this involves considering non-genuine
line operators which source non-trivial background flat connections for topological
flavour symmetry; see Section 4.2.1.
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To construct relative modular categories relevant to B-twisted Gaiotto-Witten theo-
ries, following Kapustin and Saulina [KS09] and Gaiotto and Witten [GW10], in Section
2 we recall that associated to the input data is a metric Lie superalgebra

tg =t@®IIT'R.

Here t is the complexified Lie algebra of T and TIT VR is the representation TVR placed
in odd degree. The Lie bracket of two even elements is zero, of one even with one
odd element is determined by the representation TYR and of two odd elements is
determined by the metric ¥ and the holomorphic moment map. The Fundamental
Identity is precisely the statement that the bracket satisfies the super Jacobi identity for
three odd elements. Under Assumption A, which is a mild integrality condition on the
pair (x, R), we introduce in Definition 2.9 the primary algebraic object of this paper: an
unrolled quantization U;(tR) of tg at parameter g € C*\ {+1}. The infinite dimensional
Hopf superalgebra U;(tR) is a semidirect product of a standard quantization of ty
with the enveloping algebra of t. Let Cg be the category of finite dimensional U(tg)-
modules on which t acts semisimply and the actions of Z € t and its corresponding
grouplike element K(Z) € U;(tR) satisfy K(Z) = g°. The category Cy has infinitely
many isomorphism classes of simple objects and, unless R is the zero representation, is
non-semisimple.

In Section 3 we develop the weighted representation theory of U(; (tgr). After establish-
ing various structural properties of Verma modules and classifying the simple objects
of Cg via highest t-weights (Theorem 3.12), we prove our first main result.

Theorem 1 (Theorem 3.16). Under Assumptions A and B, the category Cy is C-linear,
locally finite, abelian and ribbon and has enough projectives and injectives.

The proof of Theorem 1 begins with a direct construction of a braiding on Cy; see
Proposition 3.14. The exponential factor of the braiding is determined by the metric «.
A key technical result, Proposition 3.15, asserts that the category Cy is naturally graded
by characters of certain distinguished central elements of U;(tR) in such a way that
generic homogenous subcategories of Cy are semisimple (although non-finite). This
relies on Assumption B, which states that the trivial representation does not appear in R.
(Assumption B can sometimes be removed; see Section 5.3.) With these preliminaries,
Theorem 1 is proved by verifying that the candidate ribbon structure on Cy, given by
the partial trace of the braiding with respect to a carefully chosen pivotal structure,
is balanced on generic homogeneous subcategories of Cr. By a general argument of
[GPM18], this suffices to ensure balancing globally.

The ribbon category Cy is a model for the category of line operators in the perturbative
Gaiotto—Witten theory associated to (T,«,R). As an indication of its perturbative
nature, note that Cy depends on T only through its Lie algebra. To model the non-
perturbative theory, including the global form of the gauge group, we equip Cy with
the additional data of a relative modular structure. This structure includes a grading of
Cr by an abelian group G for which generic homogenous subcategories are semisimple,
a modified trace on the ideal of projective objects of Cx and a monoidal functor from an
abelian group Z into the degree 0 € G subcategory Cp o such that generic homogeneous
subcategories of Cy have only finitely many Z-orbits of simple objects. By work of De
Renzi [DR22], a relative modular structure on Cy defines a decorated Z-graded TQFT,
that is, a symmetric monoidal functor

. d z
Zey, Cob%R — Vectg.
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The codomain is the category of Z-graded vector spaces with symmetric braiding
determined by the relative modular data. The domain is the category of decorated
closed surfaces and their admissible bordisms. The decorations include Cg-coloured
ribbon graphs and flat G-connections. Admissibility is a genericity condition on the
decorations of the bordisms and rules out, for example, the 3-sphere with (necessarily
trivial) flat connection as an admissible bordism () — (; see Section 1.4 for a detailed
discussion. Unlike the Atiyah-Segal framework, the category Cobac‘; is usually not rigid.

In fact, the category of a line operators in Gaiotto—Witten theory—or any TQFT
resulting from the topological twist of a supersymmetric quantum field theory—is
most naturally a differential graded (dg) category. In the setting of this paper, a
better model for the category of line operators would therefore be the dg category
of Cg-modules. We therefore expect the TQFTs of this paper to model homological
truncations of the full dg TQFTs. It is an interesting mathematical problem to construct
from such a dg TQFT. Unfortunately, there is at present no dg generalization of De
Renzi’s construction, hence our use of Cy as a model for line operators.

For concreteness, in the introduction we focus on a particular class of relative modu-
lar structures on Cg. Other classes are constructed Section 5. Recall that in compact
Chern-Simons theory, the level x receives quantum corrections, resulting in the shift of
k by the dual Coxeter number [Wit89]. There is a similar mechanism in Gaiotto-Witten
theory which leads to an effective, or quantum-corrected, metric x.¢ which differs from
k by the quadratic Casimir of R; see Section 2.4.

Theorem 2 (Theorem 4.6). The choice of an even integral lattice I' C (t, ko) of full rank
which contains the weights of the representation R determines a relative modular structure
on Cr. The resulting TQFT Z¢, has the property that each of its state spaces is finite
dimensional.

The relative modular structure of Theorem 2 is constructed as follows. Tracking t-
weights modulo the dual lattice I'V grades Cy by the torus G = tY/T'Y which is Langlands
dual to Tt = (I'®z C)/T. In particular, the subcategory Cy 5 labels U,; (tg)-modules which
deform representations of the complex Lie supergroup with Lie superalgebra tz and
bosonic subgroup Tr. Assumption C, which is a mild genericity condition on R, ensures
that Cr is unimoduar. Since Cy is generically semisimple and ribbon, this guarantees
the existence of a modified trace on Cg; see Lemma 3.19 and Proposition 3.21. We take
for Z the group of one dimensional Ug(tR)—modules whose weights lie in the image of
the adjoint map «”: T — TV,

In physical terms, the TQFT Z¢, models the homological truncation of the B-twisted
Gaiotto—Witten theory with compact gauge group T,r = (I' ®2 R)/T at level x and
hypermultiplet matter in the representation TYR. In Section 4.2, we outline various
consistency checks of this model. From the physical perspective, the ribbon category
Cr can be thought of as the category of line operators in the perturbative theory or,
equivalently, the theory with simply connected gauge group of type tz. The grading
group G agrees with the topological flavour symmetry group of the physical theory.
Objects in the homogeneous category Cr i, A € G, correspond to non-genuine line
operators which couple to flat G-connection with holonomy A around the support
of the operator. Objects of the group Z label gauge vortex lines and are a key non-
perturbative ingredient. Much like in T, r-Chern-Simons theory, one role of gauge
vortices is to screen line operators, resulting in a truncation of the spectrum of line
operators. Said differently, line operators whose labels differ by the action of Z are
physically equivalent. From the perspective of vertex operator algebras of boundary
local operators, these gauge vortex lines end on boundary monopole operators and
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are entirely analogous to the modules that extend the perturbative Heisenberg vertex
operator algebra to the full, non-perturbative lattice vertex operator algebra which
models T, r-Chern-Simons theory [BN22, BCDN23, GN23].

In Theorem 4.8 we prove a Verlinde formula for the TQFT Z¢_, relating the partition
function of a trivial circle bundle over a genus g surface ¥, to the graded dimensions
of the spate space Z¢,(X,). As an application, we compute the Euler characteristic of
the underlying super vector space of Z¢,(3,):

dimcR 2g—2
x(Ze(E) =DE Y T (2sin(1<V(Q,-,k)n)) .
keD i=1
Here D is the discriminant group of the metric k¥ and Q; € t¥ are the weights of R. As
we explain in Remark 4.10, the above expression for x(Z¢,(X,)) is in agreement with
physical computations by way of supersymmetric localization.
We summarize the other relative modular structures and corresponding physical
theories considered in the body of the paper.

e In Section 4.3 we construct models of Chern-Simons theory whose gauge su-
pergroup has compact connected bosonic subgroup and Lie superalgebra u(1]1).
This incudes the supergroup U(1|1) as well as other global forms of 1(1|1). In
this way, we obtain a different approach to the mathematical realizations of
such Chern-Simons theories from [GY22], following earlier physical work of
Rozansky and Saluer [RS92, RS93, RS94] and Mikhaylov [Mik15]. The results
of this section also provide TQFT realizations of the vertex operator algebraic
constructions of [GN23].

e By considering the degenerate case in which R is the zero representation, we give
in Section 4.4 a new construction of Chern-Simons theory with compact torus
gauge group. A novel feature of our construction is that it incorporates Wilson
line operators that are attached to topological surface defects or, equivalently,
sourcing a non-trivial background flat connection for the topological flavour
symmetry G of the theory. Standard approaches to toral Chern-Simons theory
incorporate only ordinary Wilson line operators [BMO05, Sti08].

e In Section 5.1 we compare our setting to that of abelian gauged N = 4 hyper-
multiplets, as studied in [BN22, BCDN23]. While we argue that the ribbon
category Cr models a portion of the category of line operators, we do not find
a relative modular structure that models the non-perturbative theory. More
precisely, when Z is taken to be the group suggested by [BCDN23] there are
infinitely many Z-orbits of simple objects in each homogeneous summand of Cg.
This suggests that an extension of the relative modular framework is required
to treat such theories.

e In Section 5.3 we construct models of Chern-Simons theory with gauge Lie
superalgebra psl(1]1) coupled to flat C*-connections, equivalently, Rozansky-
Witten theory of TVC with Higgs branch flavour symmetry C*, recovering
earlier results of [GY22]. From the perspective of constructing Gaiotto—Witten
theories, the results of Section 5.3 allow us to remove Assumption B.

Existing approaches to the construction of functorial TQFTs for Rozansky-Witten
theory have focused on the non-equivariant case and special holomorphic symplectic
targets (X, w) [BFN10, Ban20, BCR23, BCFR23]. A feature of these approaches is that
they assign a dg, or derived, category as a model for the category of line operators.
On the other hand, these approaches do not assign partition functions to 3-manifolds,
either because of non-compactness of X or an oversimplified choice of the codomain of
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the TQFT. In contrast, by working equivariantly and taking into account non-genuine
line operators, we are able to assign (finite) partition functions to most decorated
3-manifolds. As already mentioned above, our construction produces an abelian, as
opposed to dg, category of line operators.

Traditional representation theoretic approaches to compact Chern-Simons theory
encode the level x in a quantum group through the quantum parameter 4. This
approach applies most naturally when there is a basic level, such as the Killing form on a
simple Lie algebra, to which all other levels are related by scaling. Since there is no such
basic level in our setting, we instead encode the level in the relative modular structure
on a g-independent category Cg. In other words, we aim to find a suitable specialization
of g which works for all levels k. However, in some cases, the natural specialization
is g = -1, at which U;(tR) is not defined. This leads us to consider qut(tR), an unrolled

quantization of a non-standard presentation of tz, whose specialization ﬁfg(tR) serves
as a replacement for the desired—but non-existent—q = —1 specialization of U;(tR).
By working with the category Cg of weight ﬁiﬁl(tR)—modules we are able to treat all

levels uniformly. The TQFT constructions of the paper are therefore in terms of Cg.
Nevertheless, to ease the comparison with the mathematics literature, we develop the
general theory for U;(tR) and mention the modifications required for U;(tR). All results

in this paper about U;(tR) have analogues for qut(tR), and in particular ﬁ\tm(tR), with

proofs which apply mutatis mutandis, as explained in Section 3.8.
We end this introduction by mentioning some natural extensions of the present work
which seem to be accessible with existing techniques.

e It is natural to extend our results to B-twisted non-abelian Gaiotto—Witten
theories, again with linear matter. The Fundamental Identity highly constrains
the relevant Lie superalgebras, being, up to subquotients and summands with
abelian bosonic subalgebra, direct sums of gl(m|n) and osp(m|2n). In some
cases, weight modules over unrolled quantizations of such Lie superalgebras are
known to admit relative modular structures [BCGPM16, DRGPM20, AGP21,
Ha22, GY22], but their connection to physics deserves further study.

e The supergroup Chern-Simons theories arising from B-twisted N = 4 gauge
theories can have non-compact bosonic subgroups. For example, the B-twists of
SQED [BN22] and abelian gauged N = 4 hypermultiplets [BCDN23] are of this
type. To treat non-compact abelian gauge groups, our results must be extended
to the category of U;(tR)—modules in which only the subalgebra of t dual to the
compact subgroup is required to act semisimply.

1. RELATIVE MODULAR CATEGORIES AND TOPOLOGICAL QUANTUM FIELD THEORY

We recall background material on relative modular categories and the topological
quantum field theories (TQFTs) they define, following [CGPM14, DR22]. For back-
ground material on monoidal categories we refer the reader to [EGNO15].

1.1. Ribbon categories. Let (C,®,1I) be a C-linear abelian monoidal category. We
assume that the functor ® is C-bilinear and the monoidal unit I is simple. In particular,
the C-algebra map C — End¢(Il) is an isomorphism. If C is rigid with braiding {cy  :
VW - WV |V,W e(C} and compatible twist {8y : V — V | V €}, then C is called
a C-linear abelian ribbon category. The dual of an object V is denoted by VV. Our
diagrammatic conventions for ribbon categories are that diagrams are read left to right,
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idV: VT R idvv: VJ/
evy= Vf\ , coevy= Y U

wo= N, cosvy=\_ Y
‘v.w = V,X\W o Ov= V%

for objects V, W € C. An object V € C is regular if evy: VY ® V — ILis an epimorphism.

bottom to top and

1.2. Modified traces. Let V, W € C. The right partial trace is the map
ptry : Ende(VO W) — Endg(V)
f > (idy® evy)o (f ®idyv)o (idy® coevy).
Definition 1.1. A full subcategory Z C C is an ideal if U® V € T whenever U € 1 and

VeCandif U eI and V €C are such that there exist morphisms f : V - Uandg: U -V
satisfying go f =idy, then V € L.

