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Abstract
All-!ash array (AFA) has become one of the most popular
storage forms in diverse computing domains. While tradi-
tional AFA implementations adopt the block interface to
seamlessly integrate with most existing software, this inter-
face hinders the host from managing SSD internal tasks ex-
plicitly, which results in both short endurance and poor per-
formance. In comparison, ZNS AFA, such as RAIZN, adopts
ZNS SSDs and exposes the ZNS interface to the users. This
solution attempts to raise the level of responsibility for SSD
management. Unfortunately, it faces severe compatibility
issues as most upper-layer software only takes block I/O
accesses for granted.
In this work, we propose BIZA, a self-governing block-

interface ZNS AFA to proactively schedule I/O requests and
SSD internal tasks via the ZNS interface while exposing the
user-friendly block interface to upper-layer software. BIZA
achieves both long endurance and high performance by ex-
ploiting the zone random write area (ZRWA) and internal
parallelisms of ZNS SSDs. Speci"cally, to mitigate write am-
pli"cation, BIZA proposes a ghost-cache-based algorithm
to identify hot data and absorb their updates in the scarce
ZRWA. BIZA also employs a novel guess-and-verify mecha-
nism to detect themappings between zones and I/O resources
at a low cost. Thereafter, BIZA can serve write requests and
internal tasks in parallel with our customized I/O scheduler
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for high throughput and low latency. The evaluation results
show that BIZA can reduce write ampli"cation by 42.7%
while achieving 93.2% higher throughput and 62.8% lower
tail latency, compared to the state-of-the-art AFA solutions.
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1 Introduction
The last decade has witnessed all-!ash arrays (AFA) [34, 42,
53, 77, 99, 100] becoming one of the dominant storage forms
in datacenters and high-performance computers [10, 54],
which have successfully accelerated I/O-intensive tasks, in-
cluding big data analysis, scienti"c computing, and machine
learning [9, 40, 64, 76, 88]. Compared to arrays of traditional
storage media like hard disk drives (HDD), AFAs capitalize
on the advantages of !ash-based solid-state drives (SSDs),
such as high throughput, high random I/O performance, low
latency, and better power e#ciency [74, 89, 101].
While AFA has experienced continuous technical shifts,

there remains an open question in its design, that is, exposing
which external I/O interface to upper-layer software and
selecting which internal I/O interface of underlying SSDs.
We analyze representative AFA designs that explore di$erent
I/O interfaces [13, 34, 45, 89], which are shown in Figure 1.
Traditional AFA solutions (cf. Figure 1a) inherit block in-

terfaces from the legacy HDD-based RAID as both external
and internal I/O interfaces. Block interface is the de-facto
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choice for most upper-layer software (e.g., "le systems and
databases), which provides the most universality for develop-
ers. However, the block interface is not well aligned with the
unique features of SSDs. To be precise, the storage backbone
of SSD (i.e., NAND !ash [44]) only supports out-of-place
updates due to its physical constraints. To shield users from
the complex SSD internal architecture and provide a uniform
block interface to the host, SSD "rmware implicitly takes
on several internal tasks, such as garbage collection (GC)
and data placement. These tasks interfere with regular I/O
requests, severely degrading the storage performance [43].
As an alternative, RAIZN [45] chooses to construct AFA

from zoned namespace (ZNS) SSDs and also exposes the ZNS
interface to upper-layer software (cf. Figure 1b). By delegat-
ing several device-side responsibilities (e.g., GC scheduling
and data placement) to the host, ZNS interface provides ex-
clusive opportunities for holistic designs. However, RAIZN
faces severe compatibility issues as it directly exposes ZNS in-
terface to upper layers. ZNS interface only allows sequential
writes, whereas most existing software takes random writes
for granted. In addition, RAIZN requires the involvement
of upper-layer software to explicitly manage GC events and
data placement, which are rarely supported by applications.

To address the compatibility issue, dm-zap [13], an adapter
that bridges the block interface and ZNS interface by main-
taining mappings between block numbers and zone-related
addresses (i.e., zone numbers and in-zone o$sets), can be
used. From the semantic perspective, stacking dm-zap on
top of RAIZN is promising, as it exposes the user-friendly
block interface to upper-layer software while constructing
AFA with ZNS SSDs. However, we observe that this sim-
ple combination wipes out all the bene"ts brought by the
ZNS interface. This, in turn, shortens SSD endurance, de-
creases overall throughput, and prolongs tail latency. The
root cause is that neither dm-zap nor RAIZN explicitly ex-
ploits the ZNS interface to achieve cross-layer optimizations.
To quantitatively analyze the impacts of dm-zap and RAIZN
on the storage system, we conduct extensive experiments on
a dm-zap+RAIZN prototype building from 4 commodity ZNS
SSDs, i.e., Western Digital ZN540 [16] (cf. § 5 for details). We
summarize the prominent shortcomings as follows:
• SSD endurance: dm-zap shortens SSD endurance. Speci"-
cally, dm-zap is unaware of the lifetimes of data (i.e., duration

until being invalidated) sent by applications and will muddle
data with diverse lifetimes in the same zones. When such
zones are selected as victims of GC, lots of data within them
are still valid and require extra !ash writes for migration.
These unexpected writes exaggerate write ampli"cation (i.e.,
the ratio of !ash writes to user writes) by 33.3%.
• Throughput: Both dm-zap and RAIZN cannot exhaust the
potential throughput of ZNS SSDs. dm-zap only allows one
in-!ight write per zone to avoid write failures caused by
I/O reorders within the storage stacks [82]. On the other
hand, RAIZN employs a centralized zone to accommodate
the frequently updated metadata (i.e., partial parities [45]).
While this approach is GC-friendly, as most metadata in the
zone will be invalid when collecting, it unfortunately puts
a cap on the peak throughput. As a result, dm-zap+RAIZN
only achieves 47.7% of the ideal peak throughput.
• Tail latency: Another shortcoming is latency spikes caused
by SSD GC [43, 53]. Speci"cally, the upper-layer software
is unaware of GC events controlled by dm-zap. When GC
and I/O accesses occur simultaneously, GC interferes with
the I/O requests, resulting in a signi"cantly long tail latency.
Experimental results show that dm-zap+RAIZN su$ers 10.3↑
higher 99.99𝐿𝑀 tail latency when GC occurs.
In response to these challenges, we introduce BIZA1 , a

