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We present direct observational constraints on tachyons, particles with group velocity greater than c in
vacuum in a Lorentz invariant theory. Since tachyons may have no direct couplings to Standard Model
particles, the most robust and model independent constraints come from gravitational effects, especially
black holes. We compute the Hawking radiation of tachyons from black holes, finding it to be significantly
enhanced in the presence of heavy tachyons. For a black hole of mass M and tachyons of mass m with
g degrees of freedom, the black hole lifetime is found to be tBH ≈ 192πℏM=ðgc2m2Þ (or doubled for
fermions). This implies that the observation of black holes of a few solar masses, with a lifetime of several
billion years, rules out tachyons of mass m ≳ 3 × 109 GeV. This means there cannot exist any tachyons
associated with unification scales or quantum gravity. So while there already exists theoretical reasons to be
skeptical of tachyons, our work provides a complementary direct observational constraint.
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I. INTRODUCTION

It is a fundamental issue to identify the family of types
of particles that exist, given the constraints of relativity.
Lorentz invariance says there are three basic types of
particles allowed: (i) massive particles that always travel
at a speed v < c, (ii) massless particles that always travel at
v ¼ c, and (iii) tachyons that always travel at v > c. All
known particles fall into the first two categories.
The third category of tachyons is the subject of this work.

Here we will be interested in honest-to-goodness tachyons
[1], particles whose group velocity is greater than c defined
with respect to a stable vacuum (as opposed to some
contexts that focus on classical field vacuum instabilities.
The field theoretic description is clarified in Appendix A).
There are theoretical reasons to be skeptical of their
existence, namely that faster than c propagation could be
used to send signals outside the light cone and then three
observers that are highly boosted relative to each other
could find ways to send a signal from observer A to B to C
to A, and have it arrive before it was sent. Such behavior
may lead to paradoxes of causality (although there are
works challenging this, such as Ref. [2]). On the other
hand, as we will discuss shortly, not all momenta are
allowed for tachyons, so they cannot be localized fully.
This means they can only be used to send signals with finite

precision. Altogether we can carry an open mind to their
existence and look for direct proof of their falsification or
otherwise.
Of course, this has some sensitivity to the types of

interactions that the tachyon has. If a tachyon has signifi-
cant interactions with Standard Model particles, we may
expect it to be especially easy to produce signals into the
past and various paradoxes. Furthermore, we may expect to
have already found evidence for tachyons through precision
laboratory tests or particle detectors of various kinds. (In
fact, the OPERA experiment in 2011 initially claimed faster
than c neutrinos [3], until it was later realized it was all
due to a faulty cable). In fact, as we will discuss shortly,
tachyons can have an energy that is arbitrarily small, so
there is no energetic barrier to producing tachyons in the
laboratory.
On the other hand, it is possible that tachyons interact

with regular matter in the most feeble way possible. This
means only gravitational interactions (as gravitation is
universal, so this is the one interaction that is unavoidable).
In this case, the possible theoretical problems and direct
observational consequences would be reduced.
If the interactions are only gravitational, then we must

find other more indirect ways to have observational
consequences. One possibility is to turn to black holes.
Since observations [4–6] show that black holes exist and
are long lived, then tachyons must be compatible with this.
Classically, we can enquire as to whether tachyons can
escape a black hole, which seems plausible given that they
travel faster than light. However, we first show that from the
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point of view of a distant fixed observer, even tachyons
do not escape as they asymptote toward a null geodesic
as they approach the horizon, just as regular massive
particles do. Quantum mechanically, however, tachyons
can escape black holes. We compute the Hawking radiation
of tachyons, finding that for heavy particles the flux is
dramatically enhanced compared to standard Hawking
radiation of photons. This leads to black holes evaporating
quickly if the tachyon is sufficiently massive. We use this to
place a direct observational upper bound on any tachy-
on’s mass.
The outline of our paper is as follows: In Sec. II we

review and clarify some basic properties of tachyons. In
Sec. III we compute the geodesic motion of tachyons in a
black hole spacetime. In Sec. IV we compute the enhanced
Hawking radiation of black holes from tachyon emission.
In Sec. V we use this to determine bounds from observed
black holes. In Sec. VI we discuss our results. In
Appendix A we clarify the field theory of tachyons, and
in Appendix B we provide more results.

