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Heavy neutral leptons (HNLs) are motivated by attempts to explain neutrino masses and dark matter.
If their masses are in the MeV to several GeV range, HNLs are light enough to be copiously produced at
collider and accelerator facilities, but also heavy enough to decay to visible particles on length scales that
can be observed in particle detectors. Previous studies evaluating the sensitivities of experiments have often
focused on simple but not particularly well-motivated models in which the HNLmixes with only one active
neutrino flavor. In this work, we accurately simulate models for HNL masses between 100 MeV and
10 GeVand arbitrary couplings to e, μ, and τ leptons. We include over 150 HNL production channels and
over 100 HNL decay modes, including all of the processes that can be dominant in some region of the
general parameter space. The result is HNLCalc, a user-friendly, fast, and flexible library to compute the
properties of HNL models. As examples, we implement HNLCalc to extend the FORESEE package to
evaluate the prospects for HNL discovery at forward LHC experiments. We present sensitivity reaches for
FASER and FASER2 in five benchmark scenarios with coupling ratios jUej2∶jUμj2∶jUτj2 ¼ 1∶0∶0,
0∶1∶0, 0∶0∶1, 0∶1∶1, and 1∶1∶1, where the latter two have not been studied previously. Comparing these
to current constraints, we identify regions of parameter space with significant discovery prospects.
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I. INTRODUCTION

The Standard Model (SM) is a remarkably successful
theory of particle physics and includes all of the observed
particles in nature. However, it does not explain all of the
observed phenomena in nature, and hence it is incomplete.
In particular, the SM does not accommodate the observed
neutrino masses and mixings, and none of the particles it
includes can be a significant fraction of dark matter.
Among the simplest ways to extend the SM is to

introduce additional fermions that are uncharged under
all SM gauge symmetries. Such fermions, known as sterile
or right-handed neutrinos, immediately open avenues for
addressing the aforementioned problems of the SM. For
neutrino masses, the introduction of sterile neutrinos leads
to the appearance of neutrino masses and mixings, as
required by experimental observations. For dark matter, the

coupling of sterile neutrinos to the SM through Yukawa
couplings is the unique way that a dark fermion, that is, a
fermion with no SM interactions, can interact with the SM
through a renormalizable coupling, making it an especially
important example of beyond-the-SM (BSM) physics.
Once sterile neutrinos are introduced, they generically

mix with the SM neutrinos, and the resulting mass
eigenstates are often referred to as heavy neutral leptons
(HNLs). HNLs are mostly sterile, but their small SM
neutrino components imply that they do interact with
SM gauge bosons, which may lead to observable signals.
Which signals are possible depends heavily on the HNL
mass. Mass scales that have been discussed at length in the
literature include ∼eV masses, motivated by experimental
anomalies; ∼keV masses, motivated by cosmology and
possible evidence for warm dark matter; and masses at the
TeV scale and above, motivated by models of leptogenesis
and the seesaw mechanism. For reviews, see, for example,
Refs. [1–4].

In this work, we consider HNLs with masses in the MeV
to GeV range. Such HNLs have attracted interest since at
least the early 1970s [5,6]; for a review that includes
references to the early literature, see Ref. [7]. In recent
years, however, there has been a resurgence of interest in
HNLs with masses in the MeV to GeV range. HNLs with
such masses may be used to generate neutrino masses and
mixings consistent with experimental measurements and
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simultaneously address many of the cosmological problems
of the SM; see, for example, Ref. [8]. More generally, from
a purely phenomenological perspective, such HNLs are
amenable to a wide variety of experimental probes, since
they are light enough to be copiously produced at many
collider and accelerator facilities, but also heavy enough to
decay to visible particles on length scales that can be
observed in particle detectors [9–17]. For these reasons,
HNLs have become a leading example of long-lived
particles (LLPs), and they have helped motivate the
growing worldwide research program in search of LLPs.
To evaluate the prospects for HNL discovery, it is

essential to have a user-friendly, fast, and flexible tool that
can model HNL production and decay and also be used to
estimate event rates in current and proposed experiments.
The number of production channels and decay modes
that may be important for HNLs dwarfs the corresponding
number for dark photons and other well-known LLPs.
Thankfully, a great deal of work has been done to
identify and quantify the leading production and decay
processes [10–12,15,16,18–21]. Building on this work, in
this study we present the PYTHON library HNLCalc, which
computes the properties of general HNL models.1 It
includes all of the potentially dominant processes and
accurately describes the production and decay of HNLs
with OðGeVÞ masses and arbitrary couplings to the e, μ,
and τ leptons.
HNLs may be produced in both fixed-target and particle

collider experiments. Fixed-target experiments may pro-
duce many HNLs in the MeV to GeV range, and it is
certainly of interest to predict the sensitivity of current and
proposed experiments for general HNL searches. At the
same time, particle colliders like the LHC are also of
interest, particularly in the forward direction, where event
rates for such HNLs are greatly enhanced. Our results may
be used to model general HNL models and determine
discovery prospects at both accelerator and collider
experiments.
As examples, in this studywe consider the ForwardSearch

Experiment (FASER) [22,23], a current experiment that is
purpose built to search for LLPs in the far-forward region at
the LHC, and FASER2, a future experiment to be housed in
the proposed Forward Physics Facility (FPF) [24,25] at the
High-Luminosity LHC (HL-LHC), which will have an even
greater discovery potential for LLPs. For forward physics
experiments at colliders, the FORward Experiment
SEnsitivity Estimator (FORESEE) [26] simulation package
has become a very useful tool. For a fixed proton-proton c.m.
energy, FORESEE takes as input the forward hadron pro-
duction rates given by Monte Carlo (MC) generators,
determines the resulting energy and angular distribution
for various LLPs, and then calculates the signal rate in

particle detectors. FORESEE modules have been written to
simulate a variety of LLPs, including dark photons, other
gauge bosons, and also scalars, but, before this work, not
HNLs. In this work, we extendFORESEE to simulate HNLs,
using the HNL properties provided by the HNLCalc pack-
age.We focus onmodels withMajorana-like HNLs in which
total lepton number L is violated.
To illustrate the flexibility of both HNLCalc and the

FORESEE HNL module, we analyze the sensitivity reach
for five benchmark models, where the ratios of HNL
couplings are

jUej2 ∶ jUμj2 ∶ jUτj2
Benchmark 1∶ 1 ∶ 0 ∶ 0;

Benchmark 2∶ 0 ∶ 1 ∶ 0;

Benchmark 3∶ 0 ∶ 0 ∶ 1;

Benchmark 4∶ 0 ∶ 1 ∶ 1;

Benchmark 5∶ 1 ∶ 1 ∶ 1:

ð1Þ

We refer to these benchmarks using the convenient short-
hand 100, 010, 100, 011, and 111. The 100, 010, and 001
models are simple cases, each with only one nonzero
coupling, and they are among the benchmarks typically
considered, for example, by the Physics Beyond Colliders
study group [27]. The reach for FASER in these scenarios
was analyzed previously in Refs. [28–30], and we repro-
duce these earlier results. The 011 and 111 models are less
minimal, but have been proposed as more representative of
models that explain the observed neutrino masses and
mixings [31]. The reach for FASER and FASER2 in the 011
and 111 models has not been determined previously, but is
analyzed here rather easily, given the flexibility of the work
described here. We note that sensitivities for models with
more than one nonzero coupling cannot be estimated
simply by adding together event rates from the 100,
010, and 001 models, since all couplings enter the decay
width, and so turning on a second or third coupling impacts
both the event rates and the kinematic distributions of
events mediated by the first coupling in highly nontrivial
ways. This interplay can only be included through the
detailed simulation work described here.
This paper is organized as follows. In Sec. II we discuss

the HNL model and establish the notation we use. In
Secs. III and IV we discuss the many HNL production and
decay processes, respectively, and describe the detector and
collider configurations we consider in Sec. V. In Sec. VI we
use all of these results to determine the sensitivity and
discovery prospects for FASER and FASER2 in the five
benchmark models discussed above. We collect our con-
clusions in Sec. VII. Detailed expressions for the produc-
tion and decay branching fractions are contained in
Appendices A and B, respectively. In the course of this
work, typos and errors in the existing literature were
identified, and these are noted in the Appendices.

