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Abstract. The data-driven newsvendor problem with features has recently emerged as a
significant area of research, driven by the proliferation of data across various sectors such
as retail, supply chains, e-commerce, and healthcare. Given the sensitive nature of cus-
tomer or organizational data often used in feature-based analysis, it is crucial to ensure
individual privacy to uphold trust and confidence. Despite its importance, privacy preser-
vation in the context of inventory planning remains unexplored. A key challenge is the
nonsmoothness of the newsvendor loss function, which sets it apart from existing work on
privacy-preserving algorithms in other settings. This paper introduces a novel approach to
estimating a privacy-preserving optimal inventory policy within the f-differential privacy
framework, an extension of the classical (e, 0)-differential privacy with several appealing
properties. We develop a clipped noisy gradient descent algorithm based on convolution
smoothing for optimal inventory estimation to simultaneously address three main chal-
lenges: (i) unknown demand distribution and nonsmooth loss function, (ii) provable pri-
vacy guarantees for individual-level data, and (iii) desirable statistical precision. We derive
finite-sample high-probability bounds for optimal policy parameter estimation and regret
analysis. By leveraging the structure of the newsvendor problem, we attain a faster excess
population risk bound compared with that obtained from an indiscriminate application of
existing results for general nonsmooth convex loss. Our bound aligns with that for strongly
convex and smooth loss function. Our numerical experiments demonstrate that the pro-
posed new method can achieve desirable privacy protection with a marginal increase in
cost.
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1. Introduction

chain planning. Recently, Ban and Rudin (2019) carefully

The newsvendor problem, a classical example of the
inventory-control problem, is of fundamental importance
to operations management. In recent years, there has
been growing interest in data-driven feature-based news-
vendor problems because of the vast amount of data gen-
erated by retail and supply chains, e-commerce, banking,
financial, hospitals, and other business domains. The
goal of the feature-based newsvendor problem is to esti-
mate the optimal inventory policy based on the historical
demand data as well as the observed features (e.g., prod-
uct characteristics, customer characteristics) associated
with the demand. The ability to determine optimal
inventory levels based on features (or contextual infor-
mation) such as location and usage is essential for supply

justified, from a theoretical perspective, the value of
incorporating features in the newsvendor problem when
such information is available. They proved that ignoring
features may lead to estimation bias, which does not
diminish as the number of observations gets large.

In a host of applications, feature-based inventory
analysis involves sensitive customer or organizational
data. Examples include, but are not restricted to, the
following:

o Healthcare. In hospitals, nurse staffing in the emer-
gency room can be formulated as a feature-based news-
vendor problem; see, for example, He et al. (2012), Green
et al. (2013), and Ban and Rudin (2019). The features
can include the hospital inflow and outflow conditions,
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surgical case volume, behavioral health patients” board-
ing information, doctor staffing information, and nurses’
credentials. As another application, surgical procedures
require a large number of consumable supplies that
need to be kept in hospital inventory and transported to
the operating rooms. Gorgiilii and Sarhangian (2022)
formulate the problem of preparing a surgical preference
card, a list of items for each surgery, as a newsvendor
problem. The features include surgery type, patient dis-
ease status, and physicians” past records, among others.
Hospitals, in general, would prefer to keep the related
information internal and any physician- and patient-
level information private.

o E-commerce. Companies such as Chewy, an online
retailer of pet supplies, or grocery stores with online
ordering and delivery service often leverage customer-
level data for inventory management. This helps not
only coordinate shipping from its local warehouses but
also design targeted marketing campaigns (e.g., send-
ing coupons to different groups of customers based on
predicted individualized inventory levels).

e Finance. In portfolio management, mutual funds
hold a certain percentage of their assets in cash to meet
redemption demand from investors. The decision on
how much cash to reserve can be formulated as a
feature-based newsvendor problem. If not enough cash
is held, the fund must sell some of its holdings and will
incur transaction costs. In the recent Silicon Valley
Bank’s downfall in March 2023, the bank had to sell its
securities to raise cash to meet a wave of withdrawals
from customers. A strategy of inventory policy can be
planned based on the financial and operational vari-
ables and clients’ behaviors.

In the context of the applications discussed above,
the preservation of privacy is of critical importance.
Despite this, systematic studies in the realm of inven-
tory planning are lacking. The protection of individual
privacy is essential in maintaining customer trust and
confidence and in helping the business avoid financial
losses and reputation damage (Williams 2020, Hu
et al. 2022, Fainmesser et al. 2023). The prevalence of
individual-level data and the increased awareness of
privacy concerns motivate us to develop a principled
privacy-preserving framework for data-driven feature-
based newsvendor problems with unknown demand.
We focus on the scenario where there is a trusted
curator, such as the company’s in-house business ana-
lytics team, responsible for processing and analyzing
the data. The primary objective of this paper is to
develop a data-driven approach that generates valu-
able outputs. These outputs assist a decision maker
(hereafter referred to as “DM”) in estimating the opti-
mal inventory level, all while safeguarding the privacy
of historical individual-level data. In essence, our
approach controls the likelihood of an adversary mak-
ing harmful inferences about a data subject based on a

Figure 1. (Color online) Illustration of Privacy Protection
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differentially private data release, ensuring it remains
a small-probability event.

In more detail, we study a feature-based newsvendor
problem where the demand distribution is unknown to
the DM. The trusted curator has access only to n past
records (historical data) {d;,x;}, i=1,...,n, where d; is
the observed demand, and x; is the associated vector of
features (or covariates). When presented with a new
query, the curator utilizes a data-driven iterative algo-
rithm to release a private output. This output guides
the DM in determining the optimal inventory level
while ensuring that the sensitive information from the
historical data remains noninferable from the output.
The iterative algorithm introduces a carefully tuned
amount of random noise to the statistical outputs, aim-
ing to strike a balance between privacy protection and
statistical accuracy. See Figure 1 for an illustration.

Distinct from prior work on privacy-preserving algo-
rithms in other business applications, we confront the
challenge of the nonsmoothness of the newsvendor loss
function. In this setting, we leverage the recently intro-
duced concept of f-differential privacy (Dong et al. 2022)
and propose a noisy clipped gradient descent algorithm
based on convolution smoothing for optimal inventory
estimation. The new approach simultaneously addresses
the three main challenges: (i) unknown demand distri-
bution and nonsmooth loss function, (ii) provable pri-
vacy guarantees for individual-level data, and (iii)
desirable statistical precision. Importantly, our theoreti-
cal and numerical results demonstrate that a reasonable
degree of privacy protection can be achieved with mini-
mal sacrifice of data utility, particularly when the size of
the historical data set is large.

1.1. Contributions
Our major results and contributions are summarized
as follows.

1.1.1. Provable Privacy Protection Guarantee in the f-
Differential Privacy Framework. To establish rigorous
privacy protection properties, we adopt a recently
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introduced novel privacy framework named f-differen-
tial privacy (f~-DP) (Dong et al. 2022), which generalizes
the classical (€,0)-DP notion (Dwork et al. 2006a, b)
with several attractive properties; see Section 4.1 for a
more in-depth introduction. The (€, 6)-DP notion was
proposed by the computer science community and has
become a popular framework for provable privacy
protection against arbitrary adversaries while allowing
the release of analytical summaries. It provides a statisti-
cal hypothesis testing interpretation for differential pri-
vacy, thereby making the privacy guarantees easily
understandable. Despite its great success, a major short-
coming of (e, 0)-DP is its inability to tightly handle com-
position (a.k.a. repeated application of the mechanism to
the same data set). Using the output of an (e,0)-DP
mechanism, the power of any a-level test is bounded by
e“a+0. Recall that the composition of (e€1,61)- and
(€2,02)-DP mechanisms results in an (1 + €, 01 + 07)-DP
mechanism. The resulting power bound e 2@ + 61 + 6
of any a-level test no longer tightly characterizes the
trade-off between significance level and power. As a fun-
damental observation, Dong et al. (2022) pointed out
that (e,0)-DP is misparameterized in the sense that the
guarantees of the composition of (¢;,6;)-DP mechanisms
cannot be characterized by any single pair of parameters
(€,0). Many recent efforts have been devoted to develop-
ing relaxations of DP for which composition can be
handled exactly. These notions of DP no longer have
hypothesis-testing interpretations; rather, they are based
on studying divergences that satisfy a certain informa-
tion processing inequality. We refer to Section 1 of Dong
et al. (2022) for an in-depth discussion on this matter.

The main idea of the f-DP is the usage of the so-called
trade-off functions as a measure of indistinguishability
of two neighboring data sets rather than a few para-
meters as (€,0)-DP and other prior relaxations do. It
preserves the hypothesis testing interpretation of differ-
ential privacy. Furthermore, it captures all the desirable
properties of prior differential privacy definitions, in
particular, composition, amplification by sampling, and
Gaussian mechanism, tightly and analytically. It pro-
vides a powerful technique to import existing results
proven for the (¢, 6)-DP to f-DP.

In the powerful and versatile f-DP framework, we
rigorously establish that our data-driven algorithm
provides the desired privacy guarantees.

1.1.2. A Computationally Efficient Algorithm to Esti-
mate the Feature-Based Optimal Inventory Policy with
Unknown Demand Function. Traditionally, the news-
vendor problem is solved based on the assumption that
the demand distribution is known up to a small number
of parameters. The commonly used data-driven estima-
tion procedures often consist of two steps: the first step
estimates the parameters using the observed data, and
the second step performs the optimization to estimate

the optimal order quantity. However, in reality, the true
demand distribution is hardly ever known to the DM.

