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ABSTRACT

Knowledge Tracing (KT) and Behavior Modeling (BM) are essential
mining and discovery problems in education. KT models student
knowledge based on prior performance with learning materials,
while BM focuses on patterns such as student preferences, engage-
ment, and procrastination. Traditional research in these areas fo-
cuses on each task individually, thereby overlooking their intercon-
nections. However, recent research on multi-activity knowledge
tracing suggests that student preferences for learning materials
are key to understanding student learning. In this paper, we pro-
pose a novel multi-task model, the Multi-Task Student Knowledge
and Behavior Model (KTBM), which combines KT and BM to im-
prove both performance and interoperability. KTBM includes a
multi-activity KT component and a preference behavior compo-
nent while enabling robust information transfer between them. We
conceptualize this approach as a multi-task learning problem with
two objectives: predicting students’ performance and their choices
concerning learning material types. To address this dual-objective
challenge, we employ a Pareto multi-task learning optimization
algorithm. Our extensive experiments on three real-world datasets
show that KTBM significantly enhances both KT and BM perfor-
mance, demonstrating improvement across various settings and
providing interpretable results.
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1 INTRODUCTION

The expansion of online educational systems and the growing de-
mand for online education have resulted in large-scale student log
datasets, providing an opportunity for improved learner modeling
in the education domain. Examples of such learner modeling in-
clude the tasks of Student Knowledge Tracing (KT) and Behavior
Modeling (BM). Student knowledge tracing [2, 17] aims to model
student knowledge based on their past performance in learning ma-
terials, with objectives like predicting future performance. Typically
modeled as supervised sequence learning problems, state-of-the-art
KT models address challenges such as guessing or slipping noise
in student data [8, 22], modeling both knowledge acquisition and
forgetting of learned concepts [1, 11, 44], continuous modeling
over long sequences [12, 58], and learning from multiple types
of learning materials [4, 68, 71]. In contrast to KT, behavior mod-
eling focuses on tasks such as representing student engagement
during learning [30], detecting procrastination [35, 55, 61], and
modeling student choice and preference for future learning materi-
als [32, 46, 60] based on their history.

While prior studies have suggested a relationship between stu-
dent behavior and knowledge gain [23, 41, 69, 70], KT and BM
tasks have traditionally been modeled separately. Consequently,
the literature is limited in simultaneously modeling both tasks to
leverage this relationship. Specifically, the associations between stu-
dents’ choice of learning materials and their knowledge have been
under-investigated. Student knowledge may be influenced by their
preference for learning materials. For example, a student’s knowl-
edge gain in a topic may differ if they read a book chapter instead
of watching a video lecture. Conversely, a student’s preference for
what learning material to study may be affected by their knowledge.
A student, who feels knowledgeable about a topic, may choose to
solve an assignment rather than read the book. This bidirectional
association is underrepresented in current KT and BM literature.
Challenges in simultaneously modeling these two problems include
efficiently representing knowledge and preference behavior states,
robustly depicting information transfer between the two tasks, and
balancing their respective objectives for mutual benefit.

We propose a multi-task learning model that combines knowl-
edge tracing and preference behavior modeling while addressing
the above challenges. Our proposed Multi-Task Student Knowl-
edge and Behavior Model (KTBM) explicitly represents separate
dynamic student knowledge and behavior states by providing a
flexible adaptation of deep multi-type KT and Long Short-Term
Memory (LSTM) [33] architectures. By incorporating the previous
behavior state as an input to the student knowledge component and
the current knowledge state as an input to the preference behav-
ior component, KTBM models bidirectional relations between the
two components and ensures robust information transfer. Finally,
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KTBM employs multi-objective optimization to learn the optimal
solution for both KT and BM tasks without compromising one for
the other.

In our experiments, we show that KITBM significantly improves
both KT and BM task performance in three real-world datasets.
This improvement is observed across different student groups, and
the associations between these tasks can be interpreted by visu-
alizing KTBM’s knowledge and behavior estimations. The main
contributions of our paper are listed below:

e We introduce KTBM for joint modeling of student knowledge
and preference behavior as a multi-task learning problem.

e We propose a robust architecture for information transfer between
the KT and BM tasks.

o We employ a multi-objective optimization that ensures a balanced,
no-compromise approach between the KT and BM objectives.

e We demonstrate in our experiments that our model significantly
improves both KT and BM performances across different groups
in three datasets, and showcase the interpretability of our model
through a case study.

2 RELATED WORK

Knowledge Tracing The KT task aims to estimate a student’s
knowledge state at each learning step as they interact with learning
materials. Traditional KT approaches rely on predefined associa-
tions between learning materials and knowledge concepts [9, 18, 24,
48]. Traditional methods like Bayesian Knowledge Tracing (BKT)
model concept mastery using binary variables, while regression-
based approaches consider student ability and question difficulty [9,
18, 24, 48]. Newer models such as Deep Knowledge Tracing (DKT)
use recurrent neural networks (RNNs), and Dynamic Key-Value
Memory Network (DKVMN) utilizes memory-augmented neural
networks (MANNS) to better model knowledge states [49, 66]. Atten-
tion mechanisms in models like Self-Attentive Knowledge Tracing
(SAKT) and Attentive Knowledge Tracing (AKT) address inter-
dependencies and long-term dependencies, enhancing understand-
ing of student learning patterns [29, 45].