Definition 1.2 ([GKPM11, §3.2]). (1) A modified trace on an ideal T C C is a collec-
tion of C-linear functions tr = {try : End¢(V) — C| V € I} which satisfies:
(a) Cyclicity: try(f og) =triy(go f) forall V,W € 1 and f € Hom¢(W,V) and
g € Home(V, W).
(b) Partial trace property: trygw(f) = try(ptry (f)) forall V.€e I, W € C and
f eEnde(VW).
(2) The modified dimension of V € Z is d(V) = try (idy).

1.3. Relative modular categories. Let C be a C-linear abelian ribbon category.
Definition 1.3. (1) Aset £ ={V;|ie]}of objects of C is dominating if for any V € C
there exist {iy,...,i,} C ] and morphisms 1 € Hom¢(V; , V) and s, € Home(V,V; )
such thatidy = ) /| 1 o 5.
(2) A dominating set £ is completely reduced if dimg Hom¢(V;, V;) = 6;; for all i,j € ].

Let Z be an abelian group, written additively. We often identify Z with the corre-
sponding discrete monoidal category with object set Z.

Definition 1.4. A free realization of Z in C is a monoidal functor o : Z — C, k +— oy, such
that

(1) Og = II,

(2) 05, = idak forall k € Z, and

(3) if V®oy =~V for a simple object V € C, then k = 0.

We often identify o : Z — C with the collection of objects 07 := {0} | k € Z}, omitting
from the notation the monoidal coherence data {0} ® 6; — 0k, | k,1 € Z}.

Definition 1.5. Let G be an abelian group. A G-grading on C is an equivalence of C-linear
abelian categories C =~ EBgeGCg' where {Cq | g € G} are full subcategories of C such that

TeCy, if V €Cy, then VVe C_gandif Ve€Cqand V' €Cy, then VRV’ €Cqrq.

Definition 1.6. A subset X of an abelian group G is symmetric if X = =X and small if
(g +X)=Gforall gy,...,g,€ Gand n > 1.
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We will use the following basic result in Section 5.2.

Lemma 1.7. Let f : G — H be a surjective homomorphism of abelian groups and Y CH a
small symmetric subset. Then f~1(Y) C G is a small symmetric subset.

Proof. Let X = f~1(Y). If x € X, then f(—x) = —f(x) €Y, since Y is symmetric. This proves
that X is symmetric. To prove that X is small, we proceed by contradiction. Suppose
that G=J!_;(X+g;) for some g1,...,g, € G. Applying f gives

H=£(G) = flJx+g) = Jrx+fen e Jor+fg)eH
i=1 i=1 i=1
contradicting smallness of Y. O

Definition 1.8. Let G and Z be abelian groups and X C G a small symmetric subset. A
pre-modular G-category relative to (Z, X) is a G-graded C-linear abelian ribbon category
C with a non-zero modified trace tr on its ideal of projective objects and a free realization
o0 : Z— Cy with the following properties:

(1) Z-finite generic semisimplicity: For every g € G\X, there exists a finite set of regqular
simple objects ©(g) :={V; | i € I} such that

O(g)®oz:={V;®0|i€l,, keZ]
is a completely reduced dominating set for C,.
(2) There exists a bicharacter 1 : GxZ — C* such that
Co,VOCY g = l[)(g,k) ’ idV@ok (1)
forallge G,V eCyandkeZ

Remark 1.9. Property (1) of Definition 1.8 implies that the G-graded category C is
generically semisimple with singular locus X; see [GPM18, Definition 3.3]. A
Definition 1.10. Let C be a pre-modular G-category relative to (Z, X).

(1) For each g € G\ X, the Kirby colour of index g is QO := Zidg d(V;)- Vi, considered

as a formal C-linear combination of objects of C.
(2) The stabilization coefficients A, € C are defined by

QTV 1% {V 1%
@iA_. SO = Ay
= oy

where ¢ € G\ X and V € C,. Here = denotes equality after application of the
Reshetikhin—Turaev functor Fe, extended to C-linear combinations of coloured ribbon
graphs by linearity.

(3) The pre-modular G-category C is non-degenerate if A, A_ # 0.

As suggested by the notation, A, and A_ are independent of the choice of g€ G\ X
and V € C, used in their definition [CGPM14, Lemma 5.10].

Definition 1.11. A modular G-category relative to (Z,X) is a pre-modular G-category
C relative to (Z,X) for which there exists a scalar C € C*, called the relative modularity



10 N. GARNER, N. GEER, AND M. B. YOUNG

parameter, such that

forany g, he G\Xandi,j€l,.

The relative modularity parameter satisfies C = A,A_ [DR22, Proposition 1.2],
whence relative modular categories are non-degenerate relative pre-modular.

At present, all known examples of relative modular categories, which are not modular
in the standard finite semisimple sense, arise as categories of weight modules over
unrolled quantum (super)groups; see, for example, [BCGPM16, DRGPM20, AGP21,
Ha22, GY22]. The constructions of Section 2 provide a further family of examples of
this type.

Remark 1.12. In general, relative modular categories are defined in the setting of non-
necessarily abelian categories which are linear over some field [DR22]. Since we work
over C and all our examples are abelian, we do not work at this level of generality. A

1.4. Topological quantum field theories from relative modular categories. In this
paper all manifolds are assumed to be oriented.

Let C be a modular G-category relative to (Z, X).

Let Cobe be the category of decorated surfaces and their diffeomorphism classes
of decorated bordisms, as defined in [DR22, §2]. Briefly, objects of Cob¢ are tuples
S =(X,{pi}, w, L) consisting of

e a closed surface ¥ with a set * of distinguished base points, exactly one for each
connected component,

e a finite set {p;} C X \ » of oriented framed C-coloured points,

e arelative cohomology class w € H' (X \{p;},*; G) such that w(m;) = g; is the colour
of p;, where m; is the oriented boundary of a regular neighbourhood of p;, and

e a Lagrangian subspace £ C H(%;R).

Morphisms in Cobg are tuples M = (M, T,w,m):S; — S, consisting of

e abordism M :¥; — ¥,

e a C-coloured ribbon graph T € M whose colouring is compatible with those of
the marked points of S;, j =1, 2,

e aclasswe Hl(M \ T,*; U=,;G) which restricts to w; on Zj, j=1,2, and such the
colour of each connected component T, of T is in degree w(m,) € G, where m, is
an oriented meridian of T, and

e an integer m € Z called the signature defect.

The morphism M : S — S, is called admissible if for each connected component M,
of M which is disjoint from the incoming boundary ¥;, at least one edge of T N M, is
coloured by a projective object of C or there exists an embedded closed oriented curve

¥ C M, such that w(y) € G\ X. Let Cobéd be the subcategory of admissible morphisms.
Disjoint union gives Coby and CobéOl the structure of a symmetric monoidal categories.

Let Vects be the monoidal category of Z-graded vector spaces and their degree
preserving linear maps. We consider Vect% with the symmetric braiding determined
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by the unique pairing v : Zx Z — {+1} which makes the diagram

€0k %k, .
akl ® O-kz 4 0k2 ® le
| L
o > O
kl +k2 V(kl:kZ)'id(rkl +k2 7 k2+k1

commute for all ki, k; € Z. In all examples considered in this paper (except the degen-
erate setting of Section 4.4), there is a canonical parity subgroup Z/2Z < Z and the
monoidal forgetful functor which restricts to gradings with respect to this subgroup has
target the category of complex super vector spaces. In this way, the TQFTs constructed
below are valued in super vector spaces with additional structure. See Remark 4.7.

Theorem 1.13 ([DR22, Theorem 6.2]). A modular G-category C relative to (Z,X) with a
choice I € C* of square root of the relative modularity parameter C defines a symmetric
monoidal functor Ze : Cob?:d — Vecté

We refer to Z¢ as the (decorated) TQFT associated to C. The values of Z; on closed
bordisms @ — @ coincide with a (renormalization of the) 3-manifold invariants CGP.
of [CGPM14]. Concretely, let R be a C-coloured ribbon graph in S®. Suppose that
an edge of R is coloured by a generic simple object V € C, that is, V is simple and
V € C, for some g € G\ X. Let Ry be the (1,1)-ribbon graph obtained from R by
cutting an edge labeled by V. Then F/(R) := try(Ry) € C is an isotopy invariant of R
[GPMTO09, GKPM11]. With this notation, the partition function of a closed bordism
M = (M, T,w,m) with computable surgery presentation L C S3 is
g )m—a(L)

Zc(M) = 9_1_Z(A—

Here [ is the number of connected components of L, o(L) is the signature of the
linking matrix of L and each component L. of L is coloured by the Kirby colour Q).
Computability of the surgery presentation means that either w takes values in G\ X for
each edgeof LorL=0and T =#0.

The TQFT Z is the truncation of a once-extended TQFT Z : Cobgd — Caté [DR22,
Theorem 6.1]. Here Cobéd is the bicategory of decorated 1-manifolds, their decorated
admissible 2 dimensional bordisms and their equivalence classes of decorated admis-
sible 3 dimensional bordisms with corners and (V:atéj is the bicategory of Z-graded
complete C-linear categories with symmetric monoidal structure determined by v. The
theory Z; assigns to the circle with cohomology class of holonomy g € G a category
Morita equivalent to the ideal of projective objects of C, [DR22, Proposition 7.1].

Definition 1.14 ([GY22, §1.6]). A modular G-category C relative to (Z,X) is TQFT finite if
it has the following properties:

F)(LUT)eC. (3)

(F1) For each g € G, there exists a finite set {P; | j € J,} of projective indecomposables of Cq
such that any projective indecomposable of C is isomorphic to P; ® oy for some j € ],
and k € Z.

(F2) For each projective P € C, the vector space @kez Hom¢(oy, P) is finite dimensional.

(F3) The full subcategory of projectives of C is dominated by the set of projective indecom-
posables.

It is proved in [GY22, Theorem 1.16] that TQFT finiteness of C ensures the finite
dimensionality of all state spaces Z.(S), S € Cobgd.
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2. QUANTUM SUPERALGEBRAS FOR B-TWISTED ABELIAN GAIOTTO—WITTEN THEORY

2.1. Superalgebra conventions. For a detailed discussion of superalgebra we refer the
reader to [DEF*99, I-Supersymmetry].

Let Z/27Z ={0,1} be the additive group of order two. A super vector space is a Z/2Z-
graded complex vector space V = V@ Vi. The degree of a homogeneous element v € V
is denoted v € Z/27Z. Write I1V for the super vector space with reversed parity, so that
(ITV) = Vi.1. A morphism of super vector spaces of degree d € Z/27 is a C-linear map

f:V — W which satisfies f(v) = 7 +d for each homogeneous v € V. A (left) module over
a unital superalgebra A is a super vector space M together with a unital superalgebra
homomorphism A — End¢(M) of degree 0. In particular, even (resp. odd) elements
of A act on M by even (resp. odd) linear transformations. Write [—,—] for the graded

commutator in A, so that [a,b] = ab— (-1 )‘ﬂ_’ba for homogeneous elements a,b € A.

2.2. Gaiotto—Witten Lie superalgebras. Following Kapustin and Saulina [KS09, §3.1]
and Gaiotto and Witten [GW10, §3.2], we introduce Lie superalgebras relevant to
B-twisted Gaiotto—Witten theory.

Let t be a complex Lie algebra with adjoint-invariant metric « : t xt — C. Let
t¥ = Homcg(t, C) be the linear dual. There is an induced isomorphism

Kb:t—>tv, Z—x(Z,-)

with inverse ¥ :t¥ — t. Let k" be the metric on the linear dual t¥ induced by «”.

Let (H, w) be a complex semisimple symplectic representation of t and y: H —>t¥ a
t-equivariant holomorphic moment map. We assume that the above data satisfies the
Fundamental Identity of Gaiotto and Witten [GW10, §3.2]:

" (p,p) = 0. (4)

For a general representation theoretic discussion of the Fundamental Identity and its
variations, see [dMFOMEOQ09].

Let ty be the super vector space t @[1H. Define a Lie superalgebra structure on ty
so that t is a Lie subalgebra, the Lie bracket of t and I'1H is given by the representation
t — sp(H) and

[, ko] = k¥ (hy (ha(p)), Ty, by € HL

On the right hand side we view h; and h, as constant holomorphic vector fields on H.
Since p is quadratic, hy(hy(p)) is an element t¥, whence Kﬁ(hl(hz(y))) is an element of t,
as required. The only non-obvious task in verifying that the above definition is indeed
a Lie superalgebra is the super Jacobi identity for three odd elements, which is seen
to follow from equation (4). The metric ¥ and symplectic form w combine to define a
non-degenerate supersymmetric adjoint-invariant bilinear form (-, —) on ty.

2.3. Lie superalgebras for abelian Gaiotto—Witten theory. For the remainder of the
paper, we work with the specialization of Section 2.2 to the case in which the Lie
algebra t is abelian. Let r be the dimension of t and 2n the dimension of H.

Since t is abelian, the symplectic representation H is polarizable, that is, there exists
a complex semisimple representation R of t of dimension n and an isomorphism of

symplectic representations (H,w) ~ (TYR = R&RY, ( _anR idgv )), where cang : R — RVY
is the canonical evaluation isomorphism. We fix such a choice of R in what follows
and refer to its weights Qy,...,Q, €t as roots and write Ag C t¥ for the additive

abelian group they generate. Since R is determined up to isomorphism by its roots, we
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often use the latter to describe the former. Choose linearly independent root vectors
Ei,...,E, € R, that is

Z'Ei:Qi(Z)Ei, Z et.
Complete {Ey,...,E,} to a Darboux basis {Ej,...,E,, Fy,...,F,} of TVR, so that wjj 1=
w(E;, Fj) = 0;;. It follows that

Z'Pi:—Qi(Z)Fi, Z eft.
In terms of the roots, the Fundamental Identity (4) reads

x(Qi,Qj) =0, 1<i,j<n (5)
In the Darboux basis, the non-trivial Lie bracket of odd elements of t;; becomes
[Ei, Fj] = 61 ¥(Qi, ),

where we view «V(Q;,—) as an element of t via can, : t — t"V.

To describe ty more explicitly, fix a basis {Z, |1 <a <r} of t and set k,;, = k(Z;, Zp).
In the dual basis {Z) | 1 <a <} of t, the matrix of V" is the inverse (k) of the matrix
(kap). Write (Qyj,...,Q,;) € C for the image of Q; under the isomorphism t¥ — C" and
organize the roots of R into an r x n matrix Q = (Q,;). In the physics literature, the
transpose of Q is referred to as the charge matrix of the theory. With this notation, the
Fundamental Identity (5) reads

r
Z Kaanin]' =0, 1< Z,] <n. (6)

a,b=1

We can now give a presentation of ty.