self-governingBlock-InterfaceZNSAFA that can harvest the
bene"ts of "ne-grained SSD control brought by ZNS inter-
face to achieve long endurance and high performance while
providing the user-friendly block interface to applications
(cf. Figure 1c). To this end, BIZA merges the block-to-ZNS
interface adapter (dm-zap) and RAIZN into a uniform indi-
rection layer. On behalf of the upper-layer software, BIZA
coordinates the I/O requests and SSD internal tasks via the
ZNS interface, which achieves cross-layer optimizations.

Our key insight is that the newly introduced features and
internal parallelisms of ZNS SSDs can be exploited to address
the write ampli"cation and performance issues in existing
AFA solutions. Speci"cally, recognizing the write ampli"ca-
tion, BIZA takes advantage of the emerging zone random
write area (ZRWA) feature [70, 81] of ZNS SSDs. ZRWA is
an abstraction of the write bu$er within SSD. It allows in-
place updates in a limited area of each zone. With ZRWA,
BIZA can absorb the frequently updated data and parities
in the write bu$er and avoid !ushing them to the !ash. For
the throughput issue, our preliminary study reveals that a
single in-!ight write only delivers 34.7% of a zone’s band-
width. This observation encourages us to develop a new I/O
scheduler that enables parallel writes on a zone. Moreover,
improperly serving user requests and GC events with the
same I/O resources causes 3.1↑ higher tail latency. There-
fore, BIZA cautiously directs them to isolated I/O resources
which alleviates the latency spikes. Comprehensive evalu-
ation results demonstrate that BIZA outperforms leading

1BIZA is accessible at h!ps://github.com/ChaseLab-PKU/BIZA.
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Good Bad Depend on upper-layer software
Design choice Endurance Throughput Tail latency Compatibility
Block-interface
ZNS-interface

Adapter
Our solution

Table 1. Comparison of di$erent AFA design choices.

AFA designs, alleviating write ampli"cation by 42.7%, deliv-
ering 93.2% higher write throughput, and reducing 99.99𝐿𝑀
percentile tail latency by 62.8%.

Our main contributions can be summarized as follows:
• Constructing self-governing block-interface ZNS AFA: We
conduct an in-depth analysis of the interface choices of
the existing AFA solutions. Our experimental results reveal
that block-interface-alone, zone-interface-alone, and simple-
combination designs of AFAs are all unsatisfactory in terms
of endurance, performance, and compatibility. Based on these
lessons, we propose a self-governing AFA engine, BIZA, that
solves all these issues by exploiting the new features and
internal parallelism of ZNS SSDs.
• Exploring the ZRWA feature to reduce write ampli!cation:
As an abstraction of SSD-internal write bu$er, ZRWA can
be employed to absorb data and parity updates thereby miti-
gating write ampli"cation. However, it is non-trivial to ex-
ploit ZRWA e#ciently given its limited size. To better utilize
ZRWA, we design an innovative placement policy, which
can reserve the scarce ZRWA for data and parities that will
be updated multiple times in a short duration. To the best of
our knowledge, BIZA is the "rst study to reveal and exploit
the characteristics of ZRWA.
• Probing zone-level parallelism for better performance: One
in-!ight write cannot exhaust a zone’s parallelism. There-
fore, we design a new I/O scheduler that enables concurrent
writes on a zone while avoiding write failures caused by
I/O reorders. In addition, scheduling user writes and SSD-
internal tasks (e.g., GC) to access the di$erent I/O resources
is helpful for tail latency. The main obstacle is that ZNS
interface hides the mappings between zones and internal
I/O resources from users for wear leveling. This uncertainty
causes huge trouble for users to properly choose isolated
zones for I/O serving. Tackling this issue, we propose a novel
guess-and-verify mechanism that can con"rm the zone-to-
I/O-resources mappings online with low costs.

2 Background and Challenge
All-!ash arrays (AFA, also named SSD-based RAID) are a
type of storage form that bundles multiple SSDs into an
array to aggregate their capacity and throughput. AFA also
guarantees fault tolerance by introducing redundancy for
data stripes (i.e., a group of data lying in di$erent SSDs). This
includes XOR parity for RAID 5 and Reed-Solomon code [90]
for other general scenarios. For simplicity, this paper mainly
focuses on RAID 5. Our designs can also be applied to other
RAID levels and AFA schemes (e.g., RAID 6). Based on their
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Figure 2. Block-interface SSD versus ZNS SSD.

I/O interfaces, existing AFAs can be classi"ed into three
types: block-interface AFA, ZNS-interface AFA, and AFA
with the adapter. Table 1 summarizes the key di$erences
between these design choices and our solution.

2.1 Block-Interface All-Flash Array
As a successor of the legacy hard disk drives (HDD) based
RAID, AFAs, such as the default Linux kernel AFA, mdraid
[58], typically consist of block-interface SSDs and expose
block interface to users. Block interface, which abstracts
storage space as a set of logical blocks and allows users to
write blocks randomly, is the de facto choice for most upper-
layer software (e.g., "le systems, databases, and distributed
storage). Thanks to the uniform block interface, AFA re-
quires minimal e$ort when adopting applications originally
deployed on HDD-based RAID.
However, from the perspective of SSDs, the block inter-

face is just a compromise of compatibility. Limited by the
physical attributes, the !ash backbone of SSDs (i.e., NAND
!ash [23, 43]) disallows in-place updates and follows an
erase-before-program manner. To hide the !ash limits from
users, SSD "rmware internally constructs an indirection
layer, known as "ash translation layer (FTL), to remap incom-
ing write requests (i.e., LPN ) to new !ash pages (i.e., PPN )
and invalidate the stale pages (cf. A in Figure 2a). The inval-
idation induced by data updates can signi"cantly diminish
the available SSD capacity exposed to users. To tackle this
problem, SSD "rmware performs garbage collection (GC) to
reclaim invalid pages (B ).
While FTL succeeds in shielding users from the complex

details of NAND !ash and provides a compatible block inter-
face, it also introduces an insurmountable gap between the
software (i.e., AFA engine) and hardware (i.e., !ash). This gap
not only shortens the endurance of SSDs but also increases
the tail latency of AFAs [42, 96].