II. BASIC TACHYON THEORY

We begin by recapping the basic theory of tachyons;
some of this is well known, though some points are subtle
and deserve clarification.
Let us consider the theory of particles, minimally

coupled to gravity with metric gμν. For context, let us
recap standard point particles of massm, for which it is well
known that their action is (we set c ¼ 1 and use þ % % %
signature)

S ¼ −m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνdxμdxν
q

ðstandardÞ: ð1Þ

For tachyons of massm, one simply has an alteration in the
location of minus signs, namely their action is

S ¼ m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gμνdxμdxν
q

ðtachyonsÞ: ð2Þ

Both of the above actions are clearly Lorentz invariant.
Furthermore, we only allow trajectories in the regime in
which the action is real valued. So this means we must have
gμνdxμdxν > 0 for standard particles and gμνdxμdxν < 0 for
tachyons. So while the former stays inside the light cone,
the latter stays outside the light cone; though both can in
principle be arbitrarily close to the light cone.
For context, let us begin by considering the case of flat

spacetime with gμν ¼ ημν ¼ ð1;−1;−1;−1Þ the Minkowski
metric in Cartesian coordinates. Then the above pair of
actions can be rewritten as

S ¼ −m
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
ðstandardÞ; ð3Þ

S ¼ m
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p
ðtachyonsÞ; ð4Þ

where v ¼ dx=dt is the particle’s velocity. From the
action we can readily deduce the particle’s energy and
momentum as

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; p ¼ mvffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ðstandardÞ; ð5Þ

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p ; p ¼ mvffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − 1

p ðtachyonsÞ; ð6Þ

with corresponding energy-momentum relations

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
ðstandardÞ; ð7Þ

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 −m2

q
ðtachyonsÞ; ð8Þ

with p ¼ jpj. The above formulas demonstrate that the
allowed domains for each type of particle is complemen-
tary, namely standard particles exist within the domain
v < c ¼ 1, while tachyons exist within the domain
v > c ¼ 1. And it should be emphasized that within their
respective domains, the corresponding energy, momentum,
and action are all real valued quantities. We plot the
momentum for motion along some axis, versus velocity
in Fig. 1.
We note that the allowed domains of energy and momen-

tum differ between standard particles and tachyons, as

E ≥ m; jpj ≥ 0 ðstandardÞ; ð9Þ

E ≥ 0; jpj ≥ m ðtachyonsÞ: ð10Þ
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FIG. 1. Momentum versus velocity. The standard particle case
is in blue. The tachyon case is in red.
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The restriction that the magnitude of the 3-momenta of
tachyons obeys p ≥ m is seen in Fig. 1. It is important to
note that this statement is closed under Lorentz boosts; i.e.,
for a tachyon with momentum p ≥ m, it is guaranteed to
have p0 ≥ m after a boost (although it can sometimes
switch from the upper right branch to the lower left branch);
this can be checked from the velocity addition rule of
special relativity for collinear motion: v0 ¼ ðvþ uÞ=
ð1þ vuÞ where u is the boost velocity (with juj < 1)
and v, v0 is the tachyon velocity before and after the boost
(with jvj > 1; jv0j > 1), respectively. Conversely, tachyons
can have arbitrarily low energy, only bounded by E ≥ 0
(and this statement is also closed under Lorentz boosts).
The E → 0 limit (which is also the p → m limit) occurs for
tachyons with v → ∞.
We note that this construction does not permit negative