Proposition 2.1. The Lie superalgebra ty is isomorphic to the Lie superalgebra tg with even
generators {Z, |1 < a <r}, odd generators {E;, F; | 1 <i < n} and defining relations

[Z4,Z,] =0, (7)
[Zar Ei] = QuiEi, [Zw Pi] = —QuiFi, (8)
[Ei, Ej] =[F;, F;] =0, (9)
[EiFjl=06i ) «"QuiZy (10)

a,b=1

Proof. Only relations (9) and (10) are non-obvious. These follow from the observation
that, in the chosen Darboux basis, a moment map y: H — t" is given by

nor
K= ZZQakE]YP]YZ;/;
k=1 a=1

where E; and F,’ are seen as coordinates on H and Z) as an element of t". O

As a consequence of Proposition 2.1, if Ry and R, are two polarizations of H, then
tg, = tg, as Lie superalgebras.
We begin with two degenerate examples.

Example 2.2. If n =0, so that R is the zero representation, then tz =t is simply a metric
abelian Lie algebra. A
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Example 2.3. Let psi(1]1) be the projective special linear Lie superalgebra of C'Il,
equivalently, the purely odd (abelian) Lie superalgebra of dimension two. If r =0,
so that t is the zero Lie algebra, then ty is isomorphic to psl(1[1)®" with its standard
symplectic form. A

Example 2.4. Let gl(1]1) be the super vector space End¢(C!") with supercommutator
as the Lie bracket. Let r =2 and n = 1 with

01 1
<fiofoslo)
The assignments

(10 (10 . (01 _ {00
N—(O O)I—)Zl, E—(O 1)|‘—)Zz, ll) —(O O)HEI’ 17[) —(1 O)I‘—)Fl

extend to a Lie superalgebra isomorphism gl(1|1) — t. The induced bilinear form (-, —)
on gl(1|1) is that associated to strgin, the supertrace in the fundamental representation,
and is determined by

(N,E)=(E,N)= (" ¢7) =-(47,9") =1,

with all other pairings of generators vanishing. A

Example 2.5. Let s be a complex abelian Lie algebra of dimension s and R a repre-

sentation of s of dimension n with weights Q(ls),..., ng) € s". Let t be the abelian Lie
algebra s ® sV with metric x = (Ca(L ldgv ) View TVR as a symplectic representation of t

on which s" acts trivially. The root matrix of Ris Q = (Q(()S) ) Since « is hyperbolic and
Q is concentrated in the top block, equation (5) imposes no constraints on R. With the
additional assumption that Q) has integer entries, the Lie superalgebra tp appears
in the context of three dimensional N = 4 abelian gauged hypermultiplets [BCDN23,
§4.2]. When s = n =1 and Q® = (1), we again recover tp ~ gl(1|1) with its standard
metric. A

Lemma 2.6. For each 1 <i <, the element Z;:=) |, , k*Q,;Z, € tg is central.

Proof. We have

.
[Zi,Ej] = Z 1" Qi Qi Ej,
a,b=1
which vanishes due to equation (6). The bracket [Z;, F;] vanishes for the same reason.
O
Lemma 2.7. Suppose that R ~ R’ @® C, where C is the trivial representation of t. Then
tr ~ tg @ psl(1|1) as metric Lie superalgebras.

Proof. The assumption R ~ R’ @ C translates to the vanishing Q; = 0 for some 1 <i < n.
With this observation, the lemma follows from Proposition 2.1 and Example 2.3. [

Lemma 2.8. Let 1 <a<rand1<i<n besuch that Q, #0. Define
1 Kaa
- _ Z.
Qui “ 2Q§i l
where Z; is as in Lemma 2.6. Keeping the notation of Example 2.4, the assignment
{N,E, ", ¢~} —{Z,, 2, E;, F;} extends to a Lie superalgebra isometry
g[(1|1) ~ spanC{Z;,Zi, EifFi} Ctg,

ZI

a
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where gl(1|1) is given the metric strgip.

Proof. The lemma follows from the equalities

1 1 K 1
K(=—Z4 —2,) = —=, K(=—Z,2;)=1, k(Z2,Z;) =0,
(Qai “ Qai a) in Qai vl l ])
the last of which follows from equation (6). In particular, the second equality implies
that Z; is non-zero. O

2.4. Effective metrics. Recall that in compact Chern-Simons theory, the level « re-
ceives quantum corrections, leading to the famous dual Coxeter shift [Wit89, §2].
Similarly, the level k receives one-loop quantum corrections in B-twisted Gaiotto—
Witten theory [CDG23, §7], [Gar23, §3]. The resulting effective metric kg will play an
important role in the construction of relative modular categories in Section 4.

The effective, or quantum corrected, metric on t is defined by

n
Keff = K + ZQi®Qi'
i=1

Using equation (5), we verify that «.g is indeed non-degenerate. It follows that ks
induces a metric k) on tv. Explicitly, we have

n
K =x =) Q) erk(Q;).
i=1
Given A etYand 1 <i<n, let
xi(A) = x"(Qi, A).
Equation (5) implies that K;/H(Qi, A) = xi(A). With this notation, we have

n
K =1 (=) xixip,  Apet”.
i=1
2.5. Unrolled quantum abelian Gaiotto—-Witten Lie superalgebras. Motivated by
earlier unrolled quantizations of Lie (super)algebras [CGP15, §2], [GPM18, §3], [GY22,
§2], in this section we define an unrolled quantization of tg.

Fix a parameter i€ C\ nV-1Z and set g = ee C*\ {+1}. For x € C, define

X —X

qx = ehx, [x]q =

In order to quantize tg, we henceforth make the following assumption on the input
data from Section 2.3.

Assumption A. For each 1 <a<rand1<i<n, the quantity } ;_, x*Qy; is an integer.

Definition 2.9. The unrolled quantum group Ué(tR) is the unital complex superalgebra
with even generators {Z,, K | 1 < a <), odd generators (E;, F; | 1 <i < n} and defining
relations
KK '=K'K, =1,
[Z0, Zy] = [Z,4, Kp] = [Ky, Ky ] = 0,

(1
(1
[Zal Ei] = QukE;, [Zar Fi] =-QuiFi, (1
(
(

L N =

K.E;=q%EK,  K,Fi=q %FK,
[Ei, Ej] = [Fi, Fj] =0,

1
15

=~
- L = -
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r ab . _\r ab .

]—1221 Kaszl K% Qi _ 1—1221 Ka szlK Qpi
[ ir ]]— ij 1 (16)

q-4
For each 1 <i <n, define
,
r ab .
K; = HKQZ":”{ % e Ul(tp). (17)
a=1
i1

With this notation, relation (16) becomes [E;, F;] = 67%. Note also that relations

(15) imply the nilpotency of E; and F;:
E’=F}=0, 1<i<n

Remark 2.10. Suppose that n = 0. In this case, relations (13)-(16) are not present and
we may take h € tV-1Z, and hence g = -1, in Definition 2.9. A

Lemma 2.11. For each 1 <i < n, the elements Z; and IC; are central in U(;(tR).

Proof. This follows from equation (6), as in the proof of Lemma 2.6. 4
View Ug(tg) ®c Uy (tr) as a superalgebra via the bilinear extension of the product
(a1®b1)- (a,®b2) = (-1)" " a1a,® by by,

where a;,b; € Ug(tg) are homogeneous.
Lemma 2.12. The assignments
€(Z)=0, eK7)=1,  e(E)=0,  e(F)=0,
AZ,=7,81+1®Z,  AKI)=KIleoK:!,
AE;=E;®K;'+1®E;, AF;=F;®1+K;®F,
S(Za)=-Zy  SKZ)=K;',  S(E)=-KiE,  S(F)=-FK;'

extend to a unique Hopf superalgebra structure on Ug(tR) with counit €, coproduct A and
antipode S.

Proof. We need to prove that the defining relations of th(tR) are preserved by €, A
and S. We only treat the most involved case, relation (16). The verification for the
counit is immediate. For the coproduct, note that multiplicativity of A implies that
A(KF) = K ® K. Using this, we compute

A(E;F;) = E;F; ®]Ci_1 + K;E; ®]C;1Fi —-F,®E; +K;Q®E;F;

and
A(F;E;) = F;E; ®’Ci_1 +F,®E; — K;E; ®/C;1Fi + K;®FE;
so that
K- K1 Kt IC;
A([E; Fi)- ———) = ([E; Fil + ——= ) ® ki + K ® ([Ei, Fi] - —— ).
q—4 -9 q—4
Subtract qIC from the first term and add it to the second to get
-kt Ki— K Ki—K:!

)

Ki
A([EirFi]_ﬁ):([EvF] ﬁ)®Ki+’Ci®([Ei;Fi]— =
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as required. For the antipode, after noting that the anti-homomorphism property of S
implies S(KF') = K7!, we compute

K- K;! S(Ki) = S(K;)
S(Ei, Fil = ———=) = —S(Fi)S(E;) - S(E;)S(F;) - —
9-9 q9-49
Ki—K:!
= B R-Tr)

That the above data satisfies the Hopf condition can also be verified directly. For
example, writing m and ! for multiplication and the unit of U;(tR), respectively, we
have

(mo(id®S)oA)K,) =m(K,®K;1) =1,
which is equal to i(e(K,)), and
(mo(id®S)oA)E;) =m(E;®K; -1QK;E;)=E;K;-K;E; =0,
the last equality following from Lemma 2.11, which is equal to 1(e(E;)). U

Let I and ] be disjoint subsets of {1,...,n}. Denote by sgn(I,]) € {1} the sign of the
(|I],1]])-shuffle associated to the decomposition I LI]. The characteristic function of I is

1 iflel
= ¢ 1<Il<n.
oL {o iflel, =i=t

Writing I = {i; <---<iy},set E; = E; ---E; € U;(tR) and, analogously, F; and K.
Lemma 2.13. Let M C {1,...,n} and 1 <I < n. The following equalities hold:

A(Ey) = Z sgn(I,])E; ® E; K7 (18)
LIC{Tmm)
ILJ=M
A(PM): Z Sgn(I;])}C]PI ®F]. (19)
I,jc{1,...,n}
10]=M
EiEn = (1= 0y,m)sgn({l}, M)Epy- (20)
FiFy = (1= 6;,m)sgn({l}, M)Fpqyy- (21)
i K- ’Cl_l
[E, Fp] = opmsgn({l}, M\ {l})FFM\l- (22)
K- ICI_I
[F1, Em] = 01, msgn({1}, M\ {l})FEM\l- (23)

In equations (18) and (19), the sums are over disjoint subsets of I,] C {1,...,n} whose union
is M.

Proof. Equations (18) and (19) follow from repeated use of the definitions of AE; and
AF; and centrality of ; (Lemma 2.11). Equations (20), (21) and (22), (23) follow from
repeated application of relations (15) and (16), respectively. U

The following quantum counterpart of Lemma 2.7 can be proved directly from
Definition 2.9.

Lemma 2.14. Suppose that R ~ R’ @& C, where C is the trivial representation of t. Then
U,(tr) = Uy(tr) ®c U(psl(1]1))
as Hopf superalgebras.
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The quantum counterpart of Lemma 2.8 is compatible with the Hopf structure of
U;(tR). Indeed, under the same assumptions, the assignment of Lemma 2.8, supple-
mented by H — ;, extends to a morphism of Hopf superalgebras UqH(g[(l 1)) — U;(tR)
which is an isomorphism onto its image. Here U;]H(g[(lll)) denotes the unrolled quan-
tum group of gl(1]1), as defined in [GY22, §2.2], with H the grouplike element associ-
ated to the central generator E.

2.6. Modified unrolled quantum groups. We introduce a modified version of the
unrolled quantum group of Definition 2.9. We continue to fix 1 € C\ mV-1Z and set
g=eeC*\{x1).

Definition 2.15. The modified unrolled quantum group ﬁqt(tR) is the unital complex

superalgebra with even generators {Z,,K:! | 1 < a < r}, odd generators (E;,F; | 1 <i < n)
and defining relations (11)-(13), (15) and (16) and (replacing relations (14))

K,E = *®EK,  K,F;=q*%FEK, (24)

Continuing to define K; by equation (17), all results from Section 2.5 hold for ff; (tr)

as stated. In particular, ﬁ;(tR) is a Hopf superalgebra with €, A and S as in Lemma
2.12.

Proposition 2.16. Assume that q # +V—1. The assignments
Zo—Zy  K'w- K, EjeE,  Fie-[2))'Fi
extend to a Hopf superalgebra isomorphism thz(tR) — ff;(tR).

Proof. This is a direct calculation. O

In particular, lNI{;(tR) can be realized as U,;/('fR) for some g” € C*\ {+1} precisely when
q is not a primitive fourth root of unity. The TQFT constructions of this paper, given in
Sections 4 and 5, are in terms of the superalgebras U* —(tr), hence our need for U;(tR).

~ V-1
To clarify the meaning of U‘; (tg), define the h-adic quantization Uj(tg) to be the unital

topological C|[[h]]-superalgebra with even generators {Z, |1 <i < r}, odd generators
{E;,F; |1 <i <n)and defining relations (12), (13), (15) and (16), where now g = e" and
K, = e"%, interpreted as power series in h. The classical limit of Uj,(tg), obtained by
working to order h, recovers the presentation of ty given in Proposition 2.1. Define
U, (tg) similarly, where now g = e and K, = g*"%a = ¢hZa_ The classical limit of Uy(tg) is
the Lie superalgebra ty with even generators {Z, | 1 < a < n}, odd generators {E;, F; | 1 <
i < n} and defining relations (7)-(9) and (replacing relation (10))

.
[Ei, Fi] = 20 Z k Qi Z.
a,b=1

In particular, the scaled basis {Z, |1 <a<r}U {Ei,%

tion of ty as in Proposition 2.1, so that tz ~ tg. In other words, ﬁ;(tR) is an unrolled
quantization of a non-standard basis of tp.