These models primarily focus on a single type of learning activity
and neglect multiple types. While some incorporate non-assessed
activities as additional features [13, 67], they don’t explicitly track
knowledge states during these interactions. A few approaches like
MA-Elo, MA-FM, MVKM, DMKT, TAMKOT, and GMKT model
knowledge from various activities. For instance, MA-Elo and MA-
FM use predefined mappings to capture knowledge states [3, 4],
MVKM employs multi-view tensor factorization [71], and DMKT
extends DKVMN to include non-assessed activities [59]. TAMKOT
utilizes an LSTM-based layer for knowledge transfer dynamics [72],
and GMKT combines MANNs with Graph Neural Networks (GNNs)
to enhance knowledge modeling through non-assessed activities,
uniquely addressing both student knowledge and material type
preferences [68]. None of them model student behavior and knowl-
edge as a dual-objective multi-task learning problem, with separate
states for each objective allowing for information exchange.
Behavior Modeling Student behavior modeling focuses on under-
standing students’ behavior patterns during the learning process,
including their habits, preferences, and behaviors [15, 28, 40, 51, 57].
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Researchers investigate gamified learning, dropout rates, reten-
tion, and participation frequency [19, 36, 40, 56, 64, 65]. Motivation
significantly influences course completion [42, 43], with gamified
learning boosting engagement based on motivation type [7]. Stud-
ies show spaced practice enhances retention [47], and early success
increases retention rates [20]. Sequential patterns in behavior, such
as e-textbook navigation and question repetition, have been ex-
plored [34, 40, 63]. There’s a strong correlation between learning
behaviors and test scores, with frequent participation leading to
higher grades [56]. However, no methods explicitly model both
student behavior and knowledge simultaneously.

Moreover, DP-MTL [5] combines KT with modeling student be-
havior in multiple-choice questions, using option and user embed-
dings in a sequential multilayer perceptron to predict performance
and option choice. This is a multi-task learning approach and the
only method modeling both student knowledge and behavior this
way. However, DP-MTL is limited to assessed methods and cannot
leverage different learning material types to model student prefer-
ences. It also doesn’t separate behavior and knowledge modeling
into two components or allow information transfer between them.

3 PROBLEM FORMULATION

We aim to jointly model student preference behavior and knowl-
edge by predicting the type of learning material students choose
for their next activity and their performance on it. Without loss
of generality, assume there are two types of materials: Ny ques-
tions (assessed) and Nj video lectures (non-assessed). We represent
a student’s entire trajectory of multi-type learning activities as a
sequence of tuples {(i1,z1), ..., (ir, z¢)}, where each tuple (i, z;)
represents a specific student activity at time step ¢. In this context,
zy € 0,1 serves as a binary indicator that identifies the type of
material interacted with at time ¢, with 0 denoting assessed ma-
terial (questions) and 1 indicating non-assessed material (video
(qt, Vt) ith =0

, where
lt if zZr = 1
(qs, rt) represents an assessed activity, with q; being the question
interacted with and r; being the student’s response to that question
at time step ¢. Conversely, /; denotes a non-assessed activity at time
step t involving the video lecture I;. Given a student’s historical
trajectory of activities {(i1,z1), ..., (it, z¢)}, we aim to predict the
type of material z;41 the student is likely to choose at the next time
step t + 1, as well as the student’s upcoming performance ry,1 on
the question qy41 if 2441 = 0.

lectures). Furthermore, i; is defined as

4 MULTI-TASK STUDENT KNOWLEDGE AND
BEHAVIOR MODEL (KTBM)

Modeling student knowledge and behavior simultaneously requires
efficiently capturing knowledge and behavioral preference states,
along with effective information transfer between them, to refine
and strengthen the model. Therefore, we formulate this as a multi-
task learning problem. We propose KTBM, a multi-task learning
model that introduces two interconnected components: one for KT
and another for BM, allowing information transfer between them.
The KT component is a multi-activity transition-aware memory-
augmented neural network (MANN [52]) that captures student
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Figure 1: The architecture of the KTBM. Solid and dashed lines indicate the same connections but clarify overlapping lines.

knowledge acquisition from both assessed and non-assessed activ-
ities. The BM component learns student preferences for different
material types by refining the LSTM [33] architecture. Knowledge
transfer between the two components is facilitated through their
hidden states. To address this multi-task learning problem, we for-
mulate two objective functions and utilize Pareto MTL optimiza-
tion to provide a balanced solution between the two objectives. An
overview of KTBM’s architecture is presented in Figure 1.

4.1 Multi-Activity Knowledge Tracing

The multi-activity KT component includes an embedding layer, a
knowledge modeling layer, and a performance prediction layer. It
connects with the BM component in the knowledge modeling layer.

4.1.1 KT Activity Embedding. First, KIBM constructs embed-
ding vectors for each learning activity (i, z;), which serve as inputs
to effectively capture student knowledge, by leveraging the latent
representations of the learning material (¢; and I;) and student
performance (r;). We employ two underlying latent embedding ma-

K K
trices: A{; e RNoXdq and A{( € RNEX4 | which map all questions
and video lectures into their respective latent spaces. Here, d{; and

dlK specify the respective embeddings sizes. To represent student
performance r; within assessed activities, we map it into a higher-
dimensional latent space. We use an embedding matrix A, € R2%dr
for mapping the binary student performance (e.g., success or failure),
where d, indicates the performance embeddings size. For numerical
performance (e.g., exam scores), we apply a linear transformation
f(rt) = rt A, to project r; into a higher-dimensional space, where
Ay eRY.

4.1.2 Knowledge State Update. For tracing student knowledge
through various types of learning activities while also modeling the
impact of preference behavior on student knowledge acquisition,
KTBM takes the embeddings of learning activities and the hidden
preference behavior state h;_1 (Eq. 13) as inputs. We propose a
transition-aware MANN to accurately capture the dynamic student
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knowledge state. We employ a static key matrix M€ € RN xde 1o
represent N latent concepts that are characterized by d. latent
features. Additionally, we use a dynamic value matrix M} € RNx*do
to track the student’s knowledge mastery of these concepts over
time ¢ in dy-size memory slot.

