

Future Internet 2024, 16, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/futureinternet

Article 1

QRLIT: Quantum Reinforcement Learning for Database Index 2

Tuning 3

Diogo Barbosa 1, Le Gruenwald 2, Laurent d’Orazio 3, Jorge Bernardino 1, * 4

1 Polytechnic University of Coimbra, ISEC; a21280925@isec.pt; jorge@isec.pt 5
2 University of Oklahoma, Oklahoma, USA; ggruenwald@ou.edu 6
3 University of Rennes, CNRS, IRISA, Lannion, France; laurent.dorazio@univ-rennes.fr 7
* Correspondence: jorge@isec.pt 8

Abstract: Selecting indexes capable of reducing the cost of query processing in database systems is 9

a challenging task, especially in large-scale applications. Quantum computing has been investigated 10

with promising results in areas related to database management, such as query optimization, trans- 11

action scheduling and index tuning. Promising results have also been seen when reinforcement 12

learning is applied for database tuning in classical computing. However, there is no existing re- 13

search with implementation details and experiment results for index tuning that takes advantage of 14

both quantum computing and reinforcement learning. This paper proposes a new algorithm called 15

QRLIT that uses the power of quantum computing and reinforcement learning for database index 16

tuning. Experiments using the database TPC-H benchmark show that QRLIT exhibits superior per- 17

formance and a faster convergence compared to the classical counterpart. 18

Keywords: Database; Indexing; Quantum computing; Quantum reinforcement learning; Grover’s 19

search 20

 21

1. Introduction 22

Executing queries in relational database applications with large amounts of data can 23

take significant time. Database Management Systems (DBMS) offer various mechanisms 24

to reduce query execution time. One such mechanism is the creation and management of 25

indexes. Creating column indexes is a strategy that reduces the time required to search 26

and retrieve data. However, this index selection problem, which is to find an optimal set 27

of indices indexes (i.e. an optimal index configuration) for given database tables, is an NP- 28

Hard hard problem [1,2]. This problem becomes more complex for large-scale database 29

applications. Furthermore, the necessity for deleting, modifying, and inserting data may 30

occur with considerable frequency, introducing further complexities to the problem. In- 31

dexes are managed by the database administrator (DBA), who has the knowledge about 32

the query workload to create an efficient index configuration. As the query workload 33

changes, the DBA must reevaluate the index configuration. To reduce the burden on the 34

DBA, various algorithms have been proposed to automate the process of tuning database 35

indexes in classical computing. These include algorithms that use supervised machine 36

learning techniques to learn what indexes have been used and how queries have been 37

performed in the past from the given training data and predict what indexes should be 38

created for the new query workload. Since training data is often difficult to obtain, there 39

are index tuning algorithms that make use of reinforcement learning which does not de- 40

pend on training data and learns as it goes [3-16]. 41

Quantum computing is an emerging technology that transforms the way information 42

is processed, offering significant potential advantages over classical systems enabled by 43

the quantum theory principles such as superposition and entanglement. This has been 44

verified by Shor’s algorithm [17] capable of factoring prime numbers in polynomial time 45

Citation: To be added by editorial

staff during production.

Academic Editor: Firstname Last-

name

Received: date

Revised: date

Accepted: date

Published: date

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Future Internet 2024, 16, x FOR PEER REVIEW 2 of 19

and by a quantum search algorithm proposed by Lov Grover [18] with the ability to per- 46

form searches on unstructured data with complexity 𝑂(√𝑁) where 𝑁 is the number of 47

elements in the search space. Additionally in database management, quantum computing 48

has been investigated with promising results in several areas of database management, 49

including query optimization and transaction scheduling [19] which are two other NP- 50

Hard hard problems. 51

However, an analysis of the current state of the art reveals that there are no studies 52

that implement quantum reinforcement learning strategies with experimental results in 53

the process of automating index tuning. To address this gap, in this paper, an existing 54

index tuning algorithm for classical computers is implemented and a quantum-classical 55

(hybrid) version, called Quantum Reinforcement Learning for database Index Tuning 56

(QRLIT) that employs the capabilities of Grover’s search is proposed. The primary objec- 57

tive is to compare the performance of the hybrid algorithm against its classical counter- 58

part. 59

The implemented classical algorithm [3,20] employs a machine learning technique 60

called reinforcement learning [21]. It is composed of two principal elements, designated 61

agent and environment. The agent learns to make decisions through interaction with the 62

environment, using a trial-and-error learning method. The classical index tuning algo- 63

rithm employs a technique called Epsilon-greedy [21] to balance the agent’s ability to ex- 64

plore or follow its learned policy (exploiting). The proposed hybrid model replaces this 65

technique with Grover’s search algorithm, which enables a probabilistic probability ap- 66

proach and a natural balancing of the exploring-exploiting duality through the manipu- 67

lation of the number of iterations. 68

This paper contributes with a novel algorithm that combines quantum computing 69

with reinforcement learning to automate the process of database index tuning. Further- 70

more, a series of experiments demonstrate the advantages of using quantum computing 71

over traditional system. The results obtained indicate that QRLIT converges faster to an 72

optimal policy and is able to produce a higher reward, in terms of queries processed per 73

hour, than its classical counterpart. 74

The rest of the paper is organized as follows. Section 2 provides some background 75

information. Sections 3 presents an overview of the state-of-the-art and the classical index 76

tuning algorithm with its quantum counterpart implementation in Section 4. The experi- 77

mental environment and results obtained from running both algorithms are detailed in 78

Section 5. Finally, Section 6 concludes the paper and proposes directions for future work. 79

2. Background 80

The purpose of this section is to provide the necessary context and foundations to 81

understand the quantum-classical implementation. This background explains reinforce- 82

ment learning, the quantum computing foundations and the Grover’s quantum search 83

algorithm. 84

2.1. Reinforcement Learning 85

In artificial intelligence, reinforcement learning is a branch inspired by the natural 86

process of learning through reinforcement. Entities known as agents learn a policy 𝜋 that 87

maps states of the environment to actions with the purpose of maximizing the value of 88

accumulated rewards over time in a stochastic environment modeled by a Markov Deci- 89

sion Process (MDP) [21]. An MDP is defined by a tuple with five elements (𝑆, 𝐴, 𝑃, 𝑅, 𝛾), 90

where 𝑆 represents the state space, 𝐴 the action space, 𝑃 the state transition function 91

defining the dynamics of the MDP, 𝑅 the reward function, and 𝛾 a discount factor with 92