F; |1 <i<mn}of ty gives a presenta-

3. THE CATEGORY OF WEIGHT U,; (tgr)-MODULES

We develop the weighted representation theory of U,;(tR) and its modified variant
ﬁqt(tR). Since all results for U;(tR) carry over to ﬁ;(tR) with only minor changes, in
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Sections 3.1-3.7 we focus on U;(tR) and explain the required modifications for ﬁ;(tR)
in Section 3.8.

3.1. Weight U;(tR)—modules. Let V be a U;(tR)-module. In particular, per the conven-
tions of Section 2.1, V is a super vector space. A vector v € V is called a weight vector of
weight A €tV if Zv = M(Z)v for all Z € t. With respect to the fixed basis {Z,|1 <a < r}
of t, write the components of A as A,, 1 <a <r. If v is homogeneous, we often refer to
the pair (A, 7) € t¥ x Z/27Z as the weight of v.

Definition 3.1. A weight Ui(tg)-module is a finite dimensional Ug(tg)-module V on
which t acts semisimply and K,v = q*ev for all weight vectors v of weight A.

Let Cr be the category of weight th(tR)—modules and their U;(tR)—linear maps of
degree 0. The restriction to maps of degree 0 is crucial to the construction of a braiding
on Cp in Section 3.3. Note also that this restriction implies that a module V and its
parity reversed module V[1] are generally not isomorphic in Cg. The category Cy is
C-linear, abelian and locally finite. The superbialgebra structure of th(tR) gives Cp a
monoidal structure with monoidal unit I = C the trivial module.

Given V € Cp and v € V of weight (A,7) € t¥ x Z/2Z, relations (13) imply that E;v
and F;v are of weight (1 + Q;,7+ 1) and (A — Q;,7 + 1), respectively, while the operator
equations K, = g%« imply

Kiv= qu(/\)v, 1<i<n. (25)

Call v highest weight vector (resp. lowest weight vector) if E;v = 0 (resp. F;v = 0) for each
1<i<n.

Lemma 3.2. Every non-zero object of Cr has a homogeneous highest weight vector.

Proof. Let V € Cg be non-zero and v € V a non-zero homogeneous vector. Because of
the relations (15), there exists a unique maximal subset I C {1,...,n} with the property
that E;v # 0. By maximality of I, the homogeneous vector E;v is highest weight. O

Given V € Cg, define V'V € Cy to be the super vector space Hom¢(V,C) with U;(tR)—
module structure

(x-f)v) = (—1)f_’zf(S(x)v), veV, feVY xe U,;(tR).

Let {v;}; be a homogeneous basis of V with dual basis {v.'};. Define

evy (f&v)=f(v),  coevy (1)=) v;@v) (26)
and )
evy (v@f)=(-1)/7f(Kv),  coevy (1)= ) (-1)7v) @K v, (27)

i
.....

Lemma 3.3. The maps (26) and (27) define a rigid structure on Cg. Moreover, this rigid
structure is pivotal, that is, the right and left dual functors associated to the maps maps (26)
and (27), respectively, coincide.

Proof. Recall that a pivotal structure on Cgx We verify Ug(tR)—linearity of evy. It is

immediate that e_\;V commutes with the action of Z, and hence K,. Using that K is
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central (Lemma 2.11), we compute

evy (Ei-(v®f) = evy (EweK: ' f+(-1)"v®E;f)

(=)@ (I £)(CEw) + (1)U D(E; £)(Kv)
= ()T FIGKED) + (1) f(-KKEw)
= 0

and

evy (Fv®f+(-1)’K;v®F;f)

(=)D f(KCFw) + (~1)7 T D(E, ) (KK )
= ()T FKE) + (1) f(FiKG KK )
= 0.

evy (F;i-(v®f))

We omit the straightforward verifications that the maps (26) and (27) satisfy the snake
relations, and hence the rigidity axioms, and pivotal conditions. O

It follows easily from Lemma 3.3 that Cy satisfies the assumptions of [EGNO15,
Proposition 6.1.3]. Hence, projective and injective objects of Cy coincide.

3.2. Verma and simple modules. Given a subset I C {1,...,n}, write Q; € t¥ for the

sum ) ;.7 Q;.
Let U,g’zo(tR) be the subalgebra of th(tR) generated by {Z,, K | 1 <a < r} and
{E; |1 <i<mn}. Foreach (A,p) et xZ/2Z, let C(),p) be the vector space C concentrated

in degree p with th’zo(tR)—module structure
Z,- 1=}, K,-1=g%  E-1=0.
Definition 3.4. The Verma module of highest weight (A, p) € t¥ x Z/2Z is
Viup) = Ugltr) ®yt=0(t,) CLp)
The module V|, ;) is generated by the highest weight vector v; = 1® 1. The set

{vi := Frvg | I C{1,...,n}} is a weight basis of V{, 5 with v; having weight (A - Qp,p+ I),

where we have written I for |I|. Using this basis, we verify that the quantum dimension
of a Verma module vanishes:

qQdim Viy 5 = ) evy,  (n@v)) = (-1)PgEa iy -1y = o,
I I

Here and below, } ; indicates a sum over the power set of {1,...,n}. We will see in
Section 3.7 below that, in many cases, there exists a modified trace on Cy such that the
modified dimension of a generic Verma module is non-zero.

.....

Lemma 3.5. There is an isomorphism V(Y\’ﬁ) ~ V(v pea) in Cg.

Proof. Note that v}’ € V(\//\’p) is of weight (-A + Qp, p + I). In particular, v{\;’m’n} has weight
(AY,p +7) and is of highest weight. It follows that the assignment v{vl """ n) P> Vo extends
to an isomorphism V(Y\,p) — Vv pei)- O

Proposition 3.6. The module V|, 5 is simple if and only if [T_,[xi(A)], # 0.
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Proof. Let M C V() 5 be a non-zero submodule. By Lemma 3.2, there exists a highest
weight vector v € M. Writing v = } | ¢yv; in the standard weight basis of V() 3, we use
equation (22) to compute

0=Ew= Zéusgn({l},l \Dxi1(M]gervr, 1<l<n
T

It follows that if c; # 0, then [x;(1)], =0 forall i e I.

We can now prove the proposition. If [T, [xi(A)]; # 0, then v is a non-zero multiple
of vz and M =V, ;), proving simplicity of V|, ;). Conversely, if [x;(1)], = 0 for some
1 <i<n, then v(; is a homogeneous highest weight vector which generates a submodule
of V() p) which is strict, since it does not contain vg. O

Definition 3.7. A weight A € t¥ is called typical if

| Jrxinlg =o.
i=1

Otherwise, A is called atypical.
In terms of the parameter %, atypicality of A is the existence of an index 1 <i<n
such that x;(1) € "Tﬁz.

Proposition 3.8. There exists a typical weight if and only if the representation R has no
trivial summands.

Proof. Note that R has a trivial summand if and only if Q; = 0 for some 1 <i < n. Recall
that x; = ¥ (Q;,—). If Q; is zero, then x;(A) = 0 for all A € t¥ and all weights are atypical.
The converse follows from the proceeding lemma applied to the linear functionals

o ..V :
_n\/jXI't —C,1<i<n. O

Lemma 3.9. Let W be a finite dimensional complex vector space and {y,...,{, € WY non-
zero linear functionals. There exists a vector w € W such that {;(w) ¢ Z forall 1 <i < n.

Proof. Note that 61._1 (C\Z)=W\ 5;1 (Z) with 5;1 (Z) a countable union of affine hyper-
planes. It follows that

n n
et \z=w\| Jg' @)
i=1 i=1
is the complement of countably many affine hyperplanes and thus non-empty. g
Motivated by Proposition 3.8, we henceforth work under the following assumption.
Assumption B. The representation R has no trivial summands.

In terms of roots, Assumption B is the statement that Qy,...,Q, are each non-zero.
If Assumption B does not hold, then, in view of Lemma 2.14, the study of U,;(tR)
reduces to that of U;(tR/) and dim¢ Hom(C, R) copies of U(psl(1|1)), where R’ is the
quotient R/Hom(C, R). Relative modular categories arising from the representation
theory of psi(1]1) are treated in Section 5.3. In particular, we will still be able to model
Gaiotto—Witten theories which do not satisfy Assumption B.

Lemma 3.10. Every simple object of Cy is a quotient of a Verma module.

Proof. Let V € Cg be simple and v € V a homogeneous highest weight vector of weight
(A,p). The assignment v, — v extends to a morphism V|, ;) — V in Cr which, since V
is simple, is necessarily an epimorphism. O



22 N. GARNER, N. GEER, AND M. B. YOUNG

For each 1 <i <, let (v};;) C V|, ;) be the submodule generated by vy;,.

Proposition 3.11. The module V(, 5) has a unique simple quotient

0— Z (v;) — V(/‘:P) - S(A’ﬁ) — 0.
1<i<n
[xi(A)]4=0
Moreover, the dimension of S(A,p) is 2"k where k is the number of indices 1 <1 < n such
that [x;(A)], = 0.
Proof. Denote by M the submodule } 1<i<, (v;) appearing in the statement of the

[Xi(/\)]q—o
proposition. Then M has weight basis

{vr [ [xi(A)]g = 0 for some i € I}.

Let 0= N C V() 5 be a submodule and n € N a homogeneous highest weight vector. As
in the proof of Proposition 3.6, we have n = } ; c;v;, where the sum is over those subsets
I c {1,...,n} which contain at least one index i such that [x;(A)], = 0. Then N c M
and the first statement of the lemma follows. The second statement follows from the
equalities dim¢ V{, 5) = 2" and dim¢ M = 2"k(2k — 1), the latter of which follows from
the stated basis of M. O

Note that S, ;) = V() if and only if A is typical. In what follows, we reserve the
notation S, 5 for simple modules associated to atypical A.

The above results immediately lead to the following highest weight classification of
simple objects of Cy.

Theorem 3.12. A simple object of Cy is isomorphic to exactly one of the following modules:

(1) V(5 p) where A € t¥ is typical and p € Z/27Z.
(2) S(ap5), where A etV is atypical and p € Z/27.

Lemma 3.13. Simple Verma modules are projective and injective objects of Cg.

Proof. Let f : V. — W be an epimorphism and g : V{, ;) » W a non-zero morphism.
The map g is determined by the highest weight vector g(vy) = w € W of weight (A, p).
Surjectivity of f implies that w has a preimage under f, say v, which is of weight (A, p)
and satisfies E;v € ker f for each 1 <1 <n. For any constants ¢; € C, I # @, the vector

vV=v+ ZCIFIEIV eV
122
is of weight (A, p) and satisfies f(v’) = w. Using equations (20) and (22), we compute
B’ =Ep+ ) ci((=1)'(1-8,1)sgn({1}, DF v +sgn({1), I\ (IS, Dxi( Mg FrErv ).

Iz
We conclude that E;v” = 0 if and only if

(=1)'sgn({1), T)er + sgn({1}, Dlxi(Dger = 0
for all subsets I which do not contain /. The equations have the unique solution

(-1
(= =", Ic{l,...,n}.
nieI[Xi(/\)]q
Note that typicality of A ensures the non-vanishing of the denominator of each ¢;. A
lift of g to V() 5 — V is then determined by the assignment v, > v”. It follows that

V(a,p) 18 projective.
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As mentioned following Lemma 3.3, projective and injective objects of Cy coincide.
O

3.3. Braiding. Motivated by the connection between the Lie superalgebras tz and
gl(1]1), as in Lemma 2.8, and known universal R-matrices for g[(1|1) [Kul89, KT91], we
construct in this section a braiding on the category Cg.

Let V, W € Cg. Define Yy v € End¢(V ® W) by

_KV(Av'Aw)

Yy wlvew) =g vow, (28)

where v € V and w € W are of weight A, and A, respectively. Let

R=exp|(g—97") ZEiICi ®F:! |
i=1
Because of the relations (15), the element R is a finite sum and so a well-defined element
of th(tR) QC U;(tR). Using centrality of KC;, we find
R=Y (-1)0g-q)EK @ FikT,
i

where (é) = w Finally, let cy v € Homg(V ®@ W, W ® V) be the composition 7y o

Ry w o Yy w, where 7 is the standard symmetric braiding on the category of super

vector spaces which incorporates the Koszul sign rule and Ry jy is multiplication by R
on Ve@W.

Proposition 3.14. The morphisms {cy w | V, W € Cyr} define a braiding on Cg.

Proof. Naturality of cy yy is clear, keeping in mind that morphisms of Cy are of degree
0; allowing morphisms of degree 1 would introduce signs which would invalidate
naturality. Invertibility of cy yy follows from the observation that Yy jy is invertible
and the direct verification that R is a unit with inverse

Y (D) (- B @ ik
I

To prove U;(tR)—linearity of cy w, it suffices to verify that cy y commutes with the
action of the generators of U;(tR). That cy 1y commutes with Z,, and hence K,, follows
from the fact that cy 1y is a composition of operators of weight zero. We verify that
cy,w commutes with the action of Ej; the verification for F is similar. Let v € V and
w € W be of weight (1,,7) and (1, w), respectively. Applying the definitions, we find
that E; - cy (v ®w) is equal to

Z(_l)(§)+v1‘+(ﬁ+1‘)(w+f)(q 3 q—l)I_q—Kv(/\,,,/\w)-rZieI Xi=A) X1 E P @ Eyo+
T

Z(_l)(£)+171_+(17+I_)(u7+f)+(u7+l_)(q g g Ce )+ R i) oy @ B Epo
T
and cy w(E;- (v®w)) is equal to

I

Z(—l)(2)+(‘7+1)I_+(I_+1+17)(I_+w)(q _ q_l)l_q_Xl(/\w)+Ziel Xi(/\v+Ql_Aw)_Kv(/\v‘*'QIf/\w)le ® E;Ejv+
I
Z(_l)ﬁ+(§)+ﬁf+(f+ﬁ)(1‘+1+w)(q _ q—1)1‘qzi€, Xi(/\w—/\w—Q,)—KV(AU,/\W+Q1)P1Elw®E1v.
I
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Using equation (22), we see that the coefficients of F;E;w ® E;v in E; - cy (v ® w) and
& €q )
cyw(Er- (v®w)) are

(—1)@HITHED@ DT (=1 g D)+ L i) =K1 ()

and

(—1)THEHITHTR 140 (0 =1y e K (o= A= Q)= (oAt Q)
respectively. By equation (5), we can replace A, — A, — Q; with A, — 1, in the second
expression. Using the definition of x;, we then see that the coefficients are equal.

