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ABSTRACT
Cross-domain recommender systems (CDRs) aim to enhance rec-
ommendation outcomes by information transfer across di!erent
domains. Existing CDRs have investigated the learning of both
domain-speci"c and domain-shared user preferences to enhance
recommendation performance. However, these models typically
allow the disparities between shared and distinct user preferences
to emerge freely in any space, lacking su#cient constraints to iden-
tify di!erences between two domains and to ensure that both do-
mains are considered simultaneously. Canonical Correlation Analy-
sis (CCA) has shown promise for transferring information between
domains. However, CCA only models domain similarities and fails
to capture the potential di!erences between user preferences in
di!erent domains. We propose Discerning Canonical User Repre-
sentation for Cross-Domain Recommendation (DiCUR-CDR) that
learns domain-shared and domain-speci"c user representations si-
multaneously considering both domains’ latent spaces. DiCUR-CDR
introduces Discerning Canonical Correlation (DisCCA) user repre-
sentation learning, a novel design of non-linear CCA for mapping
user representations. Unlike prior CCA models that only model the
domain-shared multivariate representations by "nding their linear
transformations, DisCCA uses the same transformations to discover
the domain-speci"c representations too. We compare DiCUR-CDR
against several state-of-the-art approaches using two real-world
datasets and demonstrate the signi"cance of separately learning
shared and speci"c user representations via DisCCA.
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1 INTRODUCTION
Cross-domain recommender systems (CDRs) were introduced to
address challenges like data sparsity and the cold-start problem and
to improve the quality of recommendations [12]. These systems
facilitate the transfer of information across domains, by assuming
that the transferred information exhibits commonality across these
domains. Particularly, the majority of CDRs either presume that
user interests in di!erent domains are exactly the same [22, 23, 28]
or can be mapped more $exibly to each other via some transfor-
mation [40, 44]. While such assumptions have led to the success of
numerous cross-domain recommender systems, empirical research
has shown that the overlap in user interests can vary between
domains. Particularly, user interests in some domains (for exam-
ple, movies and video games) could be more interrelated to each
other compared to other domains (such as perfumes and video
games) [44, 45]. So, enforcing completely shared, or similar user
representations can potentially induce too strong restrictions, as
it does not take into account the existence of domain-speci"c user
interests, subsequently resulting in the transfer of noisy and irrele-
vant information across domains.

To solve this limitation, recent cross-domain recommender mod-
els use two separate user representations: a domain-shared repre-
sentation for information sharing between domains, and a domain-
speci"c representation for representing unique user interests within
each domain, such as DisenCDR [3], ETL [5], CAT-ART [30], and
DIDA-CDR [64]. However, these approaches mostly concentrate on
maintaining similar domain-shared representations, disregarding
the potential structure in domain di!erences. Namely, they either
ignore that domain-speci"c representations should be di!erent or
let the di!erences between the domain-speci"c representations
have any shape or form. This can result in an over-restriction of
domain-shared representations and overly free representations of
the domain disparities, causing an imbalance between them. This
imbalance could result in domain-speci"c representations being
similar to domain-shared ones, or pushing most of the informa-
tion into domain-speci"c representations. As a result, the domain-
shared part of the model would under"t and the domain-speci"c
part would over"t the training data. Furthermore, considering both
domains simultaneously when determining their disparities would
provide a more expressive solution.

To illustrate, we visualize the representations learned by Dis-
enCDR [3] using t-SNE [18] in Figure 1(b). DisenCDR is a successful
recent cross-domain recommender system, that aims to disentangle
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the domain-shared and domain-speci"c information by minimizing
the mutual information between them. While DisenCDR has an
impressive predictive performance, we can see in Figure 1(b) that
its shared and disentangled representations of the two domains are
not well-separated and are not distinguishable.

(a) DiCUR-CDR (b) DisenCDR

Figure 1: Visualization of learned user representations via using T-SNE for
DisenCDR. Each color represents one type of representation.

Therefore, in this paper, our goal is to push the domain-shared
representations close to each otherwhile separating and di!erentiat-
ing between the domain-speci"c ones, similar to the visualization in
Figure 1(a). We propose Discerning Canonical User Representation
Learning for Cross-Domain Recommendation (DiCUR-CDR) that
imposes a shared structure over the similarities between the two do-
mains and uses the same structure to learn the disparities between
them. Hence, it learns the similarities between domain-shared repre-
sentations and the dissimilarity of domain-speci"c representations
within the same space.

To achieve this goal, we also propose Discerning Canonical Cor-
relation (DisCCA) User Representation Learning, which simulta-
neously maximizes the correlation between domain-shared user
representations and adds extra constraints to learn the disparities
between domain-distinct representations by expanding the idea of
generalized Canonical Correlation Analysis (CCA) [51]. CCA is a
multivariate statistical method used to explore the correlation be-
tweenmultiple sets of dependent and independent variables [14, 21].
However, while CCA models domain similarities, it fails to cap-
ture the potential di!erences in user preferences across di!erent
domains. DiCUR-CDR learns domain-distinct and domain-speci"c
user representations using DisCCA and through generative adver-
sarial learning to increase the model generalizability, reduce the
noise, and improve the learning of user feedback distributions. Our
main contributions in this paper are summarized as follows:

• We emphasize the importance of bringing domain-shared
representations closer togetherwhile distinguishing between
the domain-speci"c ones in a structured way.

• We propose a novel method named DiCUR-CDR. DiCUR-
CDR introduces DisCCA for user representation learning,
which enables the exchange of preferences between domains,
acknowledges the variations between two domains, and en-
sures that both domains are simultaneously considered when
evaluating these di!erences. DisCCA is the "rst CCA model
that considers domain distinctions.

• We conduct extensive experiments on two public datasets,
demonstrating that DiCUR-CDR outperforms state-of-the-
art baselines. Our ablation studies analysis highlights the

importance of each component within DiCUR-CDR, our sen-
sitivity analysis showcases its resilience to hyperparameters,
and our cold-start analysis demonstrates its e!ectiveness in
alleviating the cold-start problem.

2 RELATEDWORK
Single-Domain RS.Matrix factorization (MF) is a commonly used
technique in various CF methods. Many studies have demonstrated
the e!ectiveness of MF-based CF methods and their variants for rec-
ommendation systems [7, 24–27, 37, 39, 43, 48]. These approaches
learn latent user and item feature factor vectors to characterize
users and items [27]. Subsequently, as deep neural networks (DNNs)
began to demonstrate success in many research "elds, they have
been incorporated into RS [6, 9, 17, 38, 47, 54, 57]. The capabilities
of DNNs enable the non-linear learning of feature vectors of users
and items, as well as the interactions between them [19].