To update student knowledge at each time step t, KIBM first
computes the correlation between the interacted learning material
(either g; or I;) and each of the N latent concepts and obtains the
attention weight vector w;. This specifies how the knowledge of
the involved concept in M? should be updated from the activity. w;
is calculated using material embeddings (qltr( or lf from Ag or Af( )
and the static key matrix M€ as follows:

we(i) = softmax([(1 - z¢) - RYgK + 20 - RIIK|'M°(i) (1)

where w; (i) is the i-th element in the attention weight vector
w; € RN, and the softmax function is defined as softmax(m;) =
emi/3;e™ . Rg € R% 9 and Ry e R Xde gre mapping matrices
that project the question and lecture activity embeddings to the
concept feature space of MF. The terms (1 — z;) and z; indicate
which matrix should be used to map activity embeddings.

Similar to the transition-aware multi-activity KT methods [68,
72], KTBM uses a set of binary indicators to activate the correspond-
ing knowledge transfer weights when students transition from one
activity type (e.g., questions) to another (e.g., video lectures). Given
two types of materials (represented by z;), the following binary
indicators are defined to indicate the four possible transitions at
each time ¢:

soL = zt(1—zi-1)

SLL = ZtZt-1

500 = (1= 2z)(1 - z4-1)
sLo = (1—2z)ze-1

@)

At each time step, only one transition occurs, meaning that only
one of the transition indicators is active (equals 1). These transition
indicators are used to update the student knowledge state M7 using
the corresponding transition-specific weight matrices T's.. For that,
an erase-followed-by-add mechanism is employed. Which involves
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erasing previous redundant information before adding new infor-
mation to M?. The updates are based on the student’s activities at
time ¢, their previous knowledge state M?_,, and their previous
preference behavior state h;—1 from the BM component:
Erase:

e =0((1-2)-Eglqy ®ri+z - EJIf +Ejht 1 +b.) (3)
M?(i) =[5QQ “TooM?_| +spp - TriMy_ + @
sor - ToLMY_; +s1o - TroMY_; | (D)-[1 — we(ie;]
Add:
d; = Tanh((1-2) - Dglqy @re]+2z; - D[If + Djhi—1 +bg) (5)
M3 (i) = M (i) + we (i)d; (6)

where @ denotes the concatenation operator, o and Tanh refer
to the Sigmoid and Tanh activation functions, respectively. The
erase vector e; € [0,1]% (Eq. 3) is designed to remove redundant
knowledge information from Mj_,. The add vector d; € R% (Eq. 5)
captures the new knowledge that the student acquires at time ¢.
Matrices Eq, Dgq € R(d‘17<+d’)><d”, and E;, D) € Rded“, are for
mapping the activity embedding to the concept feature space. Ej,
and D, € R%*% are for mapping the preference behavior state to
the concept feature space. b, and by € R% are bias terms.

The student knowledge is captured via two mechanisms in this
component. Once, implicitly by using the transition indicators and
their associated transfer matrices T+, which influence how student
knowledge is transferred from previous time steps in different ways.
Another time, by explicitly incorporating the student preference
behavior state from the BM component: for both the erase and
add vectors, we use the mapping matrices Ep, D}, to incorporate
information from behavior state h;_1, to influence the student’s
knowledge. M ?(i) and M (i) (Eq. 4 and 6) indicate the i-th knowl-
edge slot of M7 after the erasing and adding process. To this end,
our KT component can accurately capture student knowledge from
multiple types of activities, model the impact of student preference
behavior on knowledge, and learn the different knowledge transfers
among various activity types.

4.1.3 Student Performance Prediction. We predict a student’s
performance at the next time ¢ + 1 for a given question ¢y4+1 based
on their mastery knowledge of g;+1’s concepts.

wr1 (i) = softmax([R}qb,,1"M (i)

™)
N

crr1 = ) wen(D)[(1-20) - MiTog + 2t - M{T1o| () (®)
i=1

frer =Tanh(W e © q,,4] +by) ©)

First, we compute the attention weight vector w41 (Eq. 7) to de-
termine the correlation between question g;+1 and each of the N
latent concepts. Then, KTBM summarizes the student’s knowledge
state regarding question g4+ in the read content cs41 (Eq. 8) by
taking the weighted sum of all memory slots in M} using w;1.
Next, cz+1 is concatenated with the embedding vector of the next
question q,,; and passed it through a fully connected lay with a
Tanh activation function to obtain the summary vector f,,; (Eq.9),
which represent the summarized student knowledge of g;1. Here,

Wy e R(dotdg)xdr and p € RY are the weight matrix and bias
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term, respectively, with dy¢ as the summary vector size. Finally, a
fully connected layer with a Sigmoid activation function is applied
to f,,, to predict the student’s performance ps41:

pre1 = 0(Wyfryy +bp) (10)

where py41 is the probability of the student correctly answering

the next question g;+1. The terms W), € R%>1 and bp € R are the
weight matrix and bias.

4.2 Type Preference Behavior Modeling

The BM component aims to model student behavior, primarily by
examining their preferences for different types of materials, while
also considering how their knowledge influences these preferences.

4.2.1 BM Activity Embedding. KTBM designs different behav-
ior embedding matrices than those employed in the KT component.

Specifically, Ag e RNexdg and A? € RNoX47 are used as the two
embedding matrices to map questions and video lectures into a la-
tent behavior feature space for the BM component. These matrices
vary in size from the KT component’s embedding matrices and pri-
marily capture various knowledge concepts to understand student
behavior preferences. Additionally, KTBM employs A, € R2%%= to
map the two learning material types into a latent space for BM.