Continuing, the coefficient of F;w ® E;Ejv in cy w(E; - (v®w)) is
(1) DT T00) (g1 (i D ki QA= (A A ()

There are two contributions to the coefficient of Ffw®EEv in E; - cy,w (v ®w). The first
is from the coefficient of Fjw ® E,E;v, which appears with an additional factor of (1)
due to the equality E;E; = (—1)'E;E;, and so is equal to

(_1)(§)+171_+(17+f)(u7+f)+(u7+f)+f(q _ q—l)lq—Kv(/\y,/\w)+Zi€I xi(Au=Ay) (29)

The second is from the coefficient of E;Fpw® Epv, where I” = I LI {l}, which appears due
to equation (22) and with an additional factor of (~1)! due to the equation
sgn({l}, ) Fiyw®Epv = (1) Fw ® E Epv.
The second contribution is therefore
I =T (TN T\ T 1.7’ _V v, — —
(=1) ()@@ (g a7 g Ao A Tier iAo Aub=a () [ (A,,)],
. aQw)  gmxw)
Writing [Xl(/\w)]q = Z_q—l - qq_qfl
the first summand is the negative of (29) while the second is equal to the coefficient
of Frw® EjEjv in cy w(E; - (v ® w)); each of these statements invokes equation (5) to
cancel certain terms. This proves equality of the coefficients of F;w ® E;E;v and hence
Ej-linearity of cy .

Next, consider the hexagon identities, in which we suppress all associators. Let
U,V,W € Cg. We verify that cy ygw = (idy ® cy,w) o (cy,y ®idyy); verification of the
second hexagon identity is similar. Fix vectors u € U, v € V and w € W of weights
(Ay, 1), (Ay,7) and (A, w), respectively. A direct computation gives for (idy ® cyy,w) o
(cy,v ®idy)(u ®v ®w) the expression

so as to obtain a sum of two terms, we see that

Z(_l )(£)+121_+(a+I_)(17+I_)+(£)+(12+f)f+(11+f+f)(u7+f)(
L]

q_q—l)f+]_+(17+f)f.

q_Kv(/\ur/\v)+ZiEI Xi(/\u_/\v)_Kv(/\u"'ZieI QirAw)"'):.je] Xj(/\u_Aw)PIv ® P]w ® E]E[l/l.

By the relations (15), a summand can be non-zero only if I N ] = @. Similarly, we find
that cy yew (¥ ® v®w) is equal to

Z(_l)(@)+aM+(a+M)(ﬁ+w+M)(q g YW g Cuden)+xiu=Aoew) Fy (0 @ w) @ Epg .
M
Using equation (19), we can write

Fylvew)= Z sgn(I,])(—l)w]_quef Xf(’\b)Plv ® Fjw.

I’]
Iuj=M
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Using the equalities A,g,, = A, + A}, and E;E; = sgn(I,])E; j; (see equation (20)), we
conclude that ¢y ygw = (idy ® cy ) o (cy,y ®idy). O

3.4. Generic semisimplicity. Let x : t¥ — C" be the linear map whose i" component

is x;(A). Viewing the root matrix Q as a linear map, equation (5) gives a complex

0SS o So.
Let H be the image of x. For each & € H, let Cg ¢ C Cg be the full subcategory of modules
on which the central element Z;, defined in Lemma 2.6, acts by &; for each 1 <i <n.
Let

Y= (& &) e HI 1], = 0
i=1

If n > 1, then Assumption B ensures that H is non-trivial. In this case Y is a small
symmetric subset of H.

Proposition 3.15. If n = 0, then the category Cy is semisimple. If n > 1, then the H-graded

category
Cr €D Cre

is generically semisimple with small symmetric subset Y. Moreover, for & € H\Y, a completely
reduced dominating set of Cp ¢ is

Vg lx(V) =&, peZ/22Z}.

Proof. When n = 0 the category Cy is semisimple by construction.

Assume then that n > 1. If V € Cy is indecomposable, then its weights lie in a single
congruence class of Ay in t¥. Equation (6) implies that Ag C ker x. It follows from
this and the definitions of the coproduct and antipode of U;(tR) that Cp ~ @&H Cr,¢
is an H-grading. Let £ € H\Y and V € Cg ¢ non-zero. By Lemmas 3.2 and 3.10, the
submodule generated by a homogeneous highest weight vector of V is isomorphic to
a quotient of V[, 5 for some A € t¥ with x(A) = £. Since £ ¢ Y, Proposition 3.6 implies
that this submodule is simple and so isomorphic to V(, 5. By Lemma 3.13, V) ;) is
injective, whence there exists a splitting V ~ V'@ V() ;5 with V' € Cr ¢ of dimension
strictly less than that of V. Iterating this process shows that Cg ¢ is semisimple with
the claimed completely reduced dominating set. O

3.5. Ribbon structure. Recall that the category Cy is pivotal (Lemma 3.3) and braided
(Proposition 3.14).

Theorem 3.16. The natural automorphism of the identity functor 6 :id¢, = id¢, whose
components are the right partial traces of the braiding,

Oy = ptrglcy,v), V eCr

gives Cp the structure of a C-linear ribbon category.

Proof. The definition of 6 as the right partial trace of the braiding ensures that it
satisfies the balancing conditions.

Assume first that n > 1. Give Cy the generically semisimple structure of Proposition
3.15. We are therefore in the setting of [GPM18, Theorem 2], which asserts that if
Oyv = 0y, for all generic simple objects V € Cy, then 6 is a ribbon structure on Ckg.
By Theorem 3.12 and the definition of Y, generic simple objects are typical Verma
modules. Consider then a (not necessarily simple) Verma module V|, ;). An argument
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using weights shows that there is an algebra isomorphism Endc¢,(V(, 5)) ~ C, whence
the morphism 6Oy, 1) 1 determined by the scalar by which it acts on the highest weight
vector vg. Using that the off-diagonal terms of the braiding do not contribute to Oy, v,
we compute

_ k(AL xi(A);
Oviip =4 Ay -

Lemma 3.5 and repeated use of equation (5) then gives E)V(X - O‘V,(Ap).
P )
When n = 0, the calculation of the previous paragraph shows that 8yv = 67, for all
simple objects V. (We may take X = @, so that all objects are generic.) Semisimplicity

of Cg then implies that 6v = 6¥ for all V € Cp. U
Example 3.17. By Proposition 3.11 and Theorem 3.12, one dimensional th(tR)—modules
are of the form Ct = S(kp) for weights (k, p) satisfying [x;(k)]; = 0 forall 1 <i <n.

Explicitly, (E k) 1S the one d1mens1ona1 module of weight (k, p) on which each E; and F;
act by zero. There are canonical isomorphisms

t t ~ t
C ko) @ Clhrpn) = Clky ki 452"

In particular, each one dimensional module is invertible. As in the proof of Theorem
3.16, we compute

6(]:t — q k k)+):,l 1)(1 idC,([kp)_ A

3.6. Open Hopf link invariants. Given V,V’ e Cy, define

Dy yr = (idy® evy) o (cy,y ®idyv) o (cyry ®idyv) o (idy® coevy) € Ende, (V).

In topological terms, @y v is the value of the Reshetikhin-Turaev functor F¢, on the
coloured open Hopf link
V’T

(‘jv.

Extend the definition of @y » to formal C-linear combinations of objects of Cy by
bilinearity. When End¢, (V') ~ C, write (®y ) € C for the scalar by which ®y y acts.

Lemma 3.18. Let (X, p’), (A, p) € t¥ x Z/2Z. The following equality holds:

n

S = A N7 n (v . v .
CDV(/\,,ﬁ,),V(/\'p) — (_1)p +1’Zq 2k V(A ,/\)+Z1:1 Xi(A+4) l_[(q)(z(/\) -q Xl(A))ldV(/\’ﬁ)'
i=1

Proof. Since Endc,(V(s ) = C, the morphism @y, , v, maps the highest weight

vector vy € V() ;) toa multlple of itself, whence the off diagonal terms of the braiding
do not contribute to @y, WV Vo With this comment in mind, we use the standard

weight basis of Verma modules to compute
B 5 —2kV(A A noxi(V I .2 icrxi(A);
Dy Vs = (=1)P g2 VA EL Kl )Z(_l) g Lier Xil )1dV(A,ﬁ)‘
I
It remains to apply the equality

n

Z(_l)fqziid)(i(/\) - (1- qZXi(/\))
I i=1

and simplify the result. O
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3.7. Unimodularity and modified traces. We henceforth add to Assumptions A and B
the following assumption.

Assumption C. The trivial representation appears in A°*R®@c A®R with multiplicity one.

In terms of the roots Qq,...,Q, of R, Assumption C is the statement that the sum
Q;+ Qj et” vanishes if and only if [ = ] = @.
The proof of the next result is a modification of that of [AGP21, Theorem 3.31].

Lemma 3.19. If the representation R satisfies Assumption C, then Cy is unimodular.

Proof. Since projectivity and injectivity coincide in Cy, it suffices to prove that the
injective hull of the trivial module C is self-dual.

Let A € t¥ be typical. Then V[, is projective and V|, 5 ® V(\//\ o) is a direct sum

of projective indecomposables, say @ZOP,'. Adjunction and simplicity of V|, 5, give
isomorphisms

Homg, (C, V(1,5 ® V(X’(-))) ~Ende,(V(1,5) = C.

The injective hull of C therefore appears in V(/\,())®V(/\ 0) with multiplicity one; relabeling
if necessary, denote this summand by F,.
By Lemma 3.5, the weight of v; ® v} € V(5@ V} ;5 )is =Qr + Q;. In particular, the

(4,
vectors

..... n}’ -
have weights Q(;, ) and —=Qy; ., respectively. Notmg that —Q; + Q; = Qyy,. ) if and
only1fQ1+Q ,,,,, ]—Oand QI+Q]——Q ,,,,, n) 1fandonly1fQ ..... \I+Q]—O
we see that Assumptlon C implies that v, spans the weight space of weight +Qq1,...n)

Hence, v, € P, and v_ € P; for some i and j. Self-duality of V|, ® V(X'(-)) and the

definitions of v, and v_ then imply that P, ~ P;. On the other hand, equations (22)
and (23) can be used to verify that F;, v, and Ej; _,v_ are U,;(tR)—invariant vectors
of V(1,5 ® V(\//\’(-)). Moreover, F;
,,,,, Vs is 1. Similarly, E(; _,v_ is non-zero; using equation (22), the coefficient of

vy ®vg in Efy,_,v_ is seen to be

.....

.....

. . . . \V .
,,,,, n)V+ is non-zero; the coefficient of v, ®v nin

.....

n

n(n-1) )
()77 gH SO (],

i=1

which is non-zero by typicality of . We conclude that F; v, and Ej;_,v_ are
non-zero elements of Fy. It follows that i = j and P, is self-dual. O

Assumption C implies Assumption B. Nevertheless, we prefer to think of them
as independent since Assumption B is necessary for relative modular constructions
(see Proposition 3.8), whereas Assumption C is a technical condition which ensures
unimodularity of Cg. In particular, all results which follow hold under Assumptions A
and B and the additional assumption that Cy is unimodular.

Example 3.20. (1) When n =1, Assumptions B and C are equivalent.

(2) Linear independence of the roots Qq,...,Q,, equivalently, injectivity of the
linear map Q : C" — C’, implies Assumption C. This class of examples is
complementary to the simple abelian N = 4 gauge theories of [BCDN23, §2.1],
which in the present language correspond to those (integer) matrices Q which
define surjective linear maps Q : C" — C".
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(3) Let r =1 and Q any root matrix which satisfies Assumptions A and B. Such a
theory is simple abelian. Then the root matrix |Q| whose entries are the absolute
values of those of Q satisfies Assumptions A, B and C. Note that Q and |Q| define
isomorphic symplectic representations TVR ~ TV|R| of t and so isomorphic Lie
superalgebras tp ~ tjg|, as explained in Section 2.3. It follows that Cr ~ Cjg| is
unimodular, even though R may not satisfy Assumption C. A concrete class of
examples (which in fact satisfy Assumption C) is given by the n x 1 matrices

Q=(1 --- 1). This examples corresponds to n copies of the U(1)-gauged
hypermultiplet of weight 1 or, in the language of [BCDN23, §2.1.5], the B-twist
of SQED,,.

(4) If no column of Q is zero and each row of Q has a well-defined sign, then
Assumption C holds. Arguing as in the previous example, it follows that any
matrix Q" which differs from Q by multiplying some of its columns by a sign
defines a unimodular category Cg/, even though Q" may not satisfy Assumption

C. A

Proposition 3.21. Up to a global scalar, there exists a unique modified trace tr on the ideal
of projective objects of Cy.

Proof. The category Cy, is a locally finite pivotal C-linear tensor category with enough
projectives. By [GKPM22, Corollary 5.6], the ideal of projectives has a non-trivial right
modified trace if and only if Cy is unimodular, in which case the right modified trace is
unique up to a global scalar. Unimodularity is proved in Lemma 3.19. By Proposition
3.14, Cg is braided. Hence, this right modified trace is a modified trace. O

Let A, A" e t¥ be typical. Cyclicity of the modified trace implies that

UV (CDVW,p'»V(A,p)) - trV(/\’,ﬁ’)((DV(/\,P)'V(A’,ﬁ’))'

By this and the first part of Lemma 3.18, we can normalize tr so that the modified
dimension of a typical Verma module is

d(Viap) = (1P [ @ =g 2), (30)
i=1

For later use, note that when A is typical Lemma 3.18 can be written as

o, q—2KV(A’,/\)+Z?:1 Xi(A+4)
CDV Vi = (_1)P+P +7
(A,p7) Y (A.p) d(V(/\,ﬁ))

idy,,,,. (31)

3.8. Modifications for 17,; (tg). Consider again the modified unrolled quantum group
ﬁ;(tR) of Definition 2.15.

Definition 3.22. A weight ﬁ;(tR)—module is a finite dimensional ﬁ;(tR)—module V on
which t acts semisimply and K,v = q**«v for all weight vectors v of weight \.

