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Abstract: Selecting indexes capable of reducing the cost of query processing in database systems is
a challenging task, especially in large-scale applications. Quantum computing has been investigated
with promising results in areas related to database management, such as query optimization, trans-
action scheduling and index tuning. Promising results have also been seen when reinforcement
learning is applied for database tuning in classical computing. However, there is no existing re-
search with implementation details and experiment results for index tuning that takes advantage of
both quantum computing and reinforcement learning. This paper proposes a new algorithm called
QRLIT that uses the power of quantum computing and reinforcement learning for database index
tuning. Experiments using the database TPC-H benchmark show that QRLIT exhibits superior per-
formance and a faster convergence compared to the classical counterpart.

Keywords: Database; Indexing; Quantum computing; Quantum reinforcement learning; Grover’s
search

1. Introduction

Executing queries in relational database applications with large amounts of data can
take significant time. Database Management Systems (DBMS) offer various mechanisms
to reduce query execution time. One such mechanism is the creation and management of
indexes. Creating column indexes is a strategy that reduces the time required to search
and retrieve data. However, this index selection problem, which is to find an optimal set
of indices-indexes (i.e. an optimal index configuration) for given database tables, is an NP-
Hard-hard problem [1,2]. -This problem becomes more complex for large-scale database
applications. Furthermore, the necessity for deleting, modifying, and inserting data may
occur with considerable frequency, introducing further complexities to the problem. In-
dexes are managed by the database administrator (DBA), who has the knowledge about
the query workload to create an efficient index configuration. As the query workload
changes, the DBA must reevaluate the index configuration. To reduce the burden on the
DBA, various algorithms have been proposed to automate the process of tuning database
indexes in classical computing. These include algorithms that use supervised machine
learning techniques to learn what indexes have been used and how queries have been
performed in the past from the given training data and predict what indexes should be
created for the new query workload. Since training data is often difficult to obtain, there
are index tuning algorithms that make use of reinforcement learning which does not de-
pend on training data and learns as it goes [3-16].

Quantum computing is an emerging technology that transforms the way information
is processed, offering significant potential advantages over classical systems enabled by
the quantum theory principles such as superposition and entanglement. This has been
verified by Shor’s algorithm [17] capable of factoring prime numbers in polynomial time
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and by a quantum search algorithm proposed by Lov Grover [18] with the ability to per- 46
form searches on unstructured data with complexity O(y/N) where N is the number of 47
elements in the search space. Additionally in database management, quantum computing 48
has been investigated with promising results in several areas of database management, 49
including query optimization and transaction scheduling [19] which are two other NP- 50
Hard-hard problems. 51

However, an analysis of the current state of the art reveals that there are no studies 52
that implement quantum reinforcement learning strategies with experimental results in 53
the process of automating index tuning. To address this gap, in this paper, an existing 54
index tuning algorithm for classical computers is implemented and a quantum-classical 55
(hybrid) version, called Quantum Reinforcement Learning for database Index Tuning 56
(QRLIT) that employs the capabilities of Grover’s search is proposed. The primary objec- 57
tive is to compare the performance of the hybrid algorithm against its classical counter- 58
part. 59

The implemented classical algorithm [3,20] employs a machine learning technique 60
called reinforcement learning [21]. It is composed of two principal elements, designated 61
agent and environment. The agent learns to make decisions through interaction with the 62
environment, using a trial-and-error learning method. The classical index tuning algo- 63
rithm employs a technique called Epsilon-greedy [21] to balance the agent’s ability to ex- 64
plore or follow its learned policy (exploiting). The proposed hybrid model replaces this 65

technique with Grover’s search algorithm, which enables a probabilistic prebabilitap- 66 {Formatted: Highlight

proach and a natural balancing of the exploring-exploiting duality through the manipu- 67
lation of the number of iterations. 68

This paper contributes with a novel algorithm that combines quantum computing 69
with reinforcement learning to automate the process of database index tuning. Further- 70
more, a series of experiments demonstrate the advantages of using quantum computing 71
over traditional system. The results obtained indicate that QRLIT converges faster to an 72
optimal policy and is able to produce a higher reward, in terms of queries processed per 73
hour, than its classical counterpart. 74

The rest of the paper is organized as follows. Section 2 provides some background 75
information. Sections 3 presents an overview of the state-of-the-art and the classical index 76
tuning algorithm with its quantum counterpart implementation in Section 4. The experi- 77
mental environment and results obtained from running both algorithms are detailed in 78
Section 5. Finally, Section 6 concludes the paper and proposes directions for future work. 79