4.2.2 Behavior State Update. This layer is a refined LSTM vari-
ant that can process various types of learning activities and leverage
information from the dynamic value matrix M? (Eq. 6) to effectively
incorporate the influence of the student’s knowledge on their behav-
ior. At each time step ¢, KITBM uses the hidden vector h; € R% to
track the state of student preference behavior, where dj, represents
the hidden dimension size, as follows:

xt=(1-20) Xglqr ®@ze] +20 - X[ [I] @ 4]

(11)
K; =W M} +by (12)

h; = LSTM(h?_, K*,x;) (13)

First, x; (Eq. 11) is computed to represent the combined represen-
tation of question and lecture activities into the same dimensional
space dy. Here, qf, l?, and z; are the embeddings for question,
video lecture, and material type that are obtained from AB, Af

and A;. Xg4 € R(dq+de)xdx g g X € R(@7+dz)%dx are ysed to map
question and lecture activities. Moreover, we adapt the knowledge
state M7 at time t to update the student preference behavior h;
for the same time step. We calculate K; (Eq. 12) to summarize the
student’s knowledge for each concept, converting the knowledge
value matrix M{ into a vector that can be used as input for LSTM.
W) € R¥%de and by € RY% are weight matrix and bias. Finally,
KTBM uses the behavior state h;_; from the previous time step
t — 1, the representation of activity x;, and the adapted knowledge
state K; to compute the input gate, forget gate, candidate memory
cell, and output gate, and accordingly updates h; (Eq. 13).

4.2.3 Material Type Prediction. We use the student’s hidden
preference behavior state h; to predict the material type at time
step ¢ + 1, as follows:

se=(1-2z) Silq; ®zt @yl +2: - S| [I} ® 2t @ hy] +bs (14)
(15)

Yr+1 = U(WyTSt +by)



Multi-Task Modeling of Student Knowledge and Behavior

Here, s; € R% (Eq. 14) is calculated to summarize the student pref-
erence behavior state according to the learning material in activity
at time ¢, where d is s;’s dimension size. Then, ;1 is calculated us-
ing s, representing the probability that the next learning material

B
type to be interacted with is a video lecture. S4 € R (g +dztdn)xds

B
S € R(4) +dztdp) xds Wy e R%>1 po e R% and by € R are the
corresponding weight matrices and bias terms.

4.3 Multi-Objective and Pareto Optimization

In the previous sections, we conceptualized student knowledge
tracing and preference behavior modeling as two tasks. Since stu-
dent knowledge and behavior are not directly observed and are
difficult to quantify, we formulate two objectives for evaluating this
multi-task learning challenge: (1) £, for predicting student perfor-
mance, and (2) L, for predicting the learning material type that
students will choose to learn from. These objectives are computed
using binary cross-entropy losses, which compare the actual and
predicted student performance (r; and p;), as well as the actual and
predicted types of material (z; and y;), at every time step. The loss
functions are defined as follows:

L=-3 ilogpe+ (1 -m)log(1-p1)  (16)
t

Lz== (zlogys + (1-z:)log (1 - yr)) (17)
¢

This dual-objective problem can be addressed by minimizing a
combination of £, and Ly, balancing the student performance
and material type objectives. However, effectively combining these
objectives and determining the right trade-off is challenging and
time-consuming [38]. Research in multi-objective optimization has
developed strategies for identifying Pareto optimal solutions to
address multi-task learning. These solutions represent trade-offs
where no single objective can be improved without compromising
another [21, 26, 27, 53, 54, 73]. However, due to the infinite num-
ber of Pareto optimal solutions, a single solution may not meet
practitioners’ needs [37, 38]. The Pareto MTL algorithm [38] ad-
dresses this problem by identifying a set of representative solutions
using dividing vectors ki, kg, ..., k;,, dividing the problem into
sub-problems and providing a well-rounded set of Pareto solutions.
By employing the Pareto MTL algorithm to our problem, we obtain
such a no-compromise set of Pareto solutions, allowing for optimal
selection for predicting student performance and material type.

4.3.1
student activity sequence of length L is O(Ls . (N - max(d,

de+N-de+N-dy-max(df +df, df)+dj,-

ro>7y

Model Complexity. The time complexity of KTBM for a

K dK ) .
9’71
(max(d?, dB)+dh)+dh-d,,)).
Moreover, the time cost also depends on the number of dividing
vectors set in the experiments.

5 EXPERIMENTS

We conduct three sets of experiments on three real-world datasets
to evaluate our proposed method, KTBM. First, we compare KITBM’s
predictive ability with baseline methods in student performance
and learning material type preference prediction tasks, including
ablation studies to each model component. Second, we conduct
student group analysis. Lastly, we visualize the states of learned
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students and behavior knowledge. Our code and sample data are
available at GitHub 1.

5.1 Datasets

We use three real-world datasets for our experiments. The general
statistics of each dataset can be found in Table 1. EdNet? [14]: This
publicly available and anonymized dataset comes from Santa3, a
multi-platform Al tutoring service for Korean students preparing for
the TOEIC* English test. EdNet collects a range of student learning
activities across different material types and provides data in four
distinct levels with varying extents in a consistent and organized
manner. In our research, we use a preprocessed dataset from [68, 72],
selecting data from the third level, which focuses on students’ ac-
tivities involving questions (assessed) and their associated question
explanations (non-assessed). Each question is a multiple-choice
item accompanied by an explanation. Junyi® [16, 50]: This dataset
is another publicly available and anonymized dataset sourced from
the Chinese e-learning platform Junyi Academy?®, designed to teach
children math. The dataset covers eight math areas with varying
levels of difficulty. Students begin at the easiest level and progress
to more challenging levels as they master each area. We utilize
the preprocessed data introduced in [10]. In this dataset, there are
two types of student activities: solving problems (assessed) and
reading problem hints (non-assessed). Junyi provides various for-
mats of math problems, including fill-in-the-blank, judgmental, and
multiple-choice questions. Each problem may be associated with
one or multiple hints. MOREF’ [6]: This anonymized dataset is from
an online course available via the MOOC Replication Framework
(MORF) on Coursera®. The course, titled “Educational Data Mining”,
is divided into several modules, each focusing on a specific topic,
such as “classification”. Each module is designed to be completed
in one week. During this week, students are required to watch five
to seven video lectures and complete one assignment. Each assign-
ment typically includes multiple questions in various formats. The
dataset includes various student activities. For our study, we focus
on two specific activities: watching video lectures (non-assessed)
and completing assignments (assessed). The data is coarse-grained,
recording entire assignment submissions rather than individual
questions, with the overall score of each submission serving as the
response in our experiments.