Recently, Generative Adversarial Networks (GANs) [13] have
been instrumental in approximating the distribution of genuine
data samples and subsequently generating new instances from
this distribution, which is achieved through a competitive process
involving a generator and a discriminator[8, 56]. Our proposed
method is mostly related to GANs-based CF methods, such as IR-
GAN [55], GraphGAN [53], CFGAN [4], among others [10, 16, 34,
60]. These methods, however, only address single-domain CF, while
our method is a cross-domain CF method employing GANs.
Cross-Domain RS. Nonetheless, CF methods grapple with issues
such as data sparsity and the cold-start problem [50]. To mitigate
these challenges, the cross-domain recommendation (CDR) has
been introduced. The goal of CDR is to harness and transfer infor-
mation or knowledge from auxiliary domains to enhance recom-
mendations in the target domain [2, 12]. Numerous cross-domain
approaches have successfully enhanced recommendation perfor-
mance, including both shallow models [23, 29, 42, 49] and deep
models [22, 33, 35, 62]. Recently, learning both domain-speci"c and
domain-shared representations has piqued interest in CF research
to further improve cross-domain recommendation. For example,
DisenCDR [3], ETL [5], CAT-ART [30], and MSDCR [63] show the
necessity of modeling domain-speci"c and domain-shared repre-
sentations separately. Di!erent from these methods, we propose
discerning Canonical Correlation user representation learning and
utilize GANs for cross-domain recommendation generation.

Furthermore, several GAN-based cross-domain CF methods have
been proposed, including Recsys-dan [52], RecGURU [31], and
ACDR [32], DA-CDR [61]. These models tend to transfer latent
representations between domains or alternatively generate domain
labels using GANs. Instead, our method generates user feedback.
Canonical Correlation Analysis in RS. CCA has demonstrated
potential in facilitating information transfer across various do-
mains [44, 45, 58, 65]. However, its application in recommendation
systems is signi"cantly hindered by the inherent sparsity of the data,
as it requires complete observed matrices. Nevertheless, it has been
applied to CDRs in various capacities. For example, CCA is used
to predict and estimate hotel ratings based on textual comments
and sentiment analysis related to hotels [11]. In addition, Kernel
CCA is employed to determine correlations between music pieces
and human motion for providing music recommendations [40]. Fur-
thermore, CD-LCCA [46] leverages CCA to transfer information
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between lower-dimensional matrices that represent the user feed-
back matrix across domains. Generalized CCA [51], which uses
L2-loss instead of a direct correlation measure to "nd domain simi-
larities, was proposed to expand CCA’s applications. But, unlike our
proposed DisCCA, neither CCA nor Generalized CCA can represent
domain disparities. Furthermore, none of the above methods, like
our DiCUR-CDR, leverages CCA to capture both domain-speci"c
and domain-shared representations to improve RS.

3 PRELIMINARIES
Problem Formulation.Without loss of generality, we assume two
domains of items: domain A and domain B. We focus on the dual-
target CDR scenario, aiming to improve recommendation accuracy
in both domains by transferring diverse information between both
domains. Assuming that the set of𝐿 users is shared between the two
domains, with 𝑀A and 𝑀B items in domains A and B, respectively.
We denote the set of users as U = {𝑁1,𝑁2, ...,𝑁𝐿}, and the set of
items for domains A and B as IA = {𝑂A1 , 𝑂A2 , ..., 𝑂A

𝑀A } and IB =

{𝑂B1 , 𝑂B2 , ..., 𝑂B
𝑀B }, respectively.

In this paper, we focus on CF from users’ implicit feedback,
such as purchases or clicks. We represent users’ feedback in the
domain A (B) using a matrix RA ↑ R𝐿↓𝑀A

(RB ↑ R𝐿↓𝑀B
),

where an element 𝑃A𝑁𝑂 = 1 (𝑃B𝑁𝑂 = 1), if user 𝑁 has provided implicit
feedback for item 𝑂 (i.e., observed), and 𝑄𝐿𝑅𝑆𝑇 if no feedback is
available (i.e., unobserved). Moreover, we de"ne IA

𝑁 (IB
𝑁 ) as the

set of observations in domain A (B) for which user 𝑁 has provided
feedback, while IA

𝑁 (IB
𝑁 ) denotes all items that user 𝑁 has not

provided feedback on. Our goal is to estimate user 𝑁’s preferences
and predict items that users are interested in for both domains A
and B, based on their history of observed feedback.
Canonical Correlation Analysis. CCA focuses on "nding lin-
ear projections that maximize the correlation between variables
from di!erent views. Generalized CCA (GCCA) [20, 51], on the
other hand, goes beyond traditional CCA by maximizing a spe-
ci"c measure of the matrix that encompasses all pairwise correla-
tions between linear projections of the covariates [41]. Assuming
𝜴 ↑ R𝑃↓𝑄𝐿 and 𝜶 ↑ R𝑃↓𝑄𝑀 are the matrices for data from two
views, while each row of these matrices represents one data sample.
The objective of GCCA is:

min
𝜴 ,𝜶𝐿 ,𝜷𝑀

| |𝜴𝜷𝑅 ↔ 𝜸 | |2 + ||𝜶𝜹𝑆 ↔ 𝜸 | |2 𝑈 .𝑆 . 𝜸
T
𝜸 = 𝑉 (1)

where the constraint is to ensure orthonormality and uniqueness
of the shared learned representation. By solving this optimization
problem, GCCA learns 𝜸 , 𝜷𝑅 , and 𝜷𝑆 such that correlation be-
tween 𝜴 and 𝜶 is maximized in the projection space. Furthermore,
non-linear GCCA [1] improves upon traditional GCCA by using
non-linear mappings (e.g. Sigmoid activation function) to project
data matrix (e.g. 𝑊 (𝜴𝜷𝑅 )). This allows for the maximization of
non-linear correlation between variables.

4 DICUR-CDR MODEL
DiCUR-CDR is designed as a cross-domain collaborative "ltering
method to capture both distinct within-domain and shared cross-
domain user preferences to enhance recommendation performance.
We introduce Discerning Canonical Correlation user representation

learning (DisCCA) that uses shared transformation matrices to max-
imize the similarities between the domain-shared representations
and minimize the similarities between the domain-speci"c ones
in the same space. To improve generalizability, we use generative
adversarial learning to model user preferences and generate recom-
mendations. For each domain, the generator learns domain-shared
and domain-speci"c user representations. Then, DisCCA imposes
additional constraints on these representations to more e!ectively
tease out user interests. An overview of DiCUR-CDR is presented
in Figure 2.