1HNLCalc is publicly available on GitHub at https://github
.com/laroccod/HNLCalc.
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II. MODEL

In this paper, we consider the SM, with its three left-
handed active neutrinos, extended to include n right-
handed sterile neutrinos. With these extra states, the SM
Lagrangian can be supplemented by additional gauge-
invariant terms, such as

L ⊃ −
X
αi

yαiL̄αϕ̃N0
i −

X
ij

mijN0c
i N

0
j

−
X
αβ

1

M
λαβL̄αϕ̃ϕ̃

TLc
β þ H:c:; ð2Þ

where the fields are the SM left-handed lepton doublets
Lα ¼ ðνα; lαÞT ; the right-handed sterile neutrinos N0

i, where
the prime distinguishes the gauge eigenstates from the
unprimed mass eigenstates to be defined below; the SM
Higgs doublet ϕ; and their charge conjugates Lc ¼ CL̄T ,
N0c ¼ CN0T , and ϕ̃ ¼ iσ2ϕ�. The fermion fields να, lα,
and N0

i are each four-component Weyl spinors [e.g.,
N0

i ¼ ð0; N0
iRÞT]; the index sums are over α; β ¼ e, μ, τ

and i; j ¼ 1;…; n; yαi and λαβ are dimensionless (Yukawa)
couplings; and mij and M are mass parameters.
The terms in the first sum in Eq. (2) are the neutrino

Yukawa couplings, the only gauge-invariant and renorma-
lizable terms that can couple SM fields to gauge singlet
fermions. The terms in the second sum are right-handed
Majorana neutrino mass terms, which break total lepton
number L. Last, the terms in the third sum also break L, but
do not involve the N0

i fields. These terms are nonrenorma-
lizable, but can be generated once heavy singlet neutrinos
are integrated out as, for example, in the seesaw mecha-
nism. Similar L-violating terms may also be present even at
the renormalizable level if one introduces additional fields,
such as a scalar field that is a triplet of SU(2).
After electroweak symmetry breaking, when the neutral

component of the Higgs field obtains a vacuum expectation
value, the terms of Eq. (2) all contribute to neutrino masses.
In the basis ðLα; N0c

i Þ, the most general ð3þ n; 3þ nÞmass
matrix is

Mν ¼
�
ML MD

MT
D MR

�
; ð3Þ

where MD, MR, and ML are the Dirac, right-handed
Majorana, and left-handed Majorana masses generated
by terms in the first, second, and third sums of Eq. (2),
respectively. When the mass matrixMν is diagonalized, the
resulting mass eigenstates are 3þ n Majorana neutrinos.
These include the three mostly active neutrinos that have
been observed experimentally, ν1, ν2, and ν3, and the n
mostly singlet HNLs, which we denote as Ni, where
i ¼ 1;…; n.

In this study, for simplicity, we consider models in which
the phenomenology is dominated by a single HNL, which
we denote as N, while others either contribute subdomi-
nantly or are outside the mass range of interest. Note,
however, that we do not assume that the N’s mixing is
dominated by mixing with only one active neutrino. We
consider the N field to have a mass in the MeV to GeV
range, and so a wealth of existing observables such as the
width of the Z boson constrain their mixings with the active
neutrinos to be small. Barring rather special scenarios, such
as where the HNLs are almost mass-degenerate and can
oscillate into each other on relevant length scales [32,33],
the signal rates for HNLs in models with two or more HNLs
with significant mixings can therefore be determined
simply by adding together the signal rates for each HNL
considered separately.
With these simplifications, then, the neutrino flavor

eigenstates can be expressed in terms of the mass
eigenstates as

να ¼
X3
i¼1

Vαiνi þ UαNc; ð4Þ

where Vαi and Uα parametrize the active and sterile
neutrino content, respectively. Therefore, the SM couplings
of the electroweak gauge bosons to neutrino flavor eigen-
states induce couplings to N proportional to Uα. The
charged-current (CC) and neutral-current (NC) interaction
terms are

LCC ¼ −
gffiffiffi
2

p
X
α

U�
αWþ

μ Ncγμlα þ H:c:;

LNC ¼ −
g

2 cos θW

X
α

U�
αZμNcγμνα þ H:c: ð5Þ

The production and decay rates for the HNL are completely
determined by the mass mN and couplings Uα. As noted in
Sec. I, in this study we consider benchmark models with
fixed coupling ratios jUej2∶jUμj2∶jUτj2 defined in Eq. (1).
The only remaining freedom, then, is the overall size of
these couplings, which we parametrize by ϵ, the sum of the
Uα couplings in quadrature:

ϵ2 ¼ jUej2 þ jUμj2 þ jUτj2: ð6Þ

With these definitions, given a particular benchmark model,
the HNL phenomenology is completely determined by the
two parameters

mN; ϵ: ð7Þ

We present all of our results below, including the sensitivity
reaches of various experiments, as functions of one of these
two parameters or in the ðmN; ϵÞ plane.
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III. HNL PRODUCTION

At the LHC, high-energy proton-proton collisions pro-
duce hadrons and leptons that can decay to HNLs through
the CC and NC interactions of Eq. (5). In the mass range of
interest here, HNLs are primarily produced in the decays of
mesons and tau leptons. The production of these parent
particles at the LHC is modeled using a variety of
generators, which are discussed in Sec. V B.
The complete list of all HNL production processes

included in this work is given in Table I. They include both
two-body and three-body decays, and are divided into six
categories: P → lN, P → P0lN, P → VlN, τ → HN,
τþ → lþντN, and τþ → lþνlN, whereP,V, andH represent
pseudoscalar mesons, vector mesons, and hadrons, respec-
tively. Representative quark-level Feynman diagrams for
these processes are given in Fig. 1, and expressions for

the corresponding branching fractions are given in
Appendix A.
The HNL production processes of Table I include all of

the possibly leading contributions. Note that all of the
parent hadrons are pseudoscalar mesons. Vector-meson
decays do not typically produce HNLs with significant
branching fractions because the decays to HNLs compete
with decays mediated by the strong interactions and so are
highly suppressed. HNL production in baryon decays is
also not included, since they are subdominant.
The branching fractions for meson and tau lepton decays

into HNLs are presented in Fig. 2 as functions of HNL
mass. For illustrative purposes, we show results for the 011
and 111 benchmark models with coupling parameter
ϵ ¼ 10−3. For each benchmark model, there are as many
as 150 HNL production processes. Rather than show

FIG. 1. Representative Feynman diagrams for the HNL production processes listed in Table I. The subscripts m and n are generation
indices.

TABLE I. HNL production processes included in HNLCalc. The processes are ordered by increasing parent particle mass; P, V, and
H denote pseudoscalar mesons, vector mesons, and hadrons, respectively; l ¼ e, μ, τ; andN is the HNL. Charge-conjugate processes are
also implemented but are not explicitly listed here. Representative Feynman diagrams for these processes are shown in Fig. 1.

HNL production processes

P → lN Fig. 1(a) πþ → lþN Kþ → lþN Dþ → lþN Dþ
s → lþN Bþ → lþN Bþ

c → lþN

P → P0lN Fig. 1(b) Kþ → π0lþN KS → πþl−N KL → πþl−N D0 → K−lþN D̄0 → πþl−N Dþ → π0lþN
Dþ → ηlþN Dþ → η0lþN Dþ → K̄0lþN Dþ

s → K0lþN Dþ
s → ηlþN Dþ

s → η0lþN
Bþ → π0lþN Bþ → ηlþN Bþ → η0lþN Bþ → D̄0lþN B0 → π−lþN B0 → D−lþN
B0
s → K−lþN B0

s → D−
s lþN Bþ

c → D0lþN Bþ
c → ηclþN Bþ

c → B0lþN Bþ
c → B0

s lþN

P → VlN Fig. 1(b) D0 → ρ−lþN D0 → K�−lþN Dþ → ρ0lþN Dþ → ωlþN Dþ → K̄�0lþN Dþ
s → K�0lþN

Dþ
s → ϕlþN Bþ → ρ0lþN Bþ → ωlþN Bþ → D̄�0lþN B0 → ρ−lþN B0 → D�−lþN

B0
s → K�−lþN B0

s → D�−
s lþN Bþ

c → D�0lþN Bþ
c → J=ψ lþN Bþ

c → B�0lþN Bþ
c → B�0

s lþN

τ → HN Fig. 1(c) τþ → πþN τþ → KþN τþ → ρþN τþ → K�þN

τþ → lþνN Figs. 1(d) and 1(e) τþ → lþν̄τN τþ → lþνlN

FENG, HEWITT, KLING, and LA ROCCO PHYS. REV. D 110, 035029 (2024)

035029-4



branching fractions for each of these modes, in Fig. 2 we
show the total BSM branching fraction for each parent
meson, which includes final states with all possible hadrons
and lepton flavors.
Because the total branching fractions include many

modes, distinctive aspects of individual modes are not
always apparent. However, we note a few general features:
(1) The branching fractions are typically larger for the

longer-lived mesons, where the competing SM
decay modes have smaller widths. This implies that
the BSM branching fractions are typically larger for
the lighter parent mesons.

(2) Of course, the branching fractions vanish when the
decay modes become kinematically inaccessible.
For example, Bðπþ → NXÞ vanishes at mN ¼
mπþ −mμ ≃ 34 MeV for the 011 benchmark and at
mN¼mπþ−me≃139MeV for the 111 benchmark.

(3) At the same time, although for many modes the
branching fraction drops as mN approaches the
kinematic threshold, this is not always the case. For
parent mesons where the dominant production mode
is chirality suppressed, such as for Kþ mesons where
the dominant HNL decay mode is Kþ → lþN, the
branching fraction vanishes for mN ¼ 0 and grows
asmN increases. In these cases, the branching fraction
can be large and even maximal very near threshold.

These facts, coupled with the fact that more light mesons
than heavy mesons are produced at the LHC, imply that
typically the dominant production mechanism for HNLs is
decays of the lightest parent mesons for which the decay is
kinematically allowed.
In Fig. 2 we fix ϵ ¼ 10−3, a value that is very roughly at

the limit of current constraints. We see that branching
fractions of 10−7 to 10−6 are allowed. Given the enormous
flux of far-forward mesons at the LHC, this implies that the
flux of highly collimated far-forward HNLs can be sig-
nificant. Of course, to be detected, the HNLs must decay in
the detector to a visible final state.

IV. HNL DECAYS

Once produced, HNLs decay to SM final states through
the CC and NC interactions of Eq. (5). The complete list of
HNL decay modes included in this work is given in
Table II. We consider purely leptonic three-body decays,
semileptonic two-body decays, and semileptonic three-
body decays. Representative Feynman diagrams for each
category are shown in Fig. 3. The HNL decay branching
fractions are computed using formulas derived in
Refs. [14,16], and the expressions for the branching
fractions are given in Appendix B.
To properly simulate the response of the detector to an

HNL decay, it is important to know and accurately
represent its final states. For example, it can make a big
difference experimentally whether an HNL decays to states
with charged tracks, e.g., N → νρ → νπþπ−, or to states
with only final-state photons, e.g., N → νπ0 → νγγ. For
this reason, it is generally insufficient to specify HNL
decays into quarks as it would rely on hadronization tools
to obtain hadronic final states. These tools are known not to

FIG. 2. Branching fractions BðP; τ → NXÞ as functions of the HNL mass mN for the 011 (left) and 111 (right) benchmarks and
ϵ ¼ 10−3. P represents pseudoscalar mesons and NX represents any final state containing the HNL N.

TABLE II. HNL decay modes included in HNLCalc, where H
denotes hadrons. Representative Feynman diagrams for these
modes are shown in Fig. 3. Quark level decays, νqq̄ and lud̄,
are used when computing the total hadronic width when
mN > 1.0 GeV.

HNL decay modes

νlþl− Fig. 3(a) νleþe− νlμ
þμ− νlτ

þτ−

l�νl0 l0∓ Fig. 3(b) l�νee∓ l�νμμ∓ l�νττ∓
νlν̄ν Fig. 3(c) νlν̄eνe νlν̄μνμ νlν̄τντ
νlH0 Fig. 3(d) νlπ

0 νlη νlη
0 νlρ

0 νlω νlϕ
l�H∓ Fig. 3(e) l�π∓ l�K∓ l�D∓ l�D∓

s l�ρ∓ l�K�∓
νlqq̄ Fig. 3(d) νluū νldd̄ νlss̄ νlcc̄ νlbb̄
l�ud̄0 Fig. 3(e) l−ud̄ l−us̄ l−ub̄ lþūd lþūs lþūb

l−cd̄ l−cs̄ l−cb̄ lþc̄d lþc̄s lþc̄b

SIMULATING HEAVY NEUTRAL LEPTONS WITH GENERAL … PHYS. REV. D 110, 035029 (2024)

035029-5



work well when the invariant mass of the hadronic final
state is close to or below the QCD confinement scale
because, for example, this treatment fails to model hadronic
resonances and kinematic thresholds. More generally, in
this regime, the factorization theorem loses validity, mean-
ing that one cannot factorize the HNL decay into quarks
and use quark hadronization into hadrons anymore. On the
other hand, for mN ≳ 1.0 GeV, decays into single mesons
are insufficient for computing the total HNL decay width,
since in this region multimeson decays become important.
To best model hadronic decays at all scales, while also

accurately computing the HNL lifetime, we follow the
approach taken in Refs. [14,16]. FormN < 1.0 GeV, decays
into single mesons, H ¼ π�;0; K�; ρ�;0;ω; K��; η; η0, are
calculated using their respective decay constants, fH, and
these are used to obtain the total hadronic decay width. For
mN ≥ 1.0 GeV, the total hadronicwidth is instead calculated
by summing up HNL decay widths into the quark-level final
states lqq̄0 and νqq̄. A QCD loop correction to account for

hadronization is applied. This estimated correction is
obtained from the knowncorrections up toOðα3sÞ in hadronic
τ decay; see Appendix B for its explicit form.

Included in our single-meson decays are decays into ρ
mesons. It has been shown in Ref. [14] that the dominant
source of two-pion final states are decays into ρ mesons
followed by ρ → ππ. We therefore take the difference
between the quark-level decay width and the single-meson
total width as an estimate of the decay width to final states
with ≥3 hadrons. Additionally, to avoid overestimating
the contribution of νss to the hadronic width below the 2mK
kinematic threshold, a phase-space suppression factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K=m
2
N

p
is applied to this decay. This same

approach is also applied to the decays τud and τus, with
kinematic thresholds at mτ þ 2mπ and mτ þmπ þmK ,
respectively.
In Figs. 4 and 5, we plot the branching fractions for

all relevant modes in the 011 and 111 benchmarks.
Additionally, the HNL lifetimes are given in Fig. 6.

FIG. 3. Representative Feynman diagrams for HNL decays. The subscripts m, n are generation indices.

FIG. 4. HNL branching fractions in the 011 benchmark model for the dominant decays via CC (left) and NC (right) interactions as
functions of mN . For mN ≲ 1.0 GeV the decays are primarily to pions, while for mN ≳ 1.0 GeV the decays are dominated by decays to
three or more hadrons. Decays to D mesons are subdominant, with BðN → lDÞ < 0.1%.
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For mN < mπ, HNL decays are dominated by NC decays
into the three-body final states νν̄ν and νeþe−. The
invisible decay mode dominates and the visible branching
fraction is only approximately 10% and 20% in the 011
and 111 benchmark models, respectively. However, for
mN > mπ , the two-body decays N → l�π∓ and N → νπ0

become kinematically accessible, resulting in a sharp drop
in the lifetime, as seen in Fig. 6. For masses mN > mπ , the
hadronic decay modes become dominant and the invis-
ible decay branching fraction is below 20% in both
scenarios.
It is important to note that in this work we neglect the

effects of spin correlations between production and decay.
These do not change the HNL lifetimes and event rates, but
they can impact the kinematic distributions of the final-state
particles. In the case of Majorana HNLs, where lepton-
number-conserving and lepton-number-violating proc-
esses, for example, Bc → μþμþτ−ν and Bc → μþμþτ−ν̄,
are both possible, interesting effects in kinematic distribu-
tions have the potential to differentiate between the two

final states, which are otherwise experimentally identical;
see, for example, Ref. [34].

V. HNLS AT FASER AND FASER2

In this section, we describe the modeling of meson and τ
production at the LHC and the resulting flux of HNLs at
FASER [22] and FASER2 [25] during Run 3 and the HL-
LHC era. Given the modeling of production and decay of
HNLs in Secs. III and IV, respectively, with the use of
HNLCalc, the FORESEE simulation framework can deter-
mine the sensitivity for HNL searches with forward
detectors at the LHC.

A. Collider and detector setup

FASER is located in a tunnel L ¼ 480 m downstream
from the ATLAS interaction point (IP). The FASER decay
volume is a cylinderwith a radius ofR ¼ 10 cm and a length
of Δ ¼ 1.5 m along the beam collision axis. The decay
volume extends to angles θ ≃ 0.2 mrad from the beamline
and pseudorapidities η≳ 9.2. We consider the reach of
FASER during Run 3 of the LHC with an integrated
luminosity of 250 fb−1. We also consider the scenario in
which the FASER detector runs throughout the HL-LHC era
with an integrated luminosity of 3 ab−1.
In addition, we consider FASER2, one of the experi-

ments proposed for the future FPF [24,25]. FASER2 will be
positioned roughly L ¼ 650 m away from the ATLAS IP.
Its decay volume has length Δ ¼ 10 m and a rectangular
cross section with dimensions 3m × 1 m [35]. The
FASER2 decay volume extends to angles θ ≃ 2.4 mrad
from the beamline and pseudorapidities η≳ 6.7.
During Run 3, the LHC has operated with a pp c.m.

energy of
ffiffiffi
s

p ¼ 13.6 TeV. For the HL-LHC era, the c.m.
energy is expected to be increased to 14 TeV. We find
negligible differences in sensitivities from this change in
c.m. energy, and for simplicity we assume

ffiffiffi
s

p ¼ 14 TeV
for all results derived here. The detector configurations are
summarized in Table III.