energy tachyons, nor is there a basic type of vacuum
instability. Formulating the theory with a vacuum insta-
bility is sometimes associated with “tachyons” in the
literature and the distinction is clarified in Appendix A.
Nevertheless if there were direct couplings to Standard
Model particles, one could imagine readily producing such
low energy tachyons in various processes, which is itself a
kind of instability. By only coupling gravitationally, as we
do in this work, this is radically suppressed.
We note that since the momenta is bounded p ≥ m, then

within the quantum theory one cannot form arbitrary types
of wave packets. In particular, one cannot build standard
localized wave packets as this requires the use of all
momenta. Hence tachyons within the quantum theory
are somewhat delocalized. This means that while they
can send signals, there is some imprecision. Some have
argued that this means there is no direct breakdown of
causality, although there remain forms of non-locality. A
full exploration of this issue is beyond the scope of this
work. In any case, the classical limit is still unambiguous
faster than c propagation, and this is true in all frames of
reference.

III. CLASSICAL BEHAVIOR IN
SCHWARZSCHILD SPACETIME

It is an interesting question as to what extent a particle
can enter or escape a black hole. From the point of view of a
distant fixed observer, standard massive or massless par-
ticles treated classically do not in fact enter a black hole, as
they undergo arbitrarily large time dilation causing them to
appear frozen. We now check on corresponding classical
behavior of tachyons, before turning to the quantum
behavior in the next section.
Let us consider a Schwarzschild black hole of mass M,

which has metric in terms of radius r and time t

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2dΩ2; ð11Þ

where

fðrÞ ¼ 1 −
2GM
r

: ð12Þ

Let us consider radial motion of a particle (either toward
or away from the black hole) with dΩ ¼ 0. The action is
given by

S ¼ −εm
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εfðrÞ − εfðrÞ−1v2r

q
; ð13Þ

where vr ¼ dr=dt is the radial velocity. Here we have
introduced a unified notation with

ε ¼ þ1 ðstandardÞ; ð14Þ

ε ¼ −1 ðtachyonsÞ: ð15Þ

Since the spacetime is static, the particle’s energy is
conserved. From the action, we can readily derive it to be

E ¼ mfðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εfðrÞ − εfðrÞ−1v2r

p ; ð16Þ

Using vr ¼ dr=dt and separation of variables, we can
reorganize this to express the time taken for a particle to
travel from some radius r1 to another radius r2 as

t ¼ &
Z

r2

r1

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ2 − εfðrÞ3m2=E2

p : ð17Þ

Note that the integrand diverges as we approach the horizon
r → 2GM where f → 0, and this is true for (i) standard
massive particles with ε ¼ þ1, (ii) massless particles with
m ¼ 0, and (iii) tachyons with ε ¼ −1.
To quantify this further, suppose r2 is close to the horizon.

For particles that are outside the black hole initially at r1, but
heading inwards, wewrite r2 ¼ 2GM þ δr, with δr > 0 and
δr ≪ 2GM. Then the integral can be expanded as

t ¼ 2GM ln
"
r1 − 2GM

δr

#
þ r1 − 2GM − δrþ Δε; ð18Þ

where the leading term is the same for all three types of
particles. Only the subleading piece Δε differs between the
types; for E ≫ m, it is

Δε ¼ ε
ðr1 − 2GM − δrÞm2

2E2
; ð19Þ

which enhances the time for standard massive particles or
decreases the time for tachyons. As we consider δr → 0,
we see the time taken diverges logarithmically due to the
leading universal term. So from the point of view of a static
distant observer, whose clock reads time t, no particles
enter, including tachyons.
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For particles that are inside the black hole, then only in
the case of tachyons can we consider the possibility of them
moving radially outwards, as they exist outside the light
cone. Nevertheless, the above divergence persists, and we
have the same logarithmic divergence in escape time.
Hence all three types of particles do not enter or escape
black holes from the point of view of a distant observer,
when treated classically.

IV. ENHANCED HAWKING RADIATION

Quantum mechanically, black holes radiate. As Hawking
showed [7,8], the temperature of a black hole is (units
ℏ ¼ c ¼ kB ¼ 1)

T ¼ 1

8πGM
: ð20Þ

We now wish to apply this to compute the output power of
particles from the black hole for tachyons. Here we follow a
leading approximation in which we use thermodynamic
results of flat space, as the equivalence principle ensures
that the spacetime is locally flat near the horizon (although
this is not precise for particles whose de Broglie wave-
length is comparable to the horizon size, as is the case for
Hawking radiation of massless particles; it is more accurate
for heavy tachyons whose momentum is large p ≥ m).
For a thermal distribution of free particles with vanishing

chemical potential, the output power from a spherical black
body can be readily shown to be

P ¼ gA
4

Z
d3p
ð2πÞ3

vðpÞEðpÞ
eEðpÞ=T ∓ 1

; ð21Þ

where A is the surface area of the black body and the 1=4
accounts for a reduction from directionality (i.e., not all
particles are heading radially). Note the factor of vðpÞ here
as the power is proportional to the output flux which
depends on the particle’s speed. We have included a factor
of ∓ for bosons or fermions, respectively, and g is the
corresponding number of degrees of freedom. It is impor-
tant to note that while the domain of integration for
standard particles is over all momenta, the domain of
integration for tachyons is the exterior of a 3-ball
p ¼ jpj ≥ m, as explained in Sec. II.
To carry out this integral, we first trivially integrate over

angle, giving
R
d3p ¼ 4π

R
dpp2. Then we find it more

convenient to integrate with respect to energy, rather than
momentum. For this we use

pdp¼ EdE; v¼ dE
dp

¼ p
E
; p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − εm2

p
; ð22Þ

where the final expression again includes the unified
notation ε ¼ &1 for standard particles or tachyons, respec-
tively. The power output can then be written as

P ¼ gA
8π2

Z
∞

Emin

dE
EðE2 − εm2Þ
eE=T ∓ 1

; ð23Þ

where the lower end point of the integral is Emin ¼ m for
standard particles and Emin ¼ 0 for tachyons.
In the case of tachyons, we can carry out this integral

exactly, to obtain the power

P ¼ gA
240

ð5m2T2 þ 2π2T4Þ ðbosonic tachyonsÞ; ð24Þ

P¼ gA
960

ð10m2T2 þ 7π2T4Þ ðfermionic tachyonsÞ: ð25Þ

In the limit of light tachyons with m ≪ T, this reduces to
the standard result of massless particles

P ¼ π2gA
120

T4 ðmassless bosonsÞ; ð26Þ

P ¼ 7π2gA
960

T4 ðmassless fermionsÞ: ð27Þ

In the limit of heavy tachyons with m ≫ T, the power is

P ¼ gA
48

m2T2 ðheavy bosonic tachyonsÞ; ð28Þ

P ¼ gA
96

m2T2 ðheavy fermionic tachyonsÞ: ð29Þ

Since astrophysical black holes have extremely small
temperatures, we expect to be in this latter regime. We
see that tachyons therefore have a power output from a
black hole that is parametrically larger than standard
massless particles, such as photons, by a factor ∼m2=T2.
This is reasonable given that tachyons travel faster than
light and so intuitively they should get emitted at a higher
rate. Also note that the integral is dominated by energies
E ∼ T, so in this limit it is dominated by energies E ≪ m.
So most of the tachyons being emitted have very low
energy and correspondingly have very high speeds v ≫
c ¼ 1 (note v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2=E2

p
for tachyons).

Let us contrast this with the case of standard massive
particles. In this case the above integral is not expressible in
terms of elementary functions (it is a polylogarithm).
However, in the heavy limit m ≫ T, the power output
can be computed analytically as

P ¼ gA
4π2

e−m=Tm2T2 ðheavy standardÞ ð30Þ

(the same leading result for bosons and fermions). So, as is
well known, the emission of standard massive particles,
such as electrons or protons, from large astrophysical black
holes is exponentially suppressed. Conversely, the emission
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of tachyons is not only unsuppressed, it is in fact enhanced
compared to massless particles.

V. OBSERVATIONAL BOUNDS

As black holes emit particles, they will evaporate away.
For a black hole of mass M, we write P ¼ dM=dt and
obtain its lifetime as

tBH ¼
Z

M

0

dM0

PðM0Þ
: ð31Þ

For tachyons, we can use the above results for the power in
Eqs. (24) and (25) and compute this integral exactly. To do
so, we also use the fact that the area is A ¼ 4πR2 ¼
16πG2M2 and T ¼ 1=ð8πGMÞ. The full answer is given in
Appendix B. In the low mass m ≪ T regime, we recover
the well known result for massless particles, such as
photons. However, it is the high mass regime m ≫ T that
is particularly novel. We report both results here:

tBH ¼ 10; 240πaB;F
G2M3

gℏc4
ðmassless particlesÞ; ð32Þ

tBH ¼ 192πbB;F
ℏM

gc2m2
ðheavy tachyonsÞ; ð33Þ

where we have reinstated factors of c and ℏ for complete-
ness. We have also introducedOð1Þ prefactors aB;F and bB;F,
which are

aB ¼ 1 ðbosonsÞ; aF ¼
8

7
ðfermionsÞ; ð34Þ

bB ¼ 1 ðbosonsÞ; bF ¼ 2 ðfermionsÞ: ð35Þ

However, there are Oð1Þ corrections to these prefactors
when the full curvature of the black hole is considered.
But in the case of massless photons, the above prefactor
is known to be off by only ≈1.6; so for the purposes of
this work, these estimates will suffice. Note that self-
consistently, these two results are comparable in the
crossover regime m ∼ kBT=c2 ¼ ℏc=ð8πGMÞ.1
In the case of a single (g ¼ 1) bosonic tachyon, we plot

the full result in Fig. 2. For the purpose of the plot, we have
chosen the black hole mass to be three solar masses
M ¼ 3Msun. The red curve is the full result, which

asymptotes to the standard massless result for m ≪ T,
given as the horizontal green curve. But decreases rapidly
for m ≫ T, as tBH ∝ 1=m2 in this regime.
In the m ≫ T regime, the expression for lifetime in

Eq. (33) can be written as

tBH ≈ 1.4 g−1 × 1028 years
"

M
Msun

#"
GeV
m

#
2

; ð36Þ

where Msun ≈ 2 × 1030 kg is the mass of the sun.
Alternatively, we can rewrite this as

m ≈ g−1=2 × 109 GeV

ffiffiffiffiffiffiffiffiffiffi
M

Msun

s ffiffiffiffiffiffiffi
t0
tBH

r
; ð37Þ

where t0 ¼ 13.8 × 109 years is the present age of the
universe.
Now we have observed black holes with masses as low

as M ¼ 3.3Msun [9], which is close to the lower mass
expected for any astrophysical black holes of M ≈ 3Msun.
Furthermore, some have lived for billions of years. This
means that sufficiently heavy tachyons cannot exist. If we
use M ¼ 3.3Msun and note that some black holes have
existed for tBH ≳ 5 Gyr or so, the above result says that
tachyons in the mass range

m > 3 × 109 GeV ð38Þ

are observationally ruled out. Lighter tachyons could
conceivably still exist from this point of view (although
still tightly constrained from theoretical arguments).
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Black Hole Mass M = 3 Msun

FIG. 2. Black hole lifetime versus tachyon mass; the plot is for
the case ofM ¼ 3Msun and 1 bosonic degree of freedom. The red
curve is the full result for tachyons. The horizontal green line is
the standard massless case. The horizontal black dashed line is
the present age of the universe.