4.1 Discerning Canonical Correlation (DisCCA)
User Representation Learning

We "rst introduce our proposed Discerning Canonical Correlation
(DisCCA) User Representation Learning, which encourages the
domain-shared user representations from di!erent domains to be
close to each other in the projection spaces, while simultaneously
ensuring that the domain-speci"c and domain-shared user repre-
sentations within each domain are distinct. DisCCA is a variant
of non-linear GCCA that, in addition to identifying similarities
between features of two variables mapped into a latent space, uses
the same mapping structure to distinguish di!erences among other
features of the same variables. Assume that we are given 𝝐

A𝑁
𝑁 ↑ R𝑇

and 𝝐
B𝑁
𝑁 ↑ R𝑇 as domain-speci"c user representations, capturing

user distinct preferences within domainsA andB respectively; and
𝝐
A𝑂
𝑁 ↑ R𝑇 and 𝝐

B𝑂
𝑁 ↑ R𝑇 as domain-shared user representations,

which capture user preferences that are shared across domains. We
store these representations in matrices 𝝐A𝑂 , 𝝐B𝑂 , 𝝐A𝑁 , and 𝝐

B𝑁

(one row per user). DisCCA introduces additional constraints on
these matrices. Similar to GCCA, our "rst goal is to "nd projec-
tions of domain-shared representations to make them equivalent
in a shared latent space. We project these representations and add
non-linearity to the projections as follows:

𝜻
A𝑂 = 𝑋𝑌𝑄𝑍𝑁 (𝜷A

𝝐
A𝑂 ) 𝜻

B𝑂 = 𝑋𝑌𝑄𝑍𝑁 (𝜷B
𝝐
B𝑂 ) (2)

where 𝜻
A𝑂 and 𝜻

B𝑂 ↑ R𝐿↓𝑇𝑁𝑃 denote projections of domain-
shared representations, 𝑋𝑌𝑄𝑍𝑁 is the Leaky ReLU activation function,
and 𝜷

A ↑ R𝑇↓𝑇𝑁𝑃 and 𝜷
B ↑ R𝑇↓𝑇𝑁𝑃 are learnable mapping

matrices. To learn the projections and mapping matrices, we use
the following objective function:

L𝑈 = | |𝜻A𝑂 ↔𝜻
B𝑂 | |2 + ||𝜻A𝑂

T
𝜻
A𝑂 ↔ 𝜼 | |2 + ||𝜻B𝑂

T
𝜻
B𝑂 ↔ 𝜼 | |2 (3)

where | | · | |2 is L-2 norm. Note that while L𝑈 resembles GCCA’s
objective function in Eq. 1, it has three distinctions: (1) to add gener-
alizability, instead of minimizing the distance between projections
and the latent representation 𝜸 for the two domains, we use a direct
approach by minimizing the distance between two projections 𝜻A𝑂

and 𝜻
B𝑂 , (2) 𝜻A𝑂 and 𝜻

B𝑂 are made sure to be close to each other
using the "rst term, and (3) the second and third term in L𝑈 are
added to satisfy the orthonormality constraint.

Unlike GCCA, our method also aims to model the disparities
between domains and discern both domain-shared and domain-
speci"c information within each domain. To ensure that the do-
main di!erences are captured in a structured way, we constrain the
projections of domain-speci"c representations by using the same
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Figure 2: The DiCUR-CDR model architecture. Each domain has a generator GA (GB ) and a discriminator DA (DB ). DisCCA user representation learning in the
middle creates a shared transformation mapping and adds extra constraints.

mapping matrices 𝜷A and 𝜷
B as in Eq. 2:

𝜻
A𝑁 = 𝑋𝑌𝑄𝑍𝑁 (𝜷A

𝝐
A𝑁 ) 𝜻

B𝑁 = 𝑋𝑌𝑄𝑍𝑁 (𝜷B
𝝐
B𝑁 ) (4)

where 𝜻A𝑁 , 𝜻B𝑁 ↑ R𝐿↓𝑇𝑁𝑃 are projections of domain-speci"c
representations. We introduce the following objective function for
domain-speci"c projections:

L𝑉 = ↔
(
| |𝜻A𝑂 ↔ 𝜻

A𝑁 | |2 + ||𝜻B𝑂 ↔ 𝜻
B𝑁 | |2 + ||𝜻A𝑁 ↔ 𝜻

B𝑁 | |2
)
(5)

The "rst two terms of L𝑉 (Eq. 5) enforce the domain-shared and
domain-speci"c projections to be far in each domain, and the last
term discerns the two domain-speci"c projections from each other.

These objectives, L𝑈 and L𝑉 , di!er from traditional CCA meth-
ods, which only focus on maximizing the correlation between two
latent variables. They also deviate from previous recommendation
models that did not impose constraints on domain-distinct vari-
ables. It is worth noting that DisCCA is the "rst CCA model with
distinctions between variables.

4.2 Recommendation Generation
Taking advantage of the e!ectiveness of generative adversarial
learning for generalizability, noise reduction, and enhanced learn-
ing of user feedback distributions, we generate recommendation
predictions and learn user preference representations (𝝐A𝑁

𝑁 , 𝝐B𝑁
𝑁 ,

𝝐
A𝑂
𝑁 , and 𝝐B𝑂

𝑉
) via GAN. For each domain, DiCUR-CDR constructs a

GAN with two key components: a generator G and a discriminator
D. G and D play a two-player minimax game, competing against
each other for mutual promotion. The generator G is responsible
for generating implicit feedback vectors (e.g., purchase vectors) to
deceive the discriminator D, while the discriminator D aims to
di!erentiate between the actual implicit feedback vectors and the
ones generated by G.

4.2.1 Generator. Two generators, GA and GB , are designed to
generate samples of users’ implicit feedback vectors for each do-
main. Speci"cally, given the user 𝑁’s implicit feedback vector 𝜽A𝑁
(𝜽B𝑁 ) in the domain A (B), GA (GB ) generates a 𝑀A-dimensional

(𝑀B-dimensional) feedback vector 𝜽
A
𝑁 (𝜽B𝑁 ) that represents the

user’s preference of items in domain A (B). DiCUR-CDR "rst pro-
poses to learn both domain-speci"c and domain-shared user repre-
sentations by leveraging the DisCCA. Then, the domain-speci"c
and domain-shared user representations are utilized to generate
the recommendations 𝜽A𝑁 and 𝜽

B
𝑁 for each domain.

Domain-Shared and Domain-Speci!c Representation.We aim
to model the transfer of preferences between domains, recognize
the di!erences between the two domains, and ensure that both
domains are considered concurrently when these di!erences are
assessed. DiCUR-CDR uses di!erent fully connected layers to learn
separate domain-shared and domain-speci"c user representations
for each domain. Taking the user feedback vector as input, the
fully-connected layers are formulated as:

𝝐
A𝑁
𝑁 = 𝑊 (𝜹A

𝑉 𝜽
A
𝑁 + 𝜾

A
𝑉 ) 𝝐

B𝑁
𝑁 = 𝑊 (𝜹B

𝑉 𝜽
B
𝑁 + 𝜾

B
𝑉 ) (6)