2. Background 80

The purpose of this section is to provide the necessary context and foundations to 81
understand the quantum-classical implementation. This background explains reinforce- 82
ment learning, the quantum computing foundations and the Grover’s quantum search 83
algorithm. 84

2.1. Reinforcement Learning 85

In artificial intelligence, reinforcement learning is a branch inspired by the natural 86
process of learning through reinforcement. Entities known as agents learn a policy m that 87
maps states of the environment to actions with the purpose of maximizing the value of 88
accumulated rewards over time in a stochastic environment modeled by a Markov Deci- 89
sion Process (MDP) [21]. An MDP is defined by a tuple with five elements (S,4,P,R,y), 90
where S represents the state space, A the action space, P the state transition function 91
defining the dynamics of the MDP, R the reward function, and y a discount factor with 92
0<y<1][21] 93

Q-learning is a modal-free algorithm used to solve reinforcement learning problems 94
based on temporal-difference (TD) learning methods [21]. These methods involve learning 95
to make optimal decisions directly from experiences without a model of the environment’s 96
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dynamics [21]. The core idea behind this algorithm is to learn a tabular policy, known as 97
a Q-table, which stores the values of actions for each state. These values, called Q-values, 98
represent the quality of each action in a specific state. In other words, it refers to how 99
effective that action is in obtaining a good reward. So, the greater the value, the higher the 100
potential reward, and the better the action is considered. 101
As a fundamental step in this algorithm, after the agent executes an action and re- 102
ceives feedback from the environment (reward and new state), it is crucial to update its 103
policy. This process uses Equation 2.1, where Q(s,a) represents the Q-value of the action 104
a executed in state s, a is the learning rate, r is the reward obtained, y is the discount 105
rate that influences the impact of future rewards, and max,Q(s’,a’) represents the Q- 106
value of the action with the highest value in the new state of the environment s'. 107
TDError = r + ymax,Q(s’,a") — Q(s,a) ’1
Q(s,a) < Q(s,a) + a(TDError) @D
In Q-learning, there is a limitation in balancing exploration and exploitation, as itis 108
important to explore the environment’s states to prevent the agent from getting stuckina 109
local maximum. To find this balance, the algorithm can use a strategy known as Epsilon- 110
greedy [21]. This strategy uses an exploration rate epsilon &, which decreases at the end 111
of each episode. Therefore, with this algorithm (Equation 2.2), the agent explores witha 112

probability of € or follows the learned policy (exploits) with a probability of 1 — . 113
argmax,ea, with probability 1 — €
= { . 2.2)
randomye,, otherwise
2.2. Quantum Computing 114

Based on the principles of quantum theory, such as superposition and entanglement, 115
quantum computing offers great advantages over classical computing [17,18]. This section 116
is organized into two subsections that introduce and describe the building blocks of quan- 117
tum computing. It begins with the introduction of the system’s basic units and their math- 118
ematical representation in Section 2.2.1. Then, the quantum logic gates are introduced 119
which are responsible for operations on the information units in Section 2.2.2. 120

2.2.1. Information Unit 121

In the field of quantum computing, the fundamental unit of information is a quantum 122
bit, or qubit. Similarly to classical bits, qubits operate in a two-level system, corresponding 123
to states 0 and 1. However, in contrast to bits, which exist in a single state at a time, qubits 124
can be simultaneously in both. This phenomenon, which is paradoxical from the perspec- 125
tive of classical physics, is known as superposition. According to quantum theory, the 126
precise state of a qubit in a superposition can only be identified through an observation 127
or measurement, at which point it will collapse to one of its fundamental states, either 0 128
or 1, with a certain probability [22]. 129

Mathematically, the state of a qubit is described in Dirac notation as a linear combi- 130
nation of the base states |0) and [1), as illustrated in Equation 2.3. The complex domain 131
coefficients & and B represent the amplitudes of each state. The base states, designated 132
by the symbols |0) and |1), are described in the expressions presented in Equation 2.4. 133
The amplitudes of these states are either 0 or 1, depending on the state in question. How- 134
ever, in the case of superposition, the values of @ and f can be included within any ar- 135
bitrary value in range between ]0, 1]. 136

W) = al0) + BI1) = [g] 2.3)

0y = [é].ll> = [(1)] 2.4)
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A qubit can be represented on a sphere known as a Bloch sphere [22]. In this model,
it is evident that the amplitudes of a quantum state are expressed in spherical coordinates,
as described in Equation 2.5.