Let 8R be the category of weight ﬁg(tR)—modules and their ﬁ;(tR)—linear maps of
degree 0. Note that, in view of the modified relations (24), the operator equations
K, = q*%2 are required to have weight modules of dimension greater than one.

All results in Sections 3.1-3.7, and their proofs, carry over with only minor changes
in the modified setting. The changes result from the fact that the equations K, = g*%
imply that the action of K; on a vector v of weight A is given by

Kiv =g*xiMy, (32)
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For this reason, all appearances of x; in Sections 3.1-3.7 must be replaced with 2x;. We
record only the most important changes which result:

o A weight A €tY is atypical if and only if x;(A) € %;Z for some 1 <i <n.
e The exponential factor (28) in the braiding is replaced with

ZKV(/\W/\W)

Yywvew) =q" vVOw.

This is required to compensate for the additional factors of 2 resulting from the
actions of K; which appear in, for example, Ry .

e In view of the previous comment, additional factors of 2 scale both k¥ and ;
in formulae for the ribbon structure, open Hopf link invariants and modified
quantum dimensions. For example, on a one dimensional module (l:t 5 where

V-1
2

= 17 for all 1 <i < n, the ribbon automorphism is

now x;(k) €

Ot =g 2 kT2 xikig
(k.p) (k.p)

4. B-TwisTED ABELIAN GAIOTTO—WITTEN THEORY WITH COMPACT GAUGE GROUP

”\F sothatg=e . V-1 and ”;/E =1. We work with
the modified unrolled quantum group Uzq(tR) and its category Cg of weight modules,

as in Sections 2.6 and 3.8. We work under Assumptions A, B and C.

In this section we set i =

4.1. Basic set-up. Consider the following realization of the input data from Section 2.3.
Let (I', k) be an integral lattice of rank r > 1. Let t = I’ ®; C be the associated abelian Lie
algebra and Tr = t/T the resulting complex torus. For later use, let also T, r = (I ®7z R)/T
be the associated compact torus. The metric x induces metrics on t and the tori Tr and
T.r, all of which are again denoted by «. Let

IV:=Homgy(l,Z)~{Aet" | A(y)€Z Vy T}

be the dual lattice. Representations of t whose weights lie in I'V are precisely those
which integrate to representations of Tr.

Let R be a complex representation of t with roots Q;...Q, €t¥. We assume that Ay
satisfies

(A1) [G-grading] Ag cTV.
In representation theoretic terms, condition (A1) states that R integrates to a repre-
sentation of Tr. Moreover, condition (A1) implies that ty is the adjoint representation
of the complex Lie supergroup Gr with bosonic subgroup Tr and Lie superalgebra tg.
In terms of the category Cy, condition (A1) ensures that tracking weights modulo I'V
defines a grading of Cg by the torus G = t¥/I'V which is Langlands dual to Ty.

Let Z, be a subgroup of t¥ and set Z=Z,®Z/2Z, seen as a subgroup of t¥ & Z/27Z.
Consider the following conditions on Z;:

(A2) [Zin degree 0] Z, C rv.

(A3) [Existence of ] k" k A)eZforallkeZyand A eTV.

(A4) [Trivial ribbon] -« (k, k) + Y_", xi(k) € 2Z for all k € Z,.

(A5) [Finiteness] The 1ndex of Zy in T'V is finite.

Conditions (A1) and (A3) imply that )(l( ) =«xY(Q;,y) is an integer for each 1 <i <n.
Conditions (A2) and (A3) imply that xV(k, k) is an integer for all k € Z;. This in turn
implies that —«"(k, k) + Y1, x;(k) is an integer, of which condition (A4) is a further
refinement. As we will see below, conditions (A1)-(A5) are necessary for Z to be the
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weights of a free realization on 513,(, which is a part of a relative pre-modular structure

on Cg. The labeling of each condition indicates its relevance from this perspective.
Recall the effective metric kg introduced in Section 2.4.

Proposition 4.1. Let Z, be the image of T under the map «° : t — t. If the lattice T is
even integral with respect to the effective metric Keg, then Z = Zy & Z/2Z satisfies conditions
(A2)-(A5).

Proof. We verify each of the conditions. Given y €T, let w,, = ().

(A2) Since the lattice T is integral with respect to «, the map « : t — t" restricts to a
group homomorphism «” : T — I'V. Hence, w, €TV,
(A3) For each A €TV, the definitions of ¥V and «" give

KV (@,,4) = kY (x"(y), 1) = A(p).

It follows that k¥ (w,, ) € Z.
(A4) Using the definition of the effective metric, we compute

iV (wy,wy)+ ) Xilwy) = —Kesr(1, 1)+ ) xil@) ) (xilwy) + 1),
i=1 i=1

Since (T, k) is even integral and x;(w, ) is an integer, it follows that —Kv(a)y, wy )+
(A5) This follows from non-degeneracy of x. Indeed, the index in question is the
discriminant of «. O

4.2. Non-zero matter. In this section we assume that n > 1, so that R is not the zero
representation. The case n = 0 is treated in Section 4.4. Continue with the setting of
Section 4.1 so that G=tY/T" and Z, = im(x” : T — I'V). As in Proposition 4.1, assume
that (T, x.f) is even integral. Keeping the notation of Section 3.4, let X be the image of
x~1(Y) under the quotient map t¥ — G.

Proposition 4.2. The G-graded category Cr is generically semisimple with small symmetric
subset X. For A € G\ X, a completely reduced dominating set of C, i is

{Viap) | Ain class A pEZ/2Z).

Proof. Conditions (A2), (A3) and (A5) imply that x~'(Y) + Z, is finitely many translates
of x71(Y) and so a union countably many affine hyperplanes in tV; see the proof of
Proposition 3.8. It follows that x~!(Y) + Z; is small in t¥ which implies that X is small
in G.

Since the definition of X is such that any weight with image in G\ X is typical, the
remainder of the proposition can be proved in the same way as Proposition 3.15. [

Let D = coker(k” : T — I'V) be the discriminant group of the metric x. The group D is
finite abelian of order the absolute value of the determinant of any Gram matrix of «.
By an abuse of notation, we sometimes identify D with a subset of representatives in
I'Y which contains 0.

Proposition 4.3. The monoidal functor

. ~ 2] = t
o : Z g CR; (a)’)/lp) = O-(a)),,ﬁ) T C(a))ﬂp)

defines a free realization of Z in E"R,() and gives Cy the structure of a pre-modular G-category
relative to (Z,X).
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Proof. Recalling the computations from Example 3.17, we see that condition (A2)
ensures that each T(w,,,p) has G-degree 0. Conditions (A1) and (A3) imply that x;(y) =

kY(Q;,¥7) € Z,1 <i < n, which translates to the statement that Iaw,,,p)

and hence invertible. Finally, condition (A4) ensures that O, )= idg( .
(U)/, UJ)/;

Let A € G\ X with chosen lift A € t¥. In view of the completely reduced dominating

set of Proposition 4.2, we can take ©(A) = {V( ;1) | k € D}.

is one dimensional

Finally, for V € ER’;, we compute

—4xV (A w,):
( y)ldV®O‘(

Ca(ﬂ)y»ﬁ)’v © CV’G(wyrﬁ) 1 wy.p)’

where A € tV is any lift of A. We may therefore take for the required bicharacter
P:GxZ—C%, (A (wy,p)) — q_4’<v(‘”7”\).

Note that independence of i on the choice of lift follows from condition (A3).
In view of Propositions 3.21 and 4.2, this completes the proof. 0

Turning to relative modularity, let W e 5R’(). Recall that a morphism f € Endz (W) is

called transparent in 5R’() if

idU ®f =Cw,yo© (f ®idU) °Cy,w
and
f ®1dV =cy,wo (ldV ®f) oCw,v

forall U,V e 5R'().
The following result is a variation of [DRGPM20, Lemma 2.3].

Lemma 4.4. Let W € 51%,() and f € Enng(W) be transparent in (AJ'R,(). There exist an integer
m > 1, one dimensional modules ka, 5) € ER’() and morphisms g; € Hong(W, Czk- _,)) and

Pi
h; € Hong(kairﬁi)’ W), where 1 <i <m, such that f =Y " h;og;.
Proof. Consider V(g ) € ER,(’) with its highest weight vector v, and let w € W be a weight
vector. Because vy is annihilated by E;, I # @, the explicit form of the braiding shows
that CV(OV(-)),W(V@‘XW) is proportional to w®v,. Because f is transparent, CW,V(O_())(f(w)(XW@)
is proportional to v, ® f (w). Since {Fjvg |I C({1,...,n}} is a basis of V| 5, we conclude
that E;f(w)=0forall I = @.

Reversing the roles of E; and F; in Definition 3.4, define the Verma module of lowest
weight (A, p) € t¥ x Z/2Z by

— .77t _ —
Viup) = Uy (tR) 80y Ci

The module V(:\’ﬁ) has a homogeneous weight basis {Ejvg | I C {1,...,n}}, where v, =
1®1. Applying the argument of the previous paragraph with V(0,0) and its highest
weight vector v, replaced with V(B'(-)) and its lowest weight vector v, we conclude that
Fif(w)=0forall I #@.
It follows from the previous two paragraphs that
Ki-K;' =(q-q "E; F]

annihilates f(w). Writing A € tV for the weight of f(w), we conclude that g*¢Y =1,
1 <i <n. By Example 3.17, each homogeneous weight vector in the image of f spans a
one dimensional module, necessarily in degree 0 € G since the same is true of W. Since
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f factors through its image, which is a direct sum of its weight spaces, we obtain the
desired one dimensional modules and factorization of f. 0

Remark 4.5. As is evident from its proof, Lemma 4.4 does not require the full strength
of transparency: it suffices for f to satisfy one-sided versions of transparency only for
some (anti-)Verma modules U and V in degree 0. A

Theorem 4.6. The category 5R is a modular G-category relative to (Z,X) with stabilization
coefficients
A q—ZXi(/\)

n 2xi(

_ 21V (k,k) I I q

A, = Zq qZX,'(/Hk) — q—ZXi(/Hk)
keD i=1

and relative modularity parameter C = (—1)"|D|. Moreover, 51{ is TQFT finite.

Proof. The stabilization coefficients can be computed directly using Lemma 3.18 and
the formula for the ribbon automorphism given in the proof of Theorem 3.16.

For relative modularity, consider Definition 1.11 with h =y and g = A and V; =
Via,0) Vi = V(p,6) € I1- The morphism f; (4,5),(5,0) € Endg (V(a,0)® V ) determined by
the left hand side of diagram (2) is transparent in 51{ o, see [CGPM14 Lemma 5. 9].
Lemma 4.4 therefore ensures the existence of one dimensional modules (E (kipi) € CR 0
such that

m
FAa0,(8.0) = Zhyzm,ox(ﬁ,()),i © &7,(a,0),(8,0)i
i=1

for some morphisms

B _ . Vv t
87,(a,0),(8,0),i € HomcR(V( 0)® Vﬁ 0)’ C( ki,pi) )

— - —_—~ t V
My (2,00(8.0),i € Homg, (T 50, Via,0)® V5 5))

The set Iy is defined so that

~ t ~ ~ _ _ t
Homg, (Via,0)® V(s 5 Ck, ) = Homg, (Va0 Vig0) ® T )
t

is non-zero for a unique C, 5" Comparing weights gives p; = 0 and a =  +k;. It
follows that

Fr(@,0),(8,0) = Ca ﬁldcta 05 ® coevv( 0 ° e_V)V(a,(_)) (33)
for some scalar Ca,p € C. The modified trace of the right hand side of equation (33) is
qzz?:l Xi(“_ﬁ)ca,ﬁd(v(a,())), which vanishes if and only if ¢, g does. Fix a lift of y to y € tV.
By isotopy invariance and the defining properties of the modified trace, the modified
trace of the left hand side of equation (33) is

Zd (r+k 0T V507, (f(y+k,0),(,0),(8,0))

keD )

= d(Vis) ) d(Vipak0)tryy, e (Pyy o Viktr © PVl Vi)
keD

= d(Via0) ) dVipskd) Pv v oo X PV i)
peD

keD
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the final equality following from equation (31). The canonical isomorphism I’ ~T"V
implies that

q—41< (a-B,— —271\/71< - D — CX

is the trivial character if and only if a — f € im«”. Note however that the definition of

I; implies that & — § € im«? if and only if @ = . Fourier theory for the finite abelian
group D then gives

(=1)"d(Via,p)ID| if a =B,

EAT 0®V50) Fya008.0) = {o otherwise.

It follows that ¢, g = 0 unless a =  and we conclude that C = (=1)"|D| is a relative
modularity parameter.

Turning to TQFT finiteness (see Definition 1.14), note that Cy is locally finite abelian
with enough injectives and projectives. In particular, Cg is Krull-Schmidt and its
isomorphism classes of projective indecomposable objects are in bijection with its
isomorphism classes of simple objects [Kral5, Lemma 3.5]. Since the latter are in
bijection with t¥ x Z/2Z by Theorem 3.12, property (F1) holds by condition (A5).
Property (F2) follows from the fact that objects of Cg are finite dimensional weight
modules and property (F3) follows from the Krull-Schmidt property. g

Denote the relative modular category of Theorem 4.6 by ZR r and the TQFT resulting
from Theorem 1.13 by Z5 . In the remainder of this section, we argue that Z5

models the homological truncatlon of Chern-Simons-Rozansky—Witten theory of the
Hamiltonian T, r-manifold TVR at level « or, equivalently, the truncation of Chern-
Simons theory with gauge supergroup G.r at level «.