𝝐
A𝑂
𝑁 = 𝑊 (𝜹A

𝑈 𝜽
A
𝑁 + 𝜾

A
𝑈 ) 𝝐

B𝑂
𝑁 = 𝑊 (𝜹B

𝑈 𝜽
B
𝑁 + 𝜾

B
𝑈 ) (7)

where 𝑊 is the Sigmoid activation function.𝜹A
𝑉

↑ R𝑇↓𝑀A
,𝜹B

𝑉
↑

R𝑇↓𝑀
B
, 𝜹A

𝑈 ↑ R𝑇↓𝑀A
, and 𝜹

B
𝑈 ↑ R𝑇↓𝑀B

are learnable weight
matrices that map user’s feedback vector to latent user represen-
tation space. 𝜾A

𝑉
↑ R𝑇 , 𝜾B𝑉 ↑ R𝑇 , 𝜾A𝑈 ↑ R𝑇 and 𝜾

B
𝑈 ↑ R𝑇 are bias

terms. DisCCA is then applied to these representations and adds
additional constraints for capturing both distinct within-domain
and shared cross-domain user preferences.
Recommendation Prediction. DiCUR-CDR incorporates both
within-domain and cross-domain user preferences to generate rec-
ommendations for each domain. We utilize a fully-connected layer
after concatenating these user representations, as:

𝜽
A
𝑁 = GA(𝜽A𝑁 ) =𝜹

A
𝑊 [𝝐A𝑁

𝑁 ↗ 𝝐
A𝑂
𝑁 ] + 𝜾

A
𝑊 (8)

𝜽
B
𝑁 = GB (𝜽B𝑁 ) =𝜹

B
𝑊 [𝝐B𝑁

𝑁 ↗ 𝝐
B𝑂
𝑁 ] + 𝜾

B
𝑊 (9)

where 𝜽A𝑁 ↑ R𝑀A
and 𝜽

B
𝑁 ↑ R𝑀B

represent the generated feedback
vectors for domains A and B. Each element 𝜽A𝑁𝑂 (𝜽

B
𝑁 𝑋 ) corresponds

to user 𝑁’s preference of item 𝑂 ( 𝑎 ), indicating the chance of that
item being positively perceived (e.g., purchased) by user 𝑁. ↗ is the
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concatenation operation, 𝜹A
𝑊 ↑ R𝑀A↓2𝑇 and 𝜹

B
𝑊 ↑ R𝑀B↓2𝑇 are

learnable weight matrices. 𝜾A𝑊 ↑ R𝑀A
and 𝜾B𝑊 ↑ R𝑀B

are biases.

4.2.2 Discriminator. DiCUR-CDR employs a discriminator DA

(DB ) to distinguish between real user feedback vectors 𝑃A𝑁 (𝑃B𝑁 )
and generated feedback samples 𝑃A𝑁 (𝑃B𝑁 ). We use 𝑃A𝑁 (𝑃B𝑁) to
denote the input feedback vector for the discriminator, as it could
be either real: 𝑃A𝑁 (𝑃B𝑁) or generated: 𝑃A𝑁 (𝑃B𝑁). Discriminators
are formulated as:

DA(𝜽A𝑁 ) = 𝑊 (𝜹A
𝑀 [𝜽A𝑁 ↗ (𝜽A𝑁 ↘ 𝜿

A
𝑁 )] + 𝜾

A
𝑀 ) (10)

DB(𝜽B𝑁 ) = 𝑊 (𝜹B
𝑀 [𝜽B𝑁 ↗ (𝜽B𝑁 ↘ 𝜿

B
𝑁 )] + 𝜾

B
𝑀 ) (11)

where DA(𝜽A𝑁 ) and DB(𝜽B𝑁 ) denote the output of the discrimina-
tor, which is a scalar value representing the estimated probability
of 𝑃A𝑁 and 𝑃B𝑁 being real, respectively. ↘ denotes element-wise
product. 𝜿A

𝑁 ↑ R𝑀A
and 𝜿

B
𝑁 ↑ R𝑀B

are binary mask vectors in-
dicating whether user 𝑁 has implicit feedback for an item (1) or
not (0). Masking is needed to handle sparsity in the ground-truth
data that the generators aim to imitate and ensures that only ob-
served ground-truth items contribute to the learning of the model.
The real feedback vector is concatenated with the given feedback
vector in the discriminators to ensure that they take into account
each user’s personalization. 𝜹A

𝑀 ↑ R1↓2𝑇 and 𝜹
B
𝑀 ↑ R1↓2𝑇 are

weight matrices, and 𝜾
A
𝑀 ↑ R and 𝜾

B
𝑀 ↑ R are biases. Without

losing generalizability, DiCUR-CDR can be extended to multiple do-
mains by adding more GANs per domain and incorporating additional
constraints into L𝑉 and L𝑈 in equations 3 and 5.

4.3 Model Learning
Formally, the GAN of each domain plays a minimax game while
considering DisCCA objectives. We learn the discriminators by
minimizing objective functions LDA and LDB , de"ned as follows:

LDA = ↔
∑
𝑁

(
𝑍𝑏𝑐(D(𝜽A𝑁 )) + 𝑍𝑏𝑐(1 ↔ 𝑑 (𝜽A𝑁 ))

)
+𝑒𝑌 | |𝑓DA ||2 (12)

LDB = ↔
∑
𝑁

(
𝑍𝑏𝑐(D(𝜽B𝑁 )) + 𝑍𝑏𝑐(1 ↔D(𝜽B𝑁 ))

)
+𝑒𝑌 | |𝑓DB ||2 (13)

where 𝑓DA = {𝜹A
𝑀 , 𝜾A𝑀 } (𝑓DB = {𝜹B

𝑀 , 𝜾B𝑀 }) denotes the learnable
parameters in DA (DB ). | |𝑓DA ||2 (| |𝑓DB ||2) corresponds to regu-
larization of the learnable parameters, while 𝑒𝑌 is a hyperparameter
for regularization weight.

On the other hand, to counteract the discriminator objectives and
incorporate the DisCCA objective to di!erentiate and interrelate
the user representations, the generators are learned by minimizing
the following objective functions:

LGA =
∑
𝑁

𝑍𝑏𝑐(1 ↔D(𝜽A𝑁 )) + 𝑒𝑈L𝑈 + 𝑒𝑉L𝑉 + 𝑒𝑌 | |𝑓GA ||2 (14)

LGB =
∑
𝑁

𝑍𝑏𝑐(1 ↔D(𝜽B𝑁 )) + 𝑒𝑈L𝑈 + 𝑒𝑉L𝑉 + 𝑒𝑌 | |𝑓GB ||2 (15)

in these equations, 𝑓GA = {𝜹A
𝑉
,𝜹A

𝑈 ,𝜹A
𝑊 , 𝜾A

𝑉
, 𝜾A𝑈 , 𝜾A𝑊 } (𝑓GB =

{𝜹B
𝑉
,𝜹B

𝑈 ,𝜹B
𝑊 , 𝜾B𝑉 , 𝜾B𝑈 , 𝜾B𝑊 }) represents all the learnable parame-

ters in generator GA (GB ), with | |𝑓GA ||2 (| |𝑓GB ||2) as the regular-
ization term. 𝑒𝑈 and 𝑒𝑉 are hyperparameters to balance between
defeating the discriminator and DisCCA.