) = cosg |10) + (cosd + isind))sing 11) (2.5)

Quantum state amplitudes, also known as probability amplitudes, define the proba-
bility of a superposition qubit being observed in the state |0) or |1). The probability of
finding the qubit in the state |0) is calculated using Equation 2.6, while the probability of
finding the qubit in the state |1) is determined by Equation 2.7.

P(|0)) = |af? (2.6)
P(|1) = |BI? (2.7)
la® + B> =1 (2.8)

In order to allow the encoding of more complex information in any computing sys-
tem, it is essential to combine multiple units. In quantum computing, this combination is
achieved through the tensor product of qubits. Equation 2.9 contains the notation for a
system of two qubits, while Equation 2.10 presents the result of their tensor product.

1) @ [0) = [Wlw) = [he) = 14, 0) 29)
a Xy
8

1) ® ) = (@0} +BI1) ® (10} +811) = [ ® 5] = |5 .10
Bx§

= ay|00) + a8|01) + By|10) + B5 |11)

2.2.2. Quantum Logic Gates

The ability to manipulate and control the amplitudes of the states of qubits is a fun-
damental prerequisite for the implementation of a quantum computing process. This ma-
nipulation is performed through quantum logic gates, or simply quantum gates, which
allow the creation of quantum algorithms [22].

An operation is defined as a matrix that, through matrix multiplication, transforms
one quantum state into another. Equation 2.11 provides a mathematical demonstration of
this process, where U represents the operation in question, |[P1) the initial state, and
|$2) the resulting state [22].

Uly1) = [42) @11)

A quantum gate that acts on several qubits is described by a matrix of dimensions
2" x 2™, where n represents the number of qubits. The most common quantum gates are
Pauli-X, Pauli-Z, Hadamard, Controlled NOT (CNOT or CX), and Controlled-Z, which
are represented in matrices correspondingly in Equation 2.13. The Pauli-X gate performs
state negation, which is equivalent to a NOT gate in classical computers, and Pauli-Z gate,
also known as a phase-flip gate, transforms the |1) state into —|1). The Hadamard gate
sets the qubit in superposition, mapping the base state as presented in Equations 2.12. The
Controlled NOT is controlled by the state of a control qubit to perform the negation. In
other words, the gate is activated only if the qubit is in state |1). In conclusion, the Con-
trolled-Z behaves in the same way as Controlled NOT, but in this case a phase-flip oper-
ation is performed.
H|O)=M, H|1)=M (2.12)
V2 V2
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2.3. Grover’s Search Algorithm

Quantum computing can speed up various search processes on unordered data due
to the ability to superposition quantum states, thus allowing the use of quantum parallel-
ism. In 1996, a search algorithm that uses these quantum properties was proposed by Lov
Grover [18]. Grover’s algorithm evaluates whether a given solution, called “good state”,
is contained in the domain of N possible solutions. By increasing the probability of the
“good state” and reducing the probability of the remaining ones, it allows search with a
time complexity O(y/N), presenting a great advantage in relation to the classical one with
a time complexity O(N).

The algorithm is built with three main layers (Figure 2.1), each encapsulating a dif-
ferent function. The initial layer, designated as State Preparation, initiates the process by
placing all qubits into a superposition state. The Oracle, representing the second layer,
encodes the “good state” and changes its signal (phase shift) through a combination be-
tween Multiple Controlled Pauli-Z and Pauli-X gates [23]. Finally, the Amplification
Layer, or Diffusion Operator, serves as a third layer and uses a combination of Hadamard,
Multi Controlled Pauli-X, and Pauli-X gates [23]. Its function is to phase shift again and
amplify the probability of obtaining the “good state” during the observation process.

Following Grover’s definition, to achieve the maximum probability of measuring the
good state, we need to add more iterations by repeating the layers two and three by t
times (Equation 2.14) for a unique solution [24].

m — 1 )
T= im;(Z \/N — E)' N = 2number of qubits (2'14)
Layer 1 N 4 Layer 2 Layer 3
] State L Oracle Diffusion N .
Preparation | Operator F——— Measurement
NN \_

Figure 2.1. Circuit diagram of Grover’s algorithm layers (based on [24]).

3. Related Work

This section presents an overview of the current state of the art for classical index
tuning algorithms that employ reinforcement learning and quantum index tuning algo-
rithms. It concludes with a detailed description of the selected classical algorithm to be
converted into a quantum version.