2.2 ZNS-Interface All-Flash Array
The emerging NVMe zoned namespace (ZNS) standard and
its derived ZNS interface [5, 71] are promising solutions to
break the boundary between software and hardware, en-
abling cross-layer optimizations. Figure 2b depicts a typical



architecture of ZNS-interface SSDs (i.e., ZNS SSDs). ZNS
interface packs the !ash backbone as zones and authorizes
parts of decisions (e.g., which zone to write and when to
clean zones) to host, enabling "ne-grained control of the
storage media. A zone is an abstraction of multiple paral-
lel I/O resources (e.g., !ash blocks in groups of !ash dies)
within ZNS SSD. For simplicity, we refer to each group of
I/O resources as I/O channel. For instance, in Figure 2b, the
left and right groups of !ash dies make up Channel 0 and M,
respectively. Zone 0 is mapped with !ash blocks scattered
across the !ash dies in Channel 0.
ZNS SSD marks each zone with di$erent states based on

the zone’s storage space usage. We brie!y summarize the
states as follows. Zones start with empty state and can only
serve write requests in open state (after receiving the "rst
write request or OPEN command). Constrained by the phys-
ical attribute of NAND !ash, zones only allow sequential
write. A write pointer (i.e., "wptr" in Figure 2b) is maintained
for each zone to record the next write position. In compar-
ison, zones can serve both sequential and random read re-
quests in any state except the o#ine state (i.e., hardware
damaged). When a zone is fully written, it enters full state
and rejects subsequent writes. The host can transit the zone
back to the empty state with RESET commands. However,
RESET also drops all data stored in the zone. Limited by the
hardware resources (e.g., on-device DRAM), only a "nite
number (e.g., 14 [16] or 384 [75]) of zones can stay in open
state simultaneously.

RAIZN [45] is a representative work that constructs a ZNS-
interface AFA from multiple ZNS SSDs. This design choice
is straightforward as it leaves the SSD management tasks
to software developers, which requires huge manpower for
adaptation. Moreover, the restriction of sequential writes
hinders RAIZN from adopting existing applications that gen-
erate random writes without constraints. For example, F2FS
[48], a ZNS-friendly "le system that writes "les in a sequen-
tial manner, still requires a two-zone-sized random-write
space for updating metadata [5].

2.3 Simple Solution and Challenge
Based on the lessons of the above design choices, in this work,
we explore how to optimize AFA with the support of ZNS
SSD while enjoying the bene"ts brought by the developer-
friendly block interface. With block interface, AFA can sup-
port not only ZNS-friendly software but also other general
"lesystems and applications (e.g., EXT4 [63], XFS[85], and
FAT [65]), which provides the most universality to users.
Adapter of block and ZNS interfaces. A straightforward
idea is employing adapter [13, 56] to convert ZNS interfaces
to block interfaces. For example, dm-zap [13] achieves this by
maintaining mappings from block numbers to zone-related
addresses (i.e., zone numbers and in-zone o$sets). With dm-
zap, users can "rst group ZNS SSDswith RAIZN and then em-
ploy dm-zap to translate the ZNS interface of RAIZN to the

block interface (called dmzap+RAIZN). An alternative way
is using dm-zap to map each ZNS SSD as a block-interface
SSD and then constructing AFA with these SSDs by utilizing
a conventional AFA engine (e.g., mdraid+dmzap).
Challenges. However, these simple combinations of AFA
and adapter are just solutions to bridge the semantic gap
between block and ZNS interfaces. They fail to harvest the
bene"ts brought by ZNS interface and cannot exploit the
capability of ZNS SSDs. To quantitatively analyze this, we set
up an experiment on AFAs (RAID 5) consisting of 4 commod-
ity ZNS SSDs (i.e., Western Digital ZN540 4TB [16]). Each
SSD can achieve 2170 MB/s peak write throughput. We con-
struct the AFAswith both dmzap+RAIZN andmdraid+dmzap
methods (cf. § 5 for detailed experimental setups). We sum-
marize the prominent shortcomings as follows:
• Short endurance: dmzap+RAIZN and mdraid+dmzap gen-
erate up to 33.3% and 54.6% more !ash writes than the write
requests initiated by the users in real workloads. This is
because dm-zap muddles data with di$erent lifetimes (i.e.,
duration until being invalidated) in the same zones. When
such zones are selected as victims for GC, a large fraction
of data within them may still be valid and need to be mi-
grated to a free zone via extra !ash writes. We call the ratio
of !ash writes to user writes as write ampli!cation. Write
ampli"cation hampers the endurance of SSDs [83].
• Low throughput: dmzap+RAIZN and mdraid+dmzap can
only achieve 3.1 GB/s and 1.2 GB/s peak write throughput,
respectively, which are 47.7% and 18.4% of the ideal (i.e., 6.4
GB/s when 3 of the 4 SSDs serve user I/O with maximum
throughput while the other one handles parities). This is
because both dm-zap and RAIZN cannot exhaust the poten-
tial throughput of underlying devices. Speci"cally, dm-zap
submits writes serially and only allows one in-!ight write
per zone. On the other hand, RAIZN relies on a centralized
zone to bu$er the frequently updated metadata [45], which
puts a cap on the peak throughput.
• High tail latency: dmzap+RAIZN and mdraid+dmzap in-
crease 99.99𝐿𝑀 tail latency by 10.3↑ and 2.2↑ respectively,
after GC starts. This is because the upper-layer software is
unaware of GC events controlled by dm-zap. When GC and
I/O accesses occur simultaneously, GC interferes with the
I/O requests, resulting in a signi"cantly long tail latency.