4.3.1 Negative Sampling. The sparsity of the implicit feedback
vector poses a challenge, as it can lead to a trivial solution where all
outputs of the generated feedback sample are simply 1. To address
this issue, we employ a negative item sample strategy. In each train-
ing epoch, for each domain, we randomly select𝑔 (hyperparameter)
portion of the unobserved items (i.e., IA

𝑁 and IB
𝑁 ) as the negative

items, denoted as 𝑕A
𝑁 and 𝑕 B

𝑁 . Then, we propose a reconstructing
objective that leads the generators to generate values close to 1
for the observed items while producing low values for the nega-
tive ones. So, instead of using LGA and LGB , the generators are
learned by minimizing following objectives:

L̃GA = LGA + 𝑒𝑀 | | (𝜽A𝑁 ↔ 𝜽
A
𝑁 ) ↘ (𝜿A

𝑁 + 𝝀
A
𝑁 ) | |2 (16)

L̃GB = LGB + 𝑒𝑀 | | (𝜽B𝑁 ↔ 𝜽
B
𝑁 ) ↘ (𝜿B

𝑁 + 𝝀
B
𝑁 ) | |2 (17)

where 𝝀
A
𝑁 and 𝝀

B
𝑁 are masking vectors for negative items, with

1 values indicating the corresponding negative items from 𝑕A
𝑁

(𝑕 B
𝑁 ). The second term in these equations is the reconstruction

objective that enforces the generated values to be close to 1 for the
observed items, and low, otherwise. 𝑒𝑀 controls the importance of
this objective.

Similarly, discriminator training incorporates these negative
items. The discriminator objectives remain unchanged. However,
for determining the authenticity of the feedback vectors, equa-
tions 10 and 11 are revised as follows:

D̃A (𝜽A𝑁 ) = 𝑊 (𝜹A
𝑀 [𝜽A𝑁 ↗ (𝜽A𝑁 ↘ (𝜿A

𝑁 + 𝝀
A
𝑁 ))] + 𝜾

A
𝑀 ) (18)

D̃B (𝜽B𝑁 ) = 𝑊 (𝜹B
𝑀 [𝜽B𝑁 ↗ (𝜽B𝑁 ↘ (𝜿B

𝑁 + 𝝀
B
𝑁 ))] + 𝜾

B
𝑀 ) (19)

These equations enable the discriminators to guide the genera-
tors to generate values that are close to 1 for the observed items
and assign low values to negative items.

4.3.2 Training Algorithm of DiCUR-CDR. We train a GAN for
one domain at a time and subsequently train the DisCCA parame-
ters. We assume that other components are held "xed when one
component is being trained. At each epoch, negative items 𝑕A

𝑁 and
𝑕 B
𝑁 are sampled "rstly. Then, the parameters 𝑓DA of discriminator

DA are updated using LDA . The generator GA then undergoes
an update of its parameters 𝑓GA by minimizing L̃GA . Next, the dis-
criminator DB updates its parameters 𝑓DB based on LDB . Then,
the generator GB updates its parameters 𝑓GB by minimizing L̃GB .
Finally, the DisCCA projection parameters 𝑓𝑉𝑍 ({𝜹A ,𝜹B}) un-
dergo an update by minimizing L𝑉𝑍 = L𝑉 +L𝑈 (Note that although
the variables for generating user representations are not updated
in this step, they are updated during the optimization of genera-
tors that also take into account DisCCA constraints). A detailed
algorithm of the DiCUR-CDR training process can be found in the
supplementary material.

4.3.3 Model Complexity. DiCUR-CDR’s computational com-
plexity is 𝑖 (𝐿(𝑗𝑗𝑉𝑍 + 𝑗𝑀A + 𝑗𝑀B + 𝑗)), where𝐿 is the number
of users, 𝑗𝑀A and 𝑗𝑀B are item counts in two domains, 𝑗 is user
representation dimension, and 𝑗𝑉𝑍 is DisCCA’s projection size.
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5 EXPERIMENTS
To evaluate DiCUR-CDR, we conduct "ve sets of experiments. First,
we compare DiCUR-CDR’s recommendation performance against
eleven state-of-the-art methods. Second, we perform ablation stud-
ies to assess the e!ectiveness of the components within DiCUR-
CDR. Third, we conduct sensitivity analysis to investigate the in-
$uence of DiCUR-CDR’s hyperparameters on the model’s perfor-
mance. Then, we design a cold-start analysis to evaluate DiCUR-
CDR’s performance in cold-start scenarios. Last, we illustrate the
learned user representations of DiCUR-CDR using T-SNE. Our code,
data, and supplementary material are available on GitHub 1.

Table 1: Descriptive statistics of two datasets.

Datasets Domain #Users #Items #Interaction Sparsity

Amazon Movies_and_TV 10953 10308 192830 99.83%
Video_Games 7746 141955 99.83%

Yelp Restaurants 1465 3232 36705 99.22%
Shopping 832 8798 99.28%

5.1 Dataset
We used two real-world datasets to evaluate the proposed model.
The general statistics for each dataset are provided in Table 1.Ama-
zon 2 [36] is a publicly available dataset, which has been widely
employed for evaluating collaborative "ltering methods [15, 22].
In our study, we select data from two categories as two domains:
“Movies_and_TV” and “Video_Games”.Yelp 3 [59] dataset is another
publicly available dataset commonly used for evaluating recom-
mendation methods. We select data from two business categories:
“Restaurants” and “Shopping” for our experiments.

We employed a 5-core approach for both users and items, "ltering
out those with fewer than 5 interactions. Given that both Amazon
and Yelp provide users’ explicit feedback, we convert them into 1,
indicating implicit feedback (e.g., purchase or click). The conversion
of explicit ratings to implicit feedback is a common practice that
has been popularly done in other CF research [24, 43, 57].

5.2 Baseline Methods
We compare DiCUR-CDR with three single-domain and "ve cross-
domain CFmethods, including three methods that take into account
both domain-speci"c and domain-shared information. We also ap-
ply a cross-domain setting to the single-domain baselines, enabling
them to generate recommendations for both domains, denoted by
a “ w/ M” su#x in their original model names. Overall, we have a
total of 11 baselines for comparison alongside DiCUR-CDR.

The following baselines incorporate both domain-speci"c and
domain-shared information: ETL [5]: is a model that captures the
joint distribution of user behaviors across multiple domains by
employing an equivalent transformation learner. It ensures that the
learned preferences in di!erent domains preserve both the domain-
speci"c and domain-shared features. DisenCDR [3] is a recent
method that disentangles domain-shared and domain-speci"c infor-
mation through two mutual information-based regularizers. One
1https://github.com/persai-lab/2024-RecSys-DiCUR-CDR
2http://snap.stanford.edu/data/web-Amazon.html
3https://www.yelp.com/dataset

enforces the domain-shared and domain-speci"c representations to
learn di!erent user information, while the other promotes domain-
shared representations to encode information for both domains.
CAT-ART [30]: introduces two modules: the CAT module uses
self-supervised contrastive learning and an autoencoder to extract
global user representations, and the ART module utilizes the at-
tention mechanism to adopt domain-speci"c user embeddings to
conduct recommendations.