5.2 Baseline Methods

5.2.1 Student Performance Prediction Baselines. We assess
KTBM’s capability in modeling student knowledge for predicting
future student performance by comparing it with a total of 16
baselines. This comparison includes six assessed-only supervised
KT models and four state-of-the-art multi-activity KT models (one
of which is semi-supervised). To ensure a fair comparison, we also
extend a multi-layer perceptron (MLP) and the six assessed-only

Lhttps://github.com/persai-lab/2024- CIKM-KTBM
Zhttps://github.com/riiid/ednet

Shttps://www.aitutorsanta.com/

https://www.ets.org/toeic
Shttps://pslcdatashop.web.cmu.edu/DatasetInfo?datasetld=1275
®https://official junyiacademy.org/
7https://educational-technology-collective.github.io/morf/
8https://www.coursera.org/
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Table 1: Descriptive statistics of 3 datasets.

. uestion
Dataset #Users #Questions Sctivities

Question Question #Correct #Incorrect
Responses Responses Question Question

#Non-assessed #Non-assessed

materials Activities

Mean STD  Responses Responses
MORF 686 10 12031 0.7763 0.2507 N/A N/A 52 41980
EdNet 1000 11249 200931 0.5910 0.2417 118747 82184 8324 150821
Junyi 2063 3760 290754  0.6660 0.2224 193664 97090 1432 69050

supervised KT models to handle both assessed and non-assessed
activities. We label these extended models by appending “+M” to
the original model names.

The assessed-only supervised KT baselines are: DKT [49] is the
first deep learning-based KT model that employs RNNs to model
student knowledge gain. DKVMN [66] utilizes MANNs for KT, fea-
turing a static key matrix for knowledge concepts and a dynamic
value matrix for updating student knowledge. DeepIRT [62] is an
extension of DKVMN that incorporates the one-parameter logistic
item response theory (1PL-IRT) to mitigate overfitting. SAKT [45]
uses a self-attentive model for KT to capture the relationships be-
tween activities at different time steps. SAINT [13] is a transformer-
based method that applies deep self-attentive layers to separately
model questions and responses. AKT [29] is a context-aware model
that utilizes a monotonic attention mechanism to aggregate past
student performances relevant to the current question.

The extended assessed-only baseline methods are: MLP+M [31]
is a simple MLP that takes a student’s three most recent assessed ac-
tivities along with three non-assessed activities as input to predict
student performance. DKT+M [67] and DKVMN+M: are extensions
of DKT and DKVMN. They concatenate embedding vectors of all
non-assessed learning materials the student interacted with be-
tween each pair of assessed activities, adding this as an additional
feature of input question embedding. SAINT+M [13], SAKT+M,
and AKT+M are variants of SAINT, SAKT, and AKT. Embeddings
of all non-assessed learning materials along with their position
encodings between two assessed activities are summarized as an
additional feature for these models.

We also compare KTBM with the following multi-activity KT
models: MVKM [71] focuses on knowledge modeling only and is a
multi-view tensor factorization method that models student knowl-
edge acquisition from various types of learning activities. It con-
structs separate tensors for different types of activities. DMKT [59]
is based on DKVMN, this model distinguishes between different
read and write operations for different types of learning activi-
ties. However, it focuses solely on student knowledge modeling.
TAMKOT [72] is a transition-aware KT model built on LSTM. It
learns multiple knowledge transfer matrices to explicitly model
knowledge transfer between different activity types. However, it
only models student knowledge without considering behavior, its
objective function focuses solely on student performance predic-
tion. GMKT [68] is another transition-aware method that leverages
MANN and incorporates GNNs to enhance the modeling of student
knowledge through non-assessed learning activities. It is the only
existing method with an objective for predicting the type of mate-
rials. However, it does not explicitly model student behavior in a
distinct component and does not perform Pareto MTL optimization.

5.2.2 Material Type Prediction Baselines. To assess the effi-
cacy of KTBM in predicting the types of learning materials, we
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compare it with four deep sequential baseline models. These mod-
els include two standard RNN methods and two variants of multi-
activity KT methods. The two RNN baseline methods employed
are: LSTM[33]: This RNN architecture is renowned for its ability to
capture long-term dependencies, making it particularly suitable for
tasks that require a comprehensive understanding of entire data
sequences. MANN[52]: This model enhances RNN with an external
memory, which supports the storage and retrieval of information
over long sequences. This capability is highly advantageous for
tasks requiring prolonged information retention and manipulation.

To facilitate a fair comparison, we utilized learning material
embeddings alongside material type embeddings as inputs for the
aforementioned models, focusing exclusively on predicting the up-
coming type of material. Furthermore, we incorporated two variants
of multi-activity knowledge modeling methods: TAMKOT We pre-
served the knowledge modeling architecture and applied an MLP
to the learned hidden behavior and knowledge states specifically
for predicting the type of learning material. GMKT We performed
a grid search to find the best trade-off for predicting material type
instead of student performance.