FIG. 5. As in Fig. 4, but for the 111 benchmark model.

FIG. 6. Lifetimes for the 011 and 111 benchmark models with
ϵ ¼ 10−3. A visible kink in the lifetime can be observed at
mN ≈mπ , where the decay N → νπ0 becomes kinematically
accessible.

SIMULATING HEAVY NEUTRAL LEPTONS WITH GENERAL … PHYS. REV. D 110, 035029 (2024)

035029-7



B. HNL production rates at the LHC

HNL production rates at the LHC are obtained in
FORESEE through the MC sampling of the decays of
parent particles [26]. The spectra for parent pions and kaons
are obtained using the dedicated hadronic interaction model
EPOS LHC [36]. For charm and bottom hadrons, we use
the spectra obtained from POWHEG [37] matched with
PYTHIA [38], as presented in Ref. [39]. Tau leptons are
produced primarily in charm and bottom hadron decay, so
we follow the same prescription there. The primary source
of uncertainty on the HNL flux originates from the
modeling of hadron production. To estimate this uncer-
tainty, we follow the prescription of Ref. [40] and consider
the range of predictions from EPOS LHC, QGSJET
2.04 [41], and Sibyll 2.3d [42] to model the uncertainty
for light hadron production, and we take account of scale
variations [39] to model the flux uncertainty for heavy
hadron production.
The production rates for the 011 and 111 benchmarks at

the LHC are shown in Figs. 7 and 8. These figures show
the total flux of HNLs produced in the direction of FASER
and FASER2, respectively. For FASER, Fig. 7 shows the
rate for production with an angle θ ≤ 0.1 m=480 m ¼
0.2 mrad relative to the beam collision axis, and for
FASER2, Fig. 8 shows the rate for the production of
parent particles that pass through FASER2’s 3 m× 1 m

transverse area. As anticipated in Sec. III, the dominant
production rate is typically from the lightest meson for
which the decay is kinematically accessible. For the 111
scenario, the decay π → eN is possible, and so this is the
dominant production process for very light N with masses
mN ∼ 100 MeV. For the 011 scenario, this decay is not
allowed, and pion decays are never dominant for
mN ≳ 100 MeV. For larger mN, the results for the 011
and 111 scenarios are similar, with the production rates
cutting off as the kaon, tau-lepton, D-meson, and B-meson
kinematic thresholds are passed.

C. Signal and background considerations

Depending on their mass, HNLs can decay into a variety
of final states, shown in Figs. 4 and 5. The dominant decay
channels consist of either two charged particles, such as the
decays N → νlþl− and N → lþπ−, or photons, especially
from N → νπ0 → νγγ. The corresponding experimental
signatures in the FASER detector would consist of highly
energetic charged particles or photons that emerge from the
decay volume. The charged particle signal would leave
high-momentum tracks in the FASER spectrometer that are
consistent with a single vertex inside the decay volume
and whose combined momentum points back to the IP.
If the final state contains electrons, they would addition-
ally leave a sizable energy deposit in the calorimeter.

TABLE III. Parameters for the three experimental configurations considered: FASER (Run 3), FASER
(HL-LHC), and FASER2 (HL-LHC). L is the distance from the IP to the front of the detector, Δ is the length
of the detector along the beam axis, Geometry specifies the cross sectional area (cylindrical (cyl.) for FASER,
rectangular (rect.) for FASER2), and L is the integrated luminosity. Both FASER and FASER2 are assumed to be
centered on the beam collision axis.

L Δ Geometry L

FASER (Run 3) 480 m 1.5 m Cyl. R ¼ 10 cm 250 fb−1

FASER (HL-LHC) 480 m 1.5 m Cyl. R ¼ 10 cm 3 ab−1

FASER2 (HL-LHC) 650 m 10 m Rect. 3 m × 1 m 3 ab−1

FIG. 7. Production rate of HNLs in the direction of FASER with θ < 0.2 mrad. The rates are grouped by parent particle and are
obtained by MC integration in FORESEE for the 011 (left) and 111 (right) benchmarks, with a coupling of ϵ ¼ 10−3.
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The multiphoton signal would leave a characteristic signal
in the preshower and deposit a large amount of energy in
the calorimeter. In both cases, the signal would not trigger
the front veto.
The potential backgrounds for long-lived particle

searches at FASERare induced by either high-energymuons
or neutrinos coming from the direction of the IP. However,
muons are efficiently detected by FASER’s front veto, while
neutrino interactions are relatively rare and typically have
different kinematics. The FASER Collaboration presented
their first analysis on dark photons, providing a two-track
signal, in which they accounted for a variety of possible
background sources associated with veto inefficiencies,
neutral hadrons, muons missing the veto, neutrinos, and
noncollision background [43]. These backgrounds were
determined to be either very small or negligible, and no
events with two reconstructed tracks passing the veto
requirement have been observed. We therefore assume that
backgrounds for multitrack signatures can be considered
negligible.
More recently, the FASER Collaboration also presented

results for a search for axion-like particles, considering a
multiphoton signal [44]. A potentially sizable background
from neutrinos interacting at the end of the detector was
identified, particularly at energies below 1 TeV. To address
this issue, a high-precision preshower upgrade is planned to
be installed at the end of 2024, which will allow the
experiment to identify multiphoton signatures and differ-
entiate them from neutrino backgrounds [45]. We therefore
assume that backgrounds for multiphoton signatures are
also negligible.
The design for FASER2 is currently under

development [25]. It will have a similar conceptual archi-
tecture as the currently operating FASER detector, and
background rejection is one of the key considerations for
the detector design. Although the design has not yet been
finalized, it is envisioned that the same searches will be
background free.

VI. REACH

We now present the N ¼ 3 signal event contours in the
ðmN; ϵÞ plane for the various benchmark scenarios. In the
absence of background, these may be considered to be
discovery contours. The results for the 100, 010, and 011
benchmark models are given in Fig. 9, and the results for
the 011 and 111 benchmark models are given in Fig. 10.
The signal event rates include all of the production modes
listed in Table I and all of the decay modes shown in
Table II, except for the invisible decay modes νν̄ν.
Additionally, a momentum cutoff of pN > 100 GeV is
applied. The event rates are determined by setting
nsample ¼ 25 in the FORESEE MC simulation [26],
and the ðmN; ϵÞ parameter space is scanned using 100
equally log-spaced masses mN from 100 MeV to 4 GeV,
and 50 equally log-spaced couplings ϵ from 10−5 to 1.
Results are presented for the three FASER/FASER2

configurations shown in Table III. The shaded band
corresponds to the flux uncertainty, following the prescrip-
tion in Sec. V B. Sensitivity contours for the 100, 010, and
001 models have been investigated previously [28,30]. Our
obtained sensitivities are consistent with these results over
most of the mass range. They are slightly improved for
mN ≲mK , due to an issue that was found in the kaon decay
modes of these previous results. Sensitivity reaches for
FASER and FASER2 for the 011 and 111 models have not
been determined before.
Various threshold effects can be observed in the sensi-

tivity contours, depending on which production channels
dominate HNL production. In the 100 benchmark, the
production of HNLs is predominantly governed by pions in
the region 100 MeV ≤ mN ≤ mπ , transitions to being
dominated by kaons in the range mπ ≤ mN ≤ mK, shifts
to being influenced by D and τ particles within the interval
mK ≤ mN ≤ mD, and eventually becomes dominated by B
mesons for mN ≥ mD. Additionally, one can infer from the
sensitivity contours that the 011 benchmark sensitivity is

FIG. 8. Production rate of HNLs in the direction of FASER2, that is, that pass through FASER2’s transverse area of 3 m × 1 m. The
rates are grouped by parent particle and are obtained by MC integration in FORESEE for the 011 (left) and 111 (right) benchmarks, with
a coupling of ϵ ¼ 10−3.
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primarily driven by the Uμ coupling and the 111 bench-
mark sensitivity is primarily driven by the Ue coupling.
It is, of course, interesting to compare the sensitivity of

FASER and FASER2 to current constraints. For the 100,
010, and 001 models, the exclusion bounds have been
determined for many past experiments and are available

using the PYTHON package HNL-Limits [46]. For the 100
and 001 benchmarks, the BEBC and CHARM bounds in
HNL-Limits were refined in Ref. [47] and we adopt those
limits. For the 010 benchmark, we use the lower bound
provided by the CHARM Collaboration [48]. To establish
the upper limit for this benchmark, we use the bounds

FIG. 9. N ¼ 3 signal event contours for the single-coupling 100 (top), 010 (middle), and 001 (bottom) benchmark models. Each blue
(bolded) contour corresponds to a detector/collider configuration given in Table III. Current bounds from other particle experiments
exclude the gray shaded regions, and BBN constraints exclude the region below the dashed contour. All of the production modes in
Table I are included, and all of the decay modes in Table II are included except for the invisible νν̄νmodes. For the FASER and FASER2
contours, a momentum cut of pN > 100 GeV is applied.

FENG, HEWITT, KLING, and LA ROCCO PHYS. REV. D 110, 035029 (2024)

035029-10



derived for the 100 benchmark model from the CHARM
recasting detailed in Ref. [47] as an approximation. We
further apply a cutoff at mDs

−mμ in the 010 and 011
CHARM bounds to account for the allowed phase space. In
addition, for small masses, there are constraints from big
bang nucleosynthesis (BBN), which constrains the lifetime
of the HNL to be less than 0.1 s [49].
For the 011 and 111 models, the sensitivities of previous

experiments are not often found in the literature. To
compare FASER and FASER2 to existing constraints, an
analysis similar to the one we have done for FASER and
FASER2 must be done, requiring a dedicated analysis for
each model and experiment. This is beyond the scope of
this work. However, we may roughly estimate the sensi-
tivities of previous experiments in the 011 and 111 models
by extrapolating their limits in the 100, 010, and 001
models, as we now describe.
In peak search experiments, one looks for evidence of

HNL production by searching for peaks in the energy
spectrum of coproduced particles. One such example are

the bounds placed by the PIENU Collaboration [50], where
they performed a search for peaks in the positron energy
spectrum in the process πþ → Neþ. Bounds in these types
of experiments place limits on Uα that are independent of
the HNL lifetime and decay products and thus will not be
effected by the introduction of mixed couplings. The
bounds on Uα can therefore be rescaled directly to obtain
bounds for ϵ.
In prompt decay or decay-in-flight searches, such as

those at ATLAS [51] or CHARM [52], one searches for
evidence of HNLs by looking for HNL decay products
within the detector. In these experiments, the introduction
of mixed couplings can effect the kinematic distributions of
final states, as well as the HNL lifetime, causing a change in
the overall expected event rate. As a very rough approxi-
mation, we can neglect the effect on the kinematics by
making the simplifying assumptions that the detector
acceptance and efficiency are uniform across all bench-
marks. In the long-lifetime limit, then, the expected event
rate in these experiments scales as

FIG. 10. As in Fig. 9, but for the mixed-coupling 011 (top) and 111 (bottom) benchmark models. In contrast to the single-coupling
models, constraints from other experiments are not available in the literature. The current bounds shown in the gray shaded region are
roughly estimated based on a method described in the text.
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Nα ∝
jUαj2
τ

; ð8Þ

where Nα is the contribution to the total event rate
occurring through να mixing. This allows one to relate
the expected event rates between the mixed-coupling and
single-coupling scenarios by

Nα;m

Nα;s
¼ jUα;mj2

jUα;sj2
τs
τm

; ð9Þ

where the subscript m (s) denotes the mixed (single)
coupling scenario. Approximate exclusion bounds derived
in this way for the 011 and 111 benchmarks are plotted
in Fig. 10.
For the sensitivity reaches in the single-coupling scenar-

ios shown in Fig. 9, the results may be summarized as
follows. For FASER (Run 3), the reach beyond current
bounds is rather modest and is limited to the 100 model.
For FASER (HL-LHC), the reach is extended, with dis-
covery prospects in the 100 and 010 scenarios for
mN ∼ 2 GeV. Finally, for FASER2 (HL-LHC), there are
significant regions of parameter space in all three models
with sensitivity beyond current bounds. This includes
regions of parameter space with 10−7 ≲ ϵ2 ≲ 10−5 and
2 GeV≲mN ≲ 4 GeV, where the HNLs are produced in
B-meson decays, and also regions of low ϵ at lower mN.
This is especially notable in the 001 scenario, where the
new parameter space probed extends all the way down to
HNL masses of approximately 150 MeV.
For the sensitivity contours in mixed coupling scenarios

shown in Fig. 10, we find that the comparison of the reach
of FASER and FASER2 relative to current bounds for the
011 and 111 scenarios approximately mirrors those for the
010 and 100 models, respectively. In particular, for
FASER2 (HL-LHC) there is again new parameter space
probed with 10−7 ≲ ϵ2 ≲ 10−5 and 2 GeV≲mN ≲ 4 GeV,
and also improved sensitivity over current bounds at low ϵ
and masses 400 MeV≲mN ≲ 2 GeV. However, we reit-
erate that in this comparison the FASER and FASER2
bounds derived here are compared to current bounds that
have been derived in the very rough way we outlined above.
Detailed comparisons require dedicated analyses of the
reach of other experiments in these less minimal, mixed-
coupling scenarios.
Finally, let us comment on the flux uncertainties, which

are shown as shaded bands in Figs. 9 and 10. Despite
substantial flux uncertainties, which can be as large as a
factor of 2 for charm production, their overall impact on the
sensitivity is relatively small. This is due to a strong
coupling dependence of the event rate at both small and
large couplings. The flux uncertainties mainly affect the
reach at the higher mass edge of the sensitivity contour. We
note that further measurement, especially the measurement

of collider neutrino fluxes, will help to further decrease
those flux uncertainties.

VII. CONCLUSIONS

HNLs are well motivated in extensions of the SM
designed to address the outstanding puzzles of neutrino
masses, dark matter, and baryogenesis. In this work, we
comprehensively studied the possibility of probing
HNLs with masses in the 100 MeV to 10 GeV range and
completely arbitrary mixings with the three active SM
neutrinos. We produced a comprehensive package,
HNLCalc, that computes the properties of the HNL model,
including hundreds of production and decay modes. Using
HNLCalc, we created an HNL module in the FORESEE
simulation package to evaluate the discovery potential of
HNLs in various experimental setups.
In particular, we estimated the sensitivity to HNLs

for FASER in Run 3, FASER at the HL-LHC, and
FASER2 at the HL-LHC. As an illustration of the flexibility
of HNLCalc, we considered five benchmark models. For
the well-studied 100, 010, and 001 benchmarks, we found
that FASER in Run 3 has rather limited discovery pros-
pects. However, FASER at the HL-LHC can probe new
parameter space with mN ∼ 2 GeV, and FASER2 at the
HL-LHC can probe new parameter space for a wide range
of HNL masses from 150 MeV to 4 GeV.
Additionally, we considered two new mixed-coupling

benchmark models, 011 and 111, and determined the
sensitivity of FASER and FASER2. These new benchmarks
are not well studied and there are no comprehensive studies
of the sensitivity of other current and proposed experiments
in these models. We roughly estimated the sensitivity of
past experiments and found that FASER2 at the HL-LHC
can likely probe new parameter space for a wide range of
HNL masses from 400 MeV to 4 GeV.
Overall, this study contributes significantly to the under-

standing of HNLs and their potential implications in
particle physics. We produced HNLCalc, a flexible, fast,
comprehensive, and publicly available tool for computing
HNL decay and production rates with arbitrary couplings.
In this study, we used this tool to extend the FORESEE
simulation package to incorporate HNLs. Models with
general HNL couplings are more complicated than models
with a single coupling, but they are also more well
motivated, and studies of the discovery prospects of other
experiments in these models are encouraged.
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APPENDIX A: HNL PRODUCTION MODES

In this appendix,we present a comprehensive compilation
of expressions for the leading processes for HNL produc-
tion. Specifically, in the following five subsections we
present the branching fractions for the processes P → lN,
P → P0lN,P → VlN, τ → PN, and τ → νlN; ν̄lN, whereP
and P0 denote pseudoscalar mesons, V denotes vector
mesons, l is a charged lepton, and N is the HNL. The
decays implemented are shown in Table I.

1. Two-body pseudoscalar decays P → lN

The two-body leptonic decays of pseudoscalar mesons
into HNLs have branching fractions [18,21]

BðP → lαNÞ ¼ τPjUαj2
G2

FmPm2
N jVPj2f2P
8π

×

�
1 −

m2
N

m2
P
þ 2

m2
l

m2
P
þ m2

l

m2
N

�
1 −

m2
l

m2
P

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þm2

N

m2
P
−
m2

l

m2
P

�
2

− 4
m2

N

m2
P

s
; ðA1Þ

where α ¼ e, μ, τ, τP is the meson lifetime,Uα parametrizes
the mixing with the active neutrino, and GF is the Fermi
constant. The decay constants fP are given in Table IV, and
VP denotes the relevant Cabibbo-Kobayashi-Maskawa
(CKM)matrix element; for example, forP ¼ πþ,VP ¼ Vud.

2. Three-body pseudoscalar decays P → P0lN

For pseudoscalar mesons decaying semileptonically to
pseudoscalar mesons, the differential branching frac-
tion is [21]

dBðP → P0lαNÞ
dENdq2

¼ τPjUαj2
G2

FjVPP0 j2
64π3m2

P
cPff2−ðq2Þ · ½q2ðm2

N þm2
l Þ − ðm2

N −m2
l Þ2�

þ 2fþðq2Þf−ðq2Þ½m2
Nð2m2

P − 2m2
P0 − 4ENmP −m2

l þm2
N þ q2Þ þm2

l ð4ENmP þm2
l −m2

N − q2Þ�
þ f2þðq2Þ½ð4ENmP þm2

l −m2
N − q2Þð2m2

P − 2m2
P0 − 4ENmP −m2

l þm2
N þ q2Þ

− ð2m2
P þ 2m2

P0 − q2Þðq2 −m2
N −m2

l Þ�g; ðA2Þ

where q2 ¼ ðpl þ pNÞ2, EN is the HNL energy in the P
c.m. frame, and VPP0 is the appropriate CKM matrix
element for the process (e.g., for Dþ → K̄0lþN,
VPP0 ¼ Vcs). The constant cP and the form factors
f−ðq2Þ and fþðq2Þ are defined below. Equation (A2)
corrects a minor typo in Eq. (B2) of Ref. [21], which
was missing a plus sign. Additionally, we replace the
masses mK and mπ in Eq. (B2) of Ref. [21] with mP and
mP0 , respectively.

To determine the branching fractions, we must integrate
Eq. (A2) over the region [60]

ðml þmNÞ2 ≤ q2 ≤ ðmH −mH0 Þ2;
ENðm2min

NH0 ; q2Þ ≤ EN ≤ ENðm2max
NH0 ; q2Þ; ðA3Þ

where

ENðm2
NH0 ; q2Þ ¼ q2 þm2

NH0 −m2
H0 −m2

l

2mH
;

m2min
NH0 ¼ ðE�

N þ E�
H0 Þ2

−
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E�2
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q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�2
H0 −m2
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q �2
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m2max
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−
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q
−
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q �2
; ðA4Þ

where E�
N ¼ ðm2

lN −m2
l þm2

NÞ=2mlN , and E�
H0 ¼ ðm2

H −
m2

lN −m2
H0 Þ=2mlN are the energies of N and H0 in the c.m.

frame of the l − N system. Equation (A3) corrects a typo
found below Eq. (2) of Ref. [61], where the q2 dependence
of the integration bounds for EN was neglected.

TABLE IV. Pseudoscalar and vector-meson decay constants
used in this study.

P fP (MeV) V fV (MeV)

π0 [55] 130.3 ρ0 [56] 220
πþ [55] 130.3 ρþ [56] 220
Kþ [55] 156.4 ω [56] 195
η [57] 78.4 K�þ [55] 204
η0 [57] −95.7 ϕ [55] 229
Dþ [58] 222.6
Dþ

s [59] 280.1
Bþ [21] 190
Bþ
c [21] 480
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The hadronic form factors f−ðq2Þ and fþðq2Þ appearing
in Eq. (A2) are defined by [61]

fþðq2Þ ¼
fþð0Þ

ð1 − q2=m2
V 0 Þ ; ðA5Þ

f0ðq2Þ ¼
f0ð0Þ

ð1 − q2=m2
SÞ
; ðA6Þ

f0ðq2Þ ¼ fþðq2Þ þ
q2

m2
P −m2

P0
f−ðq2Þ: ðA7Þ

Here mV 0 and mS are the masses of the vector and scalar
resonances, respectively. These are determined from the
quark transition of the decay (e.g., for Dþ → K̄0lþN,
which involves a c → s quark transition, mV 0 ¼ mD�þ

s
,

and mS ¼ mDþ
s
). It is important to note that fþð0Þ and

f−ð0Þ are determined by Eqs. (A5) to (A7) and therefore we
only provide values for f0ð0Þ, which are listed in Table V.
The constants cP are determined by the quark content of

the initial- and final-state mesons. As an example, consider
the decay Dþ → ηlþN, which depends on the matrix
element hηjd̄γμPLcjDþi. The quark content of η and η0
is related to η8 and η1 through a rotation matrix:�

η

η0

�
¼

�
cos θP − sin θP
sin θP cos θP

��
η8

η1

�
: ðA8Þ

Inserting η8¼ðuūþdd̄−2ss̄Þ= ffiffiffi
6

p
and η1¼ðuūþdd̄þss̄Þ=ffiffiffi

3
p

, we obtain

η ¼
�
cos θPffiffiffi

6
p −

sin θPffiffiffi
3

p
�
uūþ

�
cos θPffiffiffi

6
p −

sin θPffiffiffi
3

p
�
dd̄

þ
�
−
2 cos θPffiffiffi

6
p −

sin θPffiffiffi
3

p
�
ss̄: ðA9Þ

From this,we observe that thematrix element hηjd̄γμPLcjDþi
is proportional to ðcos θPffiffi

6
p − sin θPffiffi

3
p Þhdjd̄γμPLcjci, where

hdjd̄γμPLcjci is the same matrix element encountered in

the decayD0 → π−lþN and thus shares the same form factors.
This implies that the parameter cP for the decayDþ → ηlþN
is ðcos θPffiffi

6
p − sin θPffiffi

3
p Þ2. The values of cP are listed in Table V.

3. Three-body pseudoscalar decays P → VlN

For pseudoscalar mesons decaying semileptonically to
vector mesons, the differential branching fraction is [21]

dBðP→ VlαNÞ
dENdq2

¼ τPjUαj2
G2

FjVPV j2
32π3mP
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4m2
V
− q2

��
m2

N þm2
l − q2 þω2

Ω2 −ω2

m2
V

�

þ 2f3f5
h
m2

Nω
2 þ ðΩ2 −ω2Þm2

l

i� Ω4

4m2
V
− q2

�
þ 2f1f2

h
q2ð2ω2 −Ω2Þ þΩ2ðm2

N −m2
l Þ
i

þ f21
h
Ω4ðq2 −m2

N þm2
l Þ− 2m2

V

h
q4 − ðm2

N −m2
l Þ2

i
þ 2ω2Ω2ðm2

N − q2 −m2
l Þ þ 2ω4q2

i


þ f2f5
2

�
ω2

Ω2

m2
V
ðm2

N −m2
l Þ þ

Ω4

m2
V
m2

l þ 2ðm2
N −m2

l Þ2 − 2q2ðm2
N þm2

l Þ
�

þ f2f3

�
Ω2ω2

Ω2 −ω2

m2
V

þ 2ω2ðm2
l −m2

NÞ þΩ2ðm2
N −m2

l − q2Þ
�
; ðA10Þ

TABLE V. Parameters f0ð0Þ and cP, which appear in the
P → P0lN branching fraction expressions (A2) to (A7), where
θP ¼ −11.5° [62].