Remark 4.7. The braiding on the category VectqZ: is given by the pairing v on Z given by

V((wy, B), (@, ) = (=1)PP g 72507,

The decoupled factor (—1)P?" implies that forgetting the Z;-grading defines a monoidal
functor from Vecté to the category of super vector spaces. A

4.2.1. Topological flavour symmetry. The grading group G of the category 5er agrees
with the topological flavour symmetry group (also known as the magnetic flavour sym-
metry group) of the T, r-gauge theory underlying the Chern-Simons-Rozansky-Witten
theory of TVR. Following the general discussion of such symmetries in [GKSW15, §4],
this can be seen as follows. The current associated to the topological flavour symmetry
is the curvature F of the T, r-connection A; it is conserved due the Bianchi identity. The
infinitesimal action of this 0-form symmetry is implemented by surface integrals of
%F. For example, its action on a local operator O(x) is realized by integrating %F
over a 2-sphere S? linking the point x and hence measures the Chern number of the
gauge bundle sourced by O(x). In other words, operators charged under this symmetry
are magnetic monopoles. The weights for the topological flavour symmetry group,
that is, the allowed Chern numbers of gauge bundles on S2, are identified with the
cocharacter lattice I' ~ 71; (T, r) of T.r and hence the topological flavour symmetry
group is identified with Pontryagin dual I ~ t¥/TV ~ G, as claimed

Finite symmetry transformations are implemented by the topological surface opera-
tors given by exponentiated integrals of the curvature,

Ug—[Z]:exp(\/jéLF),
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where ¥ is a surface in 3-dimensional spacetime and § = £+T' € G. Importantly, if ¥ has
non-empty boundary, then the surface operator is bounded by an improperly-quantized
Wilson line [ALMRP92, GKSW15]; schematically, this is due to the relation

Ug[Z] = exp(ﬁsLP) = exp(‘/:cf aZA).

The way to interpret this formula is that a Wilson line labelled by the infinitesimal
weight &, that is, an object of the subcategory C, RT,» s not gauge invariant on its own
unless & € 'Y, that is, & is a weight of T,r. If £ ¢ T'Y, then the Wilson line must be
attached to the corresponding magnetic surface operator U;, whose support ¥ is extra
data necessary to define the Wilson line. The attached surface ¥ can be thought of as
the worldsheet of the electric analogue of a Dirac string [ALMRP92], which is visible
to magnetically charged local operators unless the Wilson line is properly quantized.

Line operators that are well-defined without the additional data of a topological
surface defect are called genuine while those that require this additional data are non-
genuine [KS14, §2]. A consistent network of such topological surface defects precisely
encodes (the holonomies of) a flat G-connection on the complement of the support
of these line operators or, equivalently, the Poincaré dual of this network realizes a
G-valued cohomology class w. This is the physical origin of the cohomology classes
which decorate objects and morphisms of Cob%ir.
4.2.2. Screening by gauge vortex lines. To describe the full, non-perturbative, theory the
effects of screening by gauge vortex lines must be included. Namely, the physically
inequivalent line operators in the non-perturbative theory are identified with Z-orbits
of objects in 51{’1‘. In particular, simple line operators are labelled by their weights
modulo screening, that is, elements of t¥/Z,. We note that all of these simple Wilson
lines introduce a monodromy in the bosonic gauge fields, a phenomenon familiar to
compact Chern-Simons theories [Wit89, §3.3]. The monodromy induced by simple line
operators is controlled by the map t¥/Z, — Ty induced by x*: t¥ — t. The simple line
operators in degree 0, that is, those line operators which source a flat connection for
the topological flavour symmetry with trivial holonomy, are thus genuine and labelled
by elements of the discriminant group D ~TV/Z,, as expected.

4.2.3. Orientations and spin structures. The boundary vertex operator algebras which
generalize those of [GN23] to the present setting have boundary monopole operators
with half-integral conformal weights/spins if and only if the lattice (I, k.¢) is not
even. In particular, if (T, x.¢) is even, then the physical theory is defined on oriented
3-manifolds; other wise a spin structures is required. Our evenness assumption in
Proposition 4.1 therefore matches physics predictions. When the lattice (I, kf) is odd,
we expect a spin analogue of Theorem 4.6 and the resulting TQFT ZER,F' along the lines

of [BCGPM14].

4.2.4. Verlinde formula. Let & = /(-1)"|D|. We compute the value of Z = Z5 on

Crr
trivial circle bundles over closed surfaces with insertions and relate the result to Euler

characteristics of state spaces of Z, yielding a Verlinde formula for Z.

LetS = (X, {p1,...,pm} w, L) be a decorated connected closed surface of genus g. Since
the Lagrangian subspace £ plays no role in what follows, we henceforth ignore it. For
each f € G, consider the decorated closed 3-manifold

S)(S/;. :(ZXSl,T:{pl,...,pm}xsltw®/§)r
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where we use the isomorphism
H'(ExSY)\T;0) ~ H'(Z\ {p;};G) @G

to extend w to w ® . Assuming that all colours of S x 8[1; have degree in G\ X, the

partition function Z(S x Sé) can be computed by the following surgery presentation:

1% Vin

Here V; = V{,,, 4,) is the colour of the point p; and @; = w(a;), ﬁ_] = w(b;) for a symplectic
basis {a;, b; | 1 <] < g} of Hi(X;Z). By applying equatlon ( 2) first to the Qg —coloured
strand and then to the Q ﬁ-j—coloured strand, we simplify the surgery presentatlon using
the equalities

2
= v—idv kD)
5 W0 7

(ﬁ+k,0)

where V(g1 ) is any colour appearing in (3. Applying this simplification for j =
1,...,g reduces the surgery presentation to an ()z-coloured unknot encircled by m
pairwise unlinked unknots coloured by Vi,..., V,,, whose associated scalar we denote
by (D, LO; ). Evaluating the simplified dlagram gives

Z(S x Sﬁ-) =828 Zd(\/(ﬁ+k,0)) _2g<®{vi},(zﬁ->-
keD

Setting p=Y ", p;and =) ", G;, we use Lemma 3.18 to compute

(stﬁ) (=1)(8*T+mn+d pjg=1 o= (B +2m Ly xi(B+2 1 xilp).

ZI_[(q2Xf(ﬁ+k) _ q—Z)(,'([j’+k))2g—2+m' (34)

keD i=1
Since Z(S x S;) is holomorphic in w, equation (34) holds whenever S is admissible.

Let s be a variable and ¢ = (tl, .,t,) a multivariable. For A = (14,...,1,) €tV, intro-
duce the notation t* = t{\ ;7. Given ﬁ e tV, we take specializing t to q‘4" ~P) to
mean setting each t1, 1 € tV, equal to =4 (MB) Write Zx,5)(S) for the homogeneous
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summand of Z(S) of degree (k,p) € Z and define the generating function of graded
dimensions

dim; 4 Z(S) = Z (1) dime 2t 5)(S)t5s”.
(k.p)ez

Theorem 4.8 (Verlinde formula). There is an equality

Z(S x s;.) = dim sy p) 1) Z(S).
Proof. Since this can be proved in the same way as [BCGPM16, Theorem 5.9] and [GY22,
Theorem 3.5], we omit the details. O

More explicitly, the right hand side of the equality of Theorem 4.8 reads
Y X(Z (e S)g P,
yel
where )((Z(wy,,)(S)) denotes the Euler characteristic of the Z/2Z-graded subspace of
Z(S) of Zy-degree w,,.

Example 4.9. Setting m = 0 in equation (34) gives

Z(SxS5)=(-1 g+1”|D|glz]_[ 20B+K) _ g=20i(p k282,

keD i=

Applying Theorem 4.8, we conclude that
o1 2g-2
= ;X(Z(“’V")(S = lljlm Z(S % S =|D| ,;!_[(2 sin( x;(k ) .
In particular, dimg¢ Z(S) = x(Z(S)) = |D| when g = 1. A

Remark 4.10. The Euler characteristic x(Z(S)) from Example 4.9 can be reproduced
physically by way of supersymmetric localization. See [CK19] and references therein for
a detailed overview of localization techniques and [CDGG24, §5] for an implementation
in a related context. In brief, this Euler characteristic can be realized as a sum over
solutions {y*} to the Bethe vacuum equations of the form

=) HEE
{7

where H denotes the handle-gluing operator. In the present context, the Bethe vacuum
equations take the form

l_[yKab 1)Xim Qai, 1<a<r

and the handle-gluing operator is

= |D|]:[((1 —]:l[ya “)(1 —1:[32;@“)),

from which the above formula for x(Z(S)) is a straightforward computation. A



GAIOTTO-WITTEN THEORY AND TQFT 37

4.3. Compact global forms of gl(1]|1)-Chern-Simons theory. Consider the special
case of Section 4.2 corresponding to Example 2.4, so that r = 2 and n = 1 with weight
Q= ((1)) and metric k = (1 0) The effective metric is ke = ( ) We identify tz with
gl(1]1), so that Ag =Z-NV and x;(A) = -Ag.

Let I' C t be a full rank lattice which is integral with respect to x and satisfies
condition (A1). As argued in [Mik15, §4.2], there exist unique integers s,t € Z., and
half integer u € %Z/SZ suchthatI'=2Z-y,®Z- y,, where

» = ;E, Vs = tN+%E.

We furthermore assume that (T, x.¢) is even, which translates to the condition that
2 . . . . . _ 0
t“ + 2u is an even integer. In the basis {yy, 7.}, the Gram matrix of x is B = (5 o ),

whence |D| = s?. The discriminant group is
D ~ Z/dleBZ/dQZ

where d; = gcd(s,2u) and d, = %. We compute
t 1
7/1V=—f—SNV+;EV: s = N7

and

_ S\gV _ Uy v
a)yl—zN ) a)yz—?N +tEY.

Denote by C, rr the relative modular category constructed in Theorem 4.6. The TQFT
2z, models Chern—-Simons theory with gauge supergroup G at level «, that is, a

global form of u(1]1)-Chern-Simons theory. Let Y € GL(2,Z) be a right Smith multiplier
for the Gram matrix B. Using the material recalled in Appendix A with the dual basis
{7, 75}, the result of Example 4.9 can be written as

di-1dy-1

t 2g-2
)((ZgRr ) =528~ 222(2sm Y111+Y21]) )) .

i=0 j=0
Example 4.11. Suppose that (s,t,u) = (1,t,u) with t2 4+ 2u € 27Z. Then D is the trivial
group and
0 ifg>2,

A
1 ifg=1.

X(Z2(5)) ={
Example 4.12. Let (s,t,u) = (5,1, 5) with s odd, so that d| =d, =sand D ~ Z/sZ&Z/sZ.

A right Smith multiplier for B=(%5)is Y = ( ) so that

s—1 s—1

X(EZ(S)) = 5282 Z(zsin((i —S]')n))Zg—z _ 21 Z(zsm(k:r))Zg—z _ (2;; 12)

i,j=0 k=0

the final equality following from [PBM86, Eqn. (4.4.2.1)]. In physical terms, this
example is Chern-Simons theory of a pair of U(1) gauge fields A* at levels +s coupled
to a B-twisted hypermultiplet Z* of (T,, T_)-weights +(1,—1). When the underlying
U(1)%-bundle is trivial, the action for a closed 3-manifold M reads

S(M):f (4n(A+/\dA+ A—AdA-)+z-AdAz+). A
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Example 4.13. Take (s, t,u) = (s,l,%) with s even, so that d; = 1 and d, = s? and
D ~ Z/s*Z. A right Smith multiplier for B = (0 s ) isY = ( s, sl ) so that

s s—1 —s+1 —s+2
2¢ 252_1 (—5+1)j”) 2872 o S (j”) 2872 ef28-2
X(Z(8)) =5 E (2sin _ ) =587 E (2sin — ) =s ( ) A
= = =0 ’ s

Remark 4.14. Another example of physical interest is (s,t,u) = (s,1,0), which corre-
sponds to the Chern-Simons theory of a hyperbolic pair of U(1) gauge fields AN, AF at
level s coupled to a B-twisted hypermultiplet Z* of (N, E)-weights +(1,0). The action is

S(M) = JM(ﬁ(AN NAAE + AEANdANY+ 2 AdAN®AEz+).

However, this example does not satisfy our assumptions since «.¢ is not even integral:
t2 + 2u = 1 is odd. Instead, we expect this example to define a spin TQFT. A

4.4. Zero matter and toral Chern-Simons theory. Consider the degenerate setting of
Section 4.1 in which R is the zero representation, that is, there is no matter. In this case
tg =t and there are no effective corrections, that is, x = k.g. B

Since Uiﬁl(t) is concentrated in degree 0, we consider its category C'" of finite
dimensional ungraded weight ﬁim(t)-modules. Here by ungraded we mean that these
are modules in the category of vector spaces, as opposed to super vector spaces. The
category C"" is semisimple with isomorphism classes of simple objects given by the one
dimensional modules V) = (Ef\ of weight A € t¥ (with no condition on 1). As in Section

4.2, grade C" by the dual torus G =tY/I'V and set Z=im(x”: T —TV).

Theorem 4.15. The category CU™ is a relative modular G-category with respect to (Z,X = @)
with with stabilization coefficients
A, = ZqTrZKV(k,k)

keD

and relative modularity parameter ¢ = |D|. Moreover, C™™ is TQFT finite.

Proof. Since C"™ is semisimple, we can take for the modified trace the standard trace.
Proposition 4.1 ensures that conditions (A2)-(A5) hold. We can therefore argue as in
Section 4.2 to prove that C"" is relative modular with the stated numerical invariants.

O

Remark 4.16. There is an analogue of Theorem 4.15 for the category C"" of ungraded
weight modules over the Ufl(t); see Remark 2.10. The results which follow can also be
proved in this context. A

Let Z~fm be the Z-graded TQFT associated to the relative modular structure of Theo-
rem 4.15. Since X = @, all decorated bordisms are admissible, that is Cob‘%ﬂn = Cobgun.

In particular, Zzn produces invariants of arbitrary decorated closed 3-manifolds.
T

Working in the same topological setting as Section 4.2.4, we find for the partition of
trivial circle bundles with insertions

Zaun(SxSf) = DI ) g2 Bk, (35)
keD

Proposition 4.17. Let S be a decorated surface of genus g > 1 with no marked points. Then
ngm(S) is concentrated in degree 0 € Z, where it has dimension |D|8.
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Proof. Specializing equation (35) to m = 0 gives Z’}m(s X Sé—) = |D|3. Taking the limit
B — 0 then gives )((Zggn(S)) = |D|8. It remains to prove that Z~lrm(8) is concentrated
in degree 0 € Z. A direct modification of the proof of [GY22, Theorem 3.3] applies
in the present setting to show that the homogeneous summand Zan,_k(S) of degree

—k € Z is spanned by colourings of degree k of a particular oriented trivalent spine,
denoted in loc. cit. by T, of a handlebody bounded by S. See [GY22, Definition 3.2].
Degree —k colourings are determined by solving a system of recursive equations, with
each equation governing a balancing condition associated to a node of T, that is, the
condition that the colour of the incoming edge appears as a summand of the tensor
product of the colours of the outgoing edges. Since the category Cun is pointed, the
colour of any two edges incident to a node uniquely determines the third. From this
one can verify directly that this system of equations admits a solution only if k =0. [

The theory Zg}m models T, r-Chern-Simons theory at level k. Note that the latter

theory is semisimple, so that no homological truncation is needed. More precisely,
whereas standard mathematical models of toral Chern-Simons theory incorporate only
genuine Wilson line operators, Zz un incorporates also non-genuine line operators, as

discussed in Section 4.2.1.