3.1. Classical index tuning algorithms using reinforcement learning

Nowadays, there has been a significant contribution in the domain of index tuning,
which plays a fundamental role in the efficacy of database searches.
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In [25], the authors synthesize the current state-of-art of this subject, referring various
index optimization methods, including methods using Reinforcement Learning. The
method COREIL [4] uses policy iteration as algorithm, while SMARTIX [3] uses linear Q-
Learning. As an evolution of SMARTIX, the authors in [20] present an approach that cor-
rects the implementation of the TPC-H benchmark [26], which involved the execution or-
der of the queries being processed incorrectly, as it differed from that specified in the TPC-
H documentation [27]; The methods NoDBA [5], Lan’s DQN [6], DRLindex [7], MANTIS
[8] and DRLISA [9] implement Deep Q-Networks (DQN) as algorithm; Welborn’s index
advisor [10] uses Sinkhorn Policy Gradient while SWIRL [11] the Proximal Policy Optimi-
zation (PPO); BAIT [12] and AutoIndex [13] adopt Monte Carlo Tree Search (MCTS) and
Lai’s PPO-MC [14] use Proximal Policy Optimization-Monte Carlo (PPO-MC); Finally,
DBABandit [15] and HMAB [16] use a technique called de Multi-Armed Bandit (MAB) as
an algorithm.

The methods presented use a variety of approaches to solve the problem of automat-
ing indexes, however they were designed for classical computers.

3.2. Quantum algorithms for index tuning

There exists little research in the area of quantum index tuning. The article [2] pro-
poses the conversion of the classical algorithm DINA (Deep Reinforcement Divergent In-
dex Advisor) [28] to a quantum version. However, the paper is at an early stage; it has not
provided quantum implementation details and experimental results.

Besides the capabilities that reinforcement learning provides to automate the index
tuning problems, other techniques are used. The paper [29] leverages the capabilities of
quantum annealers by proposing novel techniques to map the database indexes into the
qubits of the quantum annealer. One technique exploits the qubits more efficiently by re-
ducing the asymptotic qubit growth from quadratic to linear by incorporating additional
auxiliary variables. The second technique is embedded within the transformation func-
tion, where efficiency is achieved through a process of extensive pre-processing before the
run time. This technique generates a library of embedding templates which cover a subset
of index selection problem instances.

The paper in [30] proposes SQIA, a quantum-classical (hybrid) index advisor that
delivers optimal solutions with high probability by using a novel Grover Search-based
approach. This approach implements an efficient quantum oracle used in the Grover
search algorithm which loads the problem dada into the qubit phases. In other words, this
technique loads and encodes the storage cost, benefits, and constraints.

The present literature review reveals that, in addition to the vision paper proposing
a quantum counterpart of DINA [21], there is currently no quantum counterpart imple-
mentation with experimental results of index advisory using reinforcement learning.

3.3. The Classical SMARTIX Algorithm

The SMARTIX experiments presented by the authors [3] demonstrated a good bal-
ance between the disk space utilized by its index configuration and the performance met-
ric it can achieve, which led to the selection of its evolution [20] as the foundation for the
development of a quantum version in our work. As the authors of [20] have made the
source code publicly available on GitHub [31], our work is built on that code, containing
the adaptations required to fit the quantum algorithm and preserving the original charac-
teristics. For the environment, they utilize a scalable database benchmark, TPC-H [26],
which offers a set of features. These features allow the generation of data for a predefined
group of database tables and the construction of 22 instances of queries according to 22
query templates.

The TPC-H benchmark schema includes eight database tables, each with a distinct
set of attributes. When these attributes are added together, the state space contains 45 of
these being available for indexing. Each attribute has two possible actions (CREATE or
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DROP), which generate a state space with a total of 90 actions, each encoded in a natural =~ 249
decimal value in the interval [0, 89]. 250

The reward is defined by a TPC-H performance metric, expressed in queries-per- 251
hour (QphH) (Equation 3.3), which is composed of two other metrics: Power and 252
Throughput. The Power metric is designed to measure the computing speed of simple 253
queries (Equation 3.2). The Throughput metric measures the capacity to process the max- 254
imum number of queries in the shortest time using parallelism mechanisms (Equation 255
3.1). 256