In addition to the above, we also compare DiCUR-CDR with the
following other cross-domain CF methods: CoNet [22] is a deep
transfer learning method that introduces cross-connections from
one base network to another, enabling knowledge transfer between
domains by employing dual connections and a joint loss function
in a multi-layer feed-forward network. DDTCDR [33] introduces
a latent orthogonal mapping for extracting user preferences across
domains. It utilizes an autoencoder to extract latent information
while preserving user relationships in distinct latent spaces.

The following are our single-domain baselines: CDAE [57] is a
top-N CF method that employs a denoising auto-encoder structure
to learn distributed representations of users and items. IRGAN [55]
is a method based on GANs, however, unlike our method which
generates implicit feedback vectors, IRGAN generates discrete item
indices. DASO [10] is a GAN-based method that employs a bidi-
rectional mapping method to transfer users’ information between
social and item domains.

Apart from the single-domain baselines mentioned above, we
further explore a cross-domain setting for these single-domain
baselines. Speci"cally, we combine items from two domains as a
whole, to train the model, but we evaluate the recommendation
performance separately for each domain. We denote the methods
in this setting as CDAE w/ M, IRGAN w/ M, and DASO w/ M.

5.3 Experiment Setup
5.3.1 Evaluation Protocol. To evaluate the recommendation per-
formance, we adopt the leave-one-out (LOO) evaluation protocol,
which is commonly employed for CF methods with implicit feed-
back [3, 5, 17]. As described in [17, 22], for each user, we randomly
select one observed item from IA

𝑁 (IB
𝑁 ) as the test item, while con-

sidering the remaining observed items as training items. Then, we
randomly sample 99 unobserved items from IA

𝑁 (IB
𝑁 ) as negative

items and evaluate the model’s ability to rank the test item against
the negative items. We also randomly select another observed item
from training items as a validation item for hyperparameter tuning.

We employ three widely recognized evaluation metrics for top-N
recommendation: hit ratio (HR), normalized discounted cumulative
gain (NDCG), and mean reciprocal rank (MRR). The top-N cuto! is
set to be 𝑆𝑏𝑅𝑕 = 5 for the generated rank list. A higher value for
these metrics represents better recommendation performance.

5.3.2 Implementation Details. For DASO, we use the private
implementation provided by the authors. For other baselines, we
utilize their publicly available implementations on GitHub4. Fine-
tuning is performed on all baselines. Our proposed methods are

4https://github.com/gtshs2/Collaborative-Denoising-Auto-Encoder
https://github.com/geek-ai/irgan, https://github.com/njuhugn/CoNet, https://github.
com/lpworld/DDTCDR, https://github.com/xuChenSJTU/ETL-master, https://github.
com/cjx96/DisenCDR, https://github.com/Chain123/CAT-ART
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implemented using PyTorch5 and optimized using the Adam opti-
mizer. All model parameters are randomly initialized from a Gauss-
ian distribution with a mean of 0 and a standard deviation of 0.2. We
apply a norm clipping threshold during training to avoid gradient
explosions. The batch size and maximum training epochs number
are set to 512 and 500. The learning rates for generators and discrim-
inators are "xed at 0.001 and 0.0001. A coarse-grained grid search
is employed to tune all other hyperparameters of DiCUR-CDR. The
dimension sizes of user representations and DisCCA projections,
𝑗 and 𝑗𝑉𝑍 , are tuned within a range of [8, 16, 64, 128, 256]. For the
parameters 𝑒𝑈 , 𝑒𝑉 , 𝑒𝑀 , and 𝑔 , a range of [0, 1] is used with varying
step sizes, details are provided in the sensitivity analysis section
(refer to Figure 2). The best hyperparameters are reported in Table 2.

Table 2: Learned Best Hyperparameters of DiCUR-CDR.

Datasets 𝑗 𝑗𝑉𝑍 𝑒𝑈 𝑒𝑉 𝑒𝑀 𝑒𝑌 𝑔
Amazon 128 16 0.5 0.4 0.1 0.05 0.2
Yelp 128 64 0.4 0.3 0.1 0.1 0.2

5.4 Recommendation Performance Comparison
Each model is run "ve times, and the average performance and
t-test p-values compared with DiCUR-CDR are reported in Table 3.
We "rst observe that DiCUR-CDR outperforms all other baselines
across both datasets and domains. This indicates that DiCUR-CDR
is e!ective in predicting recommendations for both domains. It also
demonstrates the feasibility of incorporating DisCCA to enhance
cross-domain recommendation performance.

We can see that DiCUR-CDR, ETL, DisenCDR, and CAR-ART,
which leverage both domain-speci"c and domain-shared informa-
tion, consistently outperform other cross-domain methods CoNet
and DDTCDR. This implies that simply leveraging a single common
user preference across domains and directly aggregating domain-
speci"c and domain-shared information may not contribute to
better performance for all domains. Furthermore, DiCUR-CDR out-
performs ETL, DisenCDR, and CAR-ART, again highlighting the
e!ectiveness of DisCCA.

Comparing cross-domain methods with single-domain ones, we
see that DiCUR-CDR and other cross-domain methods outperform
all single-domain methods across both datasets and domains, except
for CoNet for Yelp’s “Shopping” domain. These "ndings demon-
strate the e!ectiveness of transfer learning in leveraging informa-
tion transfer between domains to improve performance. Further-
more, a notable observation is that methods in cross-domain set-
tings of single-domain models generally don’t outperform DiCUR-
CDR and other cross-domain models. This highlights the inade-
quacy of a mere combination of items from two domains to enhance
the performance. Additionally, these methods do not consistently
show a performance improvement when compared to their respec-
tive single-domain settings. For instance, IRGAN w/ M performs
worse than IRGAN on both domains of both datasets. These suggest
that simply combining items from two domains may have a detri-
mental e!ect on performance. However, when information transfer
between domains is appropriately modeled, as in DiCUR-CDR, it
can improve the recommendation performance.
5https://pytorch.org/

5.5 Ablation Studies
We conduct four sets of ablation studies to validate the impact of
learning domain-speci"c and domain-shared user representations,
as well as the utilization of GANs, on recommendation perfor-
mance. First, we remove L𝑈 (bring domain-shared representations
closer) from generators’ loss (Eqs. 14 and 15), denoted as DiCUR-
CDR w/o S. Second, we eliminate L𝑉 (separate domain-shared and
domain-speci"c representations, and separate domain-speci"c rep-
resentations) from generators’ losses, denoted as DiCUR-CDR w/o
D. Then, we remove both L𝑉 and L𝑈 from generators’ losses, de-
noted as DiCUR-CDR w/o S&D. This setting could be considered a
single-domain approach that closely resembles CFGAN [4]. Finally,
rather than employing GAN for generating recommendations, we
utilize a simple multi-layer perceptron (MLP) in conjunction with
DisCCA.We eliminate the discriminator and replace the generator’s
loss function with one that minimizes the distance between the
generated and original feedback vectors. This variation is referred
to as DiCUR-CDR w/o GAN (or MLP w/ DisCCA).

As shown in table 4, removing either L𝑈 , L𝑉 , or both, leads to
a performance decline in both datasets. These "ndings indicate
that modeling domain-shared representation, distinguishing be-
tween domain-shared and domain-speci"c representation within
each domain, as well as ensuring distinct domain-speci"c repre-
sentations across domains, are all crucial for achieving substantial
improvements in recommendation performance. Employing these
components together is necessary for providing recommendations.
Moreover, DiCUR-CDR w/o S&D tends to perform relatively worse
than both DiCUR-CDRw/o S and DiCUR-CDRw/o D (except for the
“Shopping domain” of the Yelp dataset). This suggests that capturing
domain-shared user representations or distinguishing among user
representations can lead to some degree of improvement. Further-
more, we observe that DiCUR-CDR w/o GAN generally exhibits
the lowest performance across most metrics for both datasets. This
highlights the e!ectiveness of using GAN to generate recommenda-
tions. Overall, our "ndings indicate that the complete use of DisCCA
and applying GAN are essential for maximizing performance.

5.6 Sensitivity Analysis
To obtain deeper insights into how DisCCA and negative sam-
pling impact the performance of DiCUR-CDR. We conduct sensi-
tivity analysis on four hyperparameters: 𝑒𝑈 , 𝑒𝑉 , 𝑒𝑀 , and 𝑔 , which
correspond to weights of learning domain-shared representations,
discerning representations, reconstructing negative samples, and
negative ratio. Due to space limitations and the varying scales of
di!erent metrics, only the HR metric is presented in Figure 3.
Impact of 𝑒𝑈 : As Figure 3(a) shows, the performance of recommen-
dations initially improves but subsequently declines upon reaching
a speci"c 𝑒𝑈 value across all datasets and domains. This observation
demonstrates the importance of acquiring shared representations
for e!ective performance, while also emphasizing the need for a
balance of 𝑒𝑈 . The best performance is 𝑒𝑈 reaching 0.5 and 0.4 on
Amazon and Yelp datasets, respectively.We hypothesize that setting
a higher value for 𝑒𝑈 causes the model to overly prioritize minimiz-
ing di!erences between representations, leading to over"tting.
Impact of 𝑒𝑉 : From Figure 3(b), we "rst observe a performance
improvement, but after a certain 𝑒𝑉 threshold, $uctuations become
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Table 3: Recommendation performance results of di"erent methods on two datasets. The best and the second-best results are in boldface and underlined, ≃≃ and ≃
indicate paired t-test 𝑎 ↔ 𝑏𝑐𝑑𝑁𝑒 < 0.05 and 𝑎 ↔ 𝑏𝑐𝑑𝑁𝑒 < 0.1, compared to DiCUR-CDR.

Dataset Amazon Yelp
Domain Movies_and_TV Video_Games Restaurants Shopping
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR
CDAE 0.33568≃≃ 0.24340≃≃ 0.20778≃≃ 0.27396≃≃ 0.17902≃≃ 0.14791≃≃ 0.42771≃≃ 0.27756≃≃ 0.22832≃≃ 0.25556≃≃ 0.17131≃≃ 0.14367≃≃
IRGAN 0.33157≃≃ 0.23693≃≃ 0.23222≃≃ 0.31791≃≃ 0.22461≃≃ 0.20295≃≃ 0.50491≃≃ 0.34964≃≃ 0.18901≃≃ 0.26976≃≃ 0.17966≃≃ 0.08962≃≃
DASO 0.33214≃≃ 0.23944≃≃ 0.20377≃≃ 0.27104≃≃ 0.17747≃≃ 0.14681≃≃ 0.42239≃≃ 0.28516≃≃ 0.24051≃≃ 0.26000≃≃ 0.17447≃≃ 0.14645≃≃

CDAE w/ M 0.33682≃≃ 0.24455≃≃ 0.20892≃≃ 0.27380≃≃ 0.17975≃≃ 0.14895≃≃ 0.41352≃≃ 0.26338≃≃ 0.21457≃≃ 0.27420≃≃ 0.17848≃≃ 0.14711≃≃
IRGAN w/ M 0.31626≃≃ 0.22674≃≃ 0.22717≃≃ 0.30294≃≃ 0.22136≃≃ 0.07760≃≃ 0.50211≃≃ 0.28131≃≃ 0.14198≃≃ 0.26799≃≃ 0.17900≃≃ 0.08785≃≃
DASO w/ M 0.32930≃≃ 0.23862≃≃ 0.20363≃≃ 0.26440≃≃ 0.17027≃≃ 0.13954≃≃ 0.42061≃≃ 0.28853≃≃ 0.24503≃≃ 0.18191≃≃ 0.11756≃≃ 0.09665≃≃

CoNet 0.37387≃≃ 0.32448≃≃ 0.27704≃≃ 0.37507≃≃ 0.24989≃≃ 0.20206≃≃ 0.49308≃≃ 0.26150≃≃ 0.17489≃≃ 0.24183≃≃ 0.09057≃≃ 0.07780≃≃
DDTCDR 0.41748≃≃ 0.34188≃≃ 0.29904≃≃ 0.38964≃≃ 0.27384≃≃ 0.23580≃≃ 0.54020≃≃ 0.41304≃≃ 0.36528≃≃ 0.32191≃≃ 0.20618≃≃ 0.16825≃≃

ETL 0.43038≃≃ 0.30931≃≃ 0.37091≃≃ 0.40373≃≃ 0.27032≃≃ 0.35928≃≃ 0.56406≃≃ 0.43037≃ 0.35102≃≃ 0.37265≃≃ 0.26387≃≃ 0.23093≃≃
DisenCDR 0.44062≃≃ 0.33783≃≃ 0.18056≃≃ 0.47047≃≃ 0.32741≃≃ 0.21987≃≃ 0.55993≃≃ 0.38873≃≃ 0.33760≃≃ 0.44191≃≃ 0.30617≃≃ 0.29475≃≃
CAT-ART 0.50733≃ 0.40527≃≃ 0.37043≃≃ 0.49988≃ 0.38892≃≃ 0.35217≃≃ 0.59800≃ 0.42238≃≃ 0.36446≃≃ 0.51718≃ 0.37004≃ 0.32146≃

DiCUR-CDR 0.51235 0.42119 0.39360 0.51006 0.40646 0.37303 0.61548 0.43752 0.37968 0.52833 0.37740 0.32785

Table 4: Ablation studies results. E"ects of di"erent components of DisCCA.