3 Preliminary Study: ZNS SSD Exploration
By performing a comprehensive analysis of commodity ZNS
SSDs, we "nd that the newly introduced features and internal
parallelisms within ZNS SSDs can be employed to tackle the
aforementioned endurance and performance issues.

3.1 Zone RandomWrite Area
Zone Random Write Area (ZRWA) is a new feature that has
been rati"ed by NVMe speci"cation [70, 81] and realized
in commodity ZNS SSDs, examples of which are listed in
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Zone
capacity

ZRWA size
per open zone

Max. # of
open zones

Total
ZRWA size

WD ZN540 [16] 1077 MB 1 MB 14 14 MB
DapuStor J5500Z [14] 18144 MB 1 MB 16 16 MB
Inspur NS8600G [31] 2880 MB 1440 KB 8 11.25 MB

Samsung PM1731a [75] 96 MB 64 KB 384 24 MB

Table 2. ZRWA-related con"gurations of di$erent ZNS SSDs.

Table 2. As shown in Figure 3a, if a zone is opened with
the ZRWA feature, a "xed-size area after its write pointer
becomes ZRWA. ZRWA allows random writes as well as
in-place updates, which breaks the strict sequential write
constraint of the ZNS interface. ZRWA, somehow, is an ef-
"cient abstraction of the write bu$er within SSDs, which
can be physically implemented with battery-backed DRAM,
NVM, or FTL-mapped high-endurance !ash (e.g., SLC [1]).
ZRWA can shift with the write pointer after receiving write
requests. Figure 3b shows an example. When users send a
write targeting 0xC (one block out of ZRWA), the ZRWA
will implicitly shift right by one block to include the 0xC
within it. At the same time, the data pointed by the original
write pointer (i.e., 0x7) is !ushed from the write bu$er and
stored in the !ash backbone. With ZRWA, we can absorb
the frequently updated data within the write bu$er, thereby
mitigating write ampli"cation.

Unfortunately, it is non-trivial to harness ZRWA e#ciently.
As listed in Table 2, the size of ZRWA is very limited (e.g.,
1 MB per open zone and at most 14 MB in ZN540 SSD),
which seldom utilizes the temporal locality of the existing
workloads. To better understand this, we compare ZRWA
size with the reuse distance of di$erent workloads. We de"ne
reuse distance as the amount of written data between two
consecutive visits of the same address. Figure 4 illustrates
the cumulative distribution function (CDF) of reuse distance
in SYSTOR [49] workload set, including 2188 traces collected
from di$erent drives at di$erent times. Only 17% of data
has a reuse distance shorter than 14 MB. Therefore, if AFA
randomly writes data in zones, the obsolete data (i.e., no
longer be updated) will occupy the ZRWA and advance the
write pointer quickly. Consequently, 83% of updates, which
have reuse distances greater than 14 MB, cannot be absorbed
by ZRWA as the write pointer is out of its destination address
and the initial data has been evicted from the write bu$er.
To address this issue, we propose a novel algorithm (cf. §
4.2) that carefully chooses zones for data. By separating the
consistently refreshed data from obsolete ones, we prevent

the obsolete data from polluting ZRWA and thus can absorb
more updates with ZRWA.

3.2 Intra-zone Parallelism
The existing I/O stack has no guarantee on the orders of re-
quest submissions. Both block layer and NVMe driver may re-
order user requests for higher performance [38, 50, 59]. These
implicit reorders can cause failures for parallel writes. Figure
3c depicts a bad example where users send twowrite requests
(i.e., Request A and Request B) in parallel. If Request A is
served before Request B, both of them will be completed
successfully. However, when I/O reorders occur, Request B

is served "rst ( 1 ), and thus ZRWA shifts right unexpectedly
( 2 ). In this situation, Request A cannot be served ( 3 ) as
its destination address lags behind the write pointer. This
issue also exists without enabling ZRWA [82], which can be
considered a special case where the ZRWA size is 0.

A promising solution is sending I/O requests serially and
only allowing one in-!ight request per zone (same as dm-
zap). However, such a single-write strategy fails to utilize the
intra-zone parallelism. We demonstrate this by examining
ZN540 SSD [16]. We test two di$erent designs that allow
1 and 32 in-!ight writes per zone, respectively. The latter
is facilitated by our solution, which will be described in §
4.4. Figure 5 illustrates the throughput of each design. The
red line represents the maximum performance of a single
zone. In comparison with 32 in-!ight writes, one in-!ight
write loses up to 65.3% throughput (54.5% by average) across
di$erent write sizes.
Another possible solution is APPEND command [71],

which enables parallel data appending to a zone. APPEND
avoids write failures by disallowing the host to specify a
certain write address, instead returning an SSD-determined
address to the host after data is written. APPEND is useful in
scenarios where upper-layer software explicitly writes data
in a log-structured style (e.g., "les opened with O_APPEND
tag). However, in practice, most software is constructed based
on the assumption of block interface and thus is unlimited to
generate diverse I/O access patterns such as random writes
(e.g., metadata writes in F2FS, cf. § 2.2). Moreover, APPEND
is mutually exclusive with ZRWA. According to the stipu-
lation of NVMe speci"cation [71], zones opened with the
ZRWA feature will directly abort APPEND commands.While
prior work [87] chooses APPEND to exhaust intra-zone par-
allelism, in this paper, we prefer ZRWA to enjoy its bene"ts
of write ampli"cation reduction. Considering the intra-zone



Figure 4. CDF of reuse distance. Figure 5. Intra-zone parallelism.