The equations are composed of several elements. The quantity 3600 represents the 257
number of seconds per hour, while the variable QI(i,0) denotes the execution time of 258
query i. The variable RI(j,0) symbolizes the execution time of the refresh function j, 259
which is responsible for inserting and removing records from the database. The variable 260
S represents the number of query streams executed, SF the scale factor of the database, 261
T, the total time needed to run the throughput test for the S streams, and finally, @Size 262

represents the size of the database. 263
Sx22
Throughput@Size = X 3600 x SF (3.1)
S
P @Si 3600 x SF
ower@Size = - - (3.2)
VT2, QIG,0) x [T, RIG, 0)

QphH@Size = \/Power@Size X Throughput@Size (3.3)

264

To address the issue of a tabular policy, SMARTIX uses a variant of Q-learning, called 265
Q-learning with linear feature approximation, as its reinforcement learning algorithm 266
[32]. This policy is represented by a set of weights, collectively referred to as a feature 267
vector. A feature is defined as an element of the state space or the action space, so the 268

vector has a total of 135 weights, with an additional weight corresponding to a bias. 269
To calculate the Q-value, Equation 3.4 must be used, where 6 is the weight value 270
and f,(s) is the value of each feature according to the current state of the environment. 271
Q(a,s) « 8g + 0:,(5) + 02£5(s)+... +0,£a(5) (3.4)
However, during the learning process, it is crucial to modify the agent’s policy. The 272
algorithm uses the temporal difference strategy with gradient descent (Equation 3.5). 273
9Qo(s",a")

8; « 0; + a(r + ymax,Qq(s’,a") — Qg(s,a)) (3.5)

06;

The SMARTIX algorithm works as follows: InitiallyFirst, the feature vector is popu- 274
lated with random values, and the replay memory is set to an empty state. SecendlySec- 275
ond, a cycle is initiated, based on a predefined number of episodes. In each episode, the 276
database is set to an initial state s. Subsequently, a sequence of steps is initiated. In each 277
step, the algorithm determines the action to be executed in the environment using the 278
Epsilon-greedy strategy and executes that action. Then, the environment moves to the 279
new state and returns the reward r (QphH) and its new state s’. With the reward ob- 280
tained, the algorithm updates the feature vector. The algorithm then stores the experience 281

and selects a mini batch of experiences, and runs running-a replay on this data. Finally, 282 {Formatted: Highlight

the new state becomes the current state, and the algorithm repeats the sequence of steps 283
for each episode until the episodes reach the end. 284

286
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4. QRLIT: The Quantum-Classical Implementation of the Classical SMARTIX Algo- 287
rithm 288

This section describes the implementation of our QRLIT algorithm, a hybrid quan- 289
tum-classical version of SMARTIX. Initially, we present a method for combining Quan- 290
tum Computing (QC) with Reinforcement Learning (RL), which serve as the basis for the 291
development of QRLIT. Then, we provide a description of the process used to identify the 292

components that were converted. Finally, we demonstrate and ealeslate-compute the fun- 293
S 294 { Formatted: Highlight

ing-and conclude with the QRLIT flow diagram and pseudocode. 295

Quantum Reinforcement Learning (QRL) is a method that combines the capabilities 296
of QC and RL. Similar to the classical counterpart, Quantum Reinforcement Learning also 297
includes a policy, a state space, an action space, and a reward function, but is inspired by =~ 298
the superposition principle and quantum parallelism [33]. Based on the novel algorithm 299
proposed in [33] for QRL, the authors of the paper [34], propose an algorithm called Quan- 300
tum Q-Learning (QQRL) that stores the policy in a superposition state and uses the 301
Grover’s algorithm as a strategy to amplify the probability amplitude of the best action, 302
based on the learned policy. Grover’s algorithm exploits the natural behavior of superpo- 303
sition states and offers a good balance between exploration and exploitation. This balance 304
can be achieved by controlling the number of Grover iterations L through the learning 305
process of the agent. In other words, as the agent learns and the number of iterations in- 306
creases, the capacity to explore decreases until reaching the number of iterations t (as 307
defined in Equation 2.14), which maximizes the probability of measuring the “good” ac- 308
tion. The number of iterations L is determined by the formula in Equation 4.1 from [34], 309
where k represents a rate that controls the proportion of policy and reward contributions, 310
and t denotes the maximum number of possible iterations. 311

L = min(int(k(r + max,Q(s',a"))),t) (4.1)

Our QRLIT implementation is based on the QQRL algorithm. Therefore, we identi- 312
fied that the Epsilon-greedy procedure is replaced by the Grover search algorithm, keep- 313
ing the remaining elements in a classical system. With Grover’s algorithm in QRLIT, we 314
are capable not only to determine the actions to be executed in the environment, but also 315
to naturally balance the agent's duality between exploration and exploitation. As previ- 316
ously outlined in the Background section, the Grover's algorithm contains three distinct 317
layers: State Preparation, Oracle, and Amplitude Amplification. In the State Preparation 318
layer, we initiate the policy of the agent in a superposition state and in the Oracle, we 319
encode the action with the highest Q-value in the current state of the environment. As the 320
last layer, we implement the Amplitude Amplification which amplifies the probability 321
amplitude to measure the action encoded in the Oracle. 322

To run and build the Grover’s algorithm, it is crucial to identify how many qubits are 323
required in the quantum register to encode the actions. We calculate the number of qubits 324
by using the formula N, < 2" < 2N, presented by the authors of the paper [33]. In this 325
formula, N, represents the size of the action space, while n denotes the number of qubits 326
required to encode an action. We apply and solve the formula for a space of 90 actions 327

and round off the excess, so that n_js equal to reundedinexcess,resultinginntobe 328 {Formatted Highlight

egual-te-7 (Equation 4.2). We then Fhen—we-define the maximum number of Grover iter- 329
ations, t. As the number of qubits is already calculated, N is equal to 128, and therefore 330 {Formatted Highlight

t equals to 8 (Equation 4.3). 331 { Formatted: Highlight

2" =N, =n=1log,(N,) =n=10g,(90) =n= 6491 = 7 (4.2)

N = Znumberofqubits =N= 27 =128

\/12 1 43)
~5)=t=iny(8386) =8

t—mt( \/N——)_t—l t(-
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Run
3
a
Environment Agent 2 Convert to
new state s’ decimal
T
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\
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actiona =7 l

Run Power@Size and
Throughput@Size tests

-/

Figure 4.1. Flow diagram of the QRLIT algorithm

As identified before, to create the QRLIT, we replace the Epsilon-greedy strategy in
the classical algorithm with the Grover’s search (Eine-line 6 in Algorithm 1). Figure 4.1
illustrates the interactions between the principal components of QRLIT. The agent com-
ponent initiates the first interaction through the execution of Grover's algorithm, which
returns the action a. In binary code, the action is converted to a decimal value and exe-
cuted in the environment (Hire-line 7 in Algorithm 1). The environment then processes
the value and transitions-enters to a new state s'. In this new state, the benchmark is pre-
pared by creating the necessary query instances using QGen to run therequired-query

instanceswith QGenfor the exeecution-of-the power and throughput tests. Once the bench-
mark has been executed, the reward r and the new state s’ of the environment are re-
turned to the agent. With these two values, the agent calculates the number of Grover
iterations L, selects the action of the new state that contains the highest Q-value and sends
these values to the operation that builds the Grover algorithm circuit (E#eline 8 in Algo-
rithm 1). Then, the quantum circuit is constructed with all seven qubits initialized in the
register in the state |0). Our QRLIT proposal e&efs—prowdes a natural balance between
the exploration and exploitation, allowing for thus-enabling: a more effective learning; as
the agent learns and adjusts its policy, the exploration rate decreases (Equation 4.1). Fur-
thermore, given the properties of quantum parallelism paraleling-and superposition

states in Grover’s algorithm, this proposal prevides-offers another advantage: it is able to
find an action faster (complexity of O(y/N)) (kineline 6 in Algorithm 1) than its classical
counterpart (complexity of O(N)).

Algorithm 1 QRLIT algorithm with Grover’s search, function approximation and ex-
perience replay. Adapted from [3] and [34].

1: Random initialization of parameters &

2 Empty initialization of replay memory D

3 for each episode do

4 s « DB initial index configuration mapped as initial state
5: for each step of episode do

6: a <« Run Grover algorithm on s

7 s',r «— execute (a)
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8: Build Grovers circuit with L and argmax,e,

9: for 6; € © do

10: Update 6; according to Equation 3.5

11: end for

12: Store experience e = (s,a,7,s") in D

13: Sample random mini-batch of experiences e~D

14: Performance experience replay using sampled data
15: s s’

16: end for

17:  end for

5. Performance Evaluation

This section presents the experiments conducted on the classical algorithm SMARTIX
and its quantum-classical version QRLIT (source code in [35]), and the analyses performed
on the results. It is organized into three subsections: Subsection 5.1 provides a detailed
description of the environment used to execute the experiments, and Subsections 5.2 and
5.3 presents the experiment results and their analysis.

5.1. Experimental Model

All experiments were conducted on a docker container with Ubuntu 22.04 in a 2021
MacBook Pro, which is equipped with 16GB of RAM, 1TB of disk space, and an Apple M1
Pro CPU with 10 cores. MySQL was used as DBMS, which implements the TPC-H bench-
mark, while a simulator provided by the Qiskit SDK was used to build and execute the
quantum algorithm.

Additionally, in accordance to the TPC-H benchmark specification [27], 22 query in-
stances were executed in the Power metric and 44 in the Throughput metric with 2 parallel
streams (22 queries for each stream). This resulted in a total of 66 query instances being
executed in each time step. The queries were generated through a tool provided by the
TPC-H benchmark, designated as QGen.

The experiments were carried out according to the parameter settings outlined in
Table 5.1. The first parameter setting corresponds to the tests conducted in Subsection 5.2
to study the overall performance of the algorithms when the database size is fixed at 10
MB, while the second parameter setting corresponds to Subsection 5.3 to study the impact
of the database sizes of 10 MB, 20 MB, 30 MB, 40 MB, 70 MB and 100 MB on the perfor-
mance of the algorithms. In this second configuration, the number of episodes was re-
duced to 25 in order to reduce the time required to execute the experiments.

Table 5.1. Configuration parameters for the tests.

Test Name

Database size a Y k Episodes Steps  Total time steps

Opverall Performance

Impact of Database Size

10 MB 0.001 0.8 0.00017 50 100 5000
10 MB, 20 MB, 30 MB,

40 MB, 70 MB, 100 MB 0.001 0.8 0.00017 25 100 2500

5.2. Overall Performance

In this section, experiments were conducted to study the overall performance of the
two algorithms when the database is fixed at 10 MB. This study is based on the following
metrics: number of queries processed per hour, episode execution time, temporal differ-
ence error, and number of Grover iterations. The first metric defines the quality of the
algorithms in terms of their ability to identify a policy that maximizes the cumulative re-
ward (queries per hour) over time. The episode execution time metric measures the veloc-
ity of the algorithms in executing an episode. The temporal difference error (TD Error)
(Equation 2.1) metric demonstrates the algorithm's convergence to an optimal policy, in
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other words, the closer the values are to 0, the better the policy is. Finally, the Grover
iterations metric measures the relation between exploration and exploitation: the lower
the value, the higher the rate of exploration relative to exploitation. This metric allows the
analysis of the agent's exploration capacity, which is directly correlated with the number
of iterations.

The results obtained for each metric in each of 50 episodes for the two algorithms are
shown in Figures 5.1-5.4. The average results of each metric over 50 episodes of the two
algorithms are summarized in Table 5.2. The analysis of Figure 5.1 and Table 5.2 reveals
that on average, the hybrid algorithm exhibits a higher number of queries processed per
hour by 0.61% compared to its classical counterpart.

Table 5.2. Comparison results of the average results of the Classical and Quantum-Classical algo-
rithms for the database size of 10 MB.

389
390
391
392
393
394
395
396
397
398

399
400

Increase in Quantum-

Metric Classical Quantum-Classical Classical over Classical
Average Number of Queries Processed Per Hour (QphH) 735,715.44 740,267.11 0.61%
Average Episode Execution Time (Seconds) 77.58 99.06 21.67%
Average Temporal Difference Error -605.28 13.00 N/A
Average Number of Grover Iterations N/A 7.53 N/A

Besides that, from the analysis of Figure 5.2, the hybrid algorithm has a much faster
convergence to a low temporal difference error showing a more stable learning, display-
ing a temporal difference error trajectory closer to 0 (Table 5.2).

To find a balance between exploring and exploiting, the classical algorithm imple-
ments a strategy known as Epsilon-greedy. This strategy uses an exploration rate epsilon
& = 0.9, which decreases with an exploration discount factor of 0.1 at the end of each epi-
sode. Therefore, with this algorithm, the agent explores with a probability of & or follows
the learned policy (exploits) with a probability of 1 — €. In the case of the quantum-clas-
sical algorithm, as the agent learns and adjusts its policy, the number of Grover Iterations
also increases, consequently reducing the exploration probability (Equation 4.1) (Figure
5.3).

