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Abstract: Selecting indexes capable of reducing the cost of query processing in database systems is 9 

a challenging task, especially in large-scale applications. Quantum computing has been investigated 10 

with promising results in areas related to database management, such as query optimization, trans- 11 

action scheduling and index tuning. Promising results have also been seen when reinforcement 12 

learning is applied for database tuning in classical computing. However, there is no existing re- 13 

search with implementation details and experiment results for index tuning that takes advantage of 14 

both quantum computing and reinforcement learning. This paper proposes a new algorithm called 15 

QRLIT that uses the power of quantum computing and reinforcement learning for database index 16 

tuning. Experiments using the database TPC-H benchmark show that QRLIT exhibits superior per- 17 

formance and a faster convergence compared to the classical counterpart. 18 

Keywords: Database; Indexing; Quantum computing; Quantum reinforcement learning; Grover’s 19 

search 20 

 21 

1. Introduction 22 

Executing queries in relational database applications with large amounts of data can 23 

take significant time. Database Management Systems (DBMS) offer various mechanisms 24 

to reduce query execution time. One such mechanism is the creation and management of 25 

indexes. Creating column indexes is a strategy that reduces the time required to search 26 

and retrieve data. However, this index selection problem, which is to find an optimal set 27 

of indices indexes (i.e. an optimal index configuration) for given database tables, is an NP- 28 

Hard hard problem [1,2].  This problem becomes more complex for large-scale database 29 

applications. Furthermore, the necessity for deleting, modifying, and inserting data may 30 

occur with considerable frequency, introducing further complexities to the problem. In- 31 

dexes are managed by the database administrator (DBA), who has the knowledge about 32 

the query workload to create an efficient index configuration. As the query workload 33 

changes, the DBA must reevaluate the index configuration. To reduce the burden on the 34 

DBA, various algorithms have been proposed to automate the process of tuning database 35 

indexes in classical computing. These include algorithms that use supervised machine 36 

learning techniques to learn what indexes have been used and how queries have been 37 

performed in the past from the given training data and predict what indexes should be 38 

created for the new query workload. Since training data is often difficult to obtain, there 39 

are index tuning algorithms that make use of reinforcement learning which does not de- 40 

pend on training data and learns as it goes [3-16]. 41 

Quantum computing is an emerging technology that transforms the way information 42 

is processed, offering significant potential advantages over classical systems enabled by 43 

the quantum theory principles such as superposition and entanglement. This has been 44 

verified by Shor’s algorithm [17] capable of factoring prime numbers in polynomial time 45 
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and by a quantum search algorithm proposed by Lov Grover [18] with the ability to per- 46 

form searches on unstructured data with complexity 𝑂(√𝑁) where 𝑁 is the number of 47 

elements in the search space. Additionally in database management, quantum computing 48 

has been investigated with promising results in several areas of database management, 49 

including query optimization and transaction scheduling [19] which are two other NP- 50 

Hard hard problems. 51 

However, an analysis of the current state of the art reveals that there are no studies 52 

that implement quantum reinforcement learning strategies with experimental results in 53 

the process of automating index tuning. To address this gap, in this paper, an existing 54 

index tuning algorithm for classical computers is implemented and a quantum-classical 55 

(hybrid) version, called Quantum Reinforcement Learning for database Index Tuning 56 

(QRLIT) that employs the capabilities of Grover’s search is proposed. The primary objec- 57 

tive is to compare the performance of the hybrid algorithm against its classical counter- 58 

part. 59 

The implemented classical algorithm [3,20] employs a machine learning technique 60 

called reinforcement learning [21]. It is composed of two principal elements, designated 61 

agent and environment. The agent learns to make decisions through interaction with the 62 

environment, using a trial-and-error learning method. The classical index tuning algo- 63 

rithm employs a technique called Epsilon-greedy [21] to balance the agent’s ability to ex- 64 

plore or follow its learned policy (exploiting). The proposed hybrid model replaces this 65 

technique with Grover’s search algorithm, which enables a probabilistic probability ap- 66 

proach and a natural balancing of the exploring-exploiting duality through the manipu- 67 

lation of the number of iterations.  68 

This paper contributes with a novel algorithm that combines quantum computing 69 

with reinforcement learning to automate the process of database index tuning. Further- 70 

more, a series of experiments demonstrate the advantages of using quantum computing 71 

over traditional system. The results obtained indicate that QRLIT converges faster to an 72 

optimal policy and is able to produce a higher reward, in terms of queries processed per 73 

hour, than its classical counterpart. 74 

The rest of the paper is organized as follows. Section 2 provides some background 75 

information. Sections 3 presents an overview of the state-of-the-art and the classical index 76 

tuning algorithm with its quantum counterpart implementation in Section 4. The experi- 77 

mental environment and results obtained from running both algorithms are detailed in 78 