Scenario Bandwidth
(MB/s)

Avg. lat.
(us)

50𝐿𝑀 lat.
(us)

99.99𝐿𝑀 lat.
(us)

1. Write a single zone 1092 59 41 570
2. Write two zones in
identical I/O channel 1092 118 66 2310

3. Write two zones in
diverse I/O channels 2170 59 46 685

Table 3. Write performance in di$erent write scenarios.

parallelism issue, we design a new I/O scheduler that also
enables concurrent writes by carefully submitting write re-
quests with a sliding-window [8, 47, 86] based algorithm (cf.
§ 4.4). Note that our choice of ZRWA does not compromise
the support of append semantics (e.g., O_APPEND) as we
provide a generic block interface to upper-layer software.

3.3 Inter-zone Parallelism
ZNS SSDs have multiple independent I/O channels. Zones
that are mapped with separated I/O channels can handle
I/O requests in parallel to achieve high throughput while
minimizing interference to reduce tail latency. We verify this
claim with a ZN540 SSD [16]. Table 3 shows the through-
put and latency when serving 64 KB write requests with a
single zone (Scenario 1) or two zones mapped with the
same/di$erent (Scenarios 2 and 3) I/O channels. Serv-
ing writes with zones mapped to identical I/O channels
(Scenario 2) has no improvement on the throughput and re-
sults in 1.0↑, 0.6↑, and 3.1↑ higher average, 50𝐿𝑀 , and 99.99𝐿𝑀
latency, compared to Scenario 1. Nevertheless, spreading
write requests to zones mapped with di$erent I/O channels
resolves the I/O contention (Scenario 3). It doubles write
bandwidth of Scenarios 1 and 2. In addition, the I/O latency
is close to that of Scenario 1. The slight latency increment
is caused by contention on unique hardware within SSD (e.g.,
ARM-based SSD controller [23, 61]).

This analysis encourages us to take a decentralized design
that can exploit all the I/O channels for request handling.
In particular, we should give up the design of centralized
metadata zone in RAIZN, which is used to accommodate
partial parity updates [45]. Partial parity is the XOR sum of
the parts of the data in a stripe. As an intermediate result of
"nal parity, partial parity get updated very frequently (i.e.,
when new writes arrive). While data writes are spread across
multiple zones, the partial parities only compete for the cen-
tralized metadata zone, which easily throttles the overall
throughput. One way to resolve this is to reserve more open
zones for partial parities. However, this also means fewer
open zones to serve data. Furthermore, determining the op-
timal assignment of open zones for partial parities and data
is challenging, given the variability of SSD con"gurations as
listed in Table 2 (e.g., maximum number of open zones). An-
other promising solution is placing data and partial parities

Challenge Endurance Throughput Tail Latency

Key insight ZRWA Intra- & Inter-zone
parallelism

Inter-zone
parallelism

Table 4. Challenges and key insights.

in the same open zones. Nevertheless, this approach exagger-
ates write ampli"cation as data and partial parities usually
have di$erent reuse distances. Fortunately, with ZRWA, we
can absorb partial parities within the on-device write bu$er,
which allows us to avoid !ushing them to the !ash backbone
frequently and mixing them up with data (cf. § 4.2).

On the other hand, the GC-induced latency spikes can be
alleviated if we can synergistically schedule user I/O requests
and internal GC events with zones mapped to di$erent I/O
channels (i.e., Scenario 3). Unfortunately, it is non-trivial to
realize this. To be precise, the discretion of mapping zones to
which I/O channel is reserved by ZNS SSDs for wear leveling
and hidden behind the ZNS interface [3, 5]. The decisions
are not made until the zones are opened. This uncertainty
hinders AFAs from serving requests with proper zones. Prior
work [3] solves this problem with an aggressive method, that
is, when opening zones, pausing user requests and internally
sending I/O requests to all pairs of open zones. By compar-
ing the latency, it knows whether a pair of open zones are
mapped on the same I/O channel (i.e., latency is signi"cantly
higher than the average if so). This sophisticated diagnosis
is accurate but causes severe performance degradation, as
it starts whenever zones are opened (i.e., previously opened
zones are full) and user I/O is postponed until the comple-
tion of diagnosis. As a silver lining, we observe that most
commodity ZNS SSDs [16, 66] typically map zones to I/O
channels in a round-robin manner. Therefore, we "rst guess
the mappings between zones and I/O channels following
the round-robin manner. Afterward, we monitor the latency
of each user I/O online and correct our conjectures with a
vote-based algorithm (cf. § 4.3) when latency spikes occur.
Summary of preliminary study. Taking our explorations
of ZNS SSD into consideration, Table 4 summarizes our key
insights to each of the challenges mentioned in § 2.3.

4 Design and Implementation
Inspired by the aforementioned preliminary analysis, we
propose BIZA, a self-governing AFA engine that proactively
utilizes the ZNS interface to achieve long SSD endurance
and high performance whilst exposing a compatible block
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Figure 6. Overview of BIZA.

interface to applications. In the following, we "rst describe
the architecture of BIZA along with its I/O path (§ 4.1). Then,
we illustrate the detailed designs of each component in BIZA
(§ 4.2, § 4.3, and § 4.4). Finally, we state how we implement
BIZA in the production environment (§ 4.5).