Dataset Amazon Yelp
Domain Movies_and_TV Video_Games Restaurants Shopping
Metrics HR NDCG MRR HR NDCG MRR HR NDCG MRR HR NDCG MRR

DiCUR-CDR w/o S 0.47833 0.40129 0.37589 0.50196 0.40057 0.36784 0.60478 0.43682 0.38292 0.51604 0.37253 0.32563
DiCUR-CDR w/o D 0.47914 0.40216 0.37679 0.50344 0.40116 0.36771 0.60205 0.42718 0.37165 0.51877 0.37640 0.32631

DiCUR-CDR w/o S&D 0.47578 0.39918 0.37381 0.49627 0.39939 0.36730 0.60000 0.42964 0.37513 0.51809 0.37242 0.32579
DiCUR-CDR w/o GAN
(MLP w/ DisCCA) 0.47253 0.39982 0.37671 0.44026 0.36168 0.33622 0.5372 0.39011 0.34272 0.4942 0.36145 0.31926

DiCUR-CDR 0.51235 0.42119 0.39360 0.51006 0.40646 0.37303 0.61548 0.43752 0.37968 0.52833 0.37740 0.32785

(a) 𝑓𝑂 (b) 𝑓𝑁 (c) 𝑓𝑄 (d) 𝑔

Figure 3: Sensitivity analysis result. Recommendation performance (HR) with di"erent values of key hyperparameters.

more prominent across all domains and datasets. The highest rec-
ommendation performance is achieved when 𝑒𝑉 is set to 0.4 for the
Amazon dataset and 0.3 for the Yelp dataset in both domains. These
results demonstrate that employing a small 𝑒𝑉 value is bene"cial
to enhance recommendation performance. However, we hypothe-
size that the reason for these $uctuations is that learning distinct
representations is more complex as it constrains both within and
across domains, leading to a more careful balance.

Impact of 𝑒𝑀 : Figure 3(c) illustrates a consistent trend in perfor-
mance across all datasets and domains. Initially, there is an im-
provement in recommendation performance; however, it gradually
declines after reaching 𝑒𝑀 = 0.1 for all datasets. This observation in-
dicates that DiCUR-CDR requires an appropriate small value of 𝑒𝑀
that contributes to the reconstruction of negative samples. Setting
a very small 𝑒𝑀 value (e.g., 0.05) proves insu#cient, while a high
𝑒𝑀 excessively prioritizes the reconstruction of negative samples,
neglecting other objectives like DisCCA.
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Impact of 𝑔 : As shown in Figure 3(d), it is evident that the optimal
𝑔 value for achieving the highest recommendation performance is
0.2. These "ndings show the importance of appropriately setting a
negative sampling portion. A small portion of negative sampling is
insu#cient, which introduces inadequate variability, thereby pre-
venting the model from generating feedback vectors with all values
of 1 consistently. Conversely, an excessively high negative sampling
portion causes the model to learn that nearly all unobserved items
are not of interest to users. As negative items are randomly sampled
during each training epoch, every unobserved item can serve as a
negative item at some point during training.

(a) Restaurants domain

(b) Shopping domain

Figure 4: Recommendation results (HR) for users with di"erent numbers of
interactions on the Yelp dataset. ⇐* indicates the percentage improvements of
DiCUR-CDR compared to ablations.

5.7 Cold-start analysis
To analyze the e!ectiveness of DiCUR-CDR in the cold-start scenar-
ios, we study the prediction results for users with varying numbers
of observed interactions in the Yelp dataset (with similar trends
observed in the Amazon dataset). We divide users into di!erent
groups based on the number of observed interactions and compare
DiCUR-CDR’s performance with its ablations per group. The exper-
iment results are reported in Figure 4. It is observed that, in both
domains, DiCUR-CDR shows recommendation prediction perfor-
mance improvements over all the ablation baselines across all user
groups. This indicates that DiCUR-CDR e!ectively captures user
preferences and improves recommendation predictions for users
with varying numbers of observed interactions, including those
with few observed interaction records (< 10). We also observe that
compared to each ablation, the largest recommendation prediction
improvements are typically seen in the groups with fewer interac-
tions (groups < 10 and 10 ↔ 20) for both domains. Speci"cally, for

the “Restaurants domain”, DiCUR-CDR improves recommendation
performance by 6.8% to 12.5% for users in the < 10 interactions
group, and by 4.0% to 11.1% for the 10↔20 interactions group. In con-
trast, the improvements for the two groups with more interactions
are 1.8% to 8.9% and 0.8% to 2.2%, respectively. This demonstrates
the e#ciency of DiCUR-CDR in handling cold-start user scenarios,
signi"cantly improving recommendation predictions for users with
few observed interactions. Moreover, considering there are 8, 798
users in the “Shopping domain” and 36, 705 users in the “Restaurants
domain”, we observe that DiCUR-CDR’s performance generally im-
proves more in the sparser domain (“Shopping”) across all user
groups. For example, compared to DiCUR-CDR w/o S, DiCUR-CDR
shows a 0.8% to 6.8% improvement in the Shopping domain, but
only a 0.4% to 3.0% improvement in the Restaurants domain. These
results further demonstrate DiCUR-CDR’s e!ectiveness in alleviat-
ing the cold-start problem and improving overall recommendations.

5.8 Learned User Representations Visualization
Furthermore, to investigate whether DiCUR-CDR can meaningfully
separate domain-speci"c representations and learn similar domain-
shared ones, we visualize the learned representations of the Yelp
dataset in Figure 1(a), to compare with DisenCDR. To achieve this,
we apply t-SNE to reduce the dimensionality of all types of learned
representations for each model. Initially, we observe that the source
and target domain-shared representations (depicted in blue and red)
of DiCUR-CDR are close to each other. Also, the domain-speci"c
representations (yellow for the target and green for the source)
are distinct from their domain-shared representations. This is in
contrast with the results of DisenCDR in Figure 1(b). This suggests
that with DisCCA, our method learns to capture shared user pref-
erences closely while maintaining distinct domain-speci"c user
information and reducing redundancy in both shared and speci"c
representations.

6 CONCLUSIONS
In this paper, we focused on capturing both cross-domain and
within-domain user preferences with shared spaces to enhance
cross-domain recommendations.We introducedDiCUR-CDR,which
generates cross-domain recommendations through the innovative
design of DisCCA. DisCCA is a novel view of CCA that e!ectively
establishes a shared mapping space between various domains, and
adds extra constraints, enabling it to capture both similar and dis-
tinct user representations within them. DiCUR-CDR facilitates the
application of adaptive DisCCA by taking advantage of GANs to
generate missing user feedback. We performed extensive exper-
iments demonstrating DiCUR-CDR’s superior performance, vali-
dating the necessity of DisCCA’s structured domain-shared and
domain-speci"c representations, and providing sensitivity and cold-
start analyses for DiCUR-CDR.
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