0 ≤ 𝛾 ≤ 1 [21]. 93

Q-learning is a modal-free algorithm used to solve reinforcement learning problems 94

based on temporal-difference (TD) learning methods [21]. These methods involve learning 95

to make optimal decisions directly from experiences without a model of the environment’s 96

Formatted: Highlight

Future Internet 2024, 16, x FOR PEER REVIEW 3 of 19

dynamics [21]. The core idea behind this algorithm is to learn a tabular policy, known as 97

a Q-table, which stores the values of actions for each state. These values, called Q-values, 98

represent the quality of each action in a specific state. In other words, it refers to how 99

effective that action is in obtaining a good reward. So, the greater the value, the higher the 100

potential reward, and the better the action is considered. 101

As a fundamental step in this algorithm, after the agent executes an action and re- 102

ceives feedback from the environment (reward and new state), it is crucial to update its 103

policy. This process uses Equation 2.1, where 𝑄(𝑠, 𝑎) represents the Q-value of the action 104

𝑎 executed in state 𝑠, 𝛼 is the learning rate, 𝑟 is the reward obtained, 𝛾 is the discount 105

rate that influences the impact of future rewards, and 𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎′) represents the Q- 106

value of the action with the highest value in the new state of the environment 𝑠′. 107

TDError = r + γmaxaQ(s′, a′) − Q(s, a)

Q(s, a) ← Q(s, a) + α(TDError)
(2.1)

In Q-learning, there is a limitation in balancing exploration and exploitation, as it is 108

important to explore the environment’s states to prevent the agent from getting stuck in a 109

local maximum. To find this balance, the algorithm can use a strategy known as Epsilon- 110

greedy [21]. This strategy uses an exploration rate epsilon 𝜀, which decreases at the end 111

of each episode. Therefore, with this algorithm (Equation 2.2), the agent explores with a 112

probability of ε or follows the learned policy (exploits) with a probability of 1 − 𝜀. 113

a = {
argmaxa∈A, with probability 1 − ε
randoma∈A, otherwise

 (2.2)

2.2. Quantum Computing 114

Based on the principles of quantum theory, such as superposition and entanglement, 115

quantum computing offers great advantages over classical computing [17,18]. This section 116

is organized into two subsections that introduce and describe the building blocks of quan- 117

tum computing. It begins with the introduction of the system’s basic units and their math- 118

ematical representation in Section 2.2.1. Then, the quantum logic gates are introduced 119

which are responsible for operations on the information units in Section 2.2.2. 120

2.2.1. Information Unit 121

In the field of quantum computing, the fundamental unit of information is a quantum 122

bit, or qubit. Similarly to classical bits, qubits operate in a two-level system, corresponding 123

to states 0 and 1. However, in contrast to bits, which exist in a single state at a time, qubits 124

can be simultaneously in both. This phenomenon, which is paradoxical from the perspec- 125

tive of classical physics, is known as superposition. According to quantum theory, the 126

precise state of a qubit in a superposition can only be identified through an observation 127

or measurement, at which point it will collapse to one of its fundamental states, either 0 128

or 1, with a certain probability [22]. 129

Mathematically, the state of a qubit is described in Dirac notation as a linear combi- 130

nation of the base states |0⟩ and |1⟩, as illustrated in Equation 2.3. The complex domain 131

coefficients 𝛼 and 𝛽 represent the amplitudes of each state. The base states, designated 132

by the symbols |0⟩ and |1⟩, are described in the expressions presented in Equation 2.4. 133

The amplitudes of these states are either 0 or 1, depending on the state in question. How- 134

ever, in the case of superposition, the values of 𝛼 and 𝛽 can be included within any ar- 135

bitrary value in range between]0, 1[. 136

|ψ⟩ = α|0⟩ + β|1⟩ = [
α
β] (2.3)

|0⟩ = [
1
0

] , |1⟩ = [
0
1

] (2.4)

Future Internet 2024, 16, x FOR PEER REVIEW 4 of 19

A qubit can be represented on a sphere known as a Bloch sphere [22]. In this model, 137

it is evident that the amplitudes of a quantum state are expressed in spherical coordinates, 138

as described in Equation 2.5. 139

|ψ⟩ = cos
θ

2
|0⟩ + (cosϕ + isinϕ)sin

θ

2
|1⟩ (2.5)

Quantum state amplitudes, also known as probability amplitudes, define the proba- 140

bility of a superposition qubit being observed in the state |0⟩ or |1⟩. The probability of 141

finding the qubit in the state |0⟩ is calculated using Equation 2.6, while the probability of 142

finding the qubit in the state |1⟩ is determined by Equation 2.7. 143

P(|0⟩) = |α|2 (2.6)

P(|1⟩) = |β|2 (2.7)

|α|2 + |β|2 = 1 (2.8)

In order to allow the encoding of more complex information in any computing sys- 144

tem, it is essential to combine multiple units. In quantum computing, this combination is 145

achieved through the tensor product of qubits. Equation 2.9 contains the notation for a 146

system of two qubits, while Equation 2.10 presents the result of their tensor product. 147

|ψ⟩ ⊗ |ω⟩ ≡ |ψ⟩|ω⟩ ≡ |ψω⟩ ≡ |ψ, ω⟩ (2.9)

|ψ⟩ ⊗ |ω⟩ = (α|0⟩ + β|1⟩) ⊗ (γ|0⟩ + δ|1⟩) = [
α
β] ⊗ [

γ
δ] = [

α × γ
α × δ
β × γ
β × δ

]

= αγ|00⟩ + αδ|01⟩ + βγ|10⟩ + βδ |11⟩

(2.10)

2.2.2. Quantum Logic Gates 148

The ability to manipulate and control the amplitudes of the states of qubits is a fun- 149

damental prerequisite for the implementation of a quantum computing process. This ma- 150

nipulation is performed through quantum logic gates, or simply quantum gates, which 151

allow the creation of quantum algorithms [22]. 152

An operation is defined as a matrix that, through matrix multiplication, transforms 153

one quantum state into another. Equation 2.11 provides a mathematical demonstration of 154

this process, where 𝑈 represents the operation in question, |ψ1⟩ the initial state, and 155

|ψ2⟩ the resulting state [22]. 156

U|ψ1⟩ = |ψ2⟩ (2.11)

A quantum gate that acts on several qubits is described by a matrix of dimensions 157

2𝑛 × 2𝑛, where 𝑛 represents the number of qubits. The most common quantum gates are 158