Section 5. Finally, Section 6 concludes the paper and proposes directions for future work. 79 

2. Background 80 

The purpose of this section is to provide the necessary context and foundations to 81 

understand the quantum-classical implementation. This background explains reinforce- 82 

ment learning, the quantum computing foundations and the Grover’s quantum search 83 

algorithm. 84 

2.1. Reinforcement Learning 85 

In artificial intelligence, reinforcement learning is a branch inspired by the natural 86 

process of learning through reinforcement. Entities known as agents learn a policy 𝜋 that 87 

maps states of the environment to actions with the purpose of maximizing the value of 88 

accumulated rewards over time in a stochastic environment modeled by a Markov Deci- 89 

sion Process (MDP) [21]. An MDP is defined by a tuple with five elements (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), 90 

where 𝑆 represents the state space, 𝐴 the action space, 𝑃 the state transition function 91 

defining the dynamics of the MDP, 𝑅 the reward function, and 𝛾 a discount factor with 92 

0 ≤ 𝛾 ≤ 1 [21]. 93 

Q-learning is a modal-free algorithm used to solve reinforcement learning problems 94 

based on temporal-difference (TD) learning methods [21]. These methods involve learning 95 

to make optimal decisions directly from experiences without a model of the environment’s 96 
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dynamics [21]. The core idea behind this algorithm is to learn a tabular policy, known as 97 

a Q-table, which stores the values of actions for each state. These values, called Q-values, 98 

represent the quality of each action in a specific state. In other words, it refers to how 99 

effective that action is in obtaining a good reward. So, the greater the value, the higher the 100 

potential reward, and the better the action is considered. 101 

As a fundamental step in this algorithm, after the agent executes an action and re- 102 

ceives feedback from the environment (reward and new state), it is crucial to update its 103 

policy. This process uses Equation 2.1, where 𝑄(𝑠, 𝑎) represents the Q-value of the action 104 

𝑎 executed in state 𝑠, 𝛼 is the learning rate, 𝑟 is the reward obtained, 𝛾 is the discount 105 

rate that influences the impact of future rewards, and 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎′) represents the Q- 106 

value of the action with the highest value in the new state of the environment 𝑠′. 107 

TDError = r + γmaxaQ(s′, a′) − Q(s, a) 

Q(s, a) ← Q(s, a) + α(TDError) 
(2.1) 

In Q-learning, there is a limitation in balancing exploration and exploitation, as it is 108 

important to explore the environment’s states to prevent the agent from getting stuck in a 109 

local maximum. To find this balance, the algorithm can use a strategy known as Epsilon- 110 

greedy [21]. This strategy uses an exploration rate epsilon 𝜀, which decreases at the end 111 

of each episode. Therefore, with this algorithm (Equation 2.2), the agent explores with a 112 

probability of ε or follows the learned policy (exploits) with a probability of 1 − 𝜀. 113 

a = {
argmaxa∈A, with probability 1 − ε
randoma∈A, otherwise

 (2.2) 

2.2. Quantum Computing 114 

Based on the principles of quantum theory, such as superposition and entanglement, 115 

quantum computing offers great advantages over classical computing [17,18]. This section 116 

is organized into two subsections that introduce and describe the building blocks of quan- 117 

tum computing. It begins with the introduction of the system’s basic units and their math- 118 

ematical representation in Section 2.2.1. Then, the quantum logic gates are introduced 119 

which are responsible for operations on the information units in Section 2.2.2. 120 

2.2.1. Information Unit 121 

In the field of quantum computing, the fundamental unit of information is a quantum 122 

bit, or qubit. Similarly to classical bits, qubits operate in a two-level system, corresponding 123 

to states 0 and 1. However, in contrast to bits, which exist in a single state at a time, qubits 124 

can be simultaneously in both. This phenomenon, which is paradoxical from the perspec- 125 

tive of classical physics, is known as superposition. According to quantum theory, the 126 

precise state of a qubit in a superposition can only be identified through an observation 127 

or measurement, at which point it will collapse to one of its fundamental states, either 0 128 

or 1, with a certain probability [22]. 129 

Mathematically, the state of a qubit is described in Dirac notation as a linear combi- 130 

nation of the base states |0⟩ and |1⟩, as illustrated in Equation 2.3. The complex domain 131 

coefficients 𝛼 and 𝛽 represent the amplitudes of each state. The base states, designated 132 

by the symbols |0⟩ and |1⟩, are described in the expressions presented in Equation 2.4. 133 

The amplitudes of these states are either 0 or 1, depending on the state in question. How- 134 

ever, in the case of superposition, the values of 𝛼 and 𝛽 can be included within any ar- 135 

bitrary value in range between ]0, 1[. 136 

|ψ⟩ = α|0⟩ + β|1⟩ = [
α
β] (2.3) 

|0⟩ = [
1
0

] , |1⟩ = [
0
1

] (2.4) 
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A qubit can be represented on a sphere known as a Bloch sphere [22]. In this model, 137 

it is evident that the amplitudes of a quantum state are expressed in spherical coordinates, 138 

as described in Equation 2.5. 139 

|ψ⟩ = cos
θ

2
|0⟩ + (cosϕ + isinϕ)sin

θ

2
|1⟩ (2.5) 

Quantum state amplitudes, also known as probability amplitudes, define the proba- 140 

bility of a superposition qubit being observed in the state |0⟩ or |1⟩. The probability of 141 

finding the qubit in the state |0⟩ is calculated using Equation 2.6, while the probability of 142 

finding the qubit in the state |1⟩ is determined by Equation 2.7. 143 

P(|0⟩) = |α|2 (2.6) 

P(|1⟩) = |β|2 (2.7) 

|α|2 + |β|2 = 1 (2.8) 

In order to allow the encoding of more complex information in any computing sys- 144 

tem, it is essential to combine multiple units. In quantum computing, this combination is 145 

achieved through the tensor product of qubits. Equation 2.9 contains the notation for a 146 

system of two qubits, while Equation 2.10 presents the result of their tensor product. 147 

|ψ⟩ ⊗ |ω⟩ ≡ |ψ⟩|ω⟩ ≡ |ψω⟩ ≡ |ψ, ω⟩ (2.9) 

|ψ⟩ ⊗ |ω⟩ = (α|0⟩ + β|1⟩) ⊗ (γ|0⟩ + δ|1⟩) = [
α
β] ⊗ [

γ
δ] = [

α × γ
α × δ
β × γ
β × δ

]

= αγ|00⟩ + αδ|01⟩ + βγ|10⟩ + βδ |11⟩ 

(2.10) 

2.2.2. Quantum Logic Gates 148 

The ability to manipulate and control the amplitudes of the states of qubits is a fun- 149 

damental prerequisite for the implementation of a quantum computing process. This ma- 150 

nipulation is performed through quantum logic gates, or simply quantum gates, which 151 

allow the creation of quantum algorithms [22]. 152 

An operation is defined as a matrix that, through matrix multiplication, transforms 153 

one quantum state into another. Equation 2.11 provides a mathematical demonstration of 154 

this process, where 𝑈 represents the operation in question, |ψ1⟩ the initial state, and 155 

|ψ2⟩ the resulting state [22]. 156 

U|ψ1⟩ = |ψ2⟩ (2.11) 

A quantum gate that acts on several qubits is described by a matrix of dimensions 157 

2𝑛 × 2𝑛, where 𝑛 represents the number of qubits. The most common quantum gates are 158 

Pauli-X, Pauli-Z, Hadamard, Controlled NOT (CNOT or CX), and Controlled-Z, which 159 

are represented in matrices correspondingly in Equation 2.13. The Pauli-X gate performs 160 

state negation, which is equivalent to a NOT gate in classical computers, and Pauli-Z gate, 161 

also known as a phase-flip gate, transforms the |1⟩ state into −|1⟩. The Hadamard gate 162 

sets the qubit in superposition, mapping the base state as presented in Equations 2.12. The 163 

Controlled NOT is controlled by the state of a control qubit to perform the negation. In 164 

other words, the gate is activated only if the qubit is in state |1⟩. In conclusion, the Con- 165 

trolled-Z behaves in the same way as Controlled NOT, but in this case a phase-flip oper- 166 

ation is performed. 167 

H|0⟩ =
|0⟩ + |1⟩

√2
, H|1⟩ =

|0⟩ − |1⟩

√2
 (2.12) 
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[
0 1
1 0

] , [
1 0
0 −1

] ,
1

√2
[
1 1
1 −1

] , [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] ,

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] 

(2.13) 

2.3. Grover’s Search Algorithm 168 

Quantum computing can speed up various search processes on unordered data due 169 

to the ability to superposition quantum states, thus allowing the use of quantum parallel- 170 

ism. In 1996, a search algorithm that uses these quantum properties was proposed by Lov 171 

Grover [18]. Grover’s algorithm evaluates whether a given solution, called “good state”, 172 

is contained in the domain of 𝑁 possible solutions. By increasing the probability of the 173 

“good state” and reducing the probability of the remaining ones, it allows search with a 174 

time complexity 𝑂(√𝑁), presenting a great advantage in relation to the classical one with 175 

a time complexity 𝑂(𝑁). 176 

The algorithm is built with three main layers (Figure 2.1), each encapsulating a dif- 177 

ferent function. The initial layer, designated as State Preparation, initiates the process by 178 

placing all qubits into a superposition state. The Oracle, representing the second layer, 179 

encodes the “good state” and changes its signal (phase shift) through a combination be- 180 

tween Multiple Controlled Pauli-Z and Pauli-X gates [23]. Finally, the Amplification 181 

Layer, or Diffusion Operator, serves as a third layer and uses a combination of Hadamard, 182 

Multi Controlled Pauli-X, and Pauli-X gates [23]. Its function is to phase shift again and 183 

amplify the probability of obtaining the “good state” during the observation process. 184 

Following Grover’s definition, to achieve the maximum probability of measuring the 185 

good state, we need to add more iterations by repeating the layers two and three by 𝑡 186 

times (Equation 2.14) for a unique solution [24]. 187 

T = int(
π

4 √N −
1

2
), N = 2number of qubits (2.14) 

  188 

Figure 2.1. Circuit diagram of Grover’s algorithm layers (based on [24]). 189 

3. Related Work 190 

This section presents an overview of the current state of the art for classical index 191 

tuning algorithms that employ reinforcement learning and quantum index tuning algo- 192 

rithms. It concludes with a detailed description of the selected classical algorithm to be 193 

converted into a quantum version. 194 

3.1. Classical index tuning algorithms using reinforcement learning 195 

Nowadays, there has been a significant contribution in the domain of index tuning, 196 

which plays a fundamental role in the efficacy of database searches. 197 
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In [25], the authors synthesize the current state-of-art of this subject, referring various 198 

index optimization methods, including methods using Reinforcement Learning. The 199 

method COREIL [4] uses policy iteration as algorithm, while SMARTIX [3] uses linear Q- 200 

Learning. As an evolution of SMARTIX, the authors in [20] present an approach that cor- 201 

rects the implementation of the TPC-H benchmark [26], which involved the execution or- 202 

der of the queries being processed incorrectly, as it differed from that specified in the TPC- 203 

H documentation [27]; The methods NoDBA [5], Lan’s DQN [6], DRLindex [7], MANTIS 204 

[8] and DRLISA [9] implement Deep Q-Networks (DQN) as algorithm; Welborn’s index 205 

advisor [10] uses Sinkhorn Policy Gradient while SWIRL [11] the Proximal Policy Optimi- 206 

zation (PPO); BAIT [12] and AutoIndex [13] adopt Monte Carlo Tree Search (MCTS) and 207 

Lai’s PPO-MC [14] use Proximal Policy Optimization-Monte Carlo (PPO-MC); Finally, 208 

DBABandit [15] and HMAB [16] use a technique called de Multi-Armed Bandit (MAB) as 209 

an algorithm. 210 

The methods presented use a variety of approaches to solve the problem of automat- 211 

ing indexes, however they were designed for classical computers. 212 

3.2. Quantum algorithms for index tuning 213 

There exists little research in the area of quantum index tuning. The article [2] pro- 214 

poses the conversion of the classical algorithm DINA (Deep Reinforcement Divergent In- 215 

dex Advisor) [28] to a quantum version. However, the paper is at an early stage; it has not 216 

provided quantum implementation details and experimental results. 217 

Besides the capabilities that reinforcement learning provides to automate the index 218 

tuning problems, other techniques are used. The paper [29] leverages the capabilities of 219 

quantum annealers by proposing novel techniques to map the database indexes into the 220 

qubits of the quantum annealer. One technique exploits the qubits more efficiently by re- 221 

ducing the asymptotic qubit growth from quadratic to linear by incorporating additional 222 

auxiliary variables. The second technique is embedded within the transformation func- 223 

tion, where efficiency is achieved through a process of extensive pre-processing before the 224 

run time. This technique generates a library of embedding templates which cover a subset 225 

of index selection problem instances. 226 

The paper in [30] proposes SQIA, a quantum-classical (hybrid) index advisor that 227 

delivers optimal solutions with high probability by using a novel Grover Search-based 228 

approach. This approach implements an efficient quantum oracle used in the Grover 229 

search algorithm which loads the problem dada into the qubit phases. In other words, this 230 

technique loads and encodes the storage cost, benefits, and constraints. 231 

The present literature review reveals that, in addition to the vision paper proposing 232 

a quantum counterpart of DINA [21], there is currently no quantum counterpart imple- 233 

mentation with experimental results of index advisory using reinforcement learning. 234 

3.3. The Classical SMARTIX Algorithm 235 

The SMARTIX experiments presented by the authors [3] demonstrated a good bal- 236 

ance between the disk space utilized by its index configuration and the performance met- 237 

ric it can achieve, which led to the selection of its evolution [20] as the foundation for the 238 

development of a quantum version in our work. As the authors of [20] have made the 239 

source code publicly available on GitHub [31], our work is built on that code, containing 240 

the adaptations required to fit the quantum algorithm and preserving the original charac- 241 

teristics. For the environment, they utilize a scalable database benchmark, TPC-H [26], 242 

which offers a set of features. These features allow the generation of data for a predefined 243 

group of database tables and the construction of 22 instances of queries according to 22 244 

query templates. 245 

The TPC-H benchmark schema includes eight database tables, each with a distinct 246 

set of attributes. When these attributes are added together, the state space contains 45 of 247 

these being available for indexing. Each attribute has two possible actions (CREATE or 248 
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DROP), which generate a state space with a total of 90 actions, each encoded in a natural 249 

decimal value in the interval [0, 89]. 250 

The reward is defined by a TPC-H performance metric, expressed in queries-per- 251 

hour (QphH) (Equation 3.3), which is composed of two other metrics: Power and 252 

Throughput. The Power metric is designed to measure the computing speed of simple 253 

queries (Equation 3.2). The Throughput metric measures the capacity to process the max- 254 

imum number of queries in the shortest time using parallelism mechanisms (Equation 255 

3.1). 256 

The equations are composed of several elements. The quantity 3600 represents the 257 

number of seconds per hour, while the variable 𝑄𝐼(𝑖, 0) denotes the execution time of 258 

query 𝑖. The variable 𝑅𝐼(𝑗, 0) symbolizes the execution time of the refresh function 𝑗, 259 

which is responsible for inserting and removing records from the database. The variable 260 

𝑆 represents the number of query streams executed, 𝑆𝐹 the scale factor of the database, 261 

𝑇𝑠 the total time needed to run the throughput test for the 𝑆 streams, and finally, @𝑆𝑖𝑧𝑒 262 

represents the size of the database. 263 

Throughput@Size =
S × 22

Ts

× 3600 × SF (3.1) 

Power@Size =
3600

√∏ QI(i, 0) × ∏ RI(j, 0)2
i=1

22
i=1

24
× SF (3.2) 

QphH@Size = √Power@Size × Throughput@Size (3.3) 

 264 

To address the issue of a tabular policy, SMARTIX uses a variant of Q-learning, called 265 

Q-learning with linear feature approximation, as its reinforcement learning algorithm 266 

[32]. This policy is represented by a set of weights, collectively referred to as a feature 267 

vector. A feature is defined as an element of the state space or the action space, so the 268 

vector has a total of 135 weights, with an additional weight corresponding to a bias. 269 

To calculate the Q-value, Equation 3.4 must be used, where 𝜃 is the weight value 270 

and 𝑓𝑛(𝑠) is the value of each feature according to the current state of the environment. 271 

Q̂(a, s) ← θ0 + θ1f1(s) + θ2f2(s)+. . . +θnfn(s) (3.4) 

However, during the learning process, it is crucial to modify the agent’s policy. The 272 

algorithm uses the temporal difference strategy with gradient descent (Equation 3.5). 273 

θi ← θi + α(r + γmaxaQ̂θ(s′, a′) − Q̂θ(s, a))
∂Q̂θ(s′, a′)

∂θi

 (3.5) 

The SMARTIX algorithm works as follows: InitiallyFirst, the feature vector is popu- 274 

lated with random values, and the replay memory is set to an empty state. SecondlySec- 275 

ond, a cycle is initiated, based on a predefined number of episodes. In each episode, the 276 

database is set to an initial state 𝑠. Subsequently, a sequence of steps is initiated. In each 277 

step, the algorithm determines the action to be executed in the environment using the 278 

Epsilon-greedy strategy and executes that action. Then, the environment moves to the 279 

new state and returns the reward 𝑟 (QphH) and its new state 𝑠’. With the reward ob- 280 

tained, the algorithm updates the feature vector. The algorithm then stores the experience 281 

and selects a mini batch of experiences, and runs running a replay on this data. Finally, 282 

the new state becomes the current state, and the algorithm repeats the sequence of steps 283 

for each episode until the episodes reach the end. 284 

 285 

 286 
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4. QRLIT: The Quantum-Classical Implementation of the Classical SMARTIX Algo- 287 

rithm 288 

This section describes the implementation of our QRLIT algorithm, a hybrid quan- 289 

tum-classical version of SMARTIX. Initially, we present a method for combining Quan- 290 

tum Computing (QC) with Reinforcement Learning (RL), which serve as the basis for the 291 

development of QRLIT. Then, we provide a description of the process used to identify the 292 

components that were converted. Finally, we demonstrate and calculate compute the fun- 293 

damental values necessary essential for the construction of the quantum circuit, conclud- 294 

ing and conclude with the QRLIT flow diagram and pseudocode. 295 

Quantum Reinforcement Learning (QRL) is a method that combines the capabilities 296 

of QC and RL. Similar to the classical counterpart, Quantum Reinforcement Learning also 297 

includes a policy, a state space, an action space, and a reward function, but is inspired by 298 

the superposition principle and quantum parallelism [33]. Based on the novel algorithm 299 

proposed in [33] for QRL, the authors of the paper [34], propose an algorithm called Quan- 300 

tum Q-Learning (QQRL) that stores the policy in a superposition state and uses the 301 

Grover’s algorithm as a strategy to amplify the probability amplitude of the best action, 302 

based on the learned policy. Grover’s algorithm exploits the natural behavior of superpo- 303 

sition states and offers a good balance between exploration and exploitation. This balance 304 

can be achieved by controlling the number of Grover iterations 𝐿 through the learning 305 

process of the agent. In other words, as the agent learns and the number of iterations in- 306 

creases, the capacity to explore decreases until reaching the number of iterations 𝑡 (as 307 

defined in Equation 2.14), which maximizes the probability of measuring the “good” ac- 308 

tion. The number of iterations 𝐿 is determined by the formula in Equation 4.1 from [34], 309 

where 𝑘 represents a rate that controls the proportion of policy and reward contributions, 310 

and 𝑡 denotes the maximum number of possible iterations. 311 

L = min(int(k(r + maxa′Q(s′, a′))), t) (4.1) 

Our QRLIT implementation is based on the QQRL algorithm. Therefore, we identi- 312 

fied that the Epsilon-greedy procedure is replaced by the Grover search algorithm, keep- 313 

ing the remaining elements in a classical system. With Grover’s algorithm in QRLIT, we 314 

are capable not only to determine the actions to be executed in the environment, but also 315 

to naturally balance the agent's duality between exploration and exploitation. As previ- 316 

ously outlined in the Background section, the Grover's algorithm contains three distinct 317 

layers: State Preparation, Oracle, and Amplitude Amplification. In the State Preparation 318 

layer, we initiate the policy of the agent in a superposition state and in the Oracle, we 319 

encode the action with the highest Q-value in the current state of the environment. As the 320 

last layer, we implement the Amplitude Amplification which amplifies the probability 321 

amplitude to measure the action encoded in the Oracle. 322 

To run and build the Grover’s algorithm, it is crucial to identify how many qubits are 323 

required in the quantum register to encode the actions. We calculate the number of qubits 324 

by using the formula 𝑁𝑎 ≤ 2𝑛 ≤ 2𝑁𝑎 presented by the authors of the paper [33]. In this 325 

formula, 𝑁𝑎 represents the size of the action space, while 𝑛 denotes the number of qubits 326 

required to encode an action. We apply and solve the formula for a space of 90 actions 327 

and round off the excess, so that 𝑛 is equal to rounded in excess, resulting in 𝑛 to be 328 

equal to 7 (Equation 4.2). We then Then, we define the maximum number of Grover iter- 329 

ations, 𝑡. As the number of qubits is already calculated, 𝑁 is equal to 128, and therefore 330 

𝑡 equals to 8 (Equation 4.3). 331 

2n = Na ≡ n = log2(Na) ≡ n = log2(90) ≡ n ≈ 6.491 ≈ 7 (4.2) 

N = 2number of qubits ≡ N = 27 = 128 

t = int(
π

4 √N −
1

2
) ≡ t = int(

√128π

4
−

1

2
) ≡ t = int(8.386) = 8 

(4.3) 
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Figure 4.1. Flow diagram of the QRLIT algorithm 333 

As identified before, to create the QRLIT, we replace the Epsilon-greedy strategy in 334 

the classical algorithm with the Grover’s search (Line line 6 in Algorithm 1). Figure 4.1 335 

illustrates the interactions between the principal components of QRLIT. The agent com- 336 

ponent initiates the first interaction through the execution of Grover's algorithm, which 337 

returns the action 𝑎. In binary code, the action is converted to a decimal value and exe- 338 

cuted in the environment (Line line 7 in Algorithm 1). The environment then processes 339 

the value and transitions enters to a new state 𝑠′. In this new state, the benchmark is pre- 340 

pared by creating the necessary query instances using QGen to run the required query 341 

instances with QGen for the execution of the power and throughput tests. Once the bench- 342 

mark has been executed, the reward 𝑟 and the new state 𝑠′ of the environment are re- 343 

turned to the agent. With these two values, the agent calculates the number of Grover 344 

iterations 𝐿, selects the action of the new state that contains the highest Q-value and sends 345 

these values to the operation that builds the Grover algorithm circuit (Line line 8 in Algo- 346 

rithm 1). Then, the quantum circuit is constructed with all seven qubits initialized in the 347 

register in the state |0⟩. Our QRLIT proposal offers provides a natural balance between 348 

the exploration and exploitation, allowing for thus enabling a more effective learning; as 349 

the agent learns and adjusts its policy, the exploration rate decreases (Equation 4.1). Fur- 350 

thermore, given the properties of quantum parallelism paralleling and superposition 351 

states in Grover’s algorithm, this proposal provides offers another advantage: it is able to 352 

find an action faster (complexity of 𝑂(√𝑁)) (Line line 6 in Algorithm 1) than its classical 353 

counterpart (complexity of 𝑂(𝑁)). 354 

Algorithm 1 QRLIT algorithm with Grover’s search, function approximation and ex-

perience replay. Adapted from [3] and [34]. 

1: Random initialization of parameters 𝛩 

2: Empty initialization of replay memory D 

3: for each episode do 

4:    𝑠 ← DB initial index configuration mapped as initial state 

5:    for each step of episode do 

6:       𝑎 ← Run Grover algorithm on 𝑠 

7:       𝑠′, 𝑟 ← execute (𝑎) 

4
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8:       Build Grovers circuit with 𝐿 and 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 

9:       for 𝜃𝑖 ∈  Θ do 

10:          Update 𝜃𝑖 according to Equation 3.5 

11:       end for 

12:       Store experience 𝑒 = 〈𝑠, 𝑎, 𝑟, 𝑠′〉 in D 

13:       Sample random mini-batch of experiences 𝑒~D 

14:       Performance experience replay using sampled data 

15:       s ← s′ 

16:    end for 

17: end for 

5. Performance Evaluation 355 

This section presents the experiments conducted on the classical algorithm SMARTIX 356 

and its quantum-classical version QRLIT (source code in [35]), and the analyses performed 357 

on the results. It is organized into three subsections: Subsection 5.1 provides a detailed 358 

description of the environment used to execute the experiments, and Subsections 5.2 and 359 

5.3 presents the experiment results and their analysis. 360 

5.1. Experimental Model 361 

All experiments were conducted on a docker container with Ubuntu 22.04 in a 2021 362 

MacBook Pro, which is equipped with 16GB of RAM, 1TB of disk space, and an Apple M1 363 

Pro CPU with 10 cores. MySQL was used as DBMS, which implements the TPC-H bench- 364 

mark, while a simulator provided by the Qiskit SDK was used to build and execute the 365 

quantum algorithm. 366 

Additionally, in accordance to the TPC-H benchmark specification [27], 22 query in- 367 

stances were executed in the Power metric and 44 in the Throughput metric with 2 parallel 368 

streams (22 queries for each stream). This resulted in a total of 66 query instances being 369 

executed in each time step. The queries were generated through a tool provided by the 370 

TPC-H benchmark, designated as QGen. 371 

The experiments were carried out according to the parameter settings outlined in 372 

Table 5.1. The first parameter setting corresponds to the tests conducted in Subsection 5.2 373 

to study the overall performance of the algorithms when the database size is fixed at 10 374 

MB, while the second parameter setting corresponds to Subsection 5.3 to study the impact 375 

of the database sizes of 10 MB, 20 MB, 30 MB, 40 MB, 70 MB and 100 MB on the perfor- 376 

mance of the algorithms. In this second configuration, the number of episodes was re- 377 

duced to 25 in order to reduce the time required to execute the experiments. 378 

Table 5.1. Configuration parameters for the tests. 379 

Test Name Database size α γ k Episodes Steps Total time steps 

Overall Performance 10 MB 0.001 0.8 0.00017 50 100 5000 

Impact of Database Size 
10 MB, 20 MB, 30 MB, 

40 MB, 70 MB, 100 MB 
0.001 0.8 0.00017 25 100 2500 

5.2. Overall Performance 380 

In this section, experiments were conducted to study the overall performance of the 381 

two algorithms when the database is fixed at 10 MB. This study is based on the following 382 

metrics: number of queries processed per hour, episode execution time, temporal differ- 383 

ence error, and number of Grover iterations. The first metric defines the quality of the 384 

algorithms in terms of their ability to identify a policy that maximizes the cumulative re- 385 

ward (queries per hour) over time. The episode execution time metric measures the veloc- 386 

ity of the algorithms in executing an episode. The temporal difference error (TD Error) 387 

(Equation 2.1) metric demonstrates the algorithm's convergence to an optimal policy, in 388 
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other words, the closer the values are to 0, the better the policy is. Finally, the Grover 389 

iterations metric measures the relation between exploration and exploitation: the lower 390 

the value, the higher the rate of exploration relative to exploitation. This metric allows the 391 

analysis of the agent's exploration capacity, which is directly correlated with the number 392 

of iterations. 393 

The results obtained for each metric in each of 50 episodes for the two algorithms are 394 

shown in Figures 5.1-5.4. The average results of each metric over 50 episodes of the two 395 

algorithms are summarized in Table 5.2. The analysis of Figure 5.1 and Table 5.2 reveals 396 

that on average, the hybrid algorithm exhibits a higher number of queries processed per 397 

hour by 0.61% compared to its classical counterpart. 398 

Table 5.2. Comparison results of the average results of the Classical and Quantum-Classical algo- 399 
rithms for the database size of 10 MB. 400 

Metric Classical Quantum-Classical 
Increase in Quantum-

Classical over Classical 

Average Number of Queries Processed Per Hour (QphH) 735,715.44 740,267.11 0.61% 

Average Episode Execution Time (Seconds) 77.58 99.06 21.67% 

Average Temporal Difference Error -605.28 13.00 N/A 

Average Number of Grover Iterations N/A 7.53 N/A 

Besides that, from the analysis of Figure 5.2, the hybrid algorithm has a much faster 401 

convergence to a low temporal difference error showing a more stable learning, display- 402 

ing a temporal difference error trajectory closer to 0 (Table 5.2). 403 

To find a balance between exploring and exploiting, the classical algorithm imple- 404 

ments a strategy known as Epsilon-greedy. This strategy uses an exploration rate epsilon 405 

𝜀 = 0.9, which decreases with an exploration discount factor of 0.1 at the end of each epi- 406 

sode. Therefore, with this algorithm, the agent explores with a probability of 𝜀 or follows 407 

the learned policy (exploits) with a probability of 1 − 𝜀. In the case of the quantum-clas- 408 

sical algorithm, as the agent learns and adjusts its policy, the number of Grover Iterations 409 

also increases, consequently reducing the exploration probability (Equation 4.1) (Figure 410 

5.3). 411 

The quantum-classical algorithm provides a better index recommendation resulting 412 

in a higher number of queries processed per hour than the classical algorithm because, as 413 

the agent of the quantum-classical algorithm refines its policy through learning, the ex- 414 

ploration rate decreases. This leads to the decrease of unnecessary explorations and allows 415 

for more effective learning. However, the quantum-classical algorithm takes on average 416 

21.67% more time to complete an episode than its classical counterpart (Figure 5.4). This 417 

discrepancy is related to the additional computational overhead to create and execute the 418 

quantum circuit at each time step. The Figure 5.5 show the time required to build and 419 

execute the Grover’s Algorithm. 420 
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Figure 5.1. Number of queries processed per hour in each episode. 422 
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Figure 5.2. Average temporal difference error in each episode. 424 
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Figure 5.3. Grover iterations in each episode on hybrid algorithm. 426 
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Figure 5.4. Total execution time in each episode. 428 
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Figure 5.5. Average execution time to build and run the Grover Algorithm for each Grover Iteration 430 
in 20 executions in the quantum-classical algorithm. 431 

5.3. Impact of Database Sizes 432 

The purpose of this section is to examine the behavior of the algorithms across a range 433 

of database sizes, specifically 10 MB, 20 MB, 30 MB, 40 MB, 70 MB, and 100 MB. The met- 434 
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are directly related to the reward, they will also have smaller values. Thus, the smaller the 453 

policy and reward contribution, the smaller the number of iterations (Figure 5.8), which 454 

increases the exploration rate (Figure 5.9). Excessive exploration causes the agent not to 455 

follow the learned policy, resulting in a mostly random configuration of indexes as the 456 
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Figure 5.7. Impacts of database size on average temporal difference error. 466 
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Figure 5.8. Impacts of database size on average number of Grover iterations in the quantum-classical 468 
algorithm. 469 

 470 

Figure 5.9. Average probability distribution of actions in 1024 shots for each Grover iteration in 10 471 
executions in the quantum-classical algorithm. 472 
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 473 

Figure 5.10. Impact of database size on total execution time. 474 

6. Conclusions and Future Work 475 

This work presents the implementation of QRLIT, a hybrid quantum-classical ver- 476 

sion of SMARTIX [3]. The QRLIT demonstrated better performance than the classical 477 

counterpart in terms of number of queries processed per hour and a faster convergence to 478 

an optimal policy. By controlling the Grover iterations through the reward and the agent 479 

policy, as the agent refines its policy through learning, the exploration rate decreases, al- 480 

lowing for a superior temporal difference error convergence closer to zero with a more 481 

effective learning compared to its classical counterpart. However, as the value of 𝑘 con- 482 

trols the contribution of reward and policy to the number of Grover iterations, the increase 483 

in database size reveals the necessity to adjust this parameter manually to balance the 484 

exploration rate. This manual adjustment in an automatic system is a limitation because 485 

the reward (QphH) varies not only according to the size of the database, but also accord- 486 

ing to the quality and capacity of the machine’s hardware. 487 

As future work, we intend to analyze the behavior of the algorithms in databases 488 

with significant sizes and more queries. It would also be important to investigate their 489 

performance on distributed database systems. Finally, evaluating the execution of the 490 

quantum-classical algorithm on a real quantum computer is another direction for future 491 

research. 492 
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