5.3 Experiment Setup

5.3.1 Evaluation Protocol. We employ a 5-fold student-stratified
cross-validation to partition the data. In each fold, sequences from
80% of the students form the training set, while the remaining 20%
make up the testing set. Additionally, 20% of the training set is used
for hyperparameter tuning. For the student performance prediction
task, we utilize the Area Under the Curve (AUC) metric to evaluate
model performance for both the EdNet and Junyi datasets, as stu-
dent responses are binary (success or failure). In the MORF dataset,
assignments are graded numerically. We normalize the students’ as-
signment scores to a range of [0,1] based on the maximum possible
score for each assignment. The Root Mean Squared Error (RMSE) is
employed to evaluate prediction performance in the MORF dataset.
Since all datasets have two types of materials, we use the AUC
metric for the learning material type preference prediction task.

5.3.2 Implementation Details. We develop KTBM using Py-
Torch®. Following standard practices in sequential data experi-
ments [25, 39, 49, 68], we ensure uniform sequence lengths by trun-
cating or padding them as necessary. The sequence length, denoted
as Ly, is treated as a hyperparameter and is tuned using the valida-
tion set. All model parameters are initialized with random values
drawn from a Gaussian distribution with a mean of 0 and a standard
deviation of 0.2. To mitigate the issue of exploding gradients, we
employ norm clipping. The Adam optimizer is used for parame-
ter learning. For Pareto MTL optimization, we utilize five evenly
distributed dividing vectors {(cos(%, sin(%))ﬂc =0,1,..,5}L A

“https://pytorch.org/
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coarse-grained grid search is conducted to identify the optimal hy-
perparameters. The best hyperparameters are reported in Table 2.

Table 2: Learned Best Hyperparameters of KTBM

Dataset dX dX d, d. dy ds N
EdNet 64 32 32 32 32 32 8
Junyi 32 32 32 64 64 32 32
MORF 32 8 16 32 32 32 8

B df d, dy
16 16 16 96
32 32 16 64
8 8 8 32

Table 3: Student Performance Prediction Results. The best
and second-best results are in boldface and underlined, re-
spectively. =+ and * indicate paired t-test p — value < 0.05 and
p —value < 0.1, respectively, compared to KTBM.

| EdNet | Junyi | MORF

Methods | AUC | AUC | RMSE
DKT 0.6393** | 0.8623** | 0.1990**
DKVMN 0.6296** | 0.8558** | 0.1995™*
SAKT 0.6334** | 0.8053** | 0.1975**
SAINT 0.5205** | 0.7951** | 0.2190**
AKT 0.6393** | 0.8093** | 0.2417**
DeepIRT 0.6290** | 0.8498** | 0.1946™*
DKT+M 0.6372** | 0.8652** | 0.1942**
DKVMN+M | 0.6343** | 0.8513** | 0.2071**
SAKT+M 0.6323** | 0.7911** | 0.1981**
SAINT+M 0.5491** | 0.7741** | 0.2007**
AKT+M 0.6404** | 0.8099** | 0.2226™*
MLP+M 0.6102** | 0.7290** | 0.2428"*
MVKM - - 0.1936**
DMKT 0.6394** | 0.8561** | 0.1856™*
TAMKOT 0.6786* | 0.8745** | 0.1857**
GMKT 0.6819 0.8960 0.1802*
KTBM 0.6838 0.8989 0.1778
KTBM-BM 0.6802 ‘ 0.8928 ‘ 0.1825

Table 4: Material Type Prediction Results. The best and
second-best results are in boldface and underlined, respec-
tively. #+ and * indicate paired t-test p — value < 0.05 and
p —value < 0.1, respectively, compared to KTBM.

| EdNet | Junyi | MORF

Methods | AUC [ AUC | AUC
LSTM 0.8768"* | 0.9069" | 0.9221*
MANN 0.8933* | 0.9299"* | 0.9223*
TAMKOT | 0.8929™* | 0.9355" | 0.9256*
GMKT 0.8932* | 0.9360" | 0.9257*
KTBM 0.8992 0.9390 | 0.9272
KTBM-KT | 0.8898 0.9243 0.9223

5.4 Prediction Performance Comparison

For both student performance and material type preference pre-
diction experiments, we report the mean results across five folds
for each method and perform a paired t-test comparing each base-
line to KTBM. MVKM is only run on the MORF dataset due to
its limitations with high-dimensional data and computation time.
The experiment results are presented in Tables 3 and 4 for student
performance and material type preference prediction, respectively.
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Dividing Vectors Observation. Through experiments explor-
ing different dividing vectors of Pareto MTL, we observed that
using extreme dividing vectors, such as (0, 1) or (1,0), consistently
achieved optimal prediction performance for each specific task
(student performance/material type) across all datasets for KTBM,
while the other task saw limited improvement. However, improve-
ments for both tasks were achieved when the dividing vector was

set to (%, g), corresponding to the direction of Z. While the

best trade-off value optimized by the Pareto MTL algorithm varied
across datasets, our objective was to obtain meaningful results to
improve predictions for both student performance and material
type. Therefore, we only report the experiment results with the
dividing vector set to (\/72, g).

Student Performance Prediction. Our experimental results
show that KTBM outperforms all baseline methods in predicting stu-
dent performance for all datasets. These findings highlight KTBM’s
capability to effectively track knowledge and accurately predict
student performance. KTBM’s superior performance compared to
other multi-activity baselines, including the assessed-only method
variants (“+M”), underscores the advantage of simultaneously mod-
eling student behavior and knowledge. This integration allows
information transfer between the two, enhancing our understand-
ing of student knowledge acquisition. This also indicates that stu-
dent knowledge is influenced by preference behavior. Note that,
among the baselines, GMKT includes type preference prediction
as an objective. The better results of KTBM and GMKT compared
to MVKM, DMKT, and TAMKOT demonstrate that incorporating
behavior as an objective and formulating a multi-objective problem
for student performance and material type preference prediction im-
proves our understanding of students’ knowledge. However, GMKT
does not explicitly model student behavioral preferences in mate-
rial selection in a separate BM component and does not employ
any multi-objective optimization, including Pareto MTL. KTBM
shows superior prediction performance than GMKT. This result
indicates the importance of explicit behavior modeling along with
knowledge tracing in students, in addition to the effectiveness of
Pareto MTL. To summarize, KITBM, a multi-task learning model that
jointly models student behavior and knowledge, represents them
with explicitly distinct states, and transfers information between
these states, can enhance our understanding of student knowledge
and improve predictions of student performance.