Pauli-X, Pauli-Z, Hadamard, Controlled NOT (CNOT or CX), and Controlled-Z, which 159

are represented in matrices correspondingly in Equation 2.13. The Pauli-X gate performs 160

state negation, which is equivalent to a NOT gate in classical computers, and Pauli-Z gate, 161

also known as a phase-flip gate, transforms the |1⟩ state into −|1⟩. The Hadamard gate 162

sets the qubit in superposition, mapping the base state as presented in Equations 2.12. The 163

Controlled NOT is controlled by the state of a control qubit to perform the negation. In 164

other words, the gate is activated only if the qubit is in state |1⟩. In conclusion, the Con- 165

trolled-Z behaves in the same way as Controlled NOT, but in this case a phase-flip oper- 166

ation is performed. 167

H|0⟩ =
|0⟩ + |1⟩

√2
, H|1⟩ =

|0⟩ − |1⟩

√2
 (2.12)

Future Internet 2024, 16, x FOR PEER REVIEW 5 of 19

[
0 1
1 0

] , [
1 0
0 −1

] ,
1

√2
[
1 1
1 −1

] , [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] ,

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]

(2.13)

2.3. Grover’s Search Algorithm 168

Quantum computing can speed up various search processes on unordered data due 169

to the ability to superposition quantum states, thus allowing the use of quantum parallel- 170

ism. In 1996, a search algorithm that uses these quantum properties was proposed by Lov 171

Grover [18]. Grover’s algorithm evaluates whether a given solution, called “good state”, 172

is contained in the domain of 𝑁 possible solutions. By increasing the probability of the 173

“good state” and reducing the probability of the remaining ones, it allows search with a 174

time complexity 𝑂(√𝑁), presenting a great advantage in relation to the classical one with 175

a time complexity 𝑂(𝑁). 176

The algorithm is built with three main layers (Figure 2.1), each encapsulating a dif- 177

ferent function. The initial layer, designated as State Preparation, initiates the process by 178

placing all qubits into a superposition state. The Oracle, representing the second layer, 179

encodes the “good state” and changes its signal (phase shift) through a combination be- 180

tween Multiple Controlled Pauli-Z and Pauli-X gates [23]. Finally, the Amplification 181

Layer, or Diffusion Operator, serves as a third layer and uses a combination of Hadamard, 182

Multi Controlled Pauli-X, and Pauli-X gates [23]. Its function is to phase shift again and 183

amplify the probability of obtaining the “good state” during the observation process. 184

Following Grover’s definition, to achieve the maximum probability of measuring the 185

good state, we need to add more iterations by repeating the layers two and three by 𝑡 186

times (Equation 2.14) for a unique solution [24]. 187

T = int(
π

4 √N −
1

2
), N = 2number of qubits (2.14)

 188

Figure 2.1. Circuit diagram of Grover’s algorithm layers (based on [24]). 189

3. Related Work 190

This section presents an overview of the current state of the art for classical index 191

tuning algorithms that employ reinforcement learning and quantum index tuning algo- 192

rithms. It concludes with a detailed description of the selected classical algorithm to be 193

converted into a quantum version. 194

3.1. Classical index tuning algorithms using reinforcement learning 195

Nowadays, there has been a significant contribution in the domain of index tuning, 196

which plays a fundamental role in the efficacy of database searches. 197

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 19

In [25], the authors synthesize the current state-of-art of this subject, referring various 198

index optimization methods, including methods using Reinforcement Learning. The 199

method COREIL [4] uses policy iteration as algorithm, while SMARTIX [3] uses linear Q- 200

Learning. As an evolution of SMARTIX, the authors in [20] present an approach that cor- 201

rects the implementation of the TPC-H benchmark [26], which involved the execution or- 202

der of the queries being processed incorrectly, as it differed from that specified in the TPC- 203

H documentation [27]; The methods NoDBA [5], Lan’s DQN [6], DRLindex [7], MANTIS 204

[8] and DRLISA [9] implement Deep Q-Networks (DQN) as algorithm; Welborn’s index 205

advisor [10] uses Sinkhorn Policy Gradient while SWIRL [11] the Proximal Policy Optimi- 206

zation (PPO); BAIT [12] and AutoIndex [13] adopt Monte Carlo Tree Search (MCTS) and 207

Lai’s PPO-MC [14] use Proximal Policy Optimization-Monte Carlo (PPO-MC); Finally, 208

DBABandit [15] and HMAB [16] use a technique called de Multi-Armed Bandit (MAB) as 209

an algorithm. 210

The methods presented use a variety of approaches to solve the problem of automat- 211

ing indexes, however they were designed for classical computers. 212

3.2. Quantum algorithms for index tuning 213

There exists little research in the area of quantum index tuning. The article [2] pro- 214

poses the conversion of the classical algorithm DINA (Deep Reinforcement Divergent In- 215

dex Advisor) [28] to a quantum version. However, the paper is at an early stage; it has not 216

provided quantum implementation details and experimental results. 217

Besides the capabilities that reinforcement learning provides to automate the index 218

tuning problems, other techniques are used. The paper [29] leverages the capabilities of 219

quantum annealers by proposing novel techniques to map the database indexes into the 220

qubits of the quantum annealer. One technique exploits the qubits more efficiently by re- 221

ducing the asymptotic qubit growth from quadratic to linear by incorporating additional 222

auxiliary variables. The second technique is embedded within the transformation func- 223

tion, where efficiency is achieved through a process of extensive pre-processing before the 224

run time. This technique generates a library of embedding templates which cover a subset 225

of index selection problem instances. 226

The paper in [30] proposes SQIA, a quantum-classical (hybrid) index advisor that 227

delivers optimal solutions with high probability by using a novel Grover Search-based 228

approach. This approach implements an efficient quantum oracle used in the Grover 229

search algorithm which loads the problem dada into the qubit phases. In other words, this 230

technique loads and encodes the storage cost, benefits, and constraints. 231

The present literature review reveals that, in addition to the vision paper proposing 232

a quantum counterpart of DINA [21], there is currently no quantum counterpart imple- 233

mentation with experimental results of index advisory using reinforcement learning. 234