4.1 Overview
I/O path. BIZA handles write requests in a log-structure-like
manner [34] that appends new data sequentially in zones
and maintains a mapping table to record where data is stored.
Di$erent from the conventional log-structure method, BIZA
can overwrite data in place with the support of ZRWA. This
relaxation is useful for alleviating write ampli"cation.
Figure 6 illustrates the architecture of BIZA. In the fol-

lowing, we describe it along the write path. When a write
request arrives, BIZA computes parities ( 1 ) and decides
which SSDs to store the data and parities (we call both data
and parities as chunks for simplicity) according to the RAID
level (e.g., left-asymmetric [62] for RAID 5, 2 ). Afterward,
the zone group selector (§ 4.2) in BIZA chooses destination
zone groups for chunks ( 3 ). The main goal of the zone group
selector is to isolate hot chunks from obsolete ones. A zone
group is a set of open zones mapped with di$erent I/O chan-
nels. BIZA con"rms the mapping between the logical zones
and physical I/O channels with a guess-and-verify mecha-
nism (§ 4.3). Thereafter, the GC avoidance mechanism (§ 4.3)
intervenes and makes a "nal decision on which zone in the
zone group to handle writes ( 4 ). GC avoidance mechanism
schedules GC events and user write requests to access zones
belonging to di$erent I/O channels, which avoids potential
resource contentions and thereby mitigates latency spikes.
Subsequently, the chunk write tasks are submitted to the
ZRWA-aware I/O scheduler ( 5 , § 4.4). The I/O scheduler dis-
patches I/O requests ( 6 ) in parallel with a sliding-window-
based algorithm, which can avoid write failures induced by
I/O reorders. When writes are completed ( 7 ), their comple-
tion latency is collected and will be used as the reference for
correcting our assumptions on the mapping between zones
and I/O channels (§ 4.3). For chunk update, if the chunk is

in ZRWA, we update it in place. Otherwise, we choose a
new location to write it following the above procedure. Read
requests can be simply served by looking up the mapping
tables to locate the data and then submitting read commands
to the corresponding SSDs.
Mapping table. BIZA employs two mapping tables to locate
data and its parities on ZNS SSDs: Block Mapping Table (BMT)
and Stripe Mapping Table (SMT). As shown in Figure 6, each
row in the BMT corresponds to a logical block (LBN) and
contains two items: (1) a 40-bit physical address (PA) that
records where the data is stored (the leftmost 8 bits are used
as SSD index while the other 32 bits represent in-SSD o$sets);
and (2) a 32-bit stripe number (SN) that represents the stripe
that the data belongs to. SN is used as the key for looking up
SMT. Each row in SMT consists of𝐿 40-bit physical address
(PA) that records the locations of parities in the stripe; 𝐿
is the degree of fault tolerance speci"ed by the users (e.g.,
1 and 2 for RAID 5 and 6, respectively). This design can
support at most 4 PB physical storage capacity with a block
size of 4 KB (the default setting in BIZA). BIZA maintains
BMT and SMT in host DRAM for fast lookups. For a RAID5
consisting of four 4 TB SSDs, BIZA consumes 32 GB memory
(0.19%). For crash consistency, BIZA also persists them in the
SSD OOB area, similar to prior work [24, 84, 87]. OOB area
is scattered across di$erent physical pages of SSDs. BIZA
consumes 72-bit OOB area of each physical page to store
the BMT entry and SMT entry of the corresponding logical
block. The union of a BMT entry and an SMT entry is a 40-bit
LBN, a 40-bit PA, and a 32-bit SN. As PA is the self-contained
attribute of physical pages, there is no need to store it. Thus,
BIZA only needs to persist the 40-bit LBN and 32-bit SN
for each block. Note that OOB is an essential component
in every type of SSD to store error-correction codes [27].
The OOB quota is typically 64 B per 4 KB. OOB area can be
written with the support of NVMe Protection Information
feature [69]. SSDs can write OOB area by hitchhiking the
same !ash programming operation of data writes [24, 25].
Therefore, this method avoids the write ampli"cation caused
by persisting the mapping tables.

4.2 Zone Group Selector
Randomly placing chunks among open zones wipes out most
of the bene"ts brought by ZRWA as the frequently updated
chunks can only exist in ZRWAmomentarily (cf. § 3.1). BIZA
solves this problemwith a zone group selector that cautiously
chooses zone groups for serving chunk writes. Our key in-
sight is that parts of the chunks have high revenue (i.e., the
chunk will be reaccessed multiple times, reaccess number for
simplicity [33, 39]) and small cost (i.e., short reuse distance
[18, 37, 60]). BIZA should distinguish them and avoid writing
them to the same zones with obsolete chunks. By doing so,
it can keep the high-revenue-low-cost chunks in ZRWA for
a longer time and thus get a higher probability of absorbing
updates in the write bu$er (i.e., ZRWA).
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Figure 7. Illustration of ghost-cache-based algorithm.

Algorithm. To this end, BIZA employs a ghost-cache-based
algorithm. Ghost cache [67, 94] is a type of cache that only
stores the attributes (e.g., reaccess number and reuse dis-
tance) of chunks. As illustrated in Figure 7, BIZA "rst em-
ploys an LRU cache to "lter out the chunks with poor tempo-
ral locality, as these chunks typically will not be updated in
the near future [73]. When a chunk is hit in the LRU cache
( 1 ), we update its predicted reuse distance and reaccess num-
ber according to its last reaccess. Prior work [18, 33, 37, 39]
has proposed multiple methods for predicting the future
reuse distance and reaccess number. BIZA selects the accu-
mulated reaccess number and weighted moving average of
previous reuse distances in the most recent period as the
predictions of the reaccess number and reuse distance, re-
spectively. If the predicted reaccess number of a chunk is
greater than a threshold (e.g., 3 in BIZA empirically), we
consider it a high-revenue target (i.e., may be consistently
updated in the future) and promote the chunk to the high-
revenue (HR) cache (2a ). HR cache is a priority queue [93] that
will always evict the chunk with the least reaccess number
to LRU cache ( 2b ). If a chunk in the HR cache has a predicted
reuse distance smaller than a threshold (e.g., set as 2 times
the size of ZRWA in BIZA), it is considered a high-pro"t
chunk (i.e., high revenue and low cost) and further promoted
to the high-pro!t (HP) cache (3a ). HP cache is another prior-
ity queue that will evict the chunk with the maximum reuse
distance to HR cache ( 3b ). In all the ghost caches, we use
the logical block number (LBN) and stripe number (SN) as
the identi"cation for data and parities, respectively.
In tandem with the ghost cache designs, BIZA sets up