Material Type Prediction. Similarly, KTBM surpasses all base-
line methods in predicting the type of learning material for all
datasets. This result highlights the model’s adeptness at capturing
students’ preferences for selecting learning materials and accurately
predicting their future choices. Specifically, when comparing KTBM
with LSTM and MANN, which do not consider or model student
knowledge at all, the superior results of KTBM demonstrate that
preference behavior is influenced by student knowledge. Students
choose learning materials based on their knowledge and whether
they have successfully solved a question or understood a video lec-
ture content. Moreover, KITBM outperforms variants of TAMKOT
and GMKT, which include both student performance and material
type preference prediction objectives but do not explicitly model
student behavior in a specific BM component, consider the rela-
tionship between behavior and knowledge, or use multi-objective
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Table 5: Results for Groups with Different Average Per-
formance Ranges on EdNet Data, * indicate paired t-test
p —value < 0.05 compared to KTBM.

Range of Student Performance Material Type
Avg AUC AUC
Performance|| DKT TAMKOT GMKT KTBM|| LSTM TAMKOT GMKT KTBM
[0,0.57] 0.6315* 0.6508" 0.6527 0.6527(/0.8675* 0.8810 0.8819 0.8825
[0.57,0.67] {|0.6367" 0.6599* 0.6685 0.6696|0.8791* 0.8860 0.8869" 0.8997
[0.67,1] [|0.6304* 0.6604* 0.6718* 0.6761|/0.8780* 0.8964* 0.8973* 0.9094

Table 6: Results for Groups with Different Ratio of Non-
assessed Activity on EdNet Data, = indicate paired t-test
p —value < 0.05 compared to KTBM.

Range of Student Performance Material Type
Non-Assessed AUC AUC
Activity Ratio|| DKT TAMKOT GMKT KTBM| LSTM TAMKOT GMKT KTBM
[0,0.4] 0.6761% 0.6823" 0.6844 0.6845|(0.8177* 0.8269 0.8271 0.8275
[0.4,0.48] ]]0.6359" 0.6837* 0.6849" 0.6887|/0.8879% 0.8969" 0.8980" 0.9073
[0.48,1] 0.6194*  0.6702" 0.6775" 0.6821(/0.9038" 0.9120* 0.9131* 0.9214

optimization. This underscores the importance of formulating a
multi-task learning model that combines the modeling of student
behavior and knowledge, incorporating the impact of knowledge
on preference behavior to improve the insights of student behavior.

Overall, our results across all datasets for both tasks demon-
strate that multi-objective multi-task modeling of student knowl-
edge and tracking their preference behaviors in explicit KT and BM
states, while allowing information transfer between them, leads to a
deeper mutual understanding of these aspects, ultimately benefiting
each task.

5.4.1 Ablation Studies. To evaluate the effect of each compo-
nent, first, we remove the BM component and the material type
preference objective L, creating KTBM-BM, to see if BM improves
knowledge understanding. Then, we remove the KT component and
the student performance objective £, creating KTBM-KT, to evalu-
ate the role of knowledge in modeling student behavior. The results
for the two ablations are in Table 3 and 4. Both KTBM-BM and
KTBM-KT exhibited poorer performance compared to the complete
KTBM model. This indicates that student knowledge and behavior
mutually influence each other. It again highlights the importance
of simultaneously tracing student knowledge and modeling their
behavioral preference.

5.5 Student Group Analysis

The presented results so far demonstrate the better average perfor-
mance of KTBM for all students with different knowledge levels
and preference behaviors. To understand where KITBM provides
the most improvement in BM and KT tasks, we analyzed the results
in different student groups. First, we examine KTBM’s ability to
predict student performance and material type for students with
different average grades. Second, we investigate how the propor-
tion of non-assessed vs. assessed activities in a student sequence
relates to KTBM’s predictions of student performance and material
type choice. Due to space limitations, we only present results for
these two analyses based on EdNet data.
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For each of the two studies, we used a specific measurement for
each sequence: the sequence’s average score and the sequence’s
ratio of non-assessed activities, respectively. We then categorized
all student sequences into three groups using the 33% and 66%
percentiles of these measurements for each analysis, ensuring each
group had a roughly equal number of sequences. We computed the
AUC for each group using KTBM and compared it with the baselines
DKT, TAMKOT, and GMKT for student performance prediction.
Additionally, we compared KTBM’s AUC with the baselines LSTM,
TAMKOT, and GMKT for material type preference prediction. The
results of these two studies are shown in Tables 5 and 6.

Sequence’s Average Score. The results for student performance
prediction show that prediction performance in all models is bet-
ter for students with higher scores in assessed materials. In other
words, the better the student does, the easier to predict their per-
formance. Additionally, while the performance improvement for
GMKT in the lowest score group ([0, 0.57]) is modest, the improve-
ment between KTBM and other baselines, including GMKT, in-
creases as the student’s average grade increases, highlighting the
effectiveness of explicitly modeling behavior and knowledge, and
adding material-type objectives in enhancing performance predic-
tions for the higher-scoring student group ([0.67, 1]). Furthermore,
the prediction of learning material type is also more accurate for
sequences with higher average scores across all models, suggesting
that better-performing student scores make it easier to predict their
material type selections. While KTBM’s improvement in the lowest
score group ([0,0.57]) is again limited compared to TAMKOT and
GMKT, it is more pronounced in the two higher score groups, the
improvement is similar between these two groups. This indicates
that combining models of knowledge and behavioral types and
facilitating information transfer between them, improves the pre-
diction accuracy of material types, especially in sequences with
relatively high scores.