The quantum-classical algorithm provides a better index recommendation resulting
in a higher number of queries processed per hour than the classical algorithm because, as
the agent of the quantum-classical algorithm refines its policy through learning, the ex-
ploration rate decreases. This leads to the decrease of unnecessary explorations and allows
for more effective learning. However, the quantum-classical algorithm takes on average
21.67% more time to complete an episode than its classical counterpart (Figure 5.4). This
discrepancy is related to the additional computational overhead to create and execute the
quantum circuit at each time step. The Figure 5.5 show the time required to build and
execute the Grover’s Algorithm.
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Figure 5.1. Number of queries processed per hour in each episode. 422
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Figure 5.2. Average temporal difference error in each episode. 424
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Figure 5.3. Grover iterations in each episode on hybrid algorithm.
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Figure 5.5. Average execution time to build and run the Grover Algorithm for each Grover Iteration
in 20 executions in the quantum-classical algorithm.

5.3. Impact of Database Sizes

The purpose of this section is to examine the behavior of the algorithms across a range
of database sizes, specifically 10 MB, 20 MB, 30 MB, 40 MB, 70 MB, and 100 MB. The met-
rics employed in this analysis include the average number of queries processed per hour
of the 25 episodes for each database size, the number of Grover iterations, and the tem-
poral difference error of each algorithm.

The results obtained for each metric in each database size for the two algorithms are
shown in Figures 5.6-5.10. The average results of each metric over the database sizes of
the two algorithms are summarized in Table 5.3. The analysis for the database sizes also
indicates a superiority of the hybrid algorithm. The results in Table 5.3 and Figure 5.6
show that, on average, the hybrid algorithm yields a higher number of queries processed
per hour of 2.49% compared to its classical counterpart and displays a temporal difference
error trajectory closer to 0 (Figure 5.7). This trajectory is more evident in this analysis be-
cause the number of episodes is reduced by half, highlighting the importance of a faster
convergence.

Table 5.3. Comparison results of the classical algorithm and the quantum-classical algorithm with
different database sizes.

Increase in Quantum-

Metric Classical Quantum-Classical Classical over Classical
Average Number of Queries Processed Per Hour (QphH) 607,650.60 623,136.44 2.49%
Average Database Size Test Execution Time (Seconds) 8,449.18 8,936.49 5.45%
Average Temporal Difference Error -603.56 13.78 N/A
Average Number of Grover Iterations N/A 6.27 N/A

Furthermore, it can also be observed that the number of queries processed per hour
decreases as the database size increases. This indicates that the size of the database affects
the number of QphH generated, in other words, the reward. Consequently, according to
Equation 4.1, which calculates the number of Grover’s iterations and since the Q-values
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Accumulated Queries-per-Hour (QphH)

Average Temporal Difference Error

are directly related to the reward, they will also have smaller values. Thus, the smaller the 453
policy and reward contribution, the smaller the number of iterations (Figure 5.8), which 454
increases the exploration rate (Figure 5.9). Excessive exploration causes the agent not to 455
follow the learned policy, resulting in a mostly random configuration of indexes as the 456
database size increases. 457

In conclusion, besides the average superiority verified by the quantum-classical al- 458
gorithm, the results in Figure 5.8 also demonstrates the need to adjust the parameter k, 459
which regulates the reward and policy contributions to the number of Grover’s iterations. 460
In this case, as the reward value decreases, it is necessary to increase the value of k to 461
reduce the exploration rate. 462
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Figure 5.10. Impact of database size on total execution time.

6. Conclusions and Future Work

This work presents the implementation of QRLIT, a hybrid quantum-classical ver-
sion of SMARTIX [3]. The QRLIT demonstrated better performance than the classical
counterpart in terms of number of queries processed per hour and a faster convergence to
an optimal policy. By controlling the Grover iterations through the reward and the agent
policy, as the agent refines its policy through learning, the exploration rate decreases, al-
lowing for a superior temporal difference error convergence closer to zero with a more
effective learning compared to its classical counterpart. However, as the value of k con-
trols the contribution of reward and policy to the number of Grover iterations, the increase
in database size reveals the necessity to adjust this parameter manually to balance the
exploration rate. This manual adjustment in an automatic system is a limitation because
the reward (QphH) varies not only according to the size of the database, but also accord-
ing to the quality and capacity of the machine’s hardware.

As future work, we intend to analyze the behavior of the algorithms in databases
with significant sizes and more queries. It would also be important to investigate their
performance on distributed database systems. Finally, evaluating the execution of the
quantum-classical algorithm on a real quantum computer is another direction for future
research.

This work is supported in part by the National Science Foundation under Grant No. 2425838.
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