three types of zone groups: ZRWA-aware, GC-aware, and
trivial. The zone group selector selects ZRWA-aware, GC-
aware, and trivial zone groups for chunks that are in HP
cache, HR cache, and others, respectively. Note that, for
partial parities, which will be updated soon when the next
write arrives, BIZA always reserves ZRWA for them without
the involvement of our ghost-cache-based algorithm.
Rationale. The rationale behind this design is as follows.
First, if chunks are in the HP cache, they are expected to be
updatedmultiple times in a short reuse distance. By reserving
dedicated zone groups (i.e., ZRWA-aware zone groups) for
these chunks and preventing worthless chunks from tainting
the ZRWA, BIZA can update the high-pro"t chunks in ZRWA
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Figure 8. Examples of vote-based algorithm.

multiple times with the limited ZRWA resources. Second,
although the high-revenue chunks (i.e., in the HR cache) will
also be updated multiple times, the cost of reserving them
in ZRWA is exorbitant as they have long reuse distances.
Therefore, we separate them from the high-pro"t chunks,
thereby stopping them from competing for the scarce ZRWA.
However, from another perspective, the high-revenue (but
high-cost) chunks are the main source of GC. To be speci"c,
as their overwrites cannot be absorbed within the scarce
write bu$er, the out-of-place updates of these chunks leave
lots of invalid space in zones. By placing them together, BIZA
can reclaim more space and reduce the amount of data for
migration when collecting victim zones, as most chunks in
these zones are already invalidated. By doing so, we shorten
the time needed for GC and mitigate the write ampli"cation
induced by data migration.

4.3 Solutions of GC-induced Latency Spikes
GC avoidance. BIZA alleviates the GC-induced latency
spike by serving internal GC events and user I/Os with zones
mapped to di$erent I/O channels (i.e., di$erent zones in a
zone group). Speci"cally, when the AFA is idle or its capacity
is smaller than a user-speci"ed watermark, BIZA starts GC
and the corresponding GC avoidance mechanism. In each GC
event, BIZA selects a victim zone and moves the valid chunks
in the victim zone to a new zone (called GC-interfered zone).
GC avoidance mechanism tags the I/O channel mapped with
the GC-interfered zone as BUSY. Afterward, if a write request
arrives when conducting GC events, BIZA chooses a zone (in
a zone group), which is mapped with an I/O channel that has
no BUSY tag, as the destination for writing. Note that, the in-
place updates can ignore the BUSY tag. This is because ZRWA
is typically implemented with on-device DRAM, which is
separated from the I/O channels in the !ash backbone and
thus only su$ers minor interference of the GC.
I/O channel detection. AFA is unaware of the mappings
between zones and I/O channels as ZNS SSDs make decisions
internally for wear leveling. This uncertainty causes a huge
obstacle to GC avoidance. AFA may mistakenly cluster zones
sharing the same I/O channel to a zone group. Thereafter,
during GC, they will serve write requests with unexpected
BUSY I/O channel and su$er latency spikes.

Tackling this issue, we propose a guess-and-verify mecha-
nism to con"rm the mappings. Our key insight is that most
of the time, SSD controllers simply bind zones and I/O chan-
nels in a round-robin manner. Prior work [3, 66] also veri"ed
this on diverse commodity ZNS SSDs. With this premise,
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BIZA "rst guesses the mapping based on the round-robin be-
havior. However, these conjectures are not always accurate,
especially when SSD ages. Thus, BIZA uses a vote-based
algorithm to verify and correct our assumptions. Figure 8
shows the algorithm. When creating AFA, BIZA con"rms
the I/O channels for a few zones (e.g., Zone z) by taking the
zone-to-zone diagnosis (cf. § 3.3). These zones are used as
the criterion for following veri"cation and correction. Af-
terward, BIZA monitors the latency of user write requests
online. If latency spikes occur during GC (A ), in other words,
the latency of recently completed requests targeting a zone
(e.g., Zone a) is signi"cantly higher than the average, BIZA
recognizes that it mistakenly handles writes with BUSY I/O
channel (e.g., Channel 0). Therefore, the target zone is con-
sidered as maybe mapped on the BUSY I/O channel (e.g.,
Channel 0) and gets a vote on this assumption (B ). If the
latency spikes continuously appear on the same zone by
multiple times (e.g., 3), BIZA corrects its guesses based on
the votes. In particular, the predicted I/O channel of the
zone is recti"ed to the channel with the highest number of
votes (e.g., Channel 0, C ). Note that if a vote is from an I/O
channel that has been con"rmed in advance (e.g., Zone z),
BIZA will trust it without considering other votes.

4.4 ZRWA-aware I/O Scheduler
To avoid write failures induced by I/O reorders (cf. § 3.2) and
support asynchronous I/O, BIZA employs a ZRWA-aware
I/O scheduler for request submissions. The I/O scheduler is
customized for zones that are opened with ZRWA by taking
the behaviors of ZRWA (e.g., shift with write pointer) into
consideration. The main obstacle to proper I/O scheduling
is that ZRWA shifts right implicitly upon the completion
of write requests (cf. § 3.1). The host (i.e., I/O scheduler) is
unaware of the accurate position of ZRWA after I/O reorders
occur. One solution is to directly query the position of the
write pointer from ZNS SSDs with ZNS REPORT command
[71]. However, as I/O reorders appear regularly, frequent
REPORT commands will impose a huge burden on the host-
side CPU and SSD controller.
Our I/O scheduler tackles this issue by maintaining two

data structures, a bitmap and a sliding window, in host-side
DRAM for each zone opened with ZRWA. These data struc-
tures can track the position of ZRWA accurately with the
available information (i.e., I/O submissions and completions).
Figure 9 depicts these data structures and their work!ows.
Each entry in the bitmap corresponds to a block in the zone

and indicates whether there is an in-!ight write request tar-
geting this block. The sliding window is the portion of the
bitmap that represents the ZRWA. Only write requests (e.g.,
Request A and Request B in Figure 9) that target the blocks
in the sliding window can be submitted to the underlying
devices ( 1 ), while other requests (e.g., Request C) are post-
poned. When a write request completes, its corresponding
bit in the bitmap is cleared ( 2 ). If the leftmost bit in the slid-
ing window is zero, the I/O scheduler can shift the sliding
window rightward ( 3 ) and serve requests that are originally
out of the ZRWA (e.g., Request C, 4 ).