1We also note for the heavy tachyon result in Eq. (33), Planck’s
constant ℏ appears in the numerator, rather than the denominator
as it does in the standard massless result of Eq. (32). At first sight,
this may seem surprising. However, we note that from the point
of view of field theory, we could write m ¼ ℏω0=c2, where ω0 is
the characteristic classical frequency of oscillation of the corre-
sponding field. Then when expressed in terms of ω0, we have that
the black hole lifetime from tachyons is also inversely propor-
tional to ℏ.
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A simple generalization is if we have multiple species of
heavy tachyons, then the above analysis leads to

tBH ¼ 192π
ℏM
c2

"X
i

gim2
i

bi

#−1
; ð39Þ

where the index i labels each species. So if there are many
species with comparable masses, the black hole lifetime
becomes even shorter and the bound strengthens.

VI. DISCUSSION

The falsification of tachyon masses above 3 × 109 GeV
has implications for fundamental physics. It means that
tachyons cannot play any role in grand unification, often
thought to be at energies ∼1015–16 GeV, or quantum
gravity, often thought to be at energies ∼1018–19 GeV.
By combining these observational constraints, with the
theoretical concerns that tachyons lead to a kind of break-
down of locality, then we have reasons to suspect that
tachyons simply do not exist at all.
The above bound is based on known astrophysical black

holes. However, much lighter black holes could exist too
that are primordial in origin. The discovery of primordial
black holes in the asteroid mass range of 1017–1021 g,
which could potentially make up the dark matter (for a
review, see Ref. [10]), with tBH ≳ t0 would rule out tachyon
masses down to 7–700 GeV.
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APPENDIX A: FIELD THEORY OF TACHYONS

It is of some interest to construct the field theory of
tachyons, as it can alleviate some common misconceptions.
We shall consider a single degree of freedom of spinless

particles. We start with the Hamiltonian for a collection of
such identical particles

H ¼
Z

d3p
ð2πÞ3

EðpÞa†pap; ðA1Þ

where a†p and ap are the creation and annihilation operators,
respectively.
We now express the creation and annihilation operators

in terms of fields ϕ and Π, as

ap ¼ 1ffiffiffi
2

p
Z

d3x
" ffiffiffiffiffiffiffiffiffiffi

EðpÞ
p

ϕðxÞ þ iffiffiffiffiffiffiffiffiffiffi
EðpÞ

p ΠðxÞ
#
e−ip·x;

ðA2Þ

a†p ¼ 1ffiffiffi
2

p
Z

d3x
" ffiffiffiffiffiffiffiffiffiffi

EðpÞ
p

ϕðxÞ − iffiffiffiffiffiffiffiffiffiffi
EðpÞ

p ΠðxÞ
#
eip·x:

ðA3Þ

The Hamiltonian (ignoring an overall constant from the fact
that ϕ and Π do not commute) becomes

H ¼ 1

2

Z
d3xd3y

$
ΠðxÞΠðyÞK̃ðx − yÞ

þ ϕðxÞϕðyÞKðx − yÞ
%
; ðA4Þ

where we have introduced the functions

K̃ðx − yÞ ¼
Z

d3p
ð2πÞ3

e−ip·ðx−yÞ; ðA5Þ

Kðx − yÞ ¼
Z

d3p
ð2πÞ3

EðpÞ2e−ip·ðx−yÞ: ðA6Þ

1. Standard particles

For standard particles, we have EðpÞ2 ¼ p2 þm2 for all
momenta. So the K̃; K functions are the Fourier transform
of even non-negative powers of p. This means they are a
type of delta function

K̃ðx − yÞ ¼ δ3ðx − yÞ; ðA7Þ

Kðx − yÞ ¼ ð−∇2 þm2Þδ3ðx − yÞ: ðA8Þ

Inserting this into Eq. (A4), we recover the well-known
Hamiltonian for free massive spinless particles