3.3. The Classical SMARTIX Algorithm 235

The SMARTIX experiments presented by the authors [3] demonstrated a good bal- 236

ance between the disk space utilized by its index configuration and the performance met- 237

ric it can achieve, which led to the selection of its evolution [20] as the foundation for the 238

development of a quantum version in our work. As the authors of [20] have made the 239

source code publicly available on GitHub [31], our work is built on that code, containing 240

the adaptations required to fit the quantum algorithm and preserving the original charac- 241

teristics. For the environment, they utilize a scalable database benchmark, TPC-H [26], 242

which offers a set of features. These features allow the generation of data for a predefined 243

group of database tables and the construction of 22 instances of queries according to 22 244

query templates. 245

The TPC-H benchmark schema includes eight database tables, each with a distinct 246

set of attributes. When these attributes are added together, the state space contains 45 of 247

these being available for indexing. Each attribute has two possible actions (CREATE or 248

Future Internet 2024, 16, x FOR PEER REVIEW 7 of 19

DROP), which generate a state space with a total of 90 actions, each encoded in a natural 249

decimal value in the interval [0, 89]. 250

The reward is defined by a TPC-H performance metric, expressed in queries-per- 251

hour (QphH) (Equation 3.3), which is composed of two other metrics: Power and 252

Throughput. The Power metric is designed to measure the computing speed of simple 253

queries (Equation 3.2). The Throughput metric measures the capacity to process the max- 254

imum number of queries in the shortest time using parallelism mechanisms (Equation 255

3.1). 256

The equations are composed of several elements. The quantity 3600 represents the 257

number of seconds per hour, while the variable 𝑄𝐼(𝑖, 0) denotes the execution time of 258

query 𝑖. The variable 𝑅𝐼(𝑗, 0) symbolizes the execution time of the refresh function 𝑗, 259

which is responsible for inserting and removing records from the database. The variable 260

𝑆 represents the number of query streams executed, 𝑆𝐹 the scale factor of the database, 261

𝑇𝑠 the total time needed to run the throughput test for the 𝑆 streams, and finally, @𝑆𝑖𝑧𝑒 262

represents the size of the database. 263

Throughput@Size =
S × 22

Ts

× 3600 × SF (3.1)

Power@Size =
3600

√∏ QI(i, 0) × ∏ RI(j, 0)2
i=1

22
i=1

24
× SF (3.2)

QphH@Size = √Power@Size × Throughput@Size (3.3)

 264

To address the issue of a tabular policy, SMARTIX uses a variant of Q-learning, called 265

Q-learning with linear feature approximation, as its reinforcement learning algorithm 266

[32]. This policy is represented by a set of weights, collectively referred to as a feature 267

vector. A feature is defined as an element of the state space or the action space, so the 268

vector has a total of 135 weights, with an additional weight corresponding to a bias. 269

To calculate the Q-value, Equation 3.4 must be used, where 𝜃 is the weight value 270

and 𝑓𝑛(𝑠) is the value of each feature according to the current state of the environment. 271

Q̂(a, s) ← θ0 + θ1f1(s) + θ2f2(s)+. . . +θnfn(s) (3.4)

However, during the learning process, it is crucial to modify the agent’s policy. The 272

algorithm uses the temporal difference strategy with gradient descent (Equation 3.5). 273

θi ← θi + α(r + γmaxaQ̂θ(s′, a′) − Q̂θ(s, a))
∂Q̂θ(s′, a′)

∂θi

 (3.5)

The SMARTIX algorithm works as follows: InitiallyFirst, the feature vector is popu- 274

lated with random values, and the replay memory is set to an empty state. SecondlySec- 275

ond, a cycle is initiated, based on a predefined number of episodes. In each episode, the 276

database is set to an initial state 𝑠. Subsequently, a sequence of steps is initiated. In each 277

step, the algorithm determines the action to be executed in the environment using the 278

Epsilon-greedy strategy and executes that action. Then, the environment moves to the 279

new state and returns the reward 𝑟 (QphH) and its new state 𝑠’. With the reward ob- 280

tained, the algorithm updates the feature vector. The algorithm then stores the experience 281

and selects a mini batch of experiences, and runs running a replay on this data. Finally, 282

the new state becomes the current state, and the algorithm repeats the sequence of steps 283

for each episode until the episodes reach the end. 284

 285

 286

Formatted: Highlight

Future Internet 2024, 16, x FOR PEER REVIEW 8 of 19

4. QRLIT: The Quantum-Classical Implementation of the Classical SMARTIX Algo- 287

rithm 288

This section describes the implementation of our QRLIT algorithm, a hybrid quan- 289

tum-classical version of SMARTIX. Initially, we present a method for combining Quan- 290

tum Computing (QC) with Reinforcement Learning (RL), which serve as the basis for the 291

development of QRLIT. Then, we provide a description of the process used to identify the 292

components that were converted. Finally, we demonstrate and calculate compute the fun- 293

damental values necessary essential for the construction of the quantum circuit, conclud- 294

ing and conclude with the QRLIT flow diagram and pseudocode. 295

Quantum Reinforcement Learning (QRL) is a method that combines the capabilities 296

of QC and RL. Similar to the classical counterpart, Quantum Reinforcement Learning also 297

includes a policy, a state space, an action space, and a reward function, but is inspired by 298

the superposition principle and quantum parallelism [33]. Based on the novel algorithm 299

proposed in [33] for QRL, the authors of the paper [34], propose an algorithm called Quan- 300

tum Q-Learning (QQRL) that stores the policy in a superposition state and uses the 301

Grover’s algorithm as a strategy to amplify the probability amplitude of the best action, 302

based on the learned policy. Grover’s algorithm exploits the natural behavior of superpo- 303

sition states and offers a good balance between exploration and exploitation. This balance 304

can be achieved by controlling the number of Grover iterations 𝐿 through the learning 305

process of the agent. In other words, as the agent learns and the number of iterations in- 306

creases, the capacity to explore decreases until reaching the number of iterations 𝑡 (as 307

defined in Equation 2.14), which maximizes the probability of measuring the “good” ac- 308

tion. The number of iterations 𝐿 is determined by the formula in Equation 4.1 from [34], 309

where 𝑘 represents a rate that controls the proportion of policy and reward contributions, 310

and 𝑡 denotes the maximum number of possible iterations. 311

L = min(int(k(r + maxa′Q(s′, a′))), t) (4.1)