4.5 Implementation
BIZA is implemented as a pluggable device mapper [92]
in Linux kernel [57] with 4 K LOC. To support the ZRWA
feature and its related management operations (e.g., open
zones with ZRWA), we complement the Linux block layer
and NVMe driver with 1 K LOC according to the NVMe
Zoned Namespaces Command Set Speci"cation 1.1a and
NVMe Technical Proposal 4076b [70, 71]. The ZRWA-aware
I/O scheduler is also implemented in the Linux block layer
as an alternative to the conventional I/O scheduler (e.g., mq-
deadline [59]). BIZA requires no hardware modi"cation. All
the hardware features used in BIZA (e.g., ZRWA feature and
OOB area) are already part of the o$-the-shelf commodity
ZNS SSDs [14, 16, 31, 75].

5 Evaluation
5.1 Experimental Setup
Testbeds. We evaluate our BIZA designs on a server
equipped with a 26-core Intel Xeon 5320 CPU [32] and 512
GB DDR4 DRAM. All experiments are conducted on Ubuntu
22.04 LTS with Linux kernel v5.15 [57]. We construct BIZA
and its counterparts with four commodity ZNS or block-
interface SSDs as RAID 5. We choose Western Digital ZN540
4 TB SSD [16] as the representative of ZNS SSDs. Each zone
in ZN540 SSD has a capacity of 1077 MB and can be opened
with a 1 MB ZRWA. ZN540 SSD allows at most 14 open zones.
The peak throughput of ZN540 SSD is 2170 MB/s and 3265
MB/s for write and read, respectively. For AFAs consisting
of conventional block-interface SSDs, we employ Western
Digital SN640 4 TB SSD [15], which is developed on a similar
hardware basis as ZN540 SSD and thus yields comparable
throughput, i.e., 2250 MB/s and 3331 MB/s for write and
read, 4% and 2% higher than ZN540 SSD, respectively. We
ascribe the minor performance discrepancy to a di$erence
in "rmware maturity between these two devices [45]. The
key con"gurations are listed in Table 5.
AFA platforms. We compare BIZA with two AFA set-
tings that consist of ZNS SSDs and expose block inter-
face. We also examine two representative AFA designs,
i.e., RAIZN [45] and mdraid [58], for reference. (1) BIZA:
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Western Digital
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Western Digital
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Table 5. System con"gurations.

Collections FIU Microsoft MSRC
Workloads casa online ikki proj web

Write ratio (%) 98.6 67.1 92.8 3.0 45.9
Avg. read size (KB) 13.3 4 10.2 6.2 46.4
Avg. write size (KB) 4 4 4 18.5 9.8

Collections Microsoft MSPC SYSTOR Tencent Block
Storage

Workloads DAP MSNFS lun0 lun1 tencent
Write ratio (%) 51.9 31.5 17.6 38.0 52.9

Avg. read size (KB) 64 9.8 30.4 20.6 31.5
Avg. write size (KB) 121.3 13.3 9.3 12.3 39.2

Table 6. Workload characteristics.

a block-interface ZNS AFA that includes all the designs pro-
posed in this paper; (2) RAIZN: constructing AFA from ZNS
SSDs and also exposing ZNS-interface to applications, which
only supports sequential write; (3) dmzap+RAIZN: stacking
block-ZNS-interface adapter (dm-zap) on top of RAIZN; (4)
mdraid+dmzap: employing dm-zap in each ZNS SSD to con-
vert ZNS interface to block interface and then stacking a
conventional block-interface AFA engine (mdraid) on top
of them to construct AFA; (5) mdraid+ConvSSD: employing
mdraid to manage conventional block-interface SSDs. Note
that the original implementation of dm-zap [13] only utilizes
a single zone simultaneously, which cannot exhaust the inter-
zone parallelism (cf. § 3.3). We’ve revised it to write all open
zones in parallel. Moreover, the lock issues of mdraid are
widely denounced [89, 100]. We’ve integrated a state-of-the-
art work [100] in mdraid to evolve it for higher performance.
Workloads.We conduct evaluations with workloads from
various benchmark suites. Speci"cally, we measure the per-
formance of di$erent AFA engines by employing "o v3.30 [2]
to execute microbenchmarks. By default, we employ one job
to generate asynchronous I/O requests and set the I/O depth
as 32. Moreover, we evaluate BIZA with diverse I/O traces
collected from productions, including FIU [79], Microsoft
MSRC [80], Microsoft MSPC [36], SYSTOR [49], and Tencent
Block Storage [102]. These traces have di$erent ratios of
reads and writes with varied I/O sizes, which is helpful for
thoroughly examining BIZA in di$erent I/O patterns. Table
6 summarizes the key characteristics of the selected work-
loads. We also conduct comparisons on ZNS-friendly F2FS
[48] and RocksDB [17] with filebench [21] and db_bench

[19], respectively, which demonstrates the end-to-end per-
formance improvement brought by our designs. We conduct
all the evaluations by repeating the experiments 10 times
and showing the average results.

5.2 Overall Performance
Write performance inmicrobenchmark. Figure 10 shows
the write throughput and average latency of di$erent tested
platforms in microbenchmarks. We vary the access patterns
from sequential writes to random writes and examine dif-
ferent I/O sizes from 4 KB to 192 KB. There are no bars for
RAