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Abstract. The data-driven newsvendor problem with features has recently emerged as a 
significant area of research, driven by the proliferation of data across various sectors such 
as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of cus-
tomer or organizational data often used in feature-based analysis, it is crucial to ensure 
individual privacy to uphold trust and confidence. Despite its importance, privacy preser-
vation in the context of inventory planning remains unexplored. A key challenge is the 
nonsmoothness of the newsvendor loss function, which sets it apart from existing work on 
privacy-preserving algorithms in other settings. This paper introduces a novel approach to 
estimating a privacy-preserving optimal inventory policy within the f-differential privacy 
framework, an extension of the classical ([,δ)-differential privacy with several appealing 
properties. We develop a clipped noisy gradient descent algorithm based on convolution 
smoothing for optimal inventory estimation to simultaneously address three main chal-
lenges: (i) unknown demand distribution and nonsmooth loss function, (ii) provable pri-
vacy guarantees for individual-level data, and (iii) desirable statistical precision. We derive 
finite-sample high-probability bounds for optimal policy parameter estimation and regret 
analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess 
population risk bound compared with that obtained from an indiscriminate application of 
existing results for general nonsmooth convex loss. Our bound aligns with that for strongly 
convex and smooth loss function. Our numerical experiments demonstrate that the pro-
posed new method can achieve desirable privacy protection with a marginal increase in 
cost.
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1. Introduction
The newsvendor problem, a classical example of the 
inventory-control problem, is of fundamental importance 
to operations management. In recent years, there has 
been growing interest in data-driven feature-based news-
vendor problems because of the vast amount of data gen-
erated by retail and supply chains, e-commerce, banking, 
financial, hospitals, and other business domains. The 
goal of the feature-based newsvendor problem is to esti-
mate the optimal inventory policy based on the historical 
demand data as well as the observed features (e.g., prod-
uct characteristics, customer characteristics) associated 
with the demand. The ability to determine optimal 
inventory levels based on features (or contextual infor-
mation) such as location and usage is essential for supply 

chain planning. Recently, Ban and Rudin (2019) carefully 
justified, from a theoretical perspective, the value of 
incorporating features in the newsvendor problem when 
such information is available. They proved that ignoring 
features may lead to estimation bias, which does not 
diminish as the number of observations gets large.

In a host of applications, feature-based inventory 
analysis involves sensitive customer or organizational 
data. Examples include, but are not restricted to, the 
following: 

" Healthcare. In hospitals, nurse staffing in the emer-
gency room can be formulated as a feature-based news-
vendor problem; see, for example, He et al. (2012), Green 
et al. (2013), and Ban and Rudin (2019). The features 
can include the hospital inflow and outflow conditions, 

1 

MANAGEMENT SCIENCE 
Articles in Advance, pp. 1–20 

ISSN 0025-1909 (print), ISSN 1526-5501 (online) https://pubsonline.informs.org/journal/mnsc 

mailto:txz311@miami.edu
https://orcid.org/0009-0006-1866-3920
mailto:wenxinz@uic.edu
https://orcid.org/0000-0002-2761-485X
mailto:lxw611@miami.edu
https://orcid.org/0000-0002-3217-0202
https://doi.org/10.1287/mnsc.2023.01268
https://doi.org/10.1287/mnsc.2023.01268
https://doi.org/10.1287/mnsc.2023.01268


surgical case volume, behavioral health patients’ board-
ing information, doctor staffing information, and nurses’ 
credentials. As another application, surgical procedures 
require a large number of consumable supplies that 
need to be kept in hospital inventory and transported to 
the operating rooms. Görgülü and Sarhangian (2022) 
formulate the problem of preparing a surgical preference 
card, a list of items for each surgery, as a newsvendor 
problem. The features include surgery type, patient dis-
ease status, and physicians’ past records, among others. 
Hospitals, in general, would prefer to keep the related 
information internal and any physician- and patient- 
level information private.

" E-commerce. Companies such as Chewy, an online 
retailer of pet supplies, or grocery stores with online 
ordering and delivery service often leverage customer- 
level data for inventory management. This helps not 
only coordinate shipping from its local warehouses but 
also design targeted marketing campaigns (e.g., send-
ing coupons to different groups of customers based on 
predicted individualized inventory levels).

" Finance. In portfolio management, mutual funds 
hold a certain percentage of their assets in cash to meet 
redemption demand from investors. The decision on 
how much cash to reserve can be formulated as a 
feature-based newsvendor problem. If not enough cash 
is held, the fund must sell some of its holdings and will 
incur transaction costs. In the recent Silicon Valley 
Bank’s downfall in March 2023, the bank had to sell its 
securities to raise cash to meet a wave of withdrawals 
from customers. A strategy of inventory policy can be 
planned based on the financial and operational vari-
ables and clients’ behaviors.

In the context of the applications discussed above, 
the preservation of privacy is of critical importance. 
Despite this, systematic studies in the realm of inven-
tory planning are lacking. The protection of individual 
privacy is essential in maintaining customer trust and 
confidence and in helping the business avoid financial 
losses and reputation damage (Williams 2020, Hu 
et al. 2022, Fainmesser et al. 2023). The prevalence of 
individual-level data and the increased awareness of 
privacy concerns motivate us to develop a principled 
privacy-preserving framework for data-driven feature- 
based newsvendor problems with unknown demand. 
We focus on the scenario where there is a trusted 
curator, such as the company’s in-house business ana-
lytics team, responsible for processing and analyzing 
the data. The primary objective of this paper is to 
develop a data-driven approach that generates valu-
able outputs. These outputs assist a decision maker 
(hereafter referred to as “DM”) in estimating the opti-
mal inventory level, all while safeguarding the privacy 
of historical individual-level data. In essence, our 
approach controls the likelihood of an adversary mak-
ing harmful inferences about a data subject based on a 

differentially private data release, ensuring it remains 
a small-probability event.

In more detail, we study a feature-based newsvendor 
problem where the demand distribution is unknown to 
the DM. The trusted curator has access only to n past 
records (historical data) {di, xi}, i ÿ 1, : : : , n, where di is 
the observed demand, and xi is the associated vector of 
features (or covariates). When presented with a new 
query, the curator utilizes a data-driven iterative algo-
rithm to release a private output. This output guides 
the DM in determining the optimal inventory level 
while ensuring that the sensitive information from the 
historical data remains noninferable from the output. 
The iterative algorithm introduces a carefully tuned 
amount of random noise to the statistical outputs, aim-
ing to strike a balance between privacy protection and 
statistical accuracy. See Figure 1 for an illustration.

Distinct from prior work on privacy-preserving algo-
rithms in other business applications, we confront the 
challenge of the nonsmoothness of the newsvendor loss 
function. In this setting, we leverage the recently intro-
duced concept of f-differential privacy (Dong et al. 2022) 
and propose a noisy clipped gradient descent algorithm 
based on convolution smoothing for optimal inventory 
estimation. The new approach simultaneously addresses 
the three main challenges: (i) unknown demand distri-
bution and nonsmooth loss function, (ii) provable pri-
vacy guarantees for individual-level data, and (iii) 
desirable statistical precision. Importantly, our theoreti-
cal and numerical results demonstrate that a reasonable 
degree of privacy protection can be achieved with mini-
mal sacrifice of data utility, particularly when the size of 
the historical data set is large.

1.1. Contributions
Our major results and contributions are summarized 
as follows.

1.1.1. Provable Privacy Protection Guarantee in the f- 

Differential Privacy Framework. To establish rigorous 
privacy protection properties, we adopt a recently 

Figure 1. (Color online) Illustration of Privacy Protection 
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introduced novel privacy framework named f-differen-
tial privacy ( f-DP) (Dong et al. 2022), which generalizes 
the classical ([,δ)-DP notion (Dwork et al. 2006a, b) 
with several attractive properties; see Section 4.1 for a 
more in-depth introduction. The ([,δ)-DP notion was 
proposed by the computer science community and has 
become a popular framework for provable privacy 
protection against arbitrary adversaries while allowing 
the release of analytical summaries. It provides a statisti-
cal hypothesis testing interpretation for differential pri-
vacy, thereby making the privacy guarantees easily 
understandable. Despite its great success, a major short-
coming of ([,δ)-DP is its inability to tightly handle com-
position (a.k.a. repeated application of the mechanism to 
the same data set). Using the output of an ([,δ)-DP 
mechanism, the power of any α-level test is bounded by 
e[α+ δ. Recall that the composition of ([1,δ1)- and 
([2,δ2)-DP mechanisms results in an ([1 + [2,δ1 + δ2)-DP 
mechanism. The resulting power bound e[1+[2α+ δ1 + δ2 

of any α-level test no longer tightly characterizes the 
trade-off between significance level and power. As a fun-
damental observation, Dong et al. (2022) pointed out 
that ([,δ)-DP is misparameterized in the sense that the 
guarantees of the composition of ([i,δi)-DP mechanisms 
cannot be characterized by any single pair of parameters 
([,δ). Many recent efforts have been devoted to develop-
ing relaxations of DP for which composition can be 
handled exactly. These notions of DP no longer have 
hypothesis-testing interpretations; rather, they are based 
on studying divergences that satisfy a certain informa-
tion processing inequality. We refer to Section 1 of Dong 
et al. (2022) for an in-depth discussion on this matter.

The main idea of the f-DP is the usage of the so-called 
trade-off functions as a measure of indistinguishability 
of two neighboring data sets rather than a few para-
meters as ([,δ)-DP and other prior relaxations do. It 
preserves the hypothesis testing interpretation of differ-
ential privacy. Furthermore, it captures all the desirable 
properties of prior differential privacy definitions, in 
particular, composition, amplification by sampling, and 
Gaussian mechanism, tightly and analytically. It pro-
vides a powerful technique to import existing results 
proven for the ([,δ)-DP to f-DP.

In the powerful and versatile f-DP framework, we 
rigorously establish that our data-driven algorithm 
provides the desired privacy guarantees.

1.1.2. A Computationally Efficient Algorithm to Esti-

mate the Feature-Based Optimal Inventory Policy with 

Unknown Demand Function. Traditionally, the news-
vendor problem is solved based on the assumption that 
the demand distribution is known up to a small number 
of parameters. The commonly used data-driven estima-
tion procedures often consist of two steps: the first step 
estimates the parameters using the observed data, and 
the second step performs the optimization to estimate 

the optimal order quantity. However, in reality, the true 
demand distribution is hardly ever known to the DM.

For the data-driven feature-based newsvendor prob-
lem, Ban and Rudin (2019) proposed a one-step estima-
tion procedure based on empirical risk minimization 
(ERM) and established its connection to quantile regres-
sion (Koenker and Bassett 1978). In terms of computa-
tion, Ban and Rudin (2019) reframed the ERM problem 
as a linear program and utilized existing linear pro-
gramming solvers. These general-purpose solvers are 
capable of generating solutions with high precision 
(low duality gap). However, in the context of machine 
learning, this is inefficient for two reasons. First, generic 
toolboxes are often unaware of the problem structure 
and tend to be too slow or encounter memory issues. 
Secondly, high precision is not always necessary for 
machine learning problems, and a duality gap of the 
order of machine precision may not be required (Bach 
et al. 2012). More importantly, commonly used algo-
rithms for solving linear programs, such as simplex- 
based methods and interior point methods, may not be 
readily adaptable for privacy preservation purposes.

To address the computational and privacy concerns 
mentioned above, we propose a new approach that uti-
lizes convolution smoothing (Fernandes et al. 2021, He 
et al. 2023). This approach transforms the nondifferenti-
able newsvendor loss function into a twice-differentiable, 
convex, and locally strongly convex surrogate, allowing 
for fast and scalable gradient-based algorithms for 
optimization. Additionally, to ensure privacy protection 
while maintaining computational tractability, inspired 
by Song et al. (2013), Bassily et al. (2014), and Lee and 
Kifer (2018), we adopt a noisy optimization approach by 
adding Gaussian noise to the gradient of the smoothed 
empirical cost in each iteration. By carefully selecting the 
scale of the added noise and the number of iterations, we 
can achieve the desired privacy level along a sequence of 
outputs. The algorithm is designed for efficient imple-
mentation, and in this paper, we provide both privacy 
protection guarantees and statistical accuracy guarantees 
for the output of this novel algorithm.

1.1.3. Finite-Sample Performance Bounds and Excess 

Risk Analysis. Under a linear demand model with an 
unknown error distribution and a potentially large 
number of features, we analyze the convergence of the 
proposed algorithm and its finite sample performance 
error bounds. We also derive its regret bound, which is 
the difference between its expected cost and the opti-
mal cost of the clairvoyant who knows the underlying 
demand distribution. The regret upper bound is of the 
order O(log(n)max{((p+ log n)=µn)2, p=n}), where n is 
the size of the historical data set, p is the number of the 
features, and µ is the privacy parameter. As we discuss in 
Section 4.1, µ ÿ 0:5 (or less) indicates a reasonable 
degree of privacy protection in practice. The term 
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O(log(n)((p+ log n)=µn)2) corresponds to the addi-
tional regret because of privacy protection, which goes 
to zero quickly as n gets large for a reasonable choice of 
µ. The theory and our numerical results suggest that 
privacy protection can be achieved with a reasonably 
small additional cost.

The idea of convolution smoothing was initially pro-
posed in the optimization community by Chen and 
Mangasarian (1995, 1996), where sigmoid functions were 
used as smooth approximations of the plus function 
max{x, 0}. However, the impact of smoothing on statisti-
cal performance, in terms of estimation error bounds or 
regret bounds, remained largely unknown until recent 
studies in the context of quantile regression by Fernandes 
et al. (2021), Tan et al. (2022), and He et al. (2023).

In this paper, we conduct a comprehensive analysis 
of the noisy clipped gradient descent iterates, as 
opposed to the hypothesized empirical risk minimizer. 
By exploring the specific structure of the newsvendor 
problem, we achieve a faster excess population risk 
bound compared with the results obtained by indis-
criminately applying existing results developed for gen-
eral nonsmooth convex loss. Our bound matches with 
what one would obtain when the loss function is both 
strongly convex and smooth. The combination of care-
fully selected smoothing and noise-scale parameters 
allows for control over the trade-off between statistical 
efficiency and the level of privacy. A key aspect of our 
analysis is a novel characterization of the local strong 
convexity and smoothness of the smoothed cost func-
tion, which subtly depends on the order of the smooth-
ing parameter. The technical devices we employ in this 
paper to establish the theoretical framework are distinct 
from earlier works, such as those presented in Ban and 
Rudin (2019), and yield sharper results, as elaborated in 
Section 5. Furthermore, we relax the independent and 
identically distributed (i.i.d.) error condition in their 
paper. By allowing the error distribution to be hetero-
scedastic, we permit the features to influence not only 
the location of the demand distribution but also its dis-
persion. Furthermore, we do not require the error distri-
bution to be bounded.

1.2. Notation and Organization
The following general notation will be used through-
out the paper. We use Ip to denote the p × p identity 
matrix. For a vector u * Rp (p g 2), we write 6u62 ÿ uTu. 
For a positive definite matrix A, we write 6A62 ÿ
maxu:6u62ÿ16Au62 and 6u6A ÿ

oooooooooooo
uTAu

:
. We use Spÿ1 to 

denote the unit sphere in Rp, that is, Spÿ1 ÿ {u * Rp :

6u62 ÿ 1}. For two sequences of positive numbers {an}ng1 

and {bn}ng1, we write an≲ bn if there exists some constant 
C > 0 independent of n such that an f Cbn for all n; we 
write an≳ bn if bn≲ an, and we write an o bn if an≲ bn 

and bn≲ an. For an event or set E, let 1(E) or 1{E} denote 
the indicator function.

The paper is organized as follows. In Section 2, we 
review the related literature. Section 3 presents the 
model and introduces the underlying assumptions. In 
Section 4, we introduce the basics of f-differential pri-
vacy, present the new privacy-preserving algorithm for 
the feature-based newsvendor problem, and provide 
theoretical justifications for privacy-preserving guaran-
tees. In Section 5, we provide high-probability bounds 
for the estimated private parameter indexing the opti-
mal inventory policy and the regret analysis. We ana-
lyze the performance of our approach through an 
extensive numerical study and a real data example in 
Section 6. Section 7 contains some concluding remarks. 
The technical details are given in the online appendices.

2. Related Review
We briefly review related research in data-driven news-
vendor problems and differential privacy for operations 
management.

2.1. Data-Driven Newsvendor Problem with 

Unknown Demand
Earlier work on newsvendor problems often assumes 
the demand distribution is known. There has also been 
extensive literature on relaxing the known demand dis-
tribution assumption but without using any feature 
information. Ban and Rudin (2019) provided an excel-
lent literature review and broadly characterized these 
methods into three categories: the Bayesian approach, 
the minimax approach, and the data-driven approach. 
Our proposed method is more closely related to the 
data-driven approach where the DM uses the observed 
sample to make decisions; see Burnetas and Smith 
(2000), Godfrey and Powell (2001), Powell et al. (2004), 
Levi et al. (2007), Kunnumkal and Topaloglu (2008), 
Huh and Rusmevichientong (2009), and Levi et al. 
(2015), among others. Related to this line of work, Liya-
nage and Shanthikumar (2005), Hannah et al. (2010), 
See and Sim (2010), Beutel and Minner (2012), Ban and 
Rudin (2019), and Oroojlooyjadid et al. (2020) incorpo-
rated feature-based information. Ban and Rudin (2019) 
provided a systematic study on the benefits of incorpo-
rating features, proposed new algorithms, and derived 
performance bounds. Oroojlooyjadid et al. (2020) con-
sidered a deep-learning approach.

Our approach differs from the aforementioned work 
in several major aspects. First, our algorithm provides 
individual-level data privacy protection. To the best of 
our knowledge, this is the first time in the literature of 
newsvendor problems the issue of privacy is systemati-
cally investigated. Second, we provide a theoretical 
error bound for the T-step output of the proposed 
algorithm directly. In contrast, the theory of the early 
work is for the limiting (or theoretical) solution of their 
proposed algorithms. Third, we substantially relax the 
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technical conditions on the random error distribution 
for the theory compared with the earlier work.

2.2. Differential Privacy for 
Operations Management

In the last decade, privacy preservation has received 
substantial attention in theoretical computer science, 
database, and cryptography literature. There exist dif-
ferent notions of privacy. Differential privacy, a seminal 
concept introduced in Dwork et al. (2006a, b), has 
emerged as the foundation for developing a rigorous 
framework for provable privacy protection against arbi-
trary adversaries. The most commonly used form of dif-
ferential privacy relies on two parameters, [ g 0 and 
0 f δ f 1, and is often also referred to as the ([,δ)-differ-
ential privacy. This concept has an intuitive hypothesis 
interpretation. Suppose an attacker would like to distin-
guish two neighboring data sets that differ by only one 
observation. Formulated as a hypothesis testing prob-
lem, accepting the null hypothesis means the attacker 
cannot tell the two data sets apart. Then, for any level α�
test (0 < α < 1) based on the output of a privacy- 
preserving algorithm satisfying ([,δ)-differential pri-
vacy, its power (a.k.a. the probability of rejecting the 
null hypothesis when the two data sets are different) is 
upper bounded by e[α+ δ. Moreover, ([,δ)-differential 
privacy is immune to postprocessing; that is, combining 
two differential private algorithms preserves differen-
tial privacy. Although ([,δ)-differential privacy pro-
vides an elegant formalism for privacy protection, it is 
known to suffer from the major drawback that it does 
not tightly handle composition. This makes it challeng-
ing to provide a tight analysis of the cumulative privacy 
loss over multiple computations, thus limiting its appli-
cability to practically useful privacy-preserving algo-
rithms, which often involve injecting privacy protection 
into different modules and iterative steps.

Although several relaxations of the ([,δ)-differential 
privacy have been proposed, they do not handle well 
fundamental primitives associated with differential 
privacy, such as privacy amplification by subsampling. 
This motivated us to adopt a recently proposed new 
notion of f-differential privacy (Dong et al. 2022), which 
extends ([,δ)-differential privacy and overcomes the 
above limitations. Similar to ([,δ)-differential privacy, 
f-differential privacy characterizes privacy preserva-
tion from the hypothesis testing perspective. Rather 
than using a pair of parameters, ([,δ), to balance 
between type I and type II errors, f-differential privacy 
uses a trade-off function. This functional extension of 
differential privacy avoids the drawbacks mentioned 
above. We refer to Section 4.1 for more detailed discus-
sions on the properties of f-differential privacy. The 
notion of f-differential privacy was recently published 
as a discussion paper in the leading statistical journal 
Journal of the Royal Statistical Society, Series B. One of the 

discussants wrote, “One can expect the latter (f-differen-
tial privacy) to become a dominant approach in this lit-
erature given its appealing intuitive hypothesis-testing 
interpretation, exact composition property, the central 
limit role for composition, and computational tractabil-
ity for approximating privacy losses.”

2.3. Differentially Private Convex Optimization
Our work is also related to the literature on differen-
tially private convex optimization. Differentially private 
empirical risk minimization (ERM) is a well-studied 
area. The earlier popular approaches include output 
perturbation (Chaudhuri and Monteleoni 2008, Wu et al. 
2017) and objective perturbation (Chaudhuri and Mon-
teleoni 2008, Chaudhuri et al. 2011, Jain and Thakurta 
2014, Abadi et al. 2016, Iyengar et al. 2019, Slavkovic 
and Molinari 2022).

Motivated by Song et al. (2013) and Bassily et al. 
(2014), we consider a noisy gradient descent algorithm. 
Differential privacy with various types of gradient 
descent algorithms has been studied by Song et al. 
(2013), Bassily et al. (2014), Wang et al. (2017), Lee and 
Kifer (2018), Wang (2018), Bassily et al. (2019), and Balle 
et al. (2020), among others. The methods in Bassily et al. 
(2014), Bassily et al. (2019), Feldman et al. (2020), and 
others do not directly apply to our setting. Most of the 
prior work requires strong convexity and other smooth-
ness conditions that are not satisfied by the newsvendor 
loss function. In the case for which Lipschitz continuity 
suffices, the known excess loss rate is suboptimal in 
our setting, as they do not explore the specific structure 
for the newsvendor loss as we do. Unlike the earlier 
literature, we do not assume the gradient is bounded 
by a constant, and we carefully analyzed a clipped 
DP gradient descent algorithm. In the statistical litera-
ture, Avella-Medina et al. (2023) recently investigated 
optimization-based approaches for Gaussian differen-
tially private M-estimators. However, the objective func-
tion in our setting does not satisfy the local strong 
convexity and smoothness in their paper. However, our 
proof technique deviates from theirs. We will discuss 
the main challenges and our proof strategies in Section 
5.3. Despite the nonsmooth newsvendor loss, our novel 
analysis based on restricted strong convexity and 
smoothness leads to a faster excess population risk rate, 
which is only obtained in Section 5 of Feldman et al. 
(2020) when the loss function is both λ-strongly convex 
and β-smooth. From this perspective, our results and 
proof techniques bring new insights and results to the 
differential private convex optimization literature.

Our work is also related to the growing but still lim-
ited literature on privacy preservation in operations 
management. Chen et al. (2022b) addressed privacy 
preservation for personalized pricing with demand fol-
lowing a generalized linear model. They proposed the 
new notion of anticipating ([,δ)-differential privacy 
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that is tailored to the dynamic pricing problem. Lei et al. 
(2020) and Chen et al. (2022a) considered personalized 
pricing using the notion of central differential privacy 
and local differential privacy. The aforementioned 
papers do not face the challenge of nonsmooth loss 
function as we have here. However, our work is not a 
mere application of existing results on private non-
smooth convex optimization, nor does it utilize stan-
dard arguments such as uniform stability. Furthermore, 
in contrast to these existing works, we adopt the f-dif-
ferential privacy framework to study the performance 
of the new privacy-preserving algorithm and establish 
its provable privacy protection guarantees.

3. Problem Formulation
3.1. Feature-Based Newsvendor Problem
We consider the classical single-period newsvendor 
problem setting. The DM needs to determine the order-
ing level q based on the observable demand d and fea-
ture vector x. Both d and x are random. We assume that 
the distribution of the demand d is unknown. In the 
feature-based newsvendor problem, given a realization 
of the feature vector x * Rp, the DM sets the ordering 
level q(x) to minimize the conditional expected cost 
function

E{C(q(x), d)) |x} ÿ E{[h(q(x)ÿ d)+ + b(dÿ q(x))+] |x}, 

where h is the per-unit holding cost, b is the per-unit 
lost-sales penalty cost, t+ ÿ max{t, 0}, and the expecta-
tion is taken with respect to the conditional distribution 
of d given x.

Similarly to Beutel and Minner (2012) and Ban and 
Rudin (2019), we consider a linear decision function of 
the form

q(x) ÿ xTb ÿ
Xp

jÿ1

xjβj, 

where the p-dimensional feature vector x ÿ (x1, : : : , xp)T 

has x1 c 1, and b ÿ (β1 , : : : ,βp)
T is the coefficient vector, 

considering the linear decision space is not a restriction 
in theory or practice. By replacing the features with 
their transformations (e.g., via series functions), the 
framework can be adapted to accommodate nonlinear 
decision rules. More specifically, one may approximate 
a nonlinear function x ¢³ q(x) by linear forms z(x)T

b, 
where x ¢³ z(x) :ÿ (z1(x), : : : , zk(x))T is a vector of 
approximating functions, and k ÿ kn g 1 may increase 
with n. Then, we denote the transformed features as 
{zi ÿ z(xi)}n

iÿ1. Popular choices of the series approxi-
mating functions include B-splines (or regression 
splines), polynomials, Fourier series, and compactly 
supported wavelets. We refer to Newey (1997) and 
Chen (2007) for a detailed description of these series 
functions. Under the linear decision model, we define 

the parameter indexing the optimal decision rule as

b7 ÿ arg min
b*Rp

C(b) :ÿE{h(xTbÿd)++b(dÿxTb)+}, (1) 

where the expectation is taken with respect to the joint 
distribution of (d, x). Write ε ÿ dÿ xTb7. Then, the lin-
ear decision function (Ban and Rudin 2019) is equiva-
lent to assuming that the conditional b=(b+ h) quantile 
of ε�given x is zero. Unlike Ban and Rudin (2019), we 
do not assume independence between x and ε.

3.2. Convolution Smoothing for Empirical Risk 
Minimization

In the case without features, it is well-known that the 
optimal decision is given by the b=(b+ h) quantile of the 
demand distribution. It can be estimated by the data- 
driven sample average approximation (SAA) (Levi et al. 
2015), an approach without making any parametric dis-
tributional assumption on d. In the setting with features, 
Ban and Rudin (2019) extended it to the conditional 
case, proposed a linear programming-based empirical 
risk minimization algorithm (NV-ERM), and estab-
lished the connection to conditional quantile regression. 
More explicitly, one can rewrite C(q(x), d) ÿ (b+ h)ρτ�
(dÿ q(x)), where τ ÿ b=(b+ h), and ρτ(u) ÿ u{τÿ1(u <

0)} is referred to as the quantile loss function or the 
check function corresponding to the τ-th quantile (Koen-
ker and Bassett 1978).

For an arbitrary b * Rp, let εi(b) :ÿ di ÿ xT
i b, i ÿ 1, 

: : : , n. Consider the empirical cumulative distribution 
function (ECDF) of the εi(b): bF(u;b) ÿ (1=n)Pn

iÿ1 1 

{εi(b) f u}, u * R. Then, the empirical risk minimiza-
tion approach of Ban and Rudin (2019) minimizes the 
following empirical loss function:

bC(b) ÿ (b+ h)
Z >

ÿ>
ρτ(u)dbF(u;b), (2) 

which can be solved via a linear program reformula-
tion. The empirical loss function is nonsmooth and 
poses significant challenges to developing a privacy 
protection procedure. To come up with an efficient 
algorithm to estimate the optimal decision with prov-
able privacy-preserving guarantees, we adopt convolu-
tion smoothing to address the challenge associated 
with the nondifferentiability of the loss function. This 
aims to simultaneously achieve two goals: (i) to have a 
feasible algorithm with a privacy-preserving guarantee, 
and (ii) to have an algorithm with a statistical accuracy 
guarantee as measured by the accuracy of estimating b7

and the regret, which is the cost gap between the esti-
mated policy from the algorithm and the clairvoyant 
benchmark.

The idea of convolution smoothing originates from 
Chen and Mangasarian (1995, 1996) in a special case 
and has been reexamined from a statistical perspective 

by Fernandes et al. (2021). Specifically, let bF-(·;b) be a 
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smoothed estimator of the distribution function of 
εi(b) based on the classical Rosenblatt-Parzen kernel 
density estimator. That is, for u * R,

bF-(u;b) ÿ
Z u

ÿ>
bf

-
(t;b)dt with

bf
-
(t; b) ÿ 1

n

Xn

iÿ1

K-(tÿ εi(b)), 

where K-(u) :ÿ (1=-)K(u=-), K : R³ [0,>) is a sym-
metric, nonnegative kernel that integrates to one, and 
- ÿ -n > 0 is a smoothing parameter. We consider the 
following smoothed counterpart of bC(b):

bC-(b) :ÿ (b+ h)
Z >

ÿ>
ρτ(u)dbF-(u;b)

ÿ b+ h

n

Xn

iÿ1

(ρτ 7K-)(di ÿ xT
i b), (3) 

where “*” denotes the convolution operator that for 
any two measurable functions f and g, (f 7 g)(u) ÿR>
ÿ> f (v)g(uÿ v)dv. Therefore, bC- is also referred to as 

the convolution-smoothed loss/cost function. Com-
monly used kernel functions in optimization and statis-
tics include (i) Gaussian kernel K(u) ÿ (2π)ÿ1=2eÿu2=2, 
(ii) Laplacian kernel K(u) ÿ eÿ |u |=2, (iii) logistic kernel 
K(u) ÿ eÿu=(1+ eÿu)2, (iv) uniform kernel K(u) ÿ (1=2)1 

( |u | f 1), and (v) Epanechnikov kernel K(u) ÿ (3=4)
(1ÿ u2)1( |u | f 1). The following lemma shows that, 
given any symmetric kernel K and smoothing parame-
ter - > 0, the resulting smoothed loss ρτ 7K- provides 
an upper approximation of ρτ�with uniform approxi-
mation error that scales with -.

Lemma 1. Let K be a symmetric, nonnegative kernel func-
tion with κ1 :ÿ

R>
ÿ> |u |K(u)du < >. For any - > 0, it 

holds uniformly over u * R that ρτ(u) f (ρτ 7K-)(u) f
ρτ(u) + κ1-=2.

From Lemma 1, we see that uniformly over b * Rp, 
bC(b) f bC-(b) f bC(b) + 0:5κ1(b+ h)-. The analysis of 
the discrepancy between the respective minimizers 
necessitates a more nuanced examination and addi-
tional assumptions on the data-generating process. In 
the following subsection, we elucidate the assumptions 
necessary for the analysis of the privacy-preserving 
algorithm proposed for feature-based newsvendor pro-
blems. We also discuss their connections with the 
assumptions imposed in Ban and Rudin (2019).

Remark 1. To address the nondifferentiability (at the 
origin) of the check loss, Horowitz (1998) proposed 
a more direct approach by replacing the indicator 
function 1(u < 0) in ρτ(u) with G(ÿu=-), where G(·)
is a smooth, nondecreasing function that takes values 
between zero and one, and - > 0 is a smoothing 
parameter. However, Horowitz’s smoothing gains 

smoothness at the cost of convexity, which inevitably 
raises optimization challenges, particularly when deal-
ing with a large number of features is large. On the 
contrary, provided a nonnegative kernel is used, the 
convolution-smoothed loss ρτ 7K- remains convex, as 

its second derivative (ρτ 7K-)(2)(u) ÿ K-(u) ÿ K(u=-)=- 

is everywhere nonnegative. See Figure 2 below for a 
visualization of Horowitz’s and convolution-smoothed 
check losses.

Using an approximate Hessian matrix, Chen et al. 
(2019) proposed a Newton-type algorithm to solve Hor-
owitz’s smoothed empirical loss minimization problem. 
In their convergence analysis, they assumed the initial 
estimator to be consistent, albeit at a suboptimal rate. In 
contrast, our analysis imposes minimal assumptions on 
the initial value, as demonstrated in Theorems 4 and 5
in Section 5.3. To achieve differential privacy in their 
algorithm, it may be necessary to inject noise into both 
the gradient and the approximate Hessian of the empir-
ical loss function. However, the theoretical analysis of 
their algorithm in the presence of inconsistent initial 
estimates is currently unknown.

Remark 2. The choice of the smoothing technique has 
an impact on the optimality of the algorithm. Section 
A of Bassily et al. (2014) considered an example in the 
setting of hinge loss with the Huberization method 
(quadratic smoothing) and argued that it does not 
allow one to get the optimal excess risk bounds. An 
alternative popular smoothing method for minimizing 
a nondifferentiable convex objective b ¢³ bC(b) is 
through Moreau-Yosida inf-convolution (or envelope) 
(Nesterov 2005). Recall that ρτ(u) ÿ τu1(u > 0)ÿ (1ÿ
τ)u1(u f 0). Its Moreau-Yosida envelope is given by

ργτ(u) ÿ min
v*R

ρτ(v) +
1

2γ
(uÿ v)2

ÿ ÿ
, 

where γ > 0 is the regularization parameter. It follows 

Figure 2. (Color online) Illustration of Two Smoothed 
Check/Quantile Loss Functions 
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from standard calculations that

ργτ(u) ÿ

ÿ(1ÿ τ)uÿ
1

2
(1ÿ τ)2γ if u < ÿ(1ÿ τ)γ,

1

2γ
u2, if u * [ÿ(1ÿ τ)γ,τγ],

τuÿ
1

2
τ2γ if u > τγ

8
>>>>><

>>>>>:

(4) 

and (ργτ)
2(u) ÿ τ1(u > τγ)ÿ (1ÿ τ) 1{u < ÿ(1ÿ τ)γ}+

u1{ÿ(1ÿ τ)γ f u f τγ}=γ. When the convex loss is non-
smooth, that is, not everywhere differentiable, Bassily 
et al. (2019) proposed a variant of the noisy stochastic 
gradient descent (SGD) algorithm and established upper 
bounds on the expected excess risk. Applying their gen-
eral results to the check loss ρτ, it follows that the 
expected excess risk of the output from their ([,δ)-DP 
algorithm is of order

O

ooo
p

n

r
+

ooooooooooooooooo
log(1=δ)

q p

[n

ÿ ÿ
:

In Section 5.2, by proving a form of restricted strong 
convexity that holds with high probability, we will 
show that the expected excess risk of the proposed 
noisy GD estimator satisfies a faster rate, which is of 
the order

O log(n) p

n
+ p + log n

µn

ÿ ÿ2
( ) !

, 

where µ > 0 is the privacy parameter for the Gaussian 
mechanism.

3.3. Assumptions
Suppose we observe an i.i.d. sample {(di, xi)}n

iÿ1 from 

(d, x) that follows a linear demand model d ÿ xTb7 + ε, 
where the observation noise ε�is such that the conditional 
τ-th quantile of ε�given x is zero, and τ ÿ b=(b+ h). More-
over, we assume that the conditional density function of 
ε |x, denoted by fε |x, exists and satisfies some regularity 
conditions described below. Compared with the Linear 
Model (18) considered in Ban and Rudin (2019), here, we 
do not assume the independence between the observation 
noise ε�and the random feature x. Under the above model, 
the τ-th conditional quantile of d given x is xTb7. Specifi-
cally, let Fd(· |x) be the conditional distribution function 
of d given x. Then, the conditional τ-th conditional 
quantile of d given x is formally defined as 
Qd(τ |x) ÿ inf{u : Fd(u |x) g τ}. We write x ÿ (x1, xT

ÿ)
T, 

where x1 c 1 and xÿ ÿ (x2, : : : , xp)T consists of the 
remaining random features. For theoretical analysis, 
we assume without loss of generality that µj :ÿ E(xj) ÿ
0 for j ÿ 2, : : : , p. Otherwise, it suffices to work with the 
demeaned model Qd(τ |x) ÿ β[1 +

Pp
jÿ2(xj ÿµj)β7j , where 

β[1 ÿ β71 +
Pp

jÿ2 µjβ
7
j .

To facilitate the analysis, we adopt the following 
technical conditions.

Condition 1 (Kernel Function). Let K(·) be a symmetric, 
nonnegative, and Lipschitz continuous kernel function; 
that is, K(u) ÿ K(ÿu), K(u) g 0 for all u and 

R>
ÿ>K(u)

du ÿ 1. Moreover, assume κu :ÿ supu*RK(u) and κℓ :ÿR>
ÿ> |u | ℓK(u)du, ℓ ÿ 1, 2 are bounded.

Condition 2 (Feature Distribution). The random predictor 
xÿ * Rpÿ1 is sub-Gaussian: there exists υ1 g 1 such that 
EeλuTwÿ f eλ

2υ2
1
=2 for all λ * R and u * Spÿ2, where wÿ ÿ

Sÿ1=2xÿ, and S ÿ E(xÿxT
ÿ) is positive definite.

Under Condition 2, the p × p matrix Σ ÿ E(xxT) is 
also positive definite. Let w ÿ Σÿ1=2x ÿ (1, wT

ÿ)
T denote 

the standardized feature vector satisfying E(wwT) ÿ Ip 

and E(w) ÿ (1, 0T
pÿ1)

T.

Condition 3 (Observational Noise ε ÿ dÿ xTb7). There 
exist constants l0 > 0 and fu g fl > 0 such that | fε |x(u)ÿ
fε |x(u) | f l0 |uÿ v | , fε |x(u) f fu for all u, v * R almost 
surely (over x), and

inf
t*[0,1], v*Spÿ1

E{ fε |x(t+w, v+)+w, v+2} g fl: (5) 

Below, we discuss how Conditions 2 and 3 are compara-
ble to assumptions 1 and 2 in Ban and Rudin (2019). For 
the random feature vector x ÿ (1, xT

ÿ)
T * Rp, Ban and 

Rudin (2019) assumed that the coordinates of xÿ are nor-
malized with mean zero and standard deviation one, and 
6x62 f C

ooo
p

:
for some constant C > 0. Condition 2, on the 

other hand, requires feature vector x to be sub-Gaussian, 
extending the concept of sub-Gaussian random variables 
to higher dimensions through one-dimensional margin-
als. Examples of such sub-Gaussian vectors include (i) 
Gaussian and Bernoulli random vectors, (ii) spherical 
random vectors, (iii) random vectors uniformly distrib-
uted on the Euclidean ball centered at the origin with 
radius 

ooo
p

:
, and (iv) random vectors uniformly distributed 

on the unit cube [ÿ1, 1]p. We refer to chapter 3.4 in Ver-
shynin (2018) for detailed discussions on multivariate 
sub-Gaussian distributions. For sub-Gaussian feature 
vectors xi’s, from theorem 2.1 in Hsu et al. (2012), it fol-
lows that max1fifn6xi62≲

oooooooooooooooooo
p+ log n

p
with high probabil-

ity. For the observation noise ε, Ban and Rudin (2019) 
assumed that its density function, denoted by fε, is 
bounded away from zero on some compact interval 
[D, D]. In Condition 3, it is worth noticing that the con-
stant fl may depend on both the conditional distribution 
of ε�given x, and the distribution of x * Rp. To see this, 
define ιδ ÿ inf{ι > 0 : E+w, u+2

1{ | +w, u+ |>ι} f δ for all u *
Spÿ1} for δ * (0, 1]. It is easy to see that δ ¢³ ιδ�is nonde-

creasing, and ιδ f (mq=δ)1=(qÿ2) for any q > 2, where mq 

:ÿ supu*Spÿ1 E | +w, u+ | q. Then, a sufficient condition for 
(5) is min | t | fιδ fε |x(t) g cδ > 0 almost surely (over x) for 
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some 0 < δ < 1 because

inf
t*[0,1], v*Spÿ1

E{ fε |x(t+w, v+)+w, v+2} g cδ

inf
v*Spÿ1

E{+w, v+2
1( | +w, v+ | f ιδ)} g (1ÿ δ)cδ:

4. A Privacy-Preserving Algorithm for the 
Feature-Based Newsvendor Problem

4.1. Preliminaries on f-Differential Privacy
We will first review the ([,δ)-differential privacy con-
cept introduced in Dwork et al. (2006a, b). Let S denote 
a data set consisting of observations {z1, : : : , zn}, where 
zi ÿ (di, xi), i ÿ 1, : : : , n. A pair of data sets S and S2 are 
said to be neighboring data sets if they differ in only 
one data point.

Definition 1. (ðe, dÞ-Differential Privacy, or ðe, dÞ-DP). A 
randomized algorithm M is ([,δ)-differentially private 
if, for any neighboring data sets S and S2 and any 
event E, we have

P(M(S) * E) f e[P(M(S2) * E) + δ, 

where [ g 0 and 0 f δ f 1 are constants.

An intuitive way to understand the concept of 
([,δ)-differential privacy is via the lens of a hypothesis 
testing problem for distinguishing two neighboring 
data sets S and S2:

H0 : the underlying data set is S versus

H1 : the underlying data set is S
2:

Consider any given test procedure φ�based on the out-
put of the randomized algorithm M, and denote its 
type I error and type II error by αφ�and βφ, respectively. 
It can be shown that for a test φ�based on the output of 
any ([,δ)-differentially private algorithm, its power is 
bounded by min{e[αφ + δ, 1ÿ eÿ[(1ÿαφÿ δ)}. If [ and 
δ�are both small, then any α-level (0 < α < 1) test will 
be nearly powerless.

Dong et al. (2022) extended Dwork et al. (2006a, b) 
by introducing the trade-off function to characterize 
the trade-off between the type I and type II errors.

Definition 2 (Trade-Off Function (Dong et al. 2022)). For 
any two probability distributions P and Q, the trade-off 
function T(P, Q) : [0, 1] ³ [0, 1] is defined as T(P, Q)(α)
ÿ inf{βφ : αφ f α}, where the infimum is taken over all 
measurable rejection rules to distinguish P and Q.

The greater the trade-off function is, the harder it is 
to distinguish the two distributions via hypothesis test-
ing. Dong et al. (2022) showed that a function f :
[0, 1] ³ [0, 1] is a trade-off function if and only if f is 
convex, continuous, nonincreasing, and f (x) f 1ÿ x for 
all x * [0, 1]. In the following, for any two functions f 
and g defined on [0,1], we write g g f if g(x) g f (x), 

∀x * [0, 1]. We abuse the notation a little by identifying 
S and S2 with their respective probability distributions.

Definition 3 ( f-Differential Privacy (Dong et al. 2022)). A 
randomized algorithm M is said to be f-differentially 
private if, for any neighboring data sets S and S2,

T(S,S2) g f 

for some trade-off function f.

If f ÿ T(P, Q) for some distributions P and Q, then a 
mechanism M is f-DP if distinguishing any two neigh-
boring data sets based on the output of M is at least as 
difficult as distinguishing P and Q based on a single 
draw. This functional perspective avoids some of the 
pitfalls associated with ([,δ)-differential privacy. f-DP 
is a generalization of ([,δ)-DP. A result of Wasserman 
and Zhou (2010) indicates that a mechanism M is 
([,δ)-DP if and only if M is f[,δ-DP, where f[,δ(α) ÿ
max{0, 1ÿ e[αφÿ δ, eÿ[(1ÿ αφÿ δ)}.
Definition 4 (Gaussian Differential Privacy (Dong et al. 
2022)). A randomized algorithm M is said to satisfy 
µ-Gaussian differential privacy if for any neighboring 
data sets S and S2

T(S,S2) g Gµ, 

where Gµ(α) ÿΦ(Φÿ1(1ÿ α)ÿµ), and Φ�is the distribu-
tion function of the standard normal distribution.

GDP provides a parametric family of f-DP that guar-
antees and enjoys many desirable properties. As a rule 
of thumb, µ f 0:5 guarantees a reasonable amount of 
privacy, µ ÿ 1 is borderline private, and µ > 6 promises 
almost no privacy guarantee. The trade-off of type I 
and type II errors is illustrated in Figure 3.

4.2. Proposed Differentially Private Algorithm
To obtain a differentially private counterpart of bb

-
ÿ

arg minb
bC-(b), we draw inspiration from works Song 

et al. (2013) and Bassily et al. (2014) and utilize a noisy 
optimization approach that involves adding Gaussian 
noise during each iteration of the gradient descent 

method. Minimizing the loss function bC(b) used in Ban 
and Rudin (2019) poses a challenge, as it is convex but 
not differentiable everywhere, and subgradient methods 
commonly employed for such cases exhibit slow (sub-
linear) convergence, leading to computational instabil-
ity. In this work, we propose a differentially private 
algorithm that leverages convolution smoothing and 
noisy gradient descent. Its privacy protection guarantee 
is established in Theorem 1 in Section 4.3. We further 
investigate its finite-sample performance in Section 5
and demonstrate that the proposed approach achieves a 
balanced trade-off between statistical accuracy and com-
putational stability, owing to the effectiveness of convo-
lution smoothing.
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Given a nonnegative kernel function K(·) introduced 
earlier, we define

K(u) ÿ
Z u

ÿ>
K(v)dv and K-(u) ÿ K(u=-)

so that K
2
-
(u) ÿ K-(u). If the p × p matrix Σ ÿ E(xxT)

was known, we consider the following noisy smoothed 
gradient descent method, starting at iteration 0 with an 
initial estimate b(0). At iteration t ÿ 0, 1, 2, : : : , T ÿ 1, we 
update the solution as follows:

b(t+1) ÿ b(t) ÿ
η0

n
Σ
ÿ1=2

Xn

iÿ1

{K-(xT
i b(t) ÿ di)ÿ τ}wB(wi) + σgt

" #

, (6) 

where wi ÿ Σÿ1=2xi denotes the standardized covari-
ates vector in the sense that E(wiw

T
i ) ÿ Ip, wB(u) ÿ u=

max{1, 6u62=B}, and gt * Rp (t ÿ 0, 1, : : : , T ÿ 1) are inde-
pendent N (0, Ip) vectors. Here, η0 > 0 is the step size, 
T g 1 is a prespecified number of iterations, B g 1 is a 
truncation parameter, and σ�is a positive constant adjust-
ing the level of noise injected into the gradient perturba-
tion. We summarize this procedure in Algorithm 1.

The presence of Σ�in Algorithm 1 is primarily for theo-
retical convenience, as it allows us to establish upper 

bounds on the estimation error E{xT(bb
-
ÿb7)}2 by 

expressing it as 6Σ1=2(bb
-
ÿb7)62

2, where the expectation 
is only taken with respect to x that is independent of bb

-
. 

When Σ�is unknown, we consider the following update:

b(t+1) ÿ b(t) ÿ
η0

n

Xn

iÿ1

{K-(xT
i b(t) ÿ di)ÿ τ}wB(xi) + σgt

" #

(7) 

with a slight abuse of notation.
In both (6) and (7), the use of covariate clipping/ 

truncation guarantees a bounded ℓ2-sensitivity of the 
gradient function, which is the key to achieving differ-
ential privacy. For the initial value, one can take b(0) to 
be either 0 or a random guess that is uniformly distrib-
uted over the unit sphere.

Algorithm 1 (Private ERM via Noisy Smoothed Gradient 
Descent)
Input: data set {(di, xi)}n

iÿ1, probability level τ * (0, 1), 
bandwidth - > 0, initial value b(0), step size η0 > 0, 
noise scale σ > 0, truncation level B g 1, number of 
iterations T g 1. 

1: for t ÿ 0, 1: : : , T ÿ 1 do
2: Generate standard multivariate normal vector 

gt ~ N (0, Ip);
3: Compute clipped/truncated covariates wi ÿ wi 

min{1, B=6wi62} for i ÿ 1, : : : , n;

4: Compute b(t+1) ÿ b(t) ÿ (η0=n) ·Σÿ1=2[Pn
iÿ1{K-(xT

i 

b(t) ÿ di)ÿ τ}wi + σgt];
5: end for

Output: b(T).

4.3. Privacy-Protection Guarantee of the 

Proposed Algorithm
We first review some useful results about f-DP.

Proposition 1 (Theorem 1 in Dong et al. (2022)). Define 
the Gaussian mechanism that operates on a statistic θ�as 
M(S) ÿ θ(S) + ξ, where ξ ~ N (0, sens(θ)2=µ2), and the 
sensitivity sens(θ) ÿ sup

S,S2 |θ(S)ÿθ(S2) | with the supre-
mum over all neighborhood data sets S and S2. Then, M is 
µ-GDP.

A nice property of f-DP is that the composition of pri-
vate mechanisms is closed and tight in the f-DP frame-
work. A two-step composition can be written as M(S) ÿ
(y1, M2(S, y1)), where y1 ÿ M1(S) with M1 : X ³ Y1 

being the first mechanism, and M2 : X × Y1 ³ Y2 is the 
second mechanism. In general, given a sequence of 
mechanisms Mi : X × Y1 ×⋯× Yiÿ1 ³ Yi, i ÿ 1, : : : , n, 
we consider the n-fold composed mechanism: M : X ³
Y1 ×⋯× Yn.

Definition 5. The tensor product of two trade-off func-
tions f ÿ T(P, Q) and g ÿ T(P2, Q2) is f · g ÿ T(P ×
P2, Q × Q2).

Proposition 2 (Theorem 4 in Dong et al. (2022)). Let 
Mi(·, y1, : : : , yiÿ1) be fi-DP for all y1 * Y1, : : : , yiÿ1 * Yiÿ1. 
Then, the n-fold composed mechanism M : X ³ Y1 ×⋯ Yn 

is f1 · ⋯ · fn-DP.

Corollary 1 (Corollary 2 in Dong et al. (2022)). The n-fold 

composition of µi-GDP mechanisms is 
ooooooooooooooooooooooo
µ2

1+ ⋯ +µ2
n

q
- 

GDP.

Figure 3. (Color online) Trade-Off Functions for GDP with 
Privacy Parameter µ ÿ 0.3, 0.5, 0.9, 3, and 6, Respectively 
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Remark 3. Dong et al. (2022) revealed that the Gauss-
ian mechanism in Proposition 1 satisfies Gµ(α) ÿ
infneighboring S, S2T(M(S), M(S2))(α). For all possible type 
I error rate α, the infimum could be achieved at two 
neighboring data sets that satisfy |θ(S)ÿθ(S2) | ÿ
sens(θ). This implies that the characterization by GDP 
is precise in the point-wise sense. GDP offers the tight-
est possible privacy bound of the Gaussian mechanism.

Theorem 1 below establishes the Gaussian differen-
tial privacy property of the proposed algorithm. For 
any given sample size n, number of iterations T, and 
noise scale σ, the output of the algorithm b(T) satisfies 
the Gaussian differential privacy property with privacy 
level µ, as outlined in the theorem.

Theorem 1 (Privacy Protection Guarantees). Given an 
initial estimate b(0) * Rp and a data set Zn ÿ {(di, xi)}n

iÿ1, 
consider the noisy gradient descent iterates {b(t)}tÿ0, : : : , T 

defined in (6). Given a privacy level µ > 0, if σ > 0 satisfies 
σ g 2τBT1=2=µ with τ ÿ max(τ, 1ÿ τ), then the final out-
put b(T) is µ-GDP.

Proof of Theorem 1. Consider two data sets Zn and Z2
n 

that differ by one datum, say (d1, x1) * Zn versus (d21, x2
1)

* Z
2
n. At the first iteration, note that

6Σ1=2b(1)(Zn)ÿΣ1=2b(1)(Z2
n)62

ÿ η0

n

ÿÿÿÿ{K-(+x1, b(t)+ÿ d1)ÿ τ}wB(w1)

ÿ {K-(+x2
1, b(t)+ÿ d2

1)ÿ τ}wB(w2
1)
ÿÿÿÿ

2

f 2 max(1ÿ τ,τ)Bη0

n
ÿ 2τB

η0

n
:

By Proposition 1, Σ1=2b(1) is (Tÿ1=2µ)-GDP as long as 
σ g 2τBT1=2=µ. After postprocessing (by a determinis-
tic map), b(1) is also (Tÿ1=2µ)-GDP.

By definition, the second iterate b(2) ÿ b(2)(Zn) takes 
b(1) as input in addition to the data set. Together, Prop-
osition 2 and Corollary 1 show that the twofold com-
posed (joint) mechanism (b(1), b(2)) is 

oooooooooooooooooooooooooo
µ2=T +µ2=T

p
- 

GDP. Using the same argument repeatedly, we conclude 
that the T-fold composed mechanism (b(1), : : : , b(T)) is 
µ-GDP, and hence, so is b(T). w

5. Theoretical Performance
Theorem 1 in Section 4.3 establishes the privacy protec-
tion guarantees of the proposed new algorithm. This 
section provides a statistical analysis of the privacy- 

preserving coefficient estimate b(T) under Conditions 
1–3 from Section 3.3. Section 5.1 provides upper bounds 
for the finite-sample bias of the estimated optimal pol-
icy both in high probability and under expectation. Sec-
tion 5.2 provides the regret analysis. To prove these 
bounds, the main technical challenge is that the empiri-
cal cost function after convolution smoothing does not 

satisfy the local strong convexity as required in Avella- 
Medina et al. (2023). We provide main proof strategies 
and important intermediate results in Section 5.3.

5.1. Performance Bound on Estimation Error
The parameter indexing the clairvoyant optimal policy, 
where the demand distribution is known a priori, is 
given by (1): b7 ÿ arg minb:q(x)ÿxTbE{C(q(x), d)) |x}: Given 

a feature vector x, the clairvoyant optimal to-order- 
quantity is xTb7. Given an estimate bb of the unknown 
parameter b7 based on a random, independent sample 
{(d1, x1), : : : , (dn, xn)} of size n drawn from the linear 
demand model, we use the following two metrics to 
evaluate its performance: (i) the estimation error 6bb ÿ
b762 under the vector ℓ2-norm or its variant, and (ii) the 
excess (population) risk C(bb)ÿC(b7), where C(·) is 
defined in (1).

With a predetermined bandwidth - > 0, step size 
η0 > 0, truncation level B g 1, number of iterations 
T g 1, and noise scale σ ÿ 2τBT1=2=µ, let b(T) be the 
µ-GDP estimator of b7 obtained from Algorithm 1, 
where τ ÿ max(τ, 1ÿ τ). Our first theorem provides 
upper bounds for the estimation error 6b(T) ÿb76Σ�both 
in high probability and under expectation, where 6 · 6Σ�
denotes the Σ-induced norm; that is, 6u6Σ ÿ

oooooooooooo
uTΣu

:
for 

u * Rp.

Theorem 2. In addition to Conditions 1–3, assume κl :ÿ
min |u | f1K(u) > 0. Let the triplet of parameters (-, B, T)
and sample size n satisfy

- o p+ log n

n

ÿ ÿ1=4

, B o
oooooooooooooooooo
p+ log n

p
,

T o log n and n≳ T1=2 p+ log n

µfl
: (8) 

Moreover, let the step size η0 satisfy 0 < η0 f 1=max 
(2fu, fl + τ). Then, the µ-GDP estimated coefficient b(T)

obtained from noisy gradient descent initialized at any 
b(0) * b7 +ΘΣ(1) satisfies

6b(T) ÿb7 6Σ f C0 η0T1=2 p+ log n

µn
+ 1

fl

ooooooooooooo
plog n

n

r !

with probability at least 1ÿ
C1

n2 

and

E6b(T) ÿ b7 6Σ f C2

ooooooooooo
log n

p
η0

p + log n

µn
+ 1

fl

ooo
p

n

rÿ ÿ
, 

where C0, C1, and C2 are positive constants independent of 
(n, p).

As a benchmark, we use bb
- 

to denote the nonprivate 
empirical (smoothed) risk minimizer; that is, bb

-
ÿ

arg minb*Rp
bC-(b),with bC-(·) defined in (3). From the 

proof of Theorem 2, we see that the second term on the 
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right-hand side upper bound is the bound on the esti-
mation error of bb

-
, which is of order 

oooooooo
p=n

p
with a 

properly chosen smoothing parameter - (He et al. 
2023). The first term quantifies the “cost of privacy” of 
the noisy gradient descent algorithm for solving the 
feature-based newsvendor problem. For sufficiently 
small values of µ, the obtained upper bound (on 
6 · 6Σ-error) matches the minimax lower bound, up to 
logarithmic factors, for (µ,δ)-DP estimation of b7 under 
a linear model with normal errors; see theorem 4.1 in 
Cai et al. (2021). By corollary 1 in Dong et al. (2022), an 
algorithm is µ-GDP if and only if (µ,δ(µ))-DP, where 
δ(µ) ÿ Φ(ÿ1+µ=2)ÿ eµΦ(ÿ1ÿµ=2).

5.2. Regret Analysis
We next provide a finite-sample analysis of the regret 
C(b(T))ÿC(b7), where C(b) ÿ E{bC(b)} is as in (1). The 
regret is the difference between the expected cost 
obtained with the estimated privacy-preserving opti-
mal policy and the clairvoyant optimal expected cost 
with known demand distribution but without privacy 
protection.

Without loss of generality (up to a constant scale), 
we consider the regret of b(T), defined as Q(b(T))ÿ
Q(b7) ÿ Q(b(T))ÿ infb*RQ(b), where Q(b) ÿ (b+ h)ÿ1 

C(b) ÿ E{ρτ(dÿ xT b)} with τ ÿ b=(b+ h) as the popula-
tion cost (without smoothing). Recall that the coeffi-
cient b7 indexing the optimal inventory policy satisfies 
the first-order condition 'Q(b7) ÿ 0. By the mean value 
theorem and Condition 3 that supu*R fε |x(u) f fu, it can 
be shown that Q(b)ÿQ(b7) ÿ Q(b)ÿQ(b7)ÿ +'Q(b7), 
bÿb7+ f 0:5fu6bÿb762

Σ�
for any b * Rp. This, combined 

with Theorem 2, implies the following high-probability 
upper bound on the regret along with an expected 
regret bound.

Theorem 3 (High-Probability Bound for Excess Risk). 
Under the same set of assumptions in Theorem 2, we have

Q(b(T))ÿ Q(b7)≲ log(n) 1

fu

p + log n

µn

ÿ ÿ2

+ fu
f 2
l

p

n

( )

(9) 

with probability at least 1ÿC1nÿ2.

Corollary 2 (Excess Population Risk Bound). Under the 
conditions of Theorem 3, the excess population risk bound 
satisfies

E{Q(b(T))ÿ Q(b7)}≲ log(n){ fÿ1
u (p + log n)2=(µn)2

+ ( fu=f 2
l ) · p=n}: (10) 

For fixed cost parameters b and h, the Bound (9) indi-
cates that if the number of relevant features p is small 
relative to the number of observations in the sense that 
plog n ÿ o(n), the expected cost of the µ-GDP estimated 
decision converges to that of the optimal decision at a 
fast rate O(p=n+µÿ2(p=n)2), up to logarithmic factors. 

Without privacy guarantees, Ban and Rudin (2019) 
obtained a similar performance bound, which implies 
consistency but under a stronger condition on the num-
ber of features; that is, p2 ÿ o(n).

5.3. Proof Strategy and Key Intermediate Results
The statistical analysis of the noisy gradient descent 
iterates {b(t)}tÿ1, : : : , T depends crucially on the land-
scape of the empirical loss function, as highlighted in 
recent research (Cai et al. 2021, Avella-Medina et al. 
2023). Unlike many commonly used loss functions in 
statistical learning, such as squared loss, Huber loss 
(and its smoothed variants), and logistic loss, the quan-
tile loss ρτ�exhibits piecewise linearity, which lacks local 
strong convexity. Instead, its “curvature energy” is con-
centrated in a single point. Notably, the local strong 
convexity and smoothness of bQ

-
(·) are intricately influ-

enced by the bandwidth used in the analysis.
In this study, we present the key findings for analyz-

ing the landscape of bQ
-
(·). Specifically, we illustrate 

that by conditioning on a series of “good events” 
related to the empirical smoothed cost function, the 
proposed noisy gradient descent iterates exhibit favor-
able convergence properties. Moreover, we demon-
strate that these good events will occur with high 
probability under Conditions 1–3. We conclude this 
section with a supplementary analysis of the initializa-
tion of the algorithm.

Given a kernel function K(·) and bandwidth - > 0, 
we define the empirical smoothed loss

bQ
-
(b) ÿ (b+ h)ÿ1bC-(b) ÿ

1

n

Xn

iÿ1

(ρτ 7K-)|nnnnn{znnnnn}
≕ℓ-

(di ÿ xT
i b), 

where “*” is the convolution operator. Its gradient and 
Hessian are given, respectively, by

'bQ
-
(b) ÿ 1

n

Xn

iÿ1

{K-(xT
i bÿ di)ÿ τ}xi and

'2 bQ
-
(b) ÿ 1

n

Xn

iÿ1

K-(di ÿ xT
i b)xix

T
i :

Let Q(b) ÿ E{bQ(b)} and Q-(b) ÿ E{bQ
-
(b)} be the pop-

ulation quantile and smoothed quantile losses, respec-
tively. Note that although the parameter b7 indexing 
the theoretically optimal inventory policy satisfies the 
moment condition 'Q(b7) ÿ 0, in general, 'Q-(b7) ≠ 0. 
Therefore, we use

b7 :ÿ 6Σÿ1=2'Q-(b7)62 ÿ 6E{K-(xTb7 ÿ d)ÿ τ}w62 

to quantify the smoothing bias. Together, Condition 1
and the Lipschitz continuity of fε |x(·) ensure that b7 f
0:5l0κ2-

2; see Lemma 1.3 in the supplementary material.
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For any r > 0, define the local ellipses centered at the 
origin and b7, respectively, as

ΘΣ(r) ÿ {d * Rp : 6d6Σ f r} and

Θ
7
Σ
(r) ÿ {b * Rp : 6bÿb76Σ f r}:

Moreover, for every b * Rp, we write

bD-(d) ÿ bQ-
(b)ÿ bQ

-
(b7) and

D-(d) ÿ E{bD-(d)} for d ÿ bÿb7: (11) 

Given parameters B, R g 1 and δ0,δ1 > 0, define the 
“good events”

E0(B) ÿ
n

max
1fifn

6wi62 fB
o

, (12) 

E1(δ0,δ1) ÿ {| bD-(d)ÿD-(d) | f δ06b6Σ
for all d*ΘΣ(1) \ΘΣ(1=n)} + {6'bQ

-
(b)

ÿ'Q-(b)6Σÿ1 f δ1 for all b*Θ7
Σ
(1)}, (13) 

E2(R) ÿ {6'2 bQ
-
(b)ÿ'2Q-(b)6Σÿ1 f fu

for all b *Θ7
Σ
(R)}: (14) 

Here we write 6A6
Σ
ÿ1 ÿ 6Σÿ1=2AΣÿ1=262 for any p × p 

matrix A. In the following, we will restrict our analysis 
to the intersection of the above events.

Proposition 3 (Restricted Strong Convexity and Smooth-
ness). Let 0 < - f fl=(2l0κ1), and set φ1 ÿ 0:5( fl ÿ l0κ1-)
g 0:25fl > 0. Then, conditioned on the event E1(δ0,δ1)
+ E2(R), we have

bQ
-
(b)ÿ bQ

-
(b7)

g
φ16bÿb762

Σ

ÿ (δ0 +b7)6bÿb76Σ
for all b*Θ7

Σ
(1) \Θ7

Σ
(1=n)

(φ1 ÿδ0 ÿb7)6bÿb76Σ for all b*Θ7
Σ
(1)c,

8
>><

>>:

(15) 
bQ

-
(b7)ÿ bQ

-
(b)ÿ +'bQ

-
(b),b7ÿb+

gφ16bÿb762
Σ
ÿ (δ0 +δ1)6bÿb76Σ

for all b*Θ7
Σ
(1) \Θ7

Σ
(1=n), (16) 

and

bQ
-
(b2)ÿ bQ

-
(b1)ÿ +'bQ

-
(b1), b2 ÿ b1+

f fu6b2 ÿ b162
Σ

for all b1, b2 * Θ7
Σ
(R): (17) 

Note that the Lower Bound (16) implies a restricted 
strong convexity (RSC) for bQ

-
(b) when b *Θ7

Σ
(1)=Θ7

Σ�

(nÿ1 ∨ r1) with r1 ÿ (δ0 + δ1)=φ1. The Upper Bound (17) 
is related to the local strong smoothness of the empiri-
cal cost, which no longer holds without convolution 
smoothing. In addition, we define a “good” event 

on which the smoothed empirical loss bQ
-
(·) satisfies 

a refined RSC property. Given a radius r > 0 and a cur-
vature parameter φ2 * (0, fl), define

E3(r,φ2) ÿ
(

inf
b1*b7+ΘΣ(r=2), b2*b1+ΘΣ(r)

bQ
-
(b1)ÿ bQ-

(b2)ÿ +'bQ
-
(b2),b1 ÿb2+

6b1 ÿb262
Σ

gφ2

)

:

Now, we are ready to present the following general 
upper bound on the estimation error conditioning on 
the above good events.

Theorem 4. Assume Conditions 1 and 3 hold and b(0) *
Θ

7
Σ
(1), and let (-,η0) satisfy 0 < - f fl=(2l0κ1) and 0 <

η0 f 1=max(2fu, fl + τ), where τ ÿ max(τ, 1ÿ τ). Set R ÿ 2, 
and let δ0,δ1 > 0 be such that

r0 :ÿ (δ0 + b7)=φ1 < 1 and r1 :ÿ (δ0 + δ1)=φ1 f 1, (18) 

where φ1 ÿ 0:5( fl ÿ l0κ1-). Moreover, let ∆ ÿ φ1 ÿ δ0 ÿ
b7 * (0, fl=2) and [ ÿ η0φ1 * (0, 1=2). For any z g 0, let the 
sample size satisfy

n g σp1=2 +
oooooooooooooooooooooooo
2(log T + z)

p

∆
: (19) 

Then, conditioned on the event E0(B) + E1(δ0,δ1) + E2(2), 
the noisy gradient descent iterate b(T) with T g 2 log(n)=
log((1ÿ [)ÿ1) satisfies

6b(T) ÿb76Σ f r7

:ÿ
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
1

n2
+ (1+ 1=[) (2p=[+ 3z) η0σ

n

ÿ ÿ2

+ (r0 ∨ r1)2

ÿ ÿs

(20) 

with probability (over the i.i.d. normal vectors {gt}
Tÿ1
tÿ0 ) at 

least 1ÿ 2eÿz. Moreover, the nonprivate empirical (smoothed) 
risk minimizer satisfies 6bb

-
ÿb76Σ f r0.

Let r ÿ r7 + r0. Conditioned further on E3(r,φ2), b(T)

with T g 3 log(n)=log((1ÿ [)ÿ1) satisfies

6b(T) ÿ bb
-
6Σ f r† :ÿ

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
r2

n
+ (1+ 1=[)(2p=[+ 3z) η0σ

n

ÿ ÿ2
r

(21) 

with probability (over the i.i.d. normal vectors {gt}
Tÿ1
tÿ0 ) at 

least 1ÿ 2eÿz.

Remark 4. Under local strong convexity and smooth-
ness conditions, Avella-Medina et al. (2023) established 
statistical convergence guarantees for private M-estima-
tors obtained via noisy gradient descent. Let Ln : Rp ³
R be a general (empirical) loss function of interest and 
Θ ¦ Rp be the parameter space. As high-level condi-
tions, Avella-Medina et al. (2023) assumed that Ln is 
locally τ1-strongly convex and τ2-smooth; that is,

Ln(b1)ÿLn(b2) g +'Ln(b2), b1 ÿb2+ + τ16b1 ÿb262
2,

∀b1, b2 * {b * Rp : 6bÿb762 f r}
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for some r > 0, and Ln(b1)ÿLn(b2) f +'Ln(b2), b1 ÿ
b2+ + τ26b1 ÿb262

2, ∀b1, b2 *Θ. To our knowledge, it 
remains uncertain whether the aforementioned local 
strong assumption holds with high probability for either 
the empirical newsvendor loss bQ or its convolution- 
smoothed counterpart bQ

-
. Therefore, a more delicate 

argument is required to analyze the convergence of 
noisy gradient descent iterates obtained from Algorithm 1. 
Our proof of Theorem 4 crucially relies on the structural 
properties of bQ

- 
stated in Proposition 3. In Proposition 

4 below, we will show that the event conditioned on in 
Proposition 3 holds with high probability.

Remark 5. The proof of the error bound 6bb
-
ÿb76Σ f

r0 in Theorem 4, which holds conditioning on event 
E1(δ0,δ1), extends the argument in He et al. (2023). 
The main contribution of Theorem 4 is to establish 
finite-sample performance bounds for the noisy gradi-
ent descent iterates {b(t)}T

tÿ1 in a sequential manner, 
which involves a more intricate analysis compared 
with that for the nonprivate empirical (smoothed) risk 
minimizer bb

-
. More specifically, the analysis con-

ducted in He et al. (2023) necessitates that the empiri-
cal loss satisfies only Condition (15), whereas our 
approach requires a more comprehensive version of 
the Restricted Strong Convexity Property (16). We 
also establish a connection between statistical theory 
and algorithmic complexity, demonstrating that to 
achieve a statistically efficient estimator as shown in 
Theorem 2, the computational complexity is of order 
O(np log(n)). In contrast, the conventional interior- 
point method commonly used for solving the LP 
reformulation of empirical check loss minimization 
demands a significantly higher average-case computa-
tional complexity of OP(n1:25p3log n) (Portnoy and 
Koenker 1997).

The convergence result stated in Theorem 4 relies on 
the assumption that the initial value b(0) falls within the 
neighborhood Θ7

Σ
(1), which we term as the tightening 

region. In each iteration of the noisy gradient descent, 
the current estimate contracts toward the true parame-
ter, progressively moving closer to the region of near- 
optimal convergence.

In general, let us define R0 :ÿ 6b(0) ÿ bb
-
6Σ�to be the 

distance between the initial value b(0) and the nonpri-
vate empirical risk minimizer bb

-
. The following result 

presents the number of iterations necessary for the 
noisy gradient descent to enter the tightening region.

Theorem 5. Assume Conditions 1 and 3 hold, and let 
(-,η0) satisfy 0 < - f fl=(2l0κ1) and 0 < η0 f min{1, 1=

(2fu)}. Without loss of generality, assume R0 ÿ 6b(0)ÿ
bb

-
6Σ > 1, and let

∆ ÿ φ1 ÿ δ0 ÿ b7 * (0, fl=2), r0 ÿ (δ0 + b7)=φ1 * (0, 1), 

where φ1 ÿ (fl ÿ l0κ1-)=2. Given z g 0, let the number of 
iterations T0 and sample size n satisfy

T0 g
R2

0

η0∆
and n g 2BT0

σ

max
2R0 + (τB+ 1=4)(T0 + 1)η0

∆
,

eÿ 1

4ÿ e
(τB+ 1=4)T0

ÿ ÿ
,

(22) 

where BT0
ÿ ooo

p
: +

ooooooooooooooooooooooooo
2(log T0 + z)

p
. Then, conditioned on 

E0(B) + E1(δ0,δ1) + E2(R) with R ÿ 2R0 + r0, the noisy 
gradient descent iterate b(T0) satisfies

bQ
-
(b(T0))ÿ bQ

-
(bb

-
) f ∆ and 6b(T0) ÿb76Σ f 1 

with probability (over normal vectors {gt}
T0ÿ1
tÿ0 ) at least 

1ÿ eÿz.

The aforementioned high-level findings demonstrate 
that, given a sequence of “good events” associated 
with the empirical smoothed cost function, the pro-
posed noisy gradient descent iterates exhibit desirable 
convergence properties. To complement this determin-
istic analysis, we further provide probabilistic bounds, 
which subsequently yield finite-sample performance 
bounds as presented in Sections 5.1 and 5.2.

Proposition 4. Assume Conditions 1–3 hold. Given R > 0, 
for any z > 0, we have that with probability at least 
1ÿ 5eÿz,

max
1fifn

6Σÿ1=2xi62 f C0υ1

ooooooooooooooooooooooooooo
p+ log(n) + z

q
,

sup
d*ΘΣ(1)\ΘΣ(1=n)

| bD-(d)ÿD-(d) |
6d6Σ

f C1υ1

ooooooooooooooooooooooooooooo
p+ log2(n) + z

n

r
,

sup
b*Θ7

Σ
(1)
6'bQ

-
(b)ÿ'Q-(b)6Σÿ1 f C2υ1

oooooooooooooooooooooooooooo
plog(n=-) + z

n

r

+ fu-+ 2κu

n 

and

sup
b*Θ7

Σ
(R)

6'2 bQ
-
(b)ÿ '2Q-(b)6Σÿ1

f C2υ
2
1

oooooooooooooooooooooooooooooo
p log(n=-) + z

n-

r
+ p log(n=-) + z

n-

( )

+ C2
2R
υ1(p + log n + z)1=2 + l0m3-

2

n2
, 

provided that n≳ υ4
1(p+ z), where C0, C1, C2, C2

2 > 0 are 
absolute constants. Moreover, b7 ÿ 6'Q-(b7)6

Σ
ÿ1 f 0:5l0 

κ2-
2, and 6'2Q-(b7)6

Σ
ÿ1 f fu.
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Proposition 5. In addition to Conditions 1–3, assume

κl :ÿ min
|u | f1

K(u) > 0 and

inf
|u | f1

1

2u

Z u

ÿu

fε |x(v)dv g f 2l almost surely 

for some f 2l > 0. Let rloc ÿ -=(16 max{m4, 3}1=4υ1). Then, 
for any z > 0, we have that with probability at least 1ÿ eÿz,

bQ
-
(b1)ÿ bQ-

(b2)ÿ +'bQ
-
(b2), b1 ÿb2+ g φ26b1 ÿb262

Σ

(23) 

holds uniformly over b1 * b7 +ΘΣ(rloc=2) and b2 * b1 +
ΘΣ(rloc), provided that the “effective sample size” n- satis-
fies n-≳ m

1=2
4 υ

2
1(p+ z), where φ2 > 0 is a constant depend-

ing only on (κl, f 2l ).
Let the sample size n and bandwidth - ÿ -n > 0 sat-

isfy n-≳ p log n and -≲ {(p+ log n)=n}1=4. Then, Prop-

osition 4 implies b7≲
oooooooooooooooooooooooooo
(p+ log n)=n

p
and event E0(B) +

E1(δ0,δ1) + E2(2) with (B,δ0,δ1) satisfying

B o
oooooooooooooooooo
p+ log n

p
, δ0 o

oooooooooooooooooo
p+ log n

n

r
and δ1 o

ooooooooooooo
p log n

n

r

occurs with high probability. Combining this with The-
orem 4 implies the finite-sample performance bounds 
in Theorem 2.

Moreover, under the additional assumptions stated in 
Proposition 5, there exist some curvature parameter 
φ2 > 0 and a local radius rloc o - such that the event 
E3(rloc,φ2) also occurs with high probability. This fur-
ther implies that the µ-GDP estimate b(T), obtained from 
noisy gradient descent initialized at any b(0) * b7+
ΘΣ(1), satisfies with probability at least 1ÿCnÿ1 that

6b(T) ÿ bb
-
6Σ≲

oooooooooo
log n

p

( fl ∧ f 2l )
2

p+ log n

µn
:

Here, we implicitly assume that both the smoothing 
parameter - and the number of iterations T are chosen 
appropriately. The above bound, in turn, implies that 
the excess (smoothed) empirical risk is bounded with 
high probability by

bC-(b(T))ÿ bC-(bb-
) ÿ bC-(b(T))ÿmin

b*Rp

bC-(b)

≲ log n
p+ log n

µn

ÿ ÿ2

:

The above rate also matches (up to a logarithm factor) 
the one in Bassily et al. (2014) for Lipschitz and 
strongly convex loss functions (after adjusting for 
scaling differences).

6. Numerical and Empirical Studies
In this section, we utilize synthetic data as well as real- 
world data to showcase the empirical performance of 
the proposed privacy-preserving feature-driven policy. 

We compare its performance against that of the theoret-
ically optimal policy, which assumes known demand 
but lacks privacy protection measures. For the sake of 
simplicity and consistency, we employ the Gaussian 
kernel in all of our numerical experiments.

6.1. Synthetic Data
We consider the linear demand model d ÿ xTu7 + ε, 
where u7 ÿ (1:5, 1, ÿ2:5, ÿ1:5, 3)T * R5 and xT ÿ (1, zT)T. 
The feature vector z * R4 is generated from a centered 
multivariate normal distribution with covariance matrix 
Σ ÿ (0:5 | jÿk | )1fj, kf4. Independent of the feature vector x, 
the observation noise variable ε�follows one of the fol-
lowing three distributions: (i) standard norm distribu-
tion N (0, 1), (ii) t-distribution with three degrees of 
freedom (t3), and (iii) Gaussian mixture distribution 
0:9N (0, 1) + 0:1N (0, 100).

In all of our numerical experiments, we set b+ h ÿ 1 
so that with the distribution of ε�known as a priori infor-
mation, the optimal quantity to order can be determined 
by the τ-th quantile of the conditional distribution of d 
given x, where τ ÿ b. Specifically, the clairvoyant opti-
mal policy is xTb7 with b7 ÿ u7 + (Qε(τ), 0, 0, 0, 0)T, where 
Qε(·) denotes the quantile function of ε.

For the hyperparameters in the noisy gradient descent 
method, we set T ÿ 10, B ÿ 2, and σ ÿ +2τBT1=2=µ+, 
where µ * {0:3, 0:5, 0:9} is privacy level, and τ * {0:25, 
0:5, 0:75}. The step size η0 is chosen via a backtracking 
line search. As suggested in He et al. (2023), the band-
width - is taken to be 

ooooooooooooooooo
τ(1ÿ τ)

p
· {(p+ log n)=n}2=5. The 

final output b(T) is µ-GDP according to Theorem 1. We 
fix p ÿ 5 and let the sample size increase from 100 to 500. 
Figures 4–6 present plots of the logarithmic ℓ2-error and 
regret versus the sample size under different error distri-
butions and privacy levels, averaged over 300 repeti-
tions. The regret of b(T), defined as E[C(xTb(T), d)]ÿ
E[C(xT b7, d)], where the expectation is taken over the 
joint distribution of (d, x), is evaluated using an addi-
tional data set of size one million. Figures 7–9 display 
the box plots of regrets under different error distribu-
tions and privacy levels based on 300 repetitions with a 
sample size of 400. Table 1 reports the corresponding 
average regrets and standard deviations.

From Figures 4–6, we see that both the estimation 
errors and regrets decrease as the number of observa-
tions grows, as expected. The spacing of these error 
curves further illustrates the impact of privacy. From 
Table 1, we observe that the variability of regrets is low 
when the sample size is reasonably large. These numerical 
results also highlight the robustness of newsvendor loss 
minimization against heavy-tailed error distributions.

6.2. Real Data Example
We demonstrate the effectiveness of the proposed 
privacy-preserving algorithm using the restaurant data 
from Buttler et al. (2022). This data set comprises 
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Figure 4. (Color online) Estimation Errors and Regrets of Different Estimators When ε ~ N (0, 1)

Note. Plots of logarithmic ℓ2 estimation error and regret vs. the number of observations, averaged over 300 replications when ε ~ N (0, 1).

Figure 5. (Color online) Estimation Errors and Regrets of Different Estimators When ε ~ t3 

Note. Plots of logarithmic ℓ2 estimation error and regret vs. the number of observations, averaged over 300 replications when ε ~ t3.
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demand data for main ingredients at a casual restau-
rant in Stuttgart over approximately 750 days. The res-
taurant manager needs to decide on the amount of 
ingredients to defrost overnight to prepare meals, con-
sidering that leftover ingredients result in holding 
costs. Therefore, we formulate the problem of deter-
mining the optimal amount of ingredients to defrost as 
a newsvendor problem. It is worth noting that during 
the data collection period, the store manager’s strategy 

was to maintain a service level of nearly 100%, render-
ing the issue of censored demand negligible.

In our analysis, we utilize the private algorithm to 
determine the optimal strategy for defrosting the 
amount of lamb (which is the ingredient with the high-
est demand) to minimize costs and maximize perfor-
mance. We compare the outcomes obtained from the 
private algorithm with those from the standard nonpri-
vate algorithm. Our model incorporates three distinct 

Figure 6. (Color online) Estimation Errors and Regrets of Different Estimators When ε ~ 0:9N (0, 1) + 0:1N (0, 100)

Note. Plots of logarithmic ℓ2 estimation error and regret vs. the number of observations, averaged over 300 replications when 
ε ~ 0:9N (0, 1) + 0:1N (0, 100).

Figure 7. (Color online) Regrets of Different Estimators When Sample Size Equals 400 and ε ~ N (0, 1)

Note. Box plots of regret with different privacy levels over 300 replications when the sample size is 400.
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features: (i) calendric features, which include binary 
variables indicating holidays or nonholidays extracted 
from the date; (ii) lag features, incorporating demand 
information from the previous periods, such as demand 
from exactly one week ago and exactly two weeks ago; 
and (iii) weather features, encompassing rain and tem-
perature data. We assume a per-unit (per-kilogram) 
holding cost h for lamb of $30. We consider four differ-
ent values for the lost-sales penalty cost b: $50, $70, $90, 
and $120 per kilogram. These values correspond to 
gross profit margins (excluding labor costs) of roughly 
62.5%, 70%, 75%, and 80%, respectively, which are 

similar to the gross profit margin of a financially viable 
restaurant, estimated to be around 70%. We use a train-
ing data set of n ÿ 552 past demand observations to 
train our model, and we evaluate its performance by 
measuring the out-of-sample error on a separate testing 
data set consisting of 184 observations.

The algorithm hyperparameters are set as T ÿ 10, B ÿ
2 and σ ÿ +2τBT1=2=µ+ with privacy level µ * {0:3, 0:5, 
0:9}. We conduct 100 random partitions of the data set 
into training and testing data and summarize the aver-
age out-of-sample cost across these partitions. Table 2
presents the out-of-sample cost of our private estimator 

Figure 8. (Color online) Regrets of Different Estimators When Sample Size Equals 400 and ε ~ t3 

Note. Box plots of regret with different privacy levels over 300 replications when the sample size equals 400.

Figure 9. (Color online) Regrets of Different Estimators When Sample Size Equals 400 and ε ~ 0:9N (0, 1) + 0:1N (0, 100)

Note. Box plots of regret with different privacy levels over 300 replications when the sample size is 400.

Table 1. Synthetic Data Analysis

Nonprivate µ ÿ 0:9 µ ÿ 0:5 µ ÿ 0:3

ε ~ N (0, 1) 0.004 0.009 0.017 0.038
(0.002) (0.006) (0.011) (0.026)

ε ~ t3 0.012 0.017 0.027 0.052
(0.003) (0.006) (0.012) (0.034)

ε ~ 0:9N (0, 1) + 0:1N (0, 100) 0.006 0.01 0.019 0.04
(0.003) (0.005) (0.011) (0.026)

Note. Synthetic data analysis: mean and standard deviation (in the parentheses) of the regret for different 
estimators in three different models over 300 replications, when the sample size equals 40.
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(at different privacy levels) and the naive nonprivate 
estimator for various choices of b. The average cost of 
our private algorithm is at most 2% higher than the 
cost of the nonprivate algorithm. This indicates that the 
proposed algorithm can be effectively used by the res-
taurant to predict future demands while maintaining 
a reasonable level of privacy protection, albeit at a 
slightly higher cost.

7. Concluding Remarks and Discussions
In this paper, we investigate the learning of privacy- 
preserving optimal policies for feature-based newsven-
dor problems with unknown demand. We consider the 
problem within the framework of f-differential privacy, 
a recently proposed approach that extends the classical 
([,δ)-differential privacy with several appealing fea-
tures. To address the challenge of nonsmoothness asso-
ciated with the newsvendor loss function, we propose a 
new noisy gradient algorithm based on convolution 
smoothing. We provide privacy-preserving guarantees 
for the T-step output of the proposed algorithm and 
establish rigorous finite-sample high-probability bounds 
for estimation error and regret. Importantly, we demon-
strate that a reasonable level of privacy protection can 
be achieved without sacrificing performance compared 
with the clairvoyant policy with known demand distri-
bution but without privacy protection.

A future endeavor is to find proper conditions on the 
mini–batch size m under which the noisy SGD estima-
tors are consistent. If m is fixed, there will be a nonvan-
ishing noise term in noisy SGD. Thus, we might not 
have consistent noisy SGD estimators unless m ³>, 
and the cost of privacy might not be negligible unless 
we also have that m2=n ³>. These problems deserve 
further attention in future research. From the practical 
perspective, the choice of appropriate mini–batch size 
is critical and nontrivial to ensure high-quality perfor-
mance. In the newsvendor problem, when the data size 
is not on the scale of millions, the full gradient descent 
method remains computationally efficient and exhibits 
fast geometric convergence.
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Görgülü B, Sarhangian V (2022) A newsvendor approach to design 
of surgical preference cards. Service Sci. 14(3):213–230.

Green LV, Savin S, Savva N (2013) “Nursevendor problem”: Person-
nel staffing in the presence of endogenous absenteeism. Man-
agement Sci. 59(10):2237–2256.

Hannah LA, Powell WB, Blei DM (2010) Nonparametric density 
estimation for stochastic optimization with an observable state 
variable. Proc. 23rd Internat. Conf. Neural Inform. Processing Sys-
tems - Volume 1 (NIPS’10) (Curran Associates Inc., Red Hook, 
NY), 820–828.

He B, Dexter F, Macario A, Zenios S (2012) The timing of staffing 
decisions in hospital operating rooms: Incorporating workload 
heterogeneity into the newsvendor problem. Manufacturing Ser-
vice Oper. Management 14(1):99–114.

He X, Pan X, Tan KM, Zhou WX (2023) Smoothed quantile regres-
sion with large-scale inference. J. Econometrics 232(2):367–388.

Horowitz JL (1998) Bootstrap methods for median regression mod-
els. Econometrica 66(6):1327–1351.

Hsu D, Kakade S, Zhang T (2012) A tail inequality for quadratic 
forms of subgaussian random vectors. Electronic Comm. Probab. 
17(52):1–6.

Hu M, Momot R, Wang J (2022) Privacy management in service sys-
tems. Manufacturing Service Oper. Management 24(5):2761–2779.

Huh WT, Rusmevichientong P (2009) A nonparametric asymptotic 
analysis of inventory planning with censored demand. Math. 
Oper. Res. 34(1):103–123.

Iyengar R, Near JP, Song D, Thakkar O, Thakurta A, Wang L (2019) 
Toward practical differentially private convex optimization. 2019 
IEEE Sympos. Security Privacy (SP) (IEEE, Piscataway, NJ), 299–316.

Jain P, Thakurta AG (2014) (Near) dimension independent risk 
bounds for differentially private learning. Xing EP, Jebara T, eds. 
Proc. 31st Internat. Conf. Machine Learn., Proceedings of Machine 
Learning Research, vol. 32, no. 1 (PMLR, New York), 476–484.

Koenker R, Bassett G (1978) Regression quantiles. Econometrica 
46(1):33–50.

Kunnumkal S, Topaloglu H (2008) Using stochastic approximation 
methods to compute optimal base-stock levels in inventory con-
trol problems. Oper. Res. 56(3):646–664.

Lee J, Kifer D (2018) Concentrated differentially private gradient 
descent with adaptive per-iteration privacy budget. Proc. 24th 
ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining 
(Association for Computing Machinery, New York), 1656–1665.

Lei Y, Miao S, Momot R (2024) Privacy-preserving personalized rev-
enue management. Management Sci. 70(7):4875–4892.

Levi R, Perakis G, Uichanco J (2015) The data-driven newsvendor 
problem: New bounds and insights. Oper. Res. 63(6):1294–1306.

Levi R, Roundy RO, Shmoys DB (2007) Provably near-optimal 
sampling-based policies for stochastic inventory control models. 
Math. Oper. Res. 32(4):821–839.

Liyanage LH, Shanthikumar JG (2005) A practical inventory control 
policy using operational statistics. Oper. Res. Lett. 33(4):341–348.

Nesterov Y (2005) Smooth minimization of non-smooth functions. 
Math. Programming 103(1):127–152.

Newey W (1997) Convergence rates and asymptotic normality for 
series estimators. J. Econometrics 79(1):147–168.

Oroojlooyjadid A, Snyder LV, Takáč M (2020) Applying deep learn-
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