Our QRLIT implementation is based on the QQRL algorithm. Therefore, we identi- 312

fied that the Epsilon-greedy procedure is replaced by the Grover search algorithm, keep- 313

ing the remaining elements in a classical system. With Grover’s algorithm in QRLIT, we 314

are capable not only to determine the actions to be executed in the environment, but also 315

to naturally balance the agent's duality between exploration and exploitation. As previ- 316

ously outlined in the Background section, the Grover's algorithm contains three distinct 317

layers: State Preparation, Oracle, and Amplitude Amplification. In the State Preparation 318

layer, we initiate the policy of the agent in a superposition state and in the Oracle, we 319

encode the action with the highest Q-value in the current state of the environment. As the 320

last layer, we implement the Amplitude Amplification which amplifies the probability 321

amplitude to measure the action encoded in the Oracle. 322

To run and build the Grover’s algorithm, it is crucial to identify how many qubits are 323

required in the quantum register to encode the actions. We calculate the number of qubits 324

by using the formula 𝑁𝑎 ≤ 2𝑛 ≤ 2𝑁𝑎 presented by the authors of the paper [33]. In this 325

formula, 𝑁𝑎 represents the size of the action space, while 𝑛 denotes the number of qubits 326

required to encode an action. We apply and solve the formula for a space of 90 actions 327

and round off the excess, so that 𝑛 is equal to rounded in excess, resulting in 𝑛 to be 328

equal to 7 (Equation 4.2). We then Then, we define the maximum number of Grover iter- 329

ations, 𝑡. As the number of qubits is already calculated, 𝑁 is equal to 128, and therefore 330

𝑡 equals to 8 (Equation 4.3). 331

2n = Na ≡ n = log2(Na) ≡ n = log2(90) ≡ n ≈ 6.491 ≈ 7 (4.2)

N = 2number of qubits ≡ N = 27 = 128

t = int(
π

4 √N −
1

2
) ≡ t = int(

√128π

4
−

1

2
) ≡ t = int(8.386) = 8

(4.3)

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 19

 332

Figure 4.1. Flow diagram of the QRLIT algorithm 333

As identified before, to create the QRLIT, we replace the Epsilon-greedy strategy in 334

the classical algorithm with the Grover’s search (Line line 6 in Algorithm 1). Figure 4.1 335

illustrates the interactions between the principal components of QRLIT. The agent com- 336

ponent initiates the first interaction through the execution of Grover's algorithm, which 337

returns the action 𝑎. In binary code, the action is converted to a decimal value and exe- 338

cuted in the environment (Line line 7 in Algorithm 1). The environment then processes 339

the value and transitions enters to a new state 𝑠′. In this new state, the benchmark is pre- 340

pared by creating the necessary query instances using QGen to run the required query 341

instances with QGen for the execution of the power and throughput tests. Once the bench- 342

mark has been executed, the reward 𝑟 and the new state 𝑠′ of the environment are re- 343

turned to the agent. With these two values, the agent calculates the number of Grover 344

iterations 𝐿, selects the action of the new state that contains the highest Q-value and sends 345

these values to the operation that builds the Grover algorithm circuit (Line line 8 in Algo- 346

rithm 1). Then, the quantum circuit is constructed with all seven qubits initialized in the 347

register in the state |0⟩. Our QRLIT proposal offers provides a natural balance between 348

the exploration and exploitation, allowing for thus enabling a more effective learning; as 349

the agent learns and adjusts its policy, the exploration rate decreases (Equation 4.1). Fur- 350

thermore, given the properties of quantum parallelism paralleling and superposition 351

states in Grover’s algorithm, this proposal provides offers another advantage: it is able to 352

find an action faster (complexity of 𝑂(√𝑁)) (Line line 6 in Algorithm 1) than its classical 353

counterpart (complexity of 𝑂(𝑁)). 354

Algorithm 1 QRLIT algorithm with Grover’s search, function approximation and ex-

perience replay. Adapted from [3] and [34].

1: Random initialization of parameters 𝛩

2: Empty initialization of replay memory D

3: for each episode do

4: 𝑠 ← DB initial index configuration mapped as initial state

5: for each step of episode do

6: 𝑎 ← Run Grover algorithm on 𝑠

7: 𝑠′, 𝑟 ← execute (𝑎)

4

5

action

3

reward

new state

6 action ,

Convert to

decimal

DROP or CREATE

index on attribute y

Prepare benchmark

with TPC-H QGen

new state

reward

Run Power@Size and

Throughput@Size tests

Run

Build circuit

action

1

2

Grover Algorithm

 7-bit code

7

iterations

action

AgentEnvironment

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Future Internet 2024, 16, x FOR PEER REVIEW 10 of 19

8: Build Grovers circuit with 𝐿 and 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴

9: for 𝜃𝑖 ∈ Θ do

10: Update 𝜃𝑖 according to Equation 3.5

11: end for

12: Store experience 𝑒 = 〈𝑠, 𝑎, 𝑟, 𝑠′〉 in D

13: Sample random mini-batch of experiences 𝑒~D

14: Performance experience replay using sampled data

15: s ← s′

16: end for

17: end for

5. Performance Evaluation 355

This section presents the experiments conducted on the classical algorithm SMARTIX 356

and its quantum-classical version QRLIT (source code in [35]), and the analyses performed 357

on the results. It is organized into three subsections: Subsection 5.1 provides a detailed 358

description of the environment used to execute the experiments, and Subsections 5.2 and 359

5.3 presents the experiment results and their analysis. 360

5.1. Experimental Model 361

All experiments were conducted on a docker container with Ubuntu 22.04 in a 2021 362

MacBook Pro, which is equipped with 16GB of RAM, 1TB of disk space, and an Apple M1 363

Pro CPU with 10 cores. MySQL was used as DBMS, which implements the TPC-H bench- 364

mark, while a simulator provided by the Qiskit SDK was used to build and execute the 365

quantum algorithm. 366

Additionally, in accordance to the TPC-H benchmark specification [27], 22 query in- 367

stances were executed in the Power metric and 44 in the Throughput metric with 2 parallel 368

streams (22 queries for each stream). This resulted in a total of 66 query instances being 369

executed in each time step. The queries were generated through a tool provided by the 370

TPC-H benchmark, designated as QGen. 371

The experiments were carried out according to the parameter settings outlined in 372

Table 5.1. The first parameter setting corresponds to the tests conducted in Subsection 5.2 373

to study the overall performance of the algorithms when the database size is fixed at 10 374