For the data-driven feature-based newsvendor prob-
lem, Ban and Rudin (2019) proposed a one-step estima-
tion procedure based on empirical risk minimization
(ERM) and established its connection to quantile regres-
sion (Koenker and Bassett 1978). In terms of computa-
tion, Ban and Rudin (2019) reframed the ERM problem
as a linear program and utilized existing linear pro-
gramming solvers. These general-purpose solvers are
capable of generating solutions with high precision
(low duality gap). However, in the context of machine
learning, this is inefficient for two reasons. First, generic
toolboxes are often unaware of the problem structure
and tend to be too slow or encounter memory issues.
Secondly, high precision is not always necessary for
machine learning problems, and a duality gap of the
order of machine precision may not be required (Bach
et al. 2012). More importantly, commonly used algo-
rithms for solving linear programs, such as simplex-
based methods and interior point methods, may not be
readily adaptable for privacy preservation purposes.

To address the computational and privacy concerns
mentioned above, we propose a new approach that uti-
lizes convolution smoothing (Fernandes et al. 2021, He
et al. 2023). This approach transforms the nondifferenti-
able newsvendor loss function into a twice-differentiable,
convex, and locally strongly convex surrogate, allowing
for fast and scalable gradient-based algorithms for
optimization. Additionally, to ensure privacy protection
while maintaining computational tractability, inspired
by Song et al. (2013), Bassily et al. (2014), and Lee and
Kifer (2018), we adopt a noisy optimization approach by
adding Gaussian noise to the gradient of the smoothed
empirical cost in each iteration. By carefully selecting the
scale of the added noise and the number of iterations, we
can achieve the desired privacy level along a sequence of
outputs. The algorithm is designed for efficient imple-
mentation, and in this paper, we provide both privacy
protection guarantees and statistical accuracy guarantees
for the output of this novel algorithm.

1.1.3. Finite-Sample Performance Bounds and Excess
Risk Analysis. Under a linear demand model with an
unknown error distribution and a potentially large
number of features, we analyze the convergence of the
proposed algorithm and its finite sample performance
error bounds. We also derive its regret bound, which is
the difference between its expected cost and the opti-
mal cost of the clairvoyant who knows the underlying
demand distribution. The regret upper bound is of the
order O(log(n)max{((p +logn)/un)",p/n}), where n is
the size of the historical data set, p is the number of the
features, and 1 is the privacy parameter. As we discuss in
Section 4.1, 1 =0.5 (or less) indicates a reasonable
degree of privacy protection in practice. The term
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O(log(n)((p +1ogn)/ yn)z) corresponds to the addi-
tional regret because of privacy protection, which goes
to zero quickly as n gets large for a reasonable choice of
y. The theory and our numerical results suggest that
privacy protection can be achieved with a reasonably
small additional cost.

The idea of convolution smoothing was initially pro-
posed in the optimization community by Chen and
Mangasarian (1995, 1996), where sigmoid functions were
used as smooth approximations of the plus function
max{x, 0}. However, the impact of smoothing on statisti-
cal performance, in terms of estimation error bounds or
regret bounds, remained largely unknown until recent
studies in the context of quantile regression by Fernandes
etal. (2021), Tan et al. (2022), and He et al. (2023).

In this paper, we conduct a comprehensive analysis
of the noisy clipped gradient descent iterates, as
opposed to the hypothesized empirical risk minimizer.
By exploring the specific structure of the newsvendor
problem, we achieve a faster excess population risk
bound compared with the results obtained by indis-
criminately applying existing results developed for gen-
eral nonsmooth convex loss. Our bound matches with
what one would obtain when the loss function is both
strongly convex and smooth. The combination of care-
fully selected smoothing and noise-scale parameters
allows for control over the trade-off between statistical
efficiency and the level of privacy. A key aspect of our
analysis is a novel characterization of the local strong
convexity and smoothness of the smoothed cost func-
tion, which subtly depends on the order of the smooth-
ing parameter. The technical devices we employ in this
paper to establish the theoretical framework are distinct
from earlier works, such as those presented in Ban and
Rudin (2019), and yield sharper results, as elaborated in
Section 5. Furthermore, we relax the independent and
identically distributed (i.i.d.) error condition in their
paper. By allowing the error distribution to be hetero-
scedastic, we permit the features to influence not only
the location of the demand distribution but also its dis-
persion. Furthermore, we do not require the error distri-
bution to be bounded.

1.2. Notation and Organization

The following general notation will be used through-
out the paper. We use I, to denote the p X p identity
matrix. For a vector u € R? (p > 2), we write ||u||2 =u'u
For a positive definite matrix A, we write |[A|, =
maXy:jul,=1/|Aull, and |lull, = VuTAu. We use P! to
denote the unit sphere in R?, that is, S” ={ueR’:
[lull, = 1}. For two sequences of positive numbers {a,,},,51
and {by },~1, we write a,, < b, if there exists some constant
C >0 independent of # such that a,, < Cb, for all n; we
write a, > b, if b, < a,, and we write a, < b, if a,< b,
and b, < a,,. For an event or set E, let 1(E) or 1{E} denote
the indicator function.

The paper is organized as follows. In Section 2, we
review the related literature. Section 3 presents the
model and introduces the underlying assumptions. In
Section 4, we introduce the basics of f-differential pri-
vacy, present the new privacy-preserving algorithm for
the feature-based newsvendor problem, and provide
theoretical justifications for privacy-preserving guaran-
tees. In Section 5, we provide high-probability bounds
for the estimated private parameter indexing the opti-
mal inventory policy and the regret analysis. We ana-
lyze the performance of our approach through an
extensive numerical study and a real data example in
Section 6. Section 7 contains some concluding remarks.
The technical details are given in the online appendices.

2. Related Review

We briefly review related research in data-driven news-
vendor problems and differential privacy for operations
management.

2.1. Data-Driven Newsvendor Problem with
Unknown Demand

Earlier work on newsvendor problems often assumes
the demand distribution is known. There has also been
extensive literature on relaxing the known demand dis-
tribution assumption but without using any feature
information. Ban and Rudin (2019) provided an excel-
lent literature review and broadly characterized these
methods into three categories: the Bayesian approach,
the minimax approach, and the data-driven approach.
Our proposed method is more closely related to the
data-driven approach where the DM uses the observed
sample to make decisions; see Burnetas and Smith
(2000), Godfrey and Powell (2001), Powell et al. (2004),
Levi et al. (2007), Kunnumkal and Topaloglu (2008),
Huh and Rusmevichientong (2009), and Levi et al.
(2015), among others. Related to this line of work, Liya-
nage and Shanthikumar (2005), Hannah et al. (2010),
See and Sim (2010), Beutel and Minner (2012), Ban and
Rudin (2019), and Oroojlooyjadid et al. (2020) incorpo-
rated feature-based information. Ban and Rudin (2019)
provided a systematic study on the benefits of incorpo-
rating features, proposed new algorithms, and derived
performance bounds. Oroojlooyjadid et al. (2020) con-
sidered a deep-learning approach.

Our approach differs from the aforementioned work
in several major aspects. First, our algorithm provides
individual-level data privacy protection. To the best of
our knowledge, this is the first time in the literature of
newsvendor problems the issue of privacy is systemati-
cally investigated. Second, we provide a theoretical
error bound for the T-step output of the proposed
algorithm directly. In contrast, the theory of the early
work is for the limiting (or theoretical) solution of their
proposed algorithms. Third, we substantially relax the
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technical conditions on the random error distribution
for the theory compared with the earlier work.

2.2. Differential Privacy for
Operations Management

In the last decade, privacy preservation has received
substantial attention in theoretical computer science,
database, and cryptography literature. There exist dif-
ferent notions of privacy. Differential privacy, a seminal
concept introduced in Dwork et al. (2006a, b), has
emerged as the foundation for developing a rigorous
framework for provable privacy protection against arbi-
trary adversaries. The most commonly used form of dif-
ferential privacy relies on two parameters, € >0 and
0 <6 <1, and is often also referred to as the (¢, )-differ-
ential privacy. This concept has an intuitive hypothesis
interpretation. Suppose an attacker would like to distin-
guish two neighboring data sets that differ by only one
observation. Formulated as a hypothesis testing prob-
lem, accepting the null hypothesis means the attacker
cannot tell the two data sets apart. Then, for any level
test (0 < a < 1) based on the output of a privacy-
preserving algorithm satisfying (e, )-differential pri-
vacy, its power (a.k.a. the probability of rejecting the
null hypothesis when the two data sets are different) is
upper bounded by e‘a + 6. Moreover, (¢, 6)-differential
privacy is immune to postprocessing; that is, combining
two differential private algorithms preserves differen-
tial privacy. Although (e,0)-differential privacy pro-
vides an elegant formalism for privacy protection, it is
known to suffer from the major drawback that it does
not tightly handle composition. This makes it challeng-
ing to provide a tight analysis of the cumulative privacy
loss over multiple computations, thus limiting its appli-
cability to practically useful privacy-preserving algo-
rithms, which often involve injecting privacy protection
into different modules and iterative steps.