Non-assessed Activities Ratio. For student performance pre-
diction, we can see that all models, except DKT, perform best in the
middle group ([0.4, 0.48]) who only worked with non-assessed ac-
tivities between 57% and 67% of the time. DKT is the only model in
the table that does not have any non-assessed activity information.
These results show that having a more imbalanced ratio of non-
assessed to assessed activities complicates student performance
predictions. However, KTBM shows the largest increase in perfor-
mance prediction at the highest non-assessed activity ratio (group
[0.48, 1]). This indicates that our model enhances student perfor-
mance prediction in sequences with a higher proportion of non-
assessed activities, compared to assessed ones, which is the most
unstable group of all. Since non-assessed learning materials are not
graded, they do not provide reliable feedback to accurately esti-
mate how the student has learned from the learning non-assessed
activity. As a result, when the number of non-assessed activities
increases, KT and performance prediction will be more unstable.
Improvement of KTBM compared to the baselines, especially in
this group, shows the benefits of explicitly modeling behavior and
integrating material-type objectives to better capture the impact
of non-assessed activities on student knowledge. Furthermore, for
material type preference prediction, as the ratio of non-assessed
activities increases, all models achieve more accurate prediction
performance. Notably, KTBM shows the largest improvement in the
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Figure 2: Visualization of the knowledge state and preference behavior for a sample student in the MORF dataset. The bottom
heatmap shows the student knowledge state. The second top x-axis shows the titles of the learning materials the student
interacted with at each time step. The bottom x-axis indicates the student’s actual performance in assessed activities or a
‘screen’ icon for non-assessed activities. The y-axis represents latent concepts. The top heatmap (red) shows the predicted
probabilities that the next material to be interacted with is a video lecture for the corresponding time step.

group with ratios between [0.4, 0.48]. This suggests that KTBM’s
ability to predict material type improves more for sequences with
a relatively balanced mix of assessed and non-assessed activities.

5.6 Knowledge and Behavior State Visualization

To determine whether KTBM can uncover interpretable insights
into student knowledge states and behavioral preferences, we vi-
sualize a representation of the learned states. Specifically, at each
time step, we represent behavioral preference by calculating the
probability that the student activity is non-assessed, using Eq. 15.
For the student knowledge state, we predict their performance
for each concept at each time. We use a masked attention weight
wr = [0,..., wj, ..., 0] to compute the masked read content ¢; and the
masked summary vector ]‘t and calculate the knowledge state of
each concept using Eq. 10. We illustrate these states with heatmaps
in Figure 2, showcasing the knowledge state (bottom, in blue/green)
and preference behavior (top, in red) for a sample student from the
MOREF dataset. The x-axis between the two heatmaps indicates the
titles of attempted learning activities, using abbreviations like “W*
V** for video lectures of week * and ‘A* for assignments of week *.
The bottom x-axis displays the student’s actual performance for an
assignment attempt or a ‘screen’ for a video lecture attempt, with
the y-axis representing the latent concept.

We first observe that students’ knowledge generally increases
from the beginning to the end of the semester across almost all
concepts despite fluctuations throughout the learning process, with
some concepts experiencing decreases. This suggests that while
students gain knowledge from learning activities, they may also
forget some of the gained knowledge at times. For example, examin-
ing the last four attempts of ‘A8’, we see an increase in knowledge
for concept eight, but a decrease for concept two, indicating po-
tential forgetting of this concept from these activities. Moreover,
our analysis shows that the learned behavior state can represent
meaningful student preference behaviors. Initially, KTBM randomly
guesses (~ 0.4) about the type of material the student will choose
to interact with. However, as it processes more student activities,
KTBM learns more about student preference behaviors and makes
more accurate predictions of material type. Furthermore, it reveals
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that students typically continue attempting an assignment until
they achieve a perfect score before moving on to the next module.
Based on their score, they decide whether to switch to watching a
video lecture to improve their knowledge after receiving a very low
score or to immediately retry the assignment without watching
any video lectures. Our KTBM successfully captures these signals
in modeling student knowledge and behavior. For instance, after
initially scoring 0.3 on ‘A5’, the student switches to watching video
lectures from week 5 before retrying ‘A5’. The learned preference
behavior from KTBM shows a high probability (1.0) that the stu-
dent will switch to a lecture after scoring 0.3. Additionally, the
knowledge state increases after the first two lecture activities of
‘W5’. Conversely, after attempting ‘A4’ and scoring 0.9, the student
tries ‘A4’ again instead of switching to a lecture, and KTBM learns
a low preference for switching to video lectures in this scenario.
Overall, this visualization demonstrates that student knowledge
and behavior are interrelated and showcases an example of how
KTBM results can be interpreted.

6 CONCLUSIONS

In this paper, we proposed a multi-task student knowledge and be-
havior model (KTBM) that effectively combines knowledge tracing
and behavior modeling to enhance both tasks. By modeling the
interrelationships between student knowledge and material type
preference behavior, KTBM demonstrated significant improvements
in performance prediction and showcased its interpretability. Our
experiments showed that KTBM improves student performance and
preference predictions across all student groups, and is particularly
effective for predicting performance in the most challenging group:
students engaged primarily in non-assessed activities. Further, our
adaptation of a Pareto MTL optimization algorithm successfully ad-
dressed the dual-objective challenge, as evidenced by the enhanced
results across three real-world datasets.
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