MB, while the second parameter setting corresponds to Subsection 5.3 to study the impact 375

of the database sizes of 10 MB, 20 MB, 30 MB, 40 MB, 70 MB and 100 MB on the perfor- 376

mance of the algorithms. In this second configuration, the number of episodes was re- 377

duced to 25 in order to reduce the time required to execute the experiments. 378

Table 5.1. Configuration parameters for the tests. 379

Test Name Database size α γ k Episodes Steps Total time steps

Overall Performance 10 MB 0.001 0.8 0.00017 50 100 5000

Impact of Database Size
10 MB, 20 MB, 30 MB,

40 MB, 70 MB, 100 MB
0.001 0.8 0.00017 25 100 2500

5.2. Overall Performance 380

In this section, experiments were conducted to study the overall performance of the 381

two algorithms when the database is fixed at 10 MB. This study is based on the following 382

metrics: number of queries processed per hour, episode execution time, temporal differ- 383

ence error, and number of Grover iterations. The first metric defines the quality of the 384

algorithms in terms of their ability to identify a policy that maximizes the cumulative re- 385

ward (queries per hour) over time. The episode execution time metric measures the veloc- 386

ity of the algorithms in executing an episode. The temporal difference error (TD Error) 387

(Equation 2.1) metric demonstrates the algorithm's convergence to an optimal policy, in 388

Future Internet 2024, 16, x FOR PEER REVIEW 11 of 19

other words, the closer the values are to 0, the better the policy is. Finally, the Grover 389

iterations metric measures the relation between exploration and exploitation: the lower 390

the value, the higher the rate of exploration relative to exploitation. This metric allows the 391

analysis of the agent's exploration capacity, which is directly correlated with the number 392

of iterations. 393

The results obtained for each metric in each of 50 episodes for the two algorithms are 394

shown in Figures 5.1-5.4. The average results of each metric over 50 episodes of the two 395

algorithms are summarized in Table 5.2. The analysis of Figure 5.1 and Table 5.2 reveals 396

that on average, the hybrid algorithm exhibits a higher number of queries processed per 397

hour by 0.61% compared to its classical counterpart. 398

Table 5.2. Comparison results of the average results of the Classical and Quantum-Classical algo- 399
rithms for the database size of 10 MB. 400

Metric Classical Quantum-Classical
Increase in Quantum-

Classical over Classical

Average Number of Queries Processed Per Hour (QphH) 735,715.44 740,267.11 0.61%

Average Episode Execution Time (Seconds) 77.58 99.06 21.67%

Average Temporal Difference Error -605.28 13.00 N/A

Average Number of Grover Iterations N/A 7.53 N/A

Besides that, from the analysis of Figure 5.2, the hybrid algorithm has a much faster 401

convergence to a low temporal difference error showing a more stable learning, display- 402

ing a temporal difference error trajectory closer to 0 (Table 5.2). 403

To find a balance between exploring and exploiting, the classical algorithm imple- 404

ments a strategy known as Epsilon-greedy. This strategy uses an exploration rate epsilon 405

𝜀 = 0.9, which decreases with an exploration discount factor of 0.1 at the end of each epi- 406

sode. Therefore, with this algorithm, the agent explores with a probability of 𝜀 or follows 407

the learned policy (exploits) with a probability of 1 − 𝜀. In the case of the quantum-clas- 408

sical algorithm, as the agent learns and adjusts its policy, the number of Grover Iterations 409

also increases, consequently reducing the exploration probability (Equation 4.1) (Figure 410

5.3). 411

The quantum-classical algorithm provides a better index recommendation resulting 412

in a higher number of queries processed per hour than the classical algorithm because, as 413

the agent of the quantum-classical algorithm refines its policy through learning, the ex- 414

ploration rate decreases. This leads to the decrease of unnecessary explorations and allows 415

for more effective learning. However, the quantum-classical algorithm takes on average 416

21.67% more time to complete an episode than its classical counterpart (Figure 5.4). This 417

discrepancy is related to the additional computational overhead to create and execute the 418

quantum circuit at each time step. The Figure 5.5 show the time required to build and 419

execute the Grover’s Algorithm. 420

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 19

 421

Figure 5.1. Number of queries processed per hour in each episode. 422

 423

Figure 5.2. Average temporal difference error in each episode. 424

Episodes

A
c
c
u

m
u
la

te
d
 Q

u
e
ri
e

s
-p

e
r-

H
o
u
r

(Q
p

h
H

)

0

200000

400000

600000

800000

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

Classical Quantum-Classical

Episode

T
e
m

p
o

ra
l
D

if
fe

re
n

c
e
 E

rr
o
r

-2000

-1000

0

1000

2000

3000

10 20 30 40 50

Classical Quantum-Classical

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 19

 425

Figure 5.3. Grover iterations in each episode on hybrid algorithm. 426

 427

Figure 5.4. Total execution time in each episode. 428

Episodes

G
ro

v
e
r

It
e
ra

ti
o
n
s

0.00

2.00

4.00

6.00

8.00

10 20 30 40 50

Average Lowest

Episodes

T
o
ta

l
E

x
e
c
u
ti
o

n
 T

im
e
 (

s
e
c
o
n

d
s
)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

Classical Quantum-Classical

Future Internet 2024, 16, x FOR PEER REVIEW 14 of 19

 429

Figure 5.5. Average execution time to build and run the Grover Algorithm for each Grover Iteration 430
in 20 executions in the quantum-classical algorithm. 431

5.3. Impact of Database Sizes 432

The purpose of this section is to examine the behavior of the algorithms across a range 433

of database sizes, specifically 10 MB, 20 MB, 30 MB, 40 MB, 70 MB, and 100 MB. The met- 434

rics employed in this analysis include the average number of queries processed per hour 435

of the 25 episodes for each database size, the number of Grover iterations, and the tem- 436

poral difference error of each algorithm. 437

The results obtained for each metric in each database size for the two algorithms are 438

shown in Figures 5.6-5.10. The average results of each metric over the database sizes of 439

the two algorithms are summarized in Table 5.3. The analysis for the database sizes also 440

indicates a superiority of the hybrid algorithm. The results in Table 5.3 and Figure 5.6 441

show that, on average, the hybrid algorithm yields a higher number of queries processed 442

per hour of 2.49% compared to its classical counterpart and displays a temporal difference 443

error trajectory closer to 0 (Figure 5.7). This trajectory is more evident in this analysis be- 444

cause the number of episodes is reduced by half, highlighting the importance of a faster 445

convergence. 446

Table 5.3. Comparison results of the classical algorithm and the quantum-classical algorithm with 447
different database sizes. 448

Metric Classical Quantum-Classical
Increase in Quantum-

Classical over Classical

Average Number of Queries Processed Per Hour (QphH) 607,650.60 623,136.44 2.49%

Average Database Size Test Execution Time (Seconds) 8,449.18 8,936.49 5.45%

Average Temporal Difference Error -603.56 13.78 N/A

Average Number of Grover Iterations N/A 6.27 N/A

Furthermore, it can also be observed that the number of queries processed per hour 449

decreases as the database size increases. This indicates that the size of the database affects 450

the number of QphH generated, in other words, the reward. Consequently, according to 451