Although several relaxations of the (¢, §)-differential
privacy have been proposed, they do not handle well
fundamental primitives associated with differential
privacy, such as privacy amplification by subsampling.
This motivated us to adopt a recently proposed new
notion of f-differential privacy (Dong et al. 2022), which
extends (e, 0)-differential privacy and overcomes the
above limitations. Similar to (e, 0)-differential privacy,
f-differential privacy characterizes privacy preserva-
tion from the hypothesis testing perspective. Rather
than using a pair of parameters, (€,0), to balance
between type I and type Il errors, f-differential privacy
uses a trade-off function. This functional extension of
differential privacy avoids the drawbacks mentioned
above. We refer to Section 4.1 for more detailed discus-
sions on the properties of f-differential privacy. The
notion of f-differential privacy was recently published
as a discussion paper in the leading statistical journal
Journal of the Royal Statistical Society, Series B. One of the

discussants wrote, “One can expect the latter (f-differen-
tial privacy) to become a dominant approach in this lit-
erature given its appealing intuitive hypothesis-testing
interpretation, exact composition property, the central
limit role for composition, and computational tractabil-
ity for approximating privacy losses.”

2.3. Differentially Private Convex Optimization
Our work is also related to the literature on differen-
tially private convex optimization. Differentially private
empirical risk minimization (ERM) is a well-studied
area. The earlier popular approaches include output
perturbation (Chaudhuri and Monteleoni 2008, Wu et al.
2017) and objective perturbation (Chaudhuri and Mon-
teleoni 2008, Chaudhuri et al. 2011, Jain and Thakurta
2014, Abadi et al. 2016, Iyengar et al. 2019, Slavkovic
and Molinari 2022).

Motivated by Song et al. (2013) and Bassily et al.
(2014), we consider a noisy gradient descent algorithm.
Differential privacy with various types of gradient
descent algorithms has been studied by Song et al.
(2013), Bassily et al. (2014), Wang et al. (2017), Lee and
Kifer (2018), Wang (2018), Bassily et al. (2019), and Balle
et al. (2020), among others. The methods in Bassily et al.
(2014), Bassily et al. (2019), Feldman et al. (2020), and
others do not directly apply to our setting. Most of the
prior work requires strong convexity and other smooth-
ness conditions that are not satisfied by the newsvendor
loss function. In the case for which Lipschitz continuity
suffices, the known excess loss rate is suboptimal in
our setting, as they do not explore the specific structure
for the newsvendor loss as we do. Unlike the earlier
literature, we do not assume the gradient is bounded
by a constant, and we carefully analyzed a clipped
DP gradient descent algorithm. In the statistical litera-
ture, Avella-Medina et al. (2023) recently investigated
optimization-based approaches for Gaussian differen-
tially private M-estimators. However, the objective func-
tion in our setting does not satisfy the local strong
convexity and smoothness in their paper. However, our
proof technique deviates from theirs. We will discuss
the main challenges and our proof strategies in Section
5.3. Despite the nonsmooth newsvendor loss, our novel
analysis based on restricted strong convexity and
smoothness leads to a faster excess population risk rate,
which is only obtained in Section 5 of Feldman et al.
(2020) when the loss function is both A-strongly convex
and p-smooth. From this perspective, our results and
proof techniques bring new insights and results to the
differential private convex optimization literature.

Our work is also related to the growing but still lim-
ited literature on privacy preservation in operations
management. Chen et al. (2022b) addressed privacy
preservation for personalized pricing with demand fol-
lowing a generalized linear model. They proposed the
new notion of anticipating (e, 6)-differential privacy
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that is tailored to the dynamic pricing problem. Lei et al.
(2020) and Chen et al. (2022a) considered personalized
pricing using the notion of central differential privacy
and local differential privacy. The aforementioned
papers do not face the challenge of nonsmooth loss
function as we have here. However, our work is not a
mere application of existing results on private non-
smooth convex optimization, nor does it utilize stan-
dard arguments such as uniform stability. Furthermore,
in contrast to these existing works, we adopt the f-dif-
ferential privacy framework to study the performance
of the new privacy-preserving algorithm and establish
its provable privacy protection guarantees.

3. Problem Formulation

3.1. Feature-Based Newsvendor Problem

We consider the classical single-period newsvendor
problem setting. The DM needs to determine the order-
ing level q based on the observable demand d and fea-
ture vector x. Both 4 and x are random. We assume that
the distribution of the demand d is unknown. In the
feature-based newsvendor problem, given a realization
of the feature vector x € R”, the DM sets the ordering
level g(x) to minimize the conditional expected cost
function

E{C(q(x),d))|x} = E{[h(q(x) — d)" + b(d — 7)) "TIx},

where £ is the per-unit holding cost, b is the per-unit
lost-sales penalty cost, t* = max{t,0}, and the expecta-
tion is taken with respect to the conditional distribution
of d given x.

Similarly to Beutel and Minner (2012) and Ban and
Rudin (2019), we consider a linear decision function of
the form

4
Q(X) = XTB = Zx]ﬁ]/
=

where the p-dimensional feature vector x = (x1, .. .,xp)T
hasx;=1,and B=(B,,..., ﬁp)T is the coefficient vector,
considering the linear decision space is not a restriction
in theory or practice. By replacing the features with
their transformations (e.g., via series functions), the
framework can be adapted to accommodate nonlinear
decision rules. More specifically, one may approximate
a nonlinear function x — ¢(x) by linear forms z(x)'B,
where x> z(x) := (z1(x),...,z(x))" is a vector of
approximating functions, and k =k, >1 may increase
with n. Then, we denote the transformed features as
{z; = z(x;)}_,. Popular choices of the series approxi-
mating functions include B-splines (or regression
splines), polynomials, Fourier series, and compactly
supported wavelets. We refer to Newey (1997) and
Chen (2007) for a detailed description of these series
functions. Under the linear decision model, we define

the parameter indexing the optimal decision rule as

B* =arg min C(B) :=E{h(x"B—d)" +b(d —x'B)"}, (1)
BER?

where the expectation is taken with respect to the joint
distribution of (d,x). Write ¢ =d — x'8*. Then, the lin-
ear decision function (Ban and Rudin 2019) is equiva-
lent to assuming that the conditional b/(b + 1) quantile
of ¢ given x is zero. Unlike Ban and Rudin (2019), we
do not assume independence between x and ¢.

3.2. Convolution Smoothing for Empirical Risk
Minimization

In the case without features, it is well-known that the
optimal decision is given by the b/(b + h) quantile of the
demand distribution. It can be estimated by the data-
driven sample average approximation (SAA) (Levi et al.
2015), an approach without making any parametric dis-
tributional assumption on d. In the setting with features,
Ban and Rudin (2019) extended it to the conditional
case, proposed a linear programming-based empirical
risk minimization algorithm (NV-ERM), and estab-
lished the connection to conditional quantile regression.
More explicitly, one can rewrite C(g(x),d)=(b+h)p,
(d—q(x)), where T =b/(b+h), and p_(u) = u{t — L(u <
0)} is referred to as the quantile loss function or the
check function corresponding to the 7-th quantile (Koen-
ker and Bassett 1978).

For an arbitrary BeR?, let &(B):=d;—xIB, i=1,
...,n. Consider the empirical cumulative distribution
function (ECDF) of the &(B): F(u; B)=(1/n)y ;1
{ei(B) < u}, u e R. Then, the empirical risk minimiza-
tion approach of Ban and Rudin (2019) minimizes the
following empirical loss function:

Cp=G+ [ " p. () dE i ), @

which can be solved via a linear program reformula-
tion. The empirical loss function is nonsmooth and
poses significant challenges to developing a privacy
protection procedure. To come up with an efficient
algorithm to estimate the optimal decision with prov-
able privacy-preserving guarantees, we adopt convolu-
tion smoothing to address the challenge associated
with the nondifferentiability of the loss function. This
aims to simultaneously achieve two goals: (i) to have a
feasible algorithm with a privacy-preserving guarantee,
and (ii) to have an algorithm with a statistical accuracy
guarantee as measured by the accuracy of estimating 8*
and the regret, which is the cost gap between the esti-
mated policy from the algorithm and the clairvoyant
benchmark.

The idea of convolution smoothing originates from
Chen and Mangasarian (1995, 1996) in a special case
and has been reexamined from a statistical perspective

by Fernandes et al. (2021). Specifically, let Fo(;B) be a



Zhao, Zhou, and Wang: Private Inventory Policy Learning for Feature-Based Newsvendor

Management Science, Articles in Advance, pp. 1-20, © 2024 INFORMS

smoothed estimator of the distribution function of
&:(B) based on the classical Rosenblatt-Parzen kernel
density estimator. That is, for u € R,

Fowi)= [ Fosmide with

- 1<

t; =— Kw t— i ,
Folts B)= > Kolt = i)
where Ky (1) := (1/m)K(u/w), K:R — [0,00) is a sym-
metric, nonnegative kernel that integrates to one, and
@ =, >0 is a smoothing parameter. We consider the
following smoothed counterpart of C():

ColB) = (b+h) / p.(0)dE o (u; B)

L *thKm)(d x'p, 0

where “+” denotes the convolution operator that for
any two measurable functions f and g, (f*g)(u)=
S = f(0)g(u — v)dov. Therefore, C., is also referred to as
the convolution-smoothed loss/cost function. Com-
monly used kernel functions in optimization and statis-
tics include (i) Gaussian kernel K(u) = (2m) Y/2e=/2,
(ii) Laplacian kernel K(u) = e~1*1/2, (iii) logistic kernel
Ku)=e/1+ ey, (iv) uniform kernel K(u) = (1/2)1
(lu] £1), and (v) Epanechnikov kernel K(u)=(3/4)
(1 —u?)1(Ju| <1). The following lemma shows that,
given any symmetric kernel K and smoothing parame-
ter @ > 0, the resulting smoothed loss p_ * K, provides
an upper approximation of p_ with uniform approxi-
mation error that scales with @.

Lemma 1. Let K be a symmetric, nonnegative kernel func-
tion with «y:= [~ _|u|K(u)du < co. For any @w>0, it
holds uniformly over u€R that p_(u) < (p,*Kq)(u) <
p. () +x1@/2.

From Lemma 1, we see that uniformly over g € RY,
C(B) < CW(B) < C(B) +0.5x1(b + h)w. The analysis of
the discrepancy between the respective minimizers
necessitates a more nuanced examination and addi-
tional assumptions on the data-generating process. In
the following subsection, we elucidate the assumptions
necessary for the analysis of the privacy-preserving
algorithm proposed for feature-based newsvendor pro-
blems. We also discuss their connections with the
assumptions imposed in Ban and Rudin (2019).

Remark 1. To address the nondifferentiability (at the
origin) of the check loss, Horowitz (1998) proposed
a more direct approach by replacing the indicator
function 1(u < 0) in p_(u) with G(—u/w), where G(-)
is a smooth, nondecreasing function that takes values
between zero and one, and w >0 is a smoothing
parameter. However, Horowitz’s smoothing gains

Figure 2. (Color online) Illustration of Two Smoothed
Check/Quantile Loss Functions

+ = Quantile Loss
—— Proposed Smoothed Loss
- = Horowitz Smoothed Loss

Loss Function

T
-1 -0.5 0 0.5 1
Value

smoothness at the cost of convexity, which inevitably
raises optimization challenges, particularly when deal-
ing with a large number of features is large. On the
contrary, provided a nonnegative kernel is used, the
convolution-smoothed loss p_* K remains convex, as
its second derivative (p_ * m)(2)(14) =Ky(u) =K(u/o)/w
is everywhere nonnegative. See Figure 2 below for a
visualization of Horowitz’s and convolution-smoothed
check losses.

Using an approximate Hessian matrix, Chen et al.
(2019) proposed a Newton-type algorithm to solve Hor-
owitz’s smoothed empirical loss minimization problem.
In their convergence analysis, they assumed the initial
estimator to be consistent, albeit at a suboptimal rate. In
contrast, our analysis imposes minimal assumptions on
the initial value, as demonstrated in Theorems 4 and 5
in Section 5.3. To achieve differential privacy in their
algorithm, it may be necessary to inject noise into both
the gradient and the approximate Hessian of the empir-
ical loss function. However, the theoretical analysis of
their algorithm in the presence of inconsistent initial
estimates is currently unknown.

Remark 2. The choice of the smoothing technique has
an impact on the optimality of the algorithm. Section
A of Bassily et al. (2014) considered an example in the
setting of hinge loss with the Huberization method
(quadratic smoothing) and argued that it does not
allow one to get the optimal excess risk bounds. An
alternative popular smoothing method for minimizing
a nondifferentiable convex objective Br— C(B) is
through Moreau-Yosida inf-convolution (or envelope)
(Nesterov 2005). Recall that p_(u)=tul(u>0)—(1-
T)ul(u < 0). Its Moreau-Yosida envelope is given by

N 1 2
Pl =min{ (o) + 5 w02},

where y > 0 is the regularization parameter. It follows
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from standard calculations that

—1=1)u-— %(1 —0)%y ifu<—-(1-1)y,

2

1
pl(u) = gu , ifue[-1—1)y, 1],

TM*%TZ]/ ifu>ty

4)

and (p))'(w)=1l(u>1y)—(1—1) {u < —(1—1)y}+
ul{—(1 — 1)y <u < 7y}/y. When the convex loss is non-
smooth, that is, not everywhere differentiable, Bassily
et al. (2019) proposed a variant of the noisy stochastic
gradient descent (SGD) algorithm and established upper
bounds on the expected excess risk. Applying their gen-
eral results to the check loss p_, it follows that the
expected excess risk of the output from their (e,0)-DP
algorithm is of order

oL+ los /L)

In Section 5.2, by proving a form of restricted strong
convexity that holds with high probability, we will
show that the expected excess risk of the proposed
noisy GD estimator satisfies a faster rate, which is of

the order
2
o (k)g(n){e N (M) }) ,
n un

where u > 0 is the privacy parameter for the Gaussian
mechanism.

3.3. Assumptions

Suppose we observe an iid. sample {(d;x;)}; from
(d,x) that follows a linear demand model d = x'B* +¢,
where the observation noise ¢ is such that the conditional
7-th quantile of ¢ given x is zero, and 7 = b/(b + h). More-
over, we assume that the conditional density function of
¢|x, denoted by f. |y, exists and satisfies some regularity
conditions described below. Compared with the Linear
Model (18) considered in Ban and Rudin (2019), here, we
do not assume the independence between the observation
noise ¢ and the random feature x. Under the above model,
the 7-th conditional quantile of d given x is x' B*. Specifi-
cally, let F;(-|x) be the conditional distribution function
of d given x. Then, the conditional 7-th conditional
quantile of d given x is formally defined as
Qu(t|x) = inf{u : Fy(u|x) > }. We write x=(x1,x")7,
where x;=1 and x_=(x2,...,x,) consists of the
remaining random features. For theoretical analysis,
we assume without loss of generality that y, := E(x;) =
Oforj=2,...,p. Otherwise, it suffices to work with the
demeaned model Q,(7|x) = ] + Z;’zz(xj — ,)B;, where
B =B+ X 1B

To facilitate the analysis, we adopt the following
technical conditions.

Condition 1 (Kernel Function). Let K(-) be a symmetric,
nonnegative, and Lipschitz continuous kernel function;
that is, K(u)=K(—u), K(u) >0 for all u and [, K(u)
du =1. Moreover, assume i, :=sup, ,K(u) and x;:=
[ ul‘K(u)du, € = 1,2 are bounded.

Condition 2 (Feature Distribution). The random predictor
x_ € RV is sub-Gaussian: there exists vq =1 such that
EeM'™- < e"i/2 for gll A € R and u € "2, where w_ =
S~Y2x_, and S = E(x_x") is positive definite.

Under Condition 2, the p x p matrix £ =E(xx!) is
also positive definite. Let w = £ 12x = (1,w?)" denote
the standardized feature vector satisfying E(ww') =1,
and E(w) = (1,0} ,)".

Condition 3 (Observational Noise ¢ =d —x'*). There
exist constants ly >0 and f, > f; >0 such that |f,x(u)—
feix@)| <lolu—v|, fox(u) <fy for all u,v€R almost
surely (over x), and

inf  E{f.x(Kw, V)W, v)’} > fi. (5)

te[0,1], veSP!

Below, we discuss how Conditions 2 and 3 are compara-
ble to assumptions 1 and 2 in Ban and Rudin (2019). For
the random feature vector x =(1,x")" € R?, Ban and
Rudin (2019) assumed that the coordinates of x__ are nor-
malized with mean zero and standard deviation one, and
[Ix[l; < Cy/p for some constant C > 0. Condition 2, on the
other hand, requires feature vector x to be sub-Gaussian,
extending the concept of sub-Gaussian random variables
to higher dimensions through one-dimensional margin-
als. Examples of such sub-Gaussian vectors include (i)
Gaussian and Bernoulli random vectors, (ii) spherical
random vectors, (iii) random vectors uniformly distrib-
uted on the Euclidean ball centered at the origin with
radius 4/p, and (iv) random vectors uniformly distributed
on the unit cube [—1,1]7. We refer to chapter 3.4 in Ver-
shynin (2018) for detailed discussions on multivariate
sub-Gaussian distributions. For sub-Gaussian feature
vectors x;’s, from theorem 2.1 in Hsu et al. (2012), it fol-
lows that maxj <i<,||xi|l, < +/p + log n with high probabil-
ity. For the observation noise ¢, Ban and Rudin (2019)
assumed that its density function, denoted by f., is
bounded away from zero on some compact interval
[D,D]. In Condition 3, it is worth noticing that the con-
stant f; may depend on both the conditional distribution
of ¢ given x, and the distribution of x € R?. To see this,
define 15 =inf{t>0: E(w,u)zllmw,u)m} <0 forallue
SP~1} for 6 € (0,1]. Tt is easy to see that & > 15 is nonde-
creasing, and (5 < (m, /6)Y72 for any g > 2, where my
:=sup,.g-1 E[(w,u)|7. Then, a sufficient condition for
(5) is min |, fe|x(t) = ¢s > 0 almost surely (over x) for



Zhao, Zhou, and Wang: Private Inventory Policy Learning for Feature-Based Newsvendor

Management Science, Articles in Advance, pp. 1-20, © 2024 INFORMS

9

some (0 < 6 < 1because

inf  E{f,|x(Kw,V)}(W,v)*} > c;
te[0,1], veSP!

inf E{(w. ) 1([(w,v)| <)} 2 (1~ 0)cs.

4. A Privacy-Preserving Algorithm for the
Feature-Based Newsvendor Problem

4.1. Preliminaries on f-Differential Privacy

We will first review the (¢, 0)-differential privacy con-
cept introduced in Dwork et al. (2006a, b). Let S denote
a data set consisting of observations {z, ...,z,}, where
z;=(d;,x;), i=1,...,n. A pair of data sets S and S’ are
said to be neighboring data sets if they differ in only
one data point.

Definition 1. ((e, 8)-Differential Privacy, or (e,8)-DP). A
randomized algorithm M is (¢, 6)-differentially private
if, for any neighboring data sets S and S’ and any
event £, we have

P(M(S) € §) < EP(M(S') € £) +6,

where € > 0 and 0 < 6 <1 are constants.

An intuitive way to understand the concept of
(€, 0)-differential privacy is via the lens of a hypothesis
testing problem for distinguishing two neighboring
data sets Sand S”:

Hp : the underlying data setis & versus
Hj : the underlying data setis S'.

Consider any given test procedure ¢ based on the out-
put of the randomized algorithm M, and denote its
type I error and type Il error by o and B, respectively.
It can be shown that for a test ¢ based on the output of
any (¢, 0)-differentially private algorithm, its power is
bounded by min{e‘ay + 6,1 —e (1 —ay — 6)}. If € and
0 are both small, then any a-level (0 < a < 1) test will
be nearly powerless.

Dong et al. (2022) extended Dwork et al. (2006a, b)
by introducing the trade-off function to characterize
the trade-off between the type I and type Il errors.

Definition 2 (Trade-Off Function (Dong et al. 2022)). For
any two probability distributions P and Q, the trade-off
function T(P,Q) :[0,1] — [0,1] is defined as T(P, Q)(«)
= inf{p 6 0 < a}, where the infimum is taken over all
measurable rejection rules to distinguish P and Q.

The greater the trade-off function is, the harder it is
to distinguish the two distributions via hypothesis test-
ing. Dong et al. (2022) showed that a function f:
[0,1] — [0,1] is a trade-off function if and only if f is
convex, continuous, nonincreasing, and f(x) <1 — x for
all x € [0,1]. In the following, for any two functions f
and g defined on [0,1], we write g¢>f if g(x) > f(x),

Vx € [0,1]. We abuse the notation a little by identifying
S and &’ with their respective probability distributions.

Definition 3 (f-Differential Privacy (Dong et al. 2022)). A
randomized algorithm M is said to be f-differentially
private if, for any neighboring data sets S and §’,

T(S,S)=f
for some trade-off function f.

If f = T(P,Q) for some distributions P and Q, then a
mechanism M is f-DP if distinguishing any two neigh-
boring data sets based on the output of M is at least as
difficult as distinguishing P and Q based on a single
draw. This functional perspective avoids some of the
pitfalls associated with (e, 0)-differential privacy. f-DP
is a generalization of (€,0)-DP. A result of Wasserman
and Zhou (2010) indicates that a mechanism M is
(€,0)-DP if and only if M is f, s-DP, where f, s(a) =
max{0,1 —eay — 0,6 (1 —ay —0)}.

Definition 4 (Gaussian Differential Privacy (Dong et al.
2022)). A randomized algorithm M is said to satisfy
u-Gaussian differential privacy if for any neighboring
data sets Sand &’

T(S,8') > Gy,

where G, (a) = ®(® (1 — a) — ), and @ is the distribu-
tion function of the standard normal distribution.

GDP provides a parametric family of f-DP that guar-
antees and enjoys many desirable properties. As a rule
of thumb, i <0.5 guarantees a reasonable amount of
privacy, p = 1 is borderline private, and u > 6 promises
almost no privacy guarantee. The trade-off of type I
and type Il errors is illustrated in Figure 3.

4.2. Proposed Differentially Private Algorithm

To obtain a differentially private counterpart of B, =
arg minBCm(B), we draw inspiration from works Song
et al. (2013) and Bassily et al. (2014) and utilize a noisy
optimization approach that involves adding Gaussian
noise during each iteration of the gradient descent

method. Minimizing the loss function C(B) used in Ban
and Rudin (2019) poses a challenge, as it is convex but
not differentiable everywhere, and subgradient methods
commonly employed for such cases exhibit slow (sub-
linear) convergence, leading to computational instabil-
ity. In this work, we propose a differentially private
algorithm that leverages convolution smoothing and
noisy gradient descent. Its privacy protection guarantee
is established in Theorem 1 in Section 4.3. We further
investigate its finite-sample performance in Section 5
and demonstrate that the proposed approach achieves a
balanced trade-off between statistical accuracy and com-
putational stability, owing to the effectiveness of convo-
lution smoothing.
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Figure 3. (Color online) Trade-Off Functions for GDP with
Privacy Parameter p = 0.3, 0.5, 0.9, 3, and 6, Respectively
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Given a nonnegative kernel function K(-) introduced
earlier, we define

K(u) = /f K(v)dv and K (u)=K(u/m)

so that f;(u) = Ky(u). If the p x p matrix £ =E(xx")
was known, we consider the following noisy smoothed
gradient descent method, starting at iteration 0 with an
initial estimate B(O) Atiterationt=0,1,2,...,T—1, we
update the solution as follows:

(t+1) _ pb) @271/2
By =p0

S RocIBY — d) — tYws(w) +og, |, (©)
i=1

where w; = o 2x,v denotes the standardized covari-
ates vector in the sense that E(w;w]) = I,, wp(u) =u/
max{1,|lul,/B},and g, e R (t=0,1,...,T — 1) are inde-
pendent A(0,1,) vectors. Here, 1, > 0 is the step size,
T>1 is a prespecified number of iterations, B>1 is a
truncation parameter, and o is a positive constant adjust-
ing the level of noise injected into the gradient perturba-
tion. We summarize this procedure in Algorithm 1.

The presence of L in Algorithm 1 is primarily for theo-
retical convenience, as it allows us to establish upper

bounds on the estimation error E{xT(Bw B by
expressing it as 1= 2([317 B )||2, where the expectation
is only taken with respect to x that is independent of 8.
When X is unknown, we consider the following update:

g =p" - % ;{Kw(x?w” —d;) — Twp(x;) + 08,
?)

with a slight abuse of notation.

In both (6) and (7), the use of covariate clipping/
truncation guarantees a bounded ¢,-sensitivity of the
gradient function, which is the key to achieving differ-
ential privacy. For the initial value, one can take B to
be either 0 or a random guess that is uniformly distrib-
uted over the unit sphere.

Algorithm 1 (Private ERM via Noisy Smoothed Gradient
Descent)

Input: data set {(d;x;)}\_,, probability level 7 €(0,1),
bandwidth @ >0, initial value B(O), step size 1, >0,
noise scale o >0, truncation level B> 1, number of
iterations T > 1.
1: fort=0,1...,T—1do
2:  Generate standard multivariate normal vector
g~ N(o, Ip)/'
3:  Compute clipped/truncated covariates w; = w;
min{1, B/||w;|,} fori=1,...,n;
4 Compute BV = B — (5,/n)- L[ {Ko(x]
BY —d;) — 1}W; +og,];
5: end for
Output: .

4.3. Privacy-Protection Guarantee of the
Proposed Algorithm
We first review some useful results about f-DP.

Proposition 1 (Theorem 1 in Dong et al. (2022)). Define
the Gaussian mechanism that operates on a statistic O as
M(S) = 6(S) + &, where &~ N(0,sens(6)*/u?), and the
sensitivity sens(0) = supg & |60(S) — O(S")| with the supre-
mum over all neighborhood data sets S and S'. Then, M is
u-GDP.

A nice property of f-DP is that the composition of pri-
vate mechanisms is closed and tight in the f-DP frame-
work. A two-step composition can be written as M(S) =
(y1,M2(S,y1)), where y3 =M;(S) with M;:X—Y;
being the first mechanism, and M, : X X Y1 — Y; is the
second mechanism. In general, given a sequence of
mechanisms M;: X XYy X--XxY;,_1—>Y;, i=1,...,n,
we consider the n-fold composed mechanism: M : X —
Y XX Y,.

Definition 5. The tensor product of two trade-off func-
tions f=T(P,Q) and g=T(P’, Q") is f®g=T(P X
P, Qx Q).

Proposition 2 (Theorem 4 in Dong et al. (2022)). Let
Mi(';}/l; .. .,y,;l) be ﬁ-DP fOT all Y1 € Yl,. - Yi1 € Yifl.
Then, the n-fold composed mechanism M : X — Y1 X+ Yy,
is fi® - ® f,-DP.

Corollary 1 (Corollary 2 in Dong et al. (2022)). The n-fold

composition of u,-GDP mechanisms is \/u+ - +u2-
GDP.
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Remark 3. Dong et al. (2022) revealed that the Gauss-
ian mechanism in Proposition 1 satisfies G,(a)=
infheighboring 5,5' T(M(S), M(S"))(a). For all possible type
I error rate «, the infimum could be achieved at two
neighboring data sets that satisfy |6(S)—0(S)| =
sens(0). This implies that the characterization by GDP
is precise in the point-wise sense. GDP offers the tight-
est possible privacy bound of the Gaussian mechanism.

Theorem 1 below establishes the Gaussian differen-
tial privacy property of the proposed algorithm. For
any given sample size 1, number of iterations T, and
noise scale o, the output of the algorithm B satisfies
the Gaussian differential privacy property with privacy
level u, as outlined in the theorem.

Theorem 1 (Privacy Protection Guarantees). Given an
initial estimate B € R? and a data set Z, = {(d Xi)}ie1s
consider the noisy gradient descent iterates BN, 1
defined in (6). Given a privacy level p > 0, if o > 0 satisfies
0 > 2TBT"?/u with T = max(t,1 — 1), then the final out-
put BD is u-GDP.

Proof of Theorem 1. Consider two data sets Z, and Z,
that differ by one datum, say (d1,x:) € Z,, versus (d},x})
€ Z;,. At the first iteration, note that

I=/2B0(Z,) - £ 2BM(Z) )l
=1 [{Ko (1, BY) — ) = Thaws(wi)

(Kol BY) — ) — thws(ws)

<2 max(1 —7,7)B10 = 270

n n
By Proposition 1, 22" is (T~1/2)-GDP as long as
0 > 2TBT"/? /. After postprocessing (by a determinis-
tic map), BV is also (T~/2u)-GDP.

By definition, the second iterate B? = p?(z,) takes
BY as input in addition to the data set. Together, Prop-
osition 2 and Corollary 1 show that the twofold com-
posed (joint) mechanism BY,B?) is \/ u?/T + u?/T-
GDP. Using the same argument repeatedly, we conclude
that the T-fold composed mechanism BY,...,B7) is
u-GDP, and hence, so is B(T). O

5. Theoretical Performance

Theorem 1 in Section 4.3 establishes the privacy protec-
tion guarantees of the proposed new algorithm. This
section provides a statistical analysis of the privacy-
preserving coefficient estimate B under Conditions
1-3 from Section 3.3. Section 5.1 provides upper bounds
for the finite-sample bias of the estimated optimal pol-
icy both in high probability and under expectation. Sec-
tion 5.2 provides the regret analysis. To prove these
bounds, the main technical challenge is that the empiri-
cal cost function after convolution smoothing does not

satisfy the local strong convexity as required in Avella-
Medina et al. (2023). We provide main proof strategies
and important intermediate results in Section 5.3.

5.1. Performance Bound on Estimation Error

The parameter indexing the clairvoyant optimal policy,
where the demand distribution is known a priori, is
givenby (1): " = argming, _«,E{C((x),))|x}. Given
a feature vector x, the clairvoyant optimal to-order-
quantity is x'8*. Given an estimate B of the unknown
parameter 8 based on a random, independent sample
{(d1,x1),...,(dy,x,)} of size n drawn from the linear
demand model we use the following two metrics to
evaluate its performance: (i) the estimation error =
B’|l; under the vector £,-norm or its variant, and (ii) the
excess (population) risk C(B)— C(B"), where C(-) is
defined in (1).

With a predetermined bandwidth @ >0, step size
1N, >0, truncation level B>1, number of iterations
T>1, and noise scale o =27BT"/2/y, let BT be the
u-GDP estimator of B obtained from Algorithm 1,
where T =max(t,1—1). Our first theorem provides
upper bounds for the estimation error || BT — B'|lx both
in high probability and under expectation, where ||- ||y
denotes the X-induced norm; that is, ||ul|y = VuTZu for
uelR?,

Theorem 2. In addition to Conditions 1-3, assume x; :=
min g, <1 K(u) > 0. Let the triplet of parameters (w,B,T)
and sample size n satisfy

1/4
o= (p+logn> ,
n

T=logn and n>TY?

=+/p+logn,
p+logn
i

Moreover, let the step size 1, satisfy 0 < n,<1/max
(2fu,fi + 7). Then, the u-GDP estimated coefficient B(T)
obtained from noisy gradient descent initialized at any
B ep +0:(1) satisfies

T _ pr 1/2p+logn 1 plogn
I: B||2SC0<770T el

with probability at least 1 — %

®)

and

+1
EIBT ~ B Iy < cz,/—bgn(nop loge ﬁ\/ﬁ)

where Cy, Cy1, and C, are positive constants independent of
(1, p)-

As a benchmark, we use E to denote the nonprivate
empirical (smoothed) risk minimizer; that is, B, =
argmmﬂeRpr(B) with Cw() defined in (3). From the
proof of Theorem 2, we see that the second term on the
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right-hand side upper bound is the bound on the esti-
mation error of ., which is of order /p/n with a
properly chosen smoothing parameter @ (He et al.
2023). The first term quantifies the “cost of privacy” of
the noisy gradient descent algorithm for solving the
feature-based newsvendor problem. For sufficiently
small values of u, the obtained upper bound (on
|- |lz-error) matches the minimax lower bound, up to
logarithmic factors, for (u, 6)-DP estimation of B* under
a linear model with normal errors; see theorem 4.1 in
Cai et al. (2021). By corollary 1 in Dong et al. (2022), an
algorithm is y-GDP if and only if (u,5(u))-DP, where
o(p) = (=1 + p/2) — et d(—1 - p/2).

5.2. Regret Analysis

We next provide a finite-sample analysis of the regret
C(BM) — C(B"), where C(B) = E{C(B)} is as in (1). The
regret is the difference between the expected cost
obtained with the estimated privacy-preserving opti-
mal policy and the clairvoyant optimal expected cost
with known demand distribution but without privacy
protection.

Without loss of generality (up to a constant scale),
we consider the regret of BT, defined as Q(B)—
QB =QB") - infperQ(B), where Q(B)=(b+ m
C(B) =E{p.(d —x" B)} with T =b/(b + h) as the popula-
tion cost (without smoothing). Recall that the coeffi-
cient B* indexing the optimal inventory policy satisfies
the first-order condition VQ(*) = 0. By the mean value
theorem and Condition 3 that sup, g fe|x(1t) < f,, it can
be shown that Q(B) — Q(B") = Q(B) — Q(B") — (VQ(B"),
B — B) <0.5f|B — B'||% for any B € R¥. This, combined
with Theorem 2, implies the following high-probability
upper bound on the regret along with an expected
regret bound.

Theorem 3 (High-Probability Bound for Excess Risk).
Under the same set of assumptions in Theorem 2, we have

1) p+logn fu
QB™) - Q(B)<log(n){u( gy Lp }(9)

with probability at least 1 — Cyn~>

Corollary 2 (Excess Population Risk Bound). Under the
conditions of Theorem 3, the excess population risk bound
satisfies

E{Q(BD) — Q(B)} < log(m){f, (p + logn)*/(un)®

+ (fu/f2) - p/n}. (10)

For fixed cost parameters b and /, the Bound (9) indi-
cates that if the number of relevant features p is small
relative to the number of observations in the sense that
plogn = o(n), the expected cost of the y-GDP estimated
decision converges to that of the optimal decision at a
fast rate O(p/n + u~2(p/n)*), up to logarithmic factors.

Without privacy guarantees, Ban and Rudin (2019)
obtained a similar performance bound, which implies
consistency but under a stronger condition on the num-
ber of features; that is, p? = o(n).

5.3. Proof Strategy and Key Intermediate Results
The statistical analysis of the noisy gradient descent
iterates {B"},.;  ; depends crucially on the land-
scape of the empirical loss function, as highlighted in
recent research (Cai et al. 2021, Avella-Medina et al.
2023). Unlike many commonly used loss functions in
statistical learning, such as squared loss, Huber loss
(and its smoothed variants), and logistic loss, the quan-
tile loss p, exhibits piecewise linearity, which lacks local
strong convexity. Instead, its “curvature energy” is con-
centrated in a single point. Notably, the local strong
convexity and smoothness of Q,(-) are intricately influ-
enced by the bandwidth used in the analysis.

In this study, we present the key findings for analyz-
ing the landscape of Q. (). Spec1f1cally, we illustrate
that by conditioning on a series of “good events”
related to the empirical smoothed cost function, the
proposed noisy gradient descent iterates exhibit favor-
able convergence properties. Moreover, we demon-
strate that these good events will occur with high
probability under Conditions 1-3. We conclude this
section with a supplementary analysis of the initializa-
tion of the algorithm.

Given a kernel function K(-) and bandwidth @ > 0,
we define the empirical smoothed loss

~ P 1
Qu(B) = (b+h)'Co(P) == (p.*Ky)(di — X B),
n P HZ_/
where “+” is the convolution operator. Its gradient and

Hessian are given, respectively, by
- B 1 n o T
VQu(B) =, 3 (KolxiB—d) — b and

VL) =, YKol X B

Let Q(B) = E{Q(B)} and Qu(B) = E{Q,,(B)} be the pop-

ulation quantile and smoothed quantile losses, respec-
tively. Note that although the parameter * indexing
the theoretically optimal inventory policy satisfies the
moment condition VQ(B*) = 0, in general, VQ,(B*) # 0.
Therefore, we use

b= |27 2VQ0 (Bl = I[E{K(x"B" — d) — t}wll;

to quantify the smoothing bias. Together, Condition 1
and the Lipschitz continuity of f;|«(-) ensure that b* <
0.5lpx,@?; see Lemma 1.3 in the supplementary material.
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For any r > 0, define the local ellipses centered at the
origin and f3°, respectively, as
Ox(r)={6 <R |8y <r} and
Or(n) ={BeR: BBz <7}

Moreover, for every B € R?, we write

Do(8) = Qy(B) — Q,(B) and
Dy(8) =E{Dy(8)} for 6=B— B (11)

Given parameters B,R>1 and 0,01 >0, define the
“good events”

£0(B) = { max|lwil, <BJ, (12)

£1(60,61) = {|D(8) — Do(8)| < S0l Bl
for all 8€©x(1)\ Ox(1/1)} N {|[VQ,(B)
—VQu(B)lly <61 forall Be®L(1)},  (13)

£2(R) = {IIV*Qo(B) — V*Qu(B)llx 1+ <fi
forall Be OL(R)}. (14)

Here we write [|Ally-1 = =" Y2Ax 12|, for any p X p
matrix A. In the following, we will restrict our analysis
to the intersection of the above events.

Proposition 3 (Restricted Strong Convexity and Smooth-
ness). Let 0 < @ < f;/(2lyx1), and set ¢, = 0.5(f; — lpx1@)
>0.25f; > 0. Then, conditioned on the event E1(o,01)
N &>(R), we have
Qu(B)—Qu(B)
o8- Bl
> = (60 +)IB—Bllx
(¢ =00 =b)IB—Blly forall Be®(1)",

forall Be ®%(1)\ Ox(1/n)

- R - (15)
Qu(B) — Qu(B) — (VO (B), B — B)
> lIB— Bz — (5o +6)IIB— Bz

forall Be O%(1)\ O%(1/n), (16)

and

Qu(B2) — Qu(B1) — (VQ,(B1), B, — B1)
<fullB, — Bils forall By, B,€OL(R).  (17)

Note that the Lower Bound (16) implies a restricted
strong convexity (RSC) for Q,(B) when B € ©%(1)/0%
(n=1 v ry) with r1 = (8 + 61)/¢,. The Upper Bound (17)
is related to the local strong smoothness of the empiri-
cal cost, which no longer holds without convolution
smoothing. In addition, we define a “good” event

on which the smoothed empirical loss Qw(-) satisfies

a refined RSC property. Given a radius r > 0 and a cur-
vature parameter ¢, € (0,f;), define

S { ﬁleﬁwez(r/izrf,fﬁzeﬁl +Os(r)
Qu(B1) — Qu(B) — (VQ,(Bo), B — Bo)
. >, -
1B, — Ballz

Now, we are ready to present the following general
upper bound on the estimation error conditioning on
the above good events.

Theorem 4. Assume Conditions 1 and 3 hold and p© e
©%(1), and let (w,n,) satisfy 0 < @w < f1/(2lox1) and 0 <
1, < 1/max(2f,, f; +7), where T = max(t,1 — 7). Set R =2,
and let 69,61 > 0 be such that

ro:= (80 +b") /P, <1 and ry:=(59+61)/p, <1, (18)

where ¢, = 0.5( f; — lox1m@). Moreover, let A=, — 06y —
b €(0,f1/2) and € = ny¢, € (0,1/2). For any z >0, let the
sample size satisfy
124+ /2(log T +
nx ap A(0g 2) . (19)
Then, conditioned on the event Ey(B) N E1(8g,01) N E2(2),

the noisy gradient descent iterate B0 with T >2log(n)/
log((1 — e satisfies

1B — Bl <7

= \/l+(1 +1/(»:){(2;9/(~:+32)(%)2 +(rg v 71)2}

n2

(20)

with probability (over the iid. normal vectors {g,}/_,") at
least 1 — 2e~=. Moreover, the nonprivate empirical (smoothed)
risk minimizer satisfies ||Bo, — Bllz < 7o

Let r=r1"+ry. Conditioned further on E3(r,¢,), [
with T > 31og(n)/log((1 — ey h satisfies

187~ Boll <1< /7 1+ /eG4 30 ()’
(21)

with probability (over the i.id. normal vectors {g,}_,') at
least 1 —2e77.

Remark 4. Under local strong convexity and smooth-
ness conditions, Avella-Medina et al. (2023) established
statistical convergence guarantees for private M-estima-
tors obtained via noisy gradient descent. Let £,, : R? —
R be a general (empirical) loss function of interest and
O C R’ be the parameter space. As high-level condi-
tions, Avella-Medina et al. (2023) assumed that £, is
locally 71-strongly convex and 7,-smooth; that is,

La(By) — La(Bo) = (VLu(B,), By — By) + Tl By — Ball3,
VBB, e{BER:[|B—-B|l, <7}
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for some >0, and L,(B;) — Lu(By) < (VL.(B,), B —
Bo) +2[lBy — Bz“iz VB, B, € ©. To our knowledge, it
remains uncertain whether the aforementioned local
strong assumption holds with high probability for either
the empirical newsvendor loss Q or its convolution-
smoothed counterpart Q.. Therefore, a more delicate
argument is required to analyze the convergence of
noisy gradient descent iterates obtained from Algorithm 1.
Our proof of Theorem 4 crucially relies on the structural
properties of Q, stated in Proposition 3. In Proposition
4 below, we will show that the event conditioned on in
Proposition 3 holds with high probability.

Remark 5. The proof of the error bound ||Ew - Bz <
1o in Theorem 4, which holds conditioning on event
&1(80,01), extends the argument in He et al. (2023).
The main contribution of Theorem 4 is to establish
finite-sample performance bounds for the noisy gradi-
ent descent iterates {B(t)}tT:1 in a sequential manner,
which involves a more intricate analysis compared
with that for the nonprivate empirical (smoothed) risk
minimizer B,. More specifically, the analysis con-
ducted in He et al. (2023) necessitates that the empiri-
cal loss satisfies only Condition (15), whereas our
approach requires a more comprehensive version of
the Restricted Strong Convexity Property (16). We
also establish a connection between statistical theory
and algorithmic complexity, demonstrating that to
achieve a statistically efficient estimator as shown in
Theorem 2, the computational complexity is of order
O(nplog(n)). In contrast, the conventional interior-
point method commonly used for solving the LP
reformulation of empirical check loss minimization
demands a significantly higher average-case computa-
tional complexity of Op(n**p*logn) (Portnoy and
Koenker 1997).

The convergence result stated in Theorem 4 relies on
the assumption that the initial value B falls within the
neighborhood ©5(1), which we term as the tightening
region. In each iteration of the noisy gradient descent,
the current estimate contracts toward the true parame-
ter, progressively moving closer to the region of near-
optimal convergence.

In general, let us define Rq := || — ﬁw ||, to be the
distance between the initial value B and the nonpri-
vate empirical risk minimizer 8. The following result
presents the number of iterations necessary for the
noisy gradient descent to enter the tightening region.

Theorem 5. Assume Conditions 1 and 3 hold, and let
(w,n,) satisfy 0 < w < f1/(2lox1) and 0 < 1y, <min{1,1/
(2f,)}. Without loss of generality, assume Ry =B —
B.lls > 1, and let

A=¢,—00—b"€(0,£/2), ro=(60+b")/p,€(0,1),

where ¢, = (fi — lox1@) /2. Given z >0, let the number of
iterations Ty and sample size n satisfy

> % and n>2B o
Ty > . 2 2bT,
X{ 0 ([ / )(10 )1]0,3_ e(_B 1/1),1_.0},

(22)

where Br, =Jp +/2(log Ty +z). Then, conditioned on
Eo(B) N E1(0g,01) N E2(R) with R=2Rg+ry, the noisy

gradient descent iterate BT0) satisfies

Quw(B™)—Q,B,) <A and [|B™ — Bz <1

with probability (over normal vectors {g,}1%") at least
1—e=

The aforementioned high-level findings demonstrate
that, given a sequence of “good events” associated
with the empirical smoothed cost function, the pro-
posed noisy gradient descent iterates exhibit desirable
convergence properties. To complement this determin-
istic analysis, we further provide probabilistic bounds,
which subsequently yield finite-sample performance
bounds as presented in Sections 5.1 and 5.2.

Proposition 4. Assume Conditions 1-3 hold. Given R > 0,
for any z>0, we have that with probability at least

1—5¢e77,

max ||Z’1/2x1-||2 < Coviy/p +1log(n) +z,

Do(8) — Dy (8 +1 +

wp  1Do®-Do®| ootz
5<0:(1)\Ox(1/n) 19l n
~ plog(n/m) +z
sup [[VQ,(B) — VQu(B)lly+ < Cov\/——"——

B<O% (1) n

N fuw + 2%,
n

and

sup ||V2@w(ﬂ) - VzQw(B)”y1

B<O%(R)

< szi{ plog(n/w) +z +plog(n/w) + z}
nw

nw

vi(p +logn + 22 + lymzo?

+ C3R s

7

provided that n> vi(p+z), where Cy,C1,Cp,Cy>0 are
absolute constants. Moreover, b* =||VQq,(B")|lx-1 < 0.5l
12w, and |[V*Qo (B )ls1 < fu-
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Proposition 5. In addition to Conditions 1-3, assume
k= min K(u) >0 and
[u|<1
1 u
|£r|lsf15 7Mfé.|x(v)dv > f/ almost surely
for some f/ > 0. Let rioc = w/(16max{m4,3}1/4v1). Then,
for any z > 0, we have that with probability at least 1 — e 7,

Qul(B1) — Qu(By) — (VQu(By), By — By) = 0,lIB1 — Byl
(23)

holds uniformly over B, € B* + Ox(r0c/2) and B, € By +
Ox(r10c), provided that the “effective sample size” nw satis-
fies nw > ’71411/ 2v%(p +z), where ¢, > 0 is a constant depend-

ing only on (i, f]).

Let the sample size n and bandwidth @ = @, > 0 sat-
isfy nw > plogn and @ < {(p + log n)/n}*’*. Then, Prop-

osition 4 implies b* < +/(p +1ogn)/n and event y(B) N
E1(60,01) N E2(2) with (B, 6g, 1) satisfying

B=/p+logn, 60‘:\/;”_1% and 61x”plo#

occurs with high probability. Combining this with The-
orem 4 implies the finite-sample performance bounds
in Theorem 2.

Moreover, under the additional assumptions stated in
Proposition 5, there exist some curvature parameter
¢, >0 and a local radius 7y, < @ such that the event
E3(0c, P,) also occurs with high probability. This fur-
ther implies that the y-GDP estimate B, obtained from
noisy gradient descent initialized at any B e g+
©rx(1), satisfies with probability at least 1 — Cn! that

Vd1ogn p+logn
(inf? wm

Here, we implicitly assume that both the smoothing
parameter @ and the number of iterations T are chosen
appropriately. The above bound, in turn, implies that
the excess (smoothed) empirical risk is bounded with
high probability by

Co(B") = ColBy) = Co(B”) ~ min Co(B)

2
< logn<r’+lﬂ) ,
un

The above rate also matches (up to a logarithm factor)
the one in Bassily et al. (2014) for Lipschitz and
strongly convex loss functions (after adjusting for
scaling differences).

IBD — B,lls <

6. Numerical and Empirical Studies

In this section, we utilize synthetic data as well as real-
world data to showcase the empirical performance of
the proposed privacy-preserving feature-driven policy.

We compare its performance against that of the theoret-
ically optimal policy, which assumes known demand
but lacks privacy protection measures. For the sake of
simplicity and consistency, we employ the Gaussian
kernel in all of our numerical experiments.

6.1. Synthetic Data

We consider the linear demand model d =xT0" +¢,
where " = (15,1, —2.5, —1.5,3)" € R® and x* = (1,27)".
The feature vector z € R* is generated from a centered
multivariate normal distribution with covariance matrix
r=(05/* )1<j,k<s- Independent of the feature vector x,
the observation noise variable ¢ follows one of the fol-
lowing three distributions: (i) standard norm distribu-
tion A(0,1), (i) t-distribution with three degrees of
freedom (t3), and (iii) Gaussian mixture distribution
0.9N(0,1) + 0.1N(0, 100).

In all of our numerical experiments, we set b+h =1
so that with the distribution of ¢ known as a priori infor-
mation, the optimal quantity to order can be determined
by the 7-th quantile of the conditional distribution of 4
given x, where 7 = b. Specifically, the clairvoyant opti-
mal policy is X" 8" with B = 6" + (Q.(1),0,0,0,0)", where
Q¢ (+) denotes the quantile function of ¢.

For the hyperparameters in the noisy gradient descent
method, we set T=10, B=2, and o =[2TBT"?/u],
where 1 €{0.3,0.5,0.9} is privacy level, and 7 € {0.25,
0.5,0.75}. The step size 7, is chosen via a backtracking
line search. As suggested in He et al. (2023), the band-
width @ is taken to be \/7(1 — 7) - {(p + log n)/n}2/5. The
final output B is u-GDP according to Theorem 1. We
fix p = 5 and let the sample size increase from 100 to 500.
Figures 4-6 present plots of the logarithmic £,-error and
regret versus the sample size under different error distri-
butions and privacy levels, averaged over 300 repeti-
tions. The regret of B, defined as E[C(x"B,d)] —
E[C(xT B*,d)], where the expectation is taken over the
joint distribution of (d,x), is evaluated using an addi-
tional data set of size one million. Figures 7-9 display
the box plots of regrets under different error distribu-
tions and privacy levels based on 300 repetitions with a
sample size of 400. Table 1 reports the corresponding
average regrets and standard deviations.

From Figures 4-6, we see that both the estimation
errors and regrets decrease as the number of observa-
tions grows, as expected. The spacing of these error
curves further illustrates the impact of privacy. From
Table 1, we observe that the variability of regrets is low
when the sample size is reasonably large. These numerical
results also highlight the robustness of newsvendor loss
minimization against heavy-tailed error distributions.

6.2. Real Data Example

We demonstrate the effectiveness of the proposed
privacy-preserving algorithm using the restaurant data
from Buttler et al. (2022). This data set comprises
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Figure 4. (Color online) Estimation Errors and Regrets of Different Estimators When ¢ ~ (0, 1)
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Note. Plots of logarithmic ¢, estimation error and regret vs. the number of observations, averaged over 300 replications when & ~ A/(0,1).

Figure 5. (Color online) Estimation Errors and Regrets of Different Estimators When ¢ ~ t3
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Figure 6. (Color online) Estimation Errors and Regrets of Different Estimators When ¢ ~ 0.9A/(0,1) + 0.1A/(0,100)
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and regret vs. the number of observations, averaged over 300 replications when

demand data for main ingredients at a casual restau-
rant in Stuttgart over approximately 750 days. The res-
taurant manager needs to decide on the amount of
ingredients to defrost overnight to prepare meals, con-
sidering that leftover ingredients result in holding
costs. Therefore, we formulate the problem of deter-
mining the optimal amount of ingredients to defrost as
a newsvendor problem. It is worth noting that during
the data collection period, the store manager’s strategy

was to maintain a service level of nearly 100%, render-
ing the issue of censored demand negligible.

In our analysis, we utilize the private algorithm to
determine the optimal strategy for defrosting the
amount of lamb (which is the ingredient with the high-
est demand) to minimize costs and maximize perfor-
mance. We compare the outcomes obtained from the
private algorithm with those from the standard nonpri-
vate algorithm. Our model incorporates three distinct

Figure 7. (Color online) Regrets of Different Estimators When Sample Size Equals 400 and ¢ ~ A/(0,1)

0.30 0.30 0.30
0.25 A 0.25 A 0.25 A
0.20 A 0.20 - 0.20 -
g g g
o 0.15 © 0.15 A © 0.15 A
U U U
o o« o«
0.10 A 0.10 - 0.10 A
0.05 A ; 0.05 A 0.05 A
000l = == é 000 == == %’ % 0.00 === == %’
No privacy u=0.9 u=0.5 No privacy u=0.9 u=0.5 u=0.3 No privacy u=0.9 u=0.5
T=0.25 7=0.5 T=0.75

Note. Box plots of regret with different privacy levels over 300 replications when the sample size is 400.
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Figure 8. (Color online) Regrets of Different Estimators When Sample Size Equals 400 and ¢ ~ f3
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Note. Box plots of regret with different privacy levels over 300 replications when the sample size equals 400.

Figure 9. (Color online) Regrets of Different Estimators When Sample Size Equals 400 and ¢ ~ 0.9A/(0,1) + 0.1A/(0,100)
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Note. Box plots of regret with different privacy levels over 300 replications when the sample size is 400.

features: (i) calendric features, which include binary
variables indicating holidays or nonholidays extracted
from the date; (ii) lag features, incorporating demand
information from the previous periods, such as demand
from exactly one week ago and exactly two weeks ago;
and (iii) weather features, encompassing rain and tem-
perature data. We assume a per-unit (per-kilogram)
holding cost / for lamb of $30. We consider four differ-
ent values for the lost-sales penalty cost b: $50, $70, $90,
and $120 per kilogram. These values correspond to
gross profit margins (excluding labor costs) of roughly
62.5%, 70%, 75%, and 80%, respectively, which are

Table 1. Synthetic Data Analysis

similar to the gross profit margin of a financially viable
restaurant, estimated to be around 70%. We use a train-
ing data set of n =552 past demand observations to
train our model, and we evaluate its performance by
measuring the out-of-sample error on a separate testing
data set consisting of 184 observations.

The algorithm hyperparameters are setas T = 10, B =
2 and o = [2TBT"?/u] with privacy level u € {0.3,0.5,
0.9}. We conduct 100 random partitions of the data set
into training and testing data and summarize the aver-
age out-of-sample cost across these partitions. Table 2
presents the out-of-sample cost of our private estimator

Nonprivate u=09 u=05 u=03
e~N(0,1) 0.004 0.009 0.017 0.038
(0.002) (0.006) (0.011) (0.026)
e~t3 0.012 0.017 0.027 0.052
(0.003) (0.006) (0.012) (0.034)
e ~0.9N(0,1) +0.1N(0,100) 0.006 0.01 0.019 0.04
(0.003) (0.005) (0.011) (0.026)

Note. Synthetic data analysis: mean and standard deviation (in the parentheses) of the regret for different
estimators in three different models over 300 replications, when the sample size equals 40.



Zhao, Zhou, and Wang: Private Inventory Policy Learning for Feature-Based Newsvendor

Management Science, Articles in Advance, pp. 1-20, © 2024 INFORMS

19

Table 2. Restaurant Data Analysis

Nonprivate u=09 u=05 uw=03
b=50 313.08 315.87 316.71 317.49
b=70 365.67 365.75 367.09 369.32
b=90 405.45 405.22 407.47 410.43
b=120 452.45 453.07 456.21 459.89

Note. Restaurant data analysis: average out-of-sample cost of the
private and nonprivate estimators.

(at different privacy levels) and the naive nonprivate
estimator for various choices of b. The average cost of
our private algorithm is at most 2% higher than the
cost of the nonprivate algorithm. This indicates that the
proposed algorithm can be effectively used by the res-
taurant to predict future demands while maintaining
a reasonable level of privacy protection, albeit at a
slightly higher cost.

7. Concluding Remarks and Discussions
In this paper, we investigate the learning of privacy-
preserving optimal policies for feature-based newsven-
dor problems with unknown demand. We consider the
problem within the framework of f-differential privacy,
a recently proposed approach that extends the classical
(€, 0)-differential privacy with several appealing fea-
tures. To address the challenge of nonsmoothness asso-
ciated with the newsvendor loss function, we propose a
new noisy gradient algorithm based on convolution
smoothing. We provide privacy-preserving guarantees
for the T-step output of the proposed algorithm and
establish rigorous finite-sample high-probability bounds
for estimation error and regret. Importantly, we demon-
strate that a reasonable level of privacy protection can
be achieved without sacrificing performance compared
with the clairvoyant policy with known demand distri-
bution but without privacy protection.

A future endeavor is to find proper conditions on the
mini-batch size m under which the noisy SGD estima-
tors are consistent. If m is fixed, there will be a nonvan-
ishing noise term in noisy SGD. Thus, we might not
have consistent noisy SGD estimators unless m — oo,
and the cost of privacy might not be negligible unless
we also have that m?/n — co. These problems deserve
further attention in future research. From the practical
perspective, the choice of appropriate mini-batch size
is critical and nontrivial to ensure high-quality perfor-
mance. In the newsvendor problem, when the data size
is not on the scale of millions, the full gradient descent
method remains computationally efficient and exhibits
fast geometric convergence.
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