Recall that the standard Reshetikhin-Turaev approach to T, p-Chern-Simons theory
at level « is via the modular tensor category vectg(D, q) whose underlying abelian cate-
gory is finite dimensional D-graded vector spaces and whose associator and braiding
are determined by the quadratic form

q:D—->Q/Z, dw—«xV(d,d),

interpreted as an element of the abelian cohomology Hjb(D; Q/Z) [JS93, Sti08, KS11].
Physically, vectc(D, q) is the category of genuine Wilson line operators. For other
approaches to toral Chern-Simons theory, again incorporating only genuine line opera-
tors, see [DW90, Man98, FHLT10]. For a generalization to spin TQFTs when the lattice
(T, x) is odd, see [BMO5].

We explain how to recover vectg(D, q) from the relative modular category &}m and
hence the Reshetikhin—Turaev model from Zglrm. First, note that the ribbon subcategory
(7}1,% is naturally identified with the category of finite dimensional representations of
T.r and so as labels of genuine Wilson line operators in classical T, r-Chern—Simons
theory. Since the group Z acts freely on isomorphism classes of objects of 5}1“, we
can form the orbit category Cun/Z Explicitly, 51‘3'%/2 has the same objects as 5;% and
morphisms

Homcun/z V W @Homcun Gk ® V W)
kez
Isomorphism classes of simple objects of Cu“/Z are then in bijection with TY/Z~D. It
follows that the category of D-graded vector spaces is a skeleton of C“n /Z. Transferring
the ribbon structure from C‘m to this skeleton recovers the modular tensor category

vectg(D, q). Passing to the orb1t category C’r 3/Z, and so identifying classical line opera-

tors labeled representations in the same Z-orbit, is a non-perturbative quantum effect
implemented by monopole operators [KS11, §3.1].
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A standard model for the state space of a genus g surface ¥, in T, r-Chern-Simons
theory at level «, obtained by geometric quantization, is the space of holomorphic sec-
tions of a ©-line bundle over the moduli space of flat T, r-bundles on ¥,. Interpreting
these sections as theta functions associated to the lattice I" at level «, the state space is
seen to be of dimension |D|¢ [BL04, BM05], in agreement with Proposition 4.17.

5. ADDITIONAL RELATIVE MODULAR STRUCTURES

We continue to set 7 = ”\F and work with the category Cz. We work under Assump-
tions A, B and C. In this section, we consider various modifications of Section 4.1. Since
many of the proofs are similar to those of Section 4, we will at points be brief.

5.1. Abelian gauged N =4 hypermultiplets. Consider again Example 2.5. Fix a basis
§ @2:1 C-N,and letT = @2:1 Z-N,. Assumption A holds if and only if the matrix
Q) has integer entries. Assumptions B and C hold if and only if they hold with Q
replaced by Q). The effective metricon t = s®s" is

Kot = (CZ(R) 1d5v),

cang O

where ¢;(R) € End¢(s) is the quadratic Casimir of R; with respect to the above basis of
s, its entries are ¢;(R),, = Y1, Qij)ng).

Since Q®®) has integer entries, R lifts to a representation of the complex torus
Tr(s) = (' ®z C)/T. The above data determines a theory of Tc(’sf)—gauged N = 4 hy-
permultiplets with charge matrix the transpose of Q®) [BCDN23, §2] or, equivalently,
Chern-Simons-Rozansky—-Witten theory with non-compact gauge group Tc(jl) x " at
level x and holomorphic symplectic target TYR. A vertex operator algebra whose

(not necessarily local) modules model the category Cy of (not necessarily genuine)
line operators in such a theory was proposed in [BCDN23, §8]; a Kazhdan-Lusztig
correspondence for these boundary vertex operator algebras is currently being devel-
oped by Creutzig—Niu [CN24]. We note that the associated quantum groups can be
derived directly from the underlying field theory without passing through an auxiliary
vertex operator algebra [CDN24], and should be related to the ones described here by
uprolling [CR22]. As we explain below, we expect that the derived category of the full

ribbon subcategory 5}{“ of Cg consisting of ff\tﬁ(tR)—modules whose s-weights lie in

the integral lattice IV C sV is a full subcategory of Cg after quotienting by the free real-
ization Z below. We emphasize that objects of Cg are not subject to any semisimplicity
assumption on the action of the subalgebra s C t.

Since the lattice I' C t is not full rank, the present setting is not that of Section 4.1. In
particular, the groups I'V and

Aet|AMy)eZ VyeT) =TV es
differ. Here, and below, we identify ¥ with s. Since IV c TV @ s, we can grade 513 by

the group G =tY/TV@s ~ s¥/TV, which is known to be the topological flavour symmetry
of abelian gauged hypermultiplets.

Proposition 5.1. Let Z, be the image of T under the map x” : t — tV. If the integral lattice
I is even with respect to Keg, then Z = Zy @ Z/27Z satisfies conditions (A2)-(A4) but fails
condition (A5), where in each condition the group TV of Section 4.1 is replaced with TV @ s.

Proof. We discuss each condition. Given y €T, let w,, = ().
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(A2) Since « is hyperbolic and T C 5, we have w,, € sV ~gcCtV.SincescI'V@s, the
condition holds.

(A3) For each A €TV @3, we have «"(w,, A) = A(y) € Z.

(A4) As in Proposition 4.1, this follows from the even integrality of «..

(A5) This condition fails since the index in question is (uncountably) infinite. g

In particular, we do not obtain a relative modular structure on C, r or, for the same rea-
sons, its integral subcategory Cy". Theorem 3.12 implies that Z-orbits of isomorphism
classes of simple objects of C;“O are in bijection with 'V x s/T’. This agrees with the

classification of simple objects of the vertex algebraic model Cr [BCDN23, Corollary
8.3.1]. The braiding and twist of Cy"* are compatible with those of Cx [CN24].

Remark 5.2. The category Cg includes line operators sourcing background flat connec-
tions for the topological flavour symmetry group G but not the Higgs branch flavour
symmetry group. While the inclusion of the latter is a crucial ingredient in reproducing
physical expectations, it will not resolve the above lack of finiteness. See [CDGG24, §2]
for such an example (that violates Assumption B). A

5.2. Free realizations via ker y. We consider a slight generalization of Section 4.1. Fix

subgroups Ay and A of t¥. Consider the following conditions, where k € Ay and A € A:
(B1) [G-grading] Ag C A.

(B2) [Zin degree 0] Ay C A.

(B3) [Existence of ] xV(k, 1) € Z.

(B4) [Trivial ribbon] -« (k, k) + Y1, xi(k) € 2Z.

(B5) [Finiteness] The index of Ay in A is finite.

(

As in Section 4.1, the above conditions are necessary for tracking weights modulo
A to define a grading of Cg by the group G = t¥/A and for Z = Ay ® Z/27Z to be the
weights of a free realization on 8R,@ which is a part of a relative pre-modular structure
on Cg. In the restricted setting of Section 4.1, where A =TV and Ay =im(x”: T —TV),
the analogue of condition (B6) follows from conditions (A1) and (A3).

Assume that A is a subgroup of ker(x : t¥ — C") and let Aqg = A. Conditions (B2),
(B3), (B5) and (B6) then hold automatically. We assume that conditions (B1) and (B4)
hold as well. Since A C ker x, there is an induced group homomorphism x : G — H. By
Lemma 1.7, the preimage of Y under ) is a small symmetric subset of G which is also a
subgroup; call it X.

Theorem 5.3. The monoidal functor
0:Z— ER, (k,p) = o, p) = ka,ﬁ)

defines a free realization of Z on FCVRI() and gives Cg the structure of a modular G-category
relative to (Z,X) with stabilization coefficients A, = (£1)" and relative modularity parameter

C=(-1"
Proof. The definition of X is such that any weight with image in G\ X is typical. Generic

semisimplicity of Cg can therefore be proved in the same way as Proposition 3.15.
Conditions (B2) and (B6) ensure that each oy ;) has G-degree 0 and is one dimensional,

respectively. Condition (B4) ensures that Qg(k’p_) = id(,(k'ﬁ) for all (k,p) € Z. Let A € G\ X
with chosen lift A € t¥; any other lift is of the form A+k for a unique k € A. A completely



42 N. GARNER, N. GEER, AND M. B. YOUNG

reduced dominating set of Cy j is
{Viup) | Ainclass A, p € Z/27)
and we may take (1) = {V(1,0)}- The required bicharacter is
Y:GxZoCY, (4 (kp) g A,

This proves relative pre-modularity of Cx.

A direct computation using Lemma 3.18 shows that for 1 € G\ X with lift 1 e tV, we
have

A_=d(Vy, ))qu (4L A <CI)V(/\,('))’V(/\,0)> =(=1)"

and, similarly, A, = 1.

It remains to establish the existence of a relative modularity parameter. Consider
Definition 1.11 with h = ¥ and ¢ = A with V;, Vi = Vi10) € Ii. Applying the direct
analogue of Lemma 4.4, we can write the endomorphism of V(, 5, ® VY - determined

(1,0)
by the left hand side of diagram (2) as

f7,00,00,0,0) = Zhy-,u,ﬁ),u,()),i © 87,(1,0),(1,0),i
i=1
for some
o B ] t

_ _ . t _ Vv
hy,(1,0)(0,0)i € Homg, (T 50 V( 0)®V(/\,(_)))

and one dimensional modules C( ) € CR g- Clearly

_ Y t ~ . _ _ t
Homg (Vi1,0® V) 5 Ck,.5,)) = Homg, (Virop Vino) © Cyy, )

vanishes unless (k;, p;) = 0. It follows that

friaa10) € Homz (Vi @ V) 5,
20 © eVV . By [DR22, Proposition 1.2],

this proportionality constant is necessarily C = A, A_ = ( 1)
TQFT finiteness is proved as in Theorem 4.6. g

C) ~ Endg, (Vi15) ~ G

. . —
whence f; (1,6)(1,0) is proportional to coevy,, ;

5.2.1. Verlinde formula. Write 513;7( for the relative modular structure of Theorem 5.3.

Considering the analogue of Section 4.2.4, we find that Zng(S X Sﬂl-) is equal to
n

(—1)(FLemmtq g4t (B )+ 2m Ly i (B2 X1 xip) l_[(qz)(i(ﬁ) — g 2xilp)y2g=24m
i=1

The Verlinde formula takes the form ZgRX(S xSl (S).

ﬁ_) = dim(q_4KV(_'ﬁ)’1) Z5

CR,X

Example 5.4. Setting m = 0 gives

2, (8% )8+l nw]_[ 26(B) _ g2y x(S),

§) =
Applying the Verlinde formula, we conclude that dim¢ ZgRX(S ) = 2(28-2) and

1 ifg=1,
Zz (8)) = A
x( CR,X( ) {O if g> 2.
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5.3. psl(1|1)-Chern-Simons theory. Consider again the setting of Example 2.4, so that
tr ~ gl(1]1); see also Section 4.3. We have Az = Z-NV. The linear map x : C*> — C is
represented by the matrix (0 1) so that A :=ker y = C- NV contains Ag. This verifies
condition (B1). It follows that the restriction of k" to ker yx is trivial. In particular,
ker x is even integral with respect to k¥. Condition (B4) therefore also holds and we
obtain a relative modular category ER,X- The grading G is by E-weights and the free
realization Z consists of all one dimensional modules with vanishing E-weight. The
relative modular category C, R,x recovers that constructed from the representation theory
of the unrolled quantum group UH(gl(1|1)) at arbitrary parameter g [GY22, Theorem
2.16]. The TQFT Zz, models Chern Simons theory with gauge supergroup pol(lll)
coupled to background flat C*-connections, as studied in [Mik15]. Alternatively, Z

models the Rozansky-Witten theory of TVC with Higgs branch flavour symmetry (EX
which acts on TVC with weight 1 on the base and weight —1 on the fibre.

In particular, the results of this section allow us to effectively circumvent Assumption
B in the construction of abelian linear Gaiotto—Witten theories with compact gauge
group, given in Section 4. Indeed, if Assumption B does not hold, then the theory splits
as a product of the Gaiotto—Witten theory associated to the quotient representation
R/Hom(C, R) and dim¢ Hom{(C, R)-many copies of the Rozansky—Witten theory of
TVC. The former theory is treated in Section 4 while the latter—when considered with
Higgs branch flavour symmetry—is treated in this section.

APPENDIX A. REMINDERS ON LATTICES

Let k be a non-degenerate symmetric bilinear form on R". Let I' C R” be a full rank
integral lattice with basis {y1,...,7,}. The r xr Gram matrix of (I',«) is B = (B;;) =

(x(yi, 7)) with inverse B~ ' = (BY). Integrality of the lattice is the statement that B has
integer entries. If the diagonals of B are even integers, then I' is called even. The dual
lattice TV has basis {y/’,...,»,’}. There is an isomorphism

IV>{vel®;Qlx(v,y)€eZ VyeTl}, v ZBijyj. (36)

Let B = XBY be the Smith normal form of B, so that B = diag(d,,...,d,) is diagonal
with entries satisfying d;|d,|---|d, and the left and right Smith multipliers X and Y,
respectively, are in GL(r,Z). The isomorphism (36) gives

r r
ZXZ]Vk > d ZYijVjV,
k=1 =1

where X! = (X%). It follows that §; := Z]r-:l Yl-jij generates the ith factor of the
discriminant group

D = coker(x”: T —>TV) ~ @Z/diZ.
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