Decay channel f0ð0Þ cP

Kþ → π0 [63] 0.970 1=2
KS → πþ [64] 0.9636 1=2
KL → πþ [64] 0.9636 1=2
D̄0 → πþ [65] 0.69 1
D̄0 → Kþ [66] 0.747 1
Dþ → π0 [65] 0.69 1=2
Dþ → η [65] 0.69 ðcos θPffiffi

6
p − sin θPffiffi

3
p Þ2

Dþ → η0 [65] 0.69 ðsin θPffiffi
6

p þ cos θPffiffi
3

p Þ2
Dþ → K̄0 [66] 0.747 1
Dþ

s → K̄0 [66] 0.747 1
Dþ

s → η [67] 0.495 1
Dþ

s → η0 [67] 0.557 1
Bþ → π0 [65] 0.29 1=2
Bþ → η [65] 0.29 ðcos θPffiffi

6
p − sin θPffiffi

3
p Þ2

Bþ → η0 [65] 0.29 ðsin θPffiffi
6

p þ cos θPffiffi
3

p Þ2
Bþ → D̄0 [68] 0.66 1
B0 → πþ [65] 0.29 1
B0 → D− [68] 0.66 1
B0
s → K− [65] 0.31 1

B0
s → D−

s [69] −0.65 1
Bþ
c → D0 [70] 0.69 1

Bþ
c → ηc [70] 0.76 1

Bþ
c → B0 [70] −0.58 1

Bþ
c → B0

s [70] −0.61 1

FENG, HEWITT, KLING, and LA ROCCO PHYS. REV. D 110, 035029 (2024)

035029-14



where ω2 ¼ m2
P −m2

V þm2
N −m2

l − 2mPEN and Ω2 ¼
m2

P −m2
V − q2. The constants cV are conceptually identical

to the constants cP discussed in Sec. A 2.
The form factors are

f1 ¼
V

mP þmV
; ðA11Þ

f2 ¼ ðmP þmVÞA1; ðA12Þ

f3 ¼ −
A2

mP þmV
; ðA13Þ

f4 ¼ ½mVð2A0 − A1 − A2Þ þmPðA2 − A1Þ�
1

q2
; ðA14Þ

f5 ¼ f3 þ f4: ðA15Þ

A0 and V have the form

fðq2Þ ¼ fð0Þ
ð1 − q2=m2Þð1 − σ1q2=m2 þ σ2q4=m4Þ ; ðA16Þ

where m ¼ mS for A0 and m ¼ mV 0 for V. A1 and A2 have
the form

fðq2Þ ¼ fð0Þ
ð1 − σ1q2=m2

V 0 þ σ2q4=m4
V 0 Þ : ðA17Þ

The parameters mS and mV 0 are determined from the
decay mode in a manner identical to P → P0lN. The
parameters σ1 and σ2 are unique for each of the form

factors A0, A1, A2, and V. A summary of the form factor
parameters can be found in Table VI.
The form factors for certain Bc decays are a special case

and all of the form factors A0, A1, A2, and V are chosen to
have the form [70]

fðq2Þ ¼ fð0Þ
1 − q2=m2

fit − δðq2=m2
fitÞ2

; ðA18Þ

where δ andmfit are fitting parameters unique to each of the
form factors A0, A1, A2, and V. These fitting parameters for
the relevant decays can be found in Table VII.

4. Two-body tau decays τ → PN

The branching fraction for the τ → PN decays is [21]

Bðτ→ PNÞ ¼ ττjUτj2
G2

Fm
3
τ jVPj2f2P
16π

×

��
1−

m2
N

m2
τ

�
2

−
m2

P

m2
τ

�
1þm2

N

m2
τ

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−

ðmP −mNÞ2
m2

τ

��
1−

ðmP þmNÞ2
m2

τ

�s
;

ðA19Þ

where VP is the CKM matrix element of P (e.g., if P ¼ π,
then VP ¼ Vud). The τ lepton can also decay into a vector
meson. In this case, the branching fraction is [21]

TABLE VI. Parameters f0ð0Þ, σ1, σ2, and cV which appear in the P → VlN branching fraction expressions (A10) to (A17).

A0 A1 A2 V

Decay channel f0ð0Þ σ1 σ2 f0ð0Þ σ1 σ2 f0ð0Þ σ1 σ2 fð0Þ σ1 σ2 cV

D0 → ρ− [65] 0.66 0.36 0 0.59 0.50 0 0.49 0.89 0 0.90 0.46 0 1
D0 → K�− [65] 0.76 0.17 0 0.66 0.3 0 0.49 0.67 0 1.03 0.27 0 1
Dþ → ρ0 [65] 0.66 0.36 0 0.59 0.50 0 0.49 0.89 0 0.90 0.46 0 1=2
Dþ → ω [65] 0.66 0.36 0 0.59 0.50 0 0.49 0.89 0 0.90 0.46 0 1=2

Dþ → K�0 [65] 0.76 0.17 0 0.66 0.3 0 0.49 0.67 0 1.03 0.27 0 1

Dþ
s → K�0 [65] 0.67 0.2 0 0.57 0.29 0.42 0.42 0.58 0 1.04 0.24 0 1

Dþ
s → ϕ [65] 0.73 0.10 0 0.64 0.29 0 0.47 0.63 0 1.10 0.26 0 1

Bþ → ρ0 [65] 0.30 0.54 0 0.26 0.73 0.1 0.29 1.4 0.5 0.31 0.59 0 1=2
Bþ → ω [65] 0.30 0.54 0 0.26 0.54 0.1 0.24 1.40 0.50 0.31 0.59 0 1=2

Bþ → D�0 [65] 0.69 0.58 0 0.66 0.78 0 0.62 1.04 0 0.76 0.57 0 1

B0 → ρ− [65] 0.30 0.54 0 0.26 0.54 0.1 0.24 1.40 0.50 0.31 0.59 0 1
B0 → D�− [65] 0.69 0.58 0 0.66 0.78 0 0.62 1.04 0 0.76 0.57 0 1
B0
s → K�− [65] 0.37 0.60 0.16 0.29 0.86 0.6 0.26 1.32 0.54 0.38 0.66 0.30 1

B0
s → D�−

s [71] 0.67 0.35 0 0.70 0.463 0 0.75 1.04 0 0.95 0.372 0 1
Bþ
c → D�0 [70] 0.56 0 0 0.64 0 0 −1.17 0 0 0.98 0 0 1
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Bðτ→ VNÞ ¼ ττjUτj2
G2

Fm
3
τ jVV j2f2V
8π

��
1−

m2
N

m2
τ

�
2

þm2
V

m2
τ

�
1þm2

N − 2m2
V

m2
τ

��

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1−

ðmV −mNÞ2
m2

τ

��
1−

ðmV þmNÞ2
m2

τ

�s
;

ðA20Þ

where VV is the CKMmatrix element for the corresponding
vector meson. Note that in the literature this branching
fraction is often written in terms of the coupling
gV ¼ mVfV [14].

5. Three-body tau decays τ → νlN;ν̄lN

Last, we consider three-body τ decays. The differential
branching fractions are [21]

dBðτ → ντlαNÞ
dEN

¼ ττjUαj2
G2

Fm
2
τ

2π3
EN

�
1 −

m2
l

m2
τ þm2

N − 2ENmτ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
N −m2

N

q �
1þm2

N −m2
l

m2
τ

− 2
EN

mτ

�
; ðA21Þ

and

dBðτ → ν̄αlαNÞ
dEN

¼ ττjUτj2
G2

Fm
2
τ

4π3

�
1 −

m2
l

m2
τ þm2

N − 2ENmτ

�
2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
N −m2

N

q

×

�
ðmτ − ENÞ

�
1 −

m2
N þm2

l

m2
τ

�
−
�
1 −

m2
l

m2
τ þm2

N − 2ENmτ

��ðmτ − ENÞ2
mτ

þ E2
N −m2

N

3mτ

��
; ðA22Þ

where α ≠ τ. The bounds of integration are

mN ≤ EN ≤
m2

τ þm2
N −m2

l

2mτ
: ðA23Þ

APPENDIX B: HNL DECAY RATES

HNL decays are induced by both CC and NC inter-
actions. These interactions are a result of mixing with the
SM neutrino gauge eigenstates, which can be seen in the
following interacting Lagrangian:

−LCC ¼ gffiffiffi
2

p
X

α¼e;μ;τ

U�
αWþ

μ NcγμPLlα þ H:c:; ðB1Þ

−LNC ¼ g
2 cos θW

X
α¼e;μ;τ

U�
αZμNcγμPLνα þ H:c: ðB2Þ

In our analysis of HNL decays, we adopt the convention
of Ref. [15], where decay rates are summed over all final
neutrino mass eigenstates, giving the relationship

ΓðN → νXÞ ¼
X

i¼1;2;3

ΓðN → νiXÞ

¼
X

α¼e;μ;τ

ΓðN → ναXÞ þ ΓðN → ναXÞ: ðB3Þ

The benefit of this choice is that it allows one to remain
agnostic about whether light active neutrinos να are
treated as Dirac or Majorana particles [15], a convention
choice that leads to nonphysical, factor-of-2 discrepancies
throughout the literature [10–12,14,21].

1. Leptonic decays

HNLs decay into purely leptonic final states through the
CC and NC processes shown in Figs. 3(a)–3(c). The decay
widths are [16]

TABLE VII. Parameters f0ð0Þ, δ, mfit, and cV for certain Bc → VlN decays appearing in the branching fraction expressions (A10)
and (A18).

A0 A1 A2 V

Decay channel f0ð0Þ δ mfit f0ð0Þ δ mfit f0ð0Þ δ mfit fð0Þ δ mfit cV

Bþ
c → J=ψ [70] 0.68 1.40 8.20 0.68 0.052 5.91 −0.004 −0.004 5.67 0.96 0.0013 5.65 1

Bþ
c → B�0 [70] −0.27 0.13 1.86 0.6 −1.07 3.44 10.8 −0.09 1.73 3.27 −0.052 1.76 1

Bþ
c → B�0

s [70] −0.33 0.13 1.86 0.4 −1.07 3.44 10.4 −0.09 1.73 3.27 −0.052 1.76 1
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ΓðN → νl−α lþα Þ ¼
G2

Fm
5
N

96π3
X

β¼e;μ;τ

jUβj2½ðCl
1 þ 2 sin2 θWδαβÞf1ðxαÞ þ ðCl

2 þ sin2 θWδαβÞf2ðxαÞ�; ðB4Þ

ΓðN → νl−α l
þ
β Þ ¼

G2
Fm

5
N

192π3
½jUαj2I1ð0; x2α; x2βÞ þ jUβj2I1ð0; x2β; x2αÞ� ðα ≠ βÞ; ðB5Þ

ΓðN → νν̄νÞ ¼
X

α¼e;μ;τ

X
β¼e;μ;τ

Γ�ðN → ναν̄βνβÞ ¼
G2

Fm
5
N

96π3

� X
α¼e;μ;τ

jUαj2
�
; ðB6Þ

where xi ¼ mi
mN
, Cl

1 ¼ ð1 − 4 sin2 θW þ 8 sin4 θWÞ=4, and Cl
2 ¼ ð2 sin4 θW − sin2 θWÞ=2. The kinematic functions f1ðxÞ,

f2ðxÞ, and I1ðx; y; zÞ are given by

I1ðx; y; zÞ ¼ 12

Z ð1− ffiffi
z

p Þ2

ð ffiffi
x

p þ ffiffi
y

p Þ2
ds
s
ðs − x − yÞð1þ z − sÞλ1

2ð1; x; yÞλ1
2ð1; s; zÞ; ðB7Þ

f1ðxÞ ¼ ð1 − 14x2 − 2x4 − 12x6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
þ 12x4ðx4 − 1ÞLðxÞ; ðB8Þ

f1ðxÞ ¼ 4½x2ð2þ 10x2 − 12x4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
þ 6x4ð1 − 2x2 þ 2x4ÞLðxÞ�; ðB9Þ

where

LðxÞ ¼ ln

�
1 − 3x2 − ð1 − x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p

x2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x2

p
Þ

�
; ðB10Þ

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yx − 2xz: ðB11Þ

FormN < mπ, the dominant decay is the invisible decay N → νν̄ν. However, formN > mπ, the two-body semileptonic pion
decay, νπ, becomes kinematically accessible and begins to dominate the HNL decay width. This can be observed explicitly
in Figs. 4 and 5.

2. Hadronic decays

a. Single-meson decay

HNL decays into hadronic final states occur through the NC and CC processes depicted in Figs. 3(d)–3(e). As mentioned
in Sec. IV, for mN < 1.0 GeV, the total hadronic width is calculated via decay into single-meson final states. The formulas
for the decay of HNLs into single mesons are [16]

ΓðN → νP0Þ ¼
� X

β¼e;μ;τ

jUβj2
�
G2

Ff
2
Pm

3
N

16π
ð1 − x2PÞ2 ½P0 ¼ π0; η; η0�; ðB12Þ

ΓðN → l∓α P�Þ ¼ jUαj2jVqq̄j2
G2

Ff
2
Pm

3
N

16π
λ
1
2ð1; x2P; x2αÞ½1 − x2P − x2αð2þ x2P − x2αÞ� ½P� ¼ π�; K�; D�; D�

s �; ðB13Þ

ΓðN → νV0Þ ¼
� X

β¼e;μ;τ

jUβj2
�
G2

Ff
2
Vκ

2
Vm

3
N

16π
ð1þ 2x2VÞð1 − x2VÞ2 ½V0 ¼ ρ;ω;ϕ�; ðB14Þ

ΓðN → l∓α V�Þ ¼ jUαj2jVqq̄j2
G2

Ff
2
Vm

3
N

16π
λ
1
2ð1; x2V; x2αÞ½ð1 − x2VÞð1þ 2x2VÞ þ x2αðx2V þ x2α − 2Þ� ½V� ¼ ρ�; K���; ðB15Þ

where κρ ¼ 1–2 sin2 θW , κω ¼ −2 sin2 θW=3, and κϕ ¼ −
ffiffiffi
2

p ð1=2 − 2 sin2 θW=3Þ. The meson decay constants fP;V are
given in Table IV.
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b. Multimeson decays

In the regime mN > 1.0 GeV, the total hadronic width is
instead calculated via decays into quarks, since in this
region decays into multimeson states become relevant to
the total width. The tree-level NC and CC decays into
quarks are given by [14]

ΓðN → νqq̄Þ ¼
� X

β¼e;μ;τ

jUβj2
�
G2

Fm
5
N

32π3

× ½Cq
1f1ðxαÞ þ Cq

2f2ðxαÞ�; ðB16Þ

ΓðN → l−αud̄Þ ¼ ΓðN → lþα ūdÞ

¼ jUαj2jVudj2
G2

Fm
5
N

64π3
I1ðx2α; x2u; x2dÞ; ðB17Þ

where the coefficients Cq
1 and Cq

2 are given by

Cu;c
1 ¼ 1

4

�
1 −

8

3
sin2 θW þ 32

9
sin4 θW

�
;

Cu;c
2 ¼ 1

3
sin2 θW

�
4

3
sin2 θW − 1

�
; ðB18Þ

Cd;s;b
1 ¼ 1

4

�
1 −

4

3
sin2 θW þ 8

9
sin4 θW

�
;

Cd;s;b
2 ¼ 1

6
sin2 θW

�
2

3
sin2 θW − 1

�
: ðB19Þ

As is discussed in Refs. [14,16], the total hadronic width
can be estimated using this tree-level decay along with a
QCD loop correction that accounts for the hadronization
process. This correction is estimated from hadronic tau
decay. The loop corrections can be defined as

1þ ΔQCD ≡ Γðτ → ντ þ hadronsÞ
Γtreeðτ → ντud̄Þ þ Γtreeðτ → ντus̄Þ

; ðB20Þ

where the correction up to Oðα3sÞ has been calculated to be

ΔQCD ¼ αs
π
þ 5.2

α2s
π2

þ 26.4
α3s
π3

: ðB21Þ

We apply this correction to the NC decays νqq̄ with q ¼ u,
d, s and the CC decays lud̄ and lus̄, where αs ¼ αsðmNÞ.
The package rundec is used to compute the αs running; see
Ref. [72]. Additionally, for the decay νss, a phase-space
suppression factor,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

K=m
4
N

p
, is included to not

overestimate this mode’s contribution for mN < 2mK.
This same approach is also applied to the decays τud
and τus, with kinematic thresholds at mτ þ 2mπ and
mτ þmπ þmK, respectively.

3. HNL total decay width

The total decay width of theHNL is obtained by summing
over all possible final-state decays. Since we are considering
Majorana HNLs, the CC decays N → lþαH−ðūdÞ, νlþα l−β and
their charge conjugates are both possible and, since they have
equal decay rates, a factor of 2 must be included when
calculating the total rate. In the region mN < 1.0 GeV, the
total decay width is

ΓN ¼ ΓðN → νν̄νÞ þ
X

α¼e;μ;τ

ΓðN → νlþα l−α Þ

þ
X

P0¼π0η;η0
ΓðN → νP0Þ þ

X
V0¼ρ0;ω;ϕ

ΓðN → νV0Þ

þ
X

α≠β¼e;μ;τ

2ΓðN → νl−α l
þ
β Þ þ

X
P¼π;K;D;Ds

α¼e;μ;τ

2ΓðN → l−αPþÞ

þ
X
V¼ρ;K�
α¼e;μ;τ

2ΓðN → l−αVþÞ: ðB22Þ

For mN > 1.0 GeV, this becomes

ΓN ¼ ΓðN → νν̄νÞ þ
X

α¼e;μ;τ

ΓðN → νlþα l−α Þ

þ
X

q¼u;d;s;c;b

ΓðN → νqq̄Þ

þ
X

α≠β¼e;μ;τ

2ΓðN → νl−α l
þ
β Þ

þ
X
u¼u;c
d¼d;s;b

2ΓðN → l−αud̄Þ: ðB23Þ
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