Equation 4.1, which calculates the number of Grover’s iterations and since the Q-values 452

0.050
0.057

0.074

0.096

0.117

0.138

0.158

0.185

0.205

Grover Iterations

A
v
e

ra
g
e
 E

x
e
c
u

ti
o
n
 T

im
e
 (

s
e
c
o

n
d
s
)

0.000

0.050

0.100

0.150

0.200

0.250

0 1 2 3 4 5 6 7 8

Run Build

Future Internet 2024, 16, x FOR PEER REVIEW 15 of 19

are directly related to the reward, they will also have smaller values. Thus, the smaller the 453

policy and reward contribution, the smaller the number of iterations (Figure 5.8), which 454

increases the exploration rate (Figure 5.9). Excessive exploration causes the agent not to 455

follow the learned policy, resulting in a mostly random configuration of indexes as the 456

database size increases. 457

In conclusion, besides the average superiority verified by the quantum-classical al- 458

gorithm, the results in Figure 5.8 also demonstrates the need to adjust the parameter 𝑘, 459

which regulates the reward and policy contributions to the number of Grover’s iterations. 460

In this case, as the reward value decreases, it is necessary to increase the value of 𝑘 to 461

reduce the exploration rate. 462

 463

Figure 5.6. Impacts of database size on average number of queries processed per hour. 464

 465

Figure 5.7. Impacts of database size on average temporal difference error. 466

Database Size

A
c
c
u

m
u

la
te

d
 Q

u
e

ri
e

s
-p

e
r-

H
o

u
r

(Q
p

h
H

)

0

200000

400000

600000

800000

0.01 (10mb) 0.02 (20mb) 0.03 (30mb) 0.04 (40mb) 0.07 (70mb) 0.1 (100mb)

Classical Quantum-Classical

Database Size

A
v
e

ra
g

e
 T

e
m

p
o

ra
l
D

if
fe

re
n

c
e

 E
rr

o
r

-750

-500

-250

0

250

500

0.01 (1
0mb)

0.02 (2
0mb)

0.03 (3
0mb)

0.04 (4
0mb)

0.07 (7
0mb)

0.1 (1
00mb)

Classical Quantum-Classical

Future Internet 2024, 16, x FOR PEER REVIEW 16 of 19

 467

Figure 5.8. Impacts of database size on average number of Grover iterations in the quantum-classical 468
algorithm. 469

 470

Figure 5.9. Average probability distribution of actions in 1024 shots for each Grover iteration in 10 471
executions in the quantum-classical algorithm. 472

Database Size

A
v
e

ra
g

e
 N

u
m

b
e
r

o
f
G

ro
v
e

r
It

e
ra

ti
o
n
s

0.00

2.00

4.00

6.00

8.00

0.01 (1
0mb)

0.02 (2
0mb)

0.03 (3
0mb)

0.04 (4
0mb)

0.07 (7
0mb)

0.1 (1
00mb)

Grover Iterations

A
v
e
ra

g
e
 P

ro
b
a
b

ili
ty

 D
is

tr
ib

u
ti
o
n

0.000

0.250

0.500

0.750

1.000

1 2 3 4 5 6 7 8

Other actions Best action

Future Internet 2024, 16, x FOR PEER REVIEW 17 of 19

 473

Figure 5.10. Impact of database size on total execution time. 474

6. Conclusions and Future Work 475

This work presents the implementation of QRLIT, a hybrid quantum-classical ver- 476

sion of SMARTIX [3]. The QRLIT demonstrated better performance than the classical 477

counterpart in terms of number of queries processed per hour and a faster convergence to 478

an optimal policy. By controlling the Grover iterations through the reward and the agent 479

policy, as the agent refines its policy through learning, the exploration rate decreases, al- 480

lowing for a superior temporal difference error convergence closer to zero with a more 481

effective learning compared to its classical counterpart. However, as the value of 𝑘 con- 482

trols the contribution of reward and policy to the number of Grover iterations, the increase 483

in database size reveals the necessity to adjust this parameter manually to balance the 484

exploration rate. This manual adjustment in an automatic system is a limitation because 485

the reward (QphH) varies not only according to the size of the database, but also accord- 486

ing to the quality and capacity of the machine’s hardware. 487

As future work, we intend to analyze the behavior of the algorithms in databases 488

with significant sizes and more queries. It would also be important to investigate their 489

performance on distributed database systems. Finally, evaluating the execution of the 490

quantum-classical algorithm on a real quantum computer is another direction for future 491

research. 492

Acknowledgement 493

This work is supported in part by the National Science Foundation under Grant No. 2425838. 494

References 495

 496

1. M. P. Consens, K. Ioannidou, J. LeFevre and N. Polyzotis, "Divergent physical design tuning for replicated databases," in

Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, 49-60, p. 2012.

2. L. Gruenwald, T. Winker, U. Çalikyilmaz, J. Groppe and S. Groppe, "Index Tuning with Machine Learning on Quantum

Computers for Large-Scale Database Applications," in Joint Proceedings of Workshops at the 49th International Conference on

Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023, CEUR-WS.org, 2023.

Database Size

T
o
ta

l
E

x
e
c
u
ti
o

n
 T

im
e
 (

s
e
c
o
n

d
s
)

0.00

2,000.00

4,000.00

6,000.00

8,000.00

10,000.00

12,000.00

14,000.00

16,000.00

18,000.00

20,000.00

22,000.00

24,000.00

0.01 (10mb) 0.02 (20mb) 0.03 (30mb) 0.04 (40mb) 0.07 (70mb) 0.1 (100mb)

Classical Quantum-Classical

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 19

3. G. Paludo Licks, J. Colleoni Couto, et al., "SmartIX: A database indexing agent based on reinforcement learning," Applied

Intelligence, vol. 50, pp. 2575-2588, 2020.

4. Basu, Debabrota et al., "Cost-Model Oblivious Database Tuning with Reinforcement Learning," in Database and Expert

Systems Applications, Cham, Springer International Publishing, 2015, pp. 253-268.

5. A. Sharma, F. M. Schuhknecht and J. Dittrich, The Case for Automatic Database Administration using Deep Reinforcement

Learning, 2018.

6. H. Lan, Z. Bao and Y. Peng, "An Index Advisor Using Deep Reinforcement Learning," in Proceedings of the 29th ACM

International Conference on Information & Knowledge Management, New York, Association for Computing Machinery, 2020,

p. 2105–2108.

7. Z. Sadri, L. Gruenwald and E. Lead, "DRLindex: deep reinforcement learning index advisor for a cluster database," in

Proceedings of the 24th Symposium on International Database Engineering & Applications, New York, Association for

Computing Machinery, 2020, pp. 1-8.

8. V. Sharma, C. Dyreson and N. Flann, "MANTIS: Multiple Type and Attribute Index Selection using Deep Reinforcement

Learning," in Proceedings of the 25th International Database Engineering & Applications Symposium, New York, Association

for Computing Machinery, 2021, p. 56–64.

9. Y. Yan, S. Yao, H. Wang and M. Gao, "Index selection for NoSQL database with deep reinforcement learning," Information

Sciences, vol. 561, pp. 20-30, 2021.

10. J. Welborn, M. Schaarschmidt and E. Yoneki, Learning Index Selection with Structured Action Spaces, 2019.

11. J. Kossmann, A. Kastius and R. Schlosser, "SWIRL: Selection of Workload-aware Indexes using Reinforcement Learning.,"

in EDBT, 2022, pp. 2-155.

12. W. Wu, C. Wang, T. Siddiqui, J. Wang, V. Narasayya, S. Chaudhuri and P. A. Bernstein, "Budget-aware Index Tuning

with Reinforcement Learning," in Proceedings of the 2022 International Conference on Management of Data, New York,

Association for Computing Machinery, 2022, p. 1528–1541.

13. X. Zhou, L. Liu, W. Li, L. Jin, S. Li, T. Wang and J. Feng, "AutoIndex: An Incremental Index Management System for

Dynamic Workloads," in 2022 IEEE 38th International Conference on Data Engineering (ICDE), 2022, pp. 2196-2208.

14. S. Lai, X. Wu, S. Wang, Y. Peng and Z. Peng, "Learning an Index Advisor with Deep Reinforcement Learning," in Web and

Big Data, Springer International Publishing, 2021, pp. 178-185.

15. R. M. Perera, B. Oetomo, B. I. P. Rubinstein and R. Borovica-Gajic, "DBA bandits: Self-driving index tuning under ad-hoc,

analytical workloads with safety guarantees," in 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2021,

pp. 600-611.

16. R. M. Perera, B. Oetomo, B. I. P. Rubinstein and R. Borovica-Gajic, "HMAB: self-driving hierarchy of bandits for integrated

physical database design tuning," Proc. VLDB Endow., vol. 16, no. 2, p. 216–229, 2022.

17. P. Shor, "Algorithms for quantum computation: discrete logarithms and factoring," in Proceedings 35th Annual Symposium

on Foundations of Computer Science, 1994, pp. 124-134.

18. L. K. Grover, "Quantum Mechanics Helps in Searching for a Needle in a Haystack," Physical Review Letters, vol. 79, no. 2,

p. 325–328, 1997.

19. U. Çalikyilmaz, S. Groppe, J. Groppe, T. Winker, S. Prestel, F. Shagieva, D. Arya, F. Preis and L. Gruenwald,

"Opportunities for Quantum Acceleration of Databases: Optimization of Queries and Transaction Schedules," Proc. VLDB

Endow., vol. 16, no. 9, pp. 2344-2353, 2023.

20. M. Matczak and T. Czochański, "Intelligent Index Tuning Using Reinforcement Learning," in New Trends in Database and

Information Systems, Cham, Springer Nature Switzerland, 2023, pp. 523-534.

21. R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction," 2018, 2020. [Online]. Available:

http://incompleteideas.net/book/RLbook2020.pdf.

22. S. Groppe, "Quantum Computing," [Online]. Available: https://www.ifis.uni-luebeck.de/~groppe/lectures/qc.

23. IBM, "Tutorials: Grover's algorithm," [Online]. Available: https://learning.quantum.ibm.com/tutorial/grovers-algorithm.

24. IBM, "IBM Quantum Learning: Grover's algorithm," [Online]. Available:

https://learning.quantum.ibm.com/course/fundamentals-of-quantum-algorithms/grovers-algorithm.

25. Y. Wu, X. Zhou, Y. Zhang and G. Li, "Automatic Index Tuning: A Survey," IEEE Transactions on Knowledge and Data

Engineering, pp. 1-20, 2024.

26. TPC, "Transaction performance council website," 1998. [Online]. Available: https://www.tpc.org/.

Formatted: Highlight

Future Internet 2024, 16, x FOR PEER REVIEW 19 of 19

27. TPC, "TPC-H specifications," 2022. [Online]. Available:

https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf.

28. Z. Sadri and L. Gruenwald, "A Divergent Index Advisor Using Deep Reinforcement Learning," in Database and Expert

Systems Applications, Cham, Springer International Publishing, 2022, pp. 139-152.

29. I. Trummer and D. Venturelli, "Leveraging Quantum Computing for Database Index Selection," in Proceedings of the 1st

Workshop on Quantum Computing and Quantum-Inspired Technology for Data-Intensive Systems and Applications, New York,

Association for Computing Machinery, 2024, p. 14–26.

30. M. Kesarwani and J. R. Haritsa, "Index Advisors on Quantum Platforms," Proc. VLDB Endow., vol. 17, no. 11, p. 3615–

3628, 2024.

31. M. Matczak and T. Czochański, "Source Code: Intelligent Index Tuning Using Reinforcement Learning," [Online].

Available: https://github.com/Chotom/rl-db-indexing.

32. F. S. Melo and M. I. Ribeiro, "Q-Learning with Linear Function Approximation," in Learning Theory, Berlin, Heidelberg,

Springer Berlin Heidelberg, 2007, pp. 308-322.

33. D. Dong, C. Chen, H. Li and T.-J. Tarn, "Quantum Reinforcement Learning," IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), vol. 38, no. 5, pp. 1207-1220, 2008.

34. M. Ganger and W. Hu, "Quantum Multiple Q-Learning," International Journal of Intelligence Science, vol. 9, no. 1, pp. 1-22,

2019.

35. D. Barbosa, L. Gruenwald, L. d'Orazio and J. Bernardino, "Source Code: QRLIT," 2024. [Online]. Available:

https://github.com/DBarbosaDev/QRLIT.

 497

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au- 498
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 499
people or property resulting from any ideas, methods, instructions or products referred to in the content. 500