H ¼ 1

2

Z
d3x½ΠðxÞ2 þ ð∇ϕðxÞÞ2 þm2ϕðxÞ2(: ðA9Þ

2. Tachyons

For tachyons, we have EðpÞ2 ¼ p2 −m2; but this is only
for the exterior of the 3-ball jpj ≥ m. The interior of the
3-ball must be cut out from the integral that defines the
function K.
One way to proceed is to include the interior of the 3-ball

in the integral and then subtract it out, i.e.,

K̃ðx − yÞ ¼
"Z

jpj≥0
−
Z

jpj<m

#
d3p
ð2πÞ3

e−ip·ðx−yÞ ðA10Þ
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and similarly for K. The first term is then the Fourier
transform of 1, again giving rise to a delta function, while
the second term is a finite correction. We write these as

K̃ðx − yÞ ¼ δ3ðx − yÞ þ J̃ ðx − yÞ; ðA11Þ

Kðx − yÞ ¼ ð−∇2 −m2Þδ3ðx − yÞ þ Jðx − yÞ; ðA12Þ

with

J̃ ðx − yÞ ¼ −
Z

jpj<m

d3p
ð2πÞ3

e−ip·ðx−yÞ; ðA13Þ

Jðx − yÞ ¼ −
Z

jpj<m

d3p
ð2πÞ3

EðpÞ2e−ip·ðx−yÞ: ðA14Þ

For these integrals, we can easily integrate over the angle to
obtain

J̃ ðx − yÞ ¼ −
1

2π2

Z
m

0
dpp2 sinðpjx − yjÞ

pjx − yj
; ðA15Þ

Jðx− yÞ ¼ 1

2π2

Z
m

0
dpp2ðm2 −p2Þ sinðpjx− yjÞ

pjx− yj
: ðA16Þ

These integrals can be carried out to obtain

J̃ ðx − yÞ ¼ − sinðmrÞ þmr cosðmrÞ
2π2r3

; ðA17Þ

Jðx − yÞ ¼ ð3 −m2r2Þ sinðmrÞ − 3mr cosðmrÞ
π2r5

; ðA18Þ

where r ¼ jx − yj is the distance between x and y. We note
that these J̃; J functions are manifestly not of the form
of a delta function; they have long range support, falling
off at large r as ∼1=r2 and ∼1=r3. So the corresponding
Hamiltonian will be nonlocal.
Altogether, this allows us to express the Hamiltonian for

(spinless) tachyons in the field formalism as

H ¼ 1

2

Z
d3x

$
ΠðxÞ2 þ ð∇ϕðxÞÞ2 −m2ϕðxÞ2

%

þ 1

2

Z
d3xd3y

$
ΠðxÞΠðyÞJ̃ðx − yÞ

þ ϕðxÞϕðyÞJðx − yÞ
%
: ðA19Þ

We note that the terms in the first line here are sometimes
referred to in the literature as the entire Hamiltonian of a
“tachyon.” Defining the theory by only the first line leads
to (i) energy that is unbounded from below, representing a
vacuum instability, and (ii) no direct superluminality of
signals. However, the correct theory of tachyons has the
crucial additional terms on the second and third lines. These
terms ensure (i) the energy is bounded byH ≥ 0, avoiding a
standard form of vacuum instability, and (ii) the theory is
nonlocal (involving a double integral over d3x and d3y),
which is an intrinsic feature of superluminal particles in a
Lorentz invariant theory. These additional terms project
out any contribution to ϕ and Π that has support for
momenta p < m; so this Hamiltonian has a kind of gauge
redundancy.

APPENDIX B: BLACK HOLE LIFETIME

The full result for the black hole lifetime from the
emission of tachyons is found from carrying out the above
integrals. For bosons, the result is

tBH ¼
24π

&
40GmM −

ffiffiffiffiffi
10

p
tan−1ð4

ffiffiffiffiffi
10

p
GmMÞ

'

5gGm3
: ðB1Þ

For fermions, the result is

tBH ¼
24π

(
80GmM −

ffiffiffiffiffi
70

p
tan−1

(
8

ffiffiffiffi
10
7

q
GmM

))

5gGm3
: ðB2Þ

By taking the smallm or largem limit of these expressions,
one obtains Eq. (32) or Eq. (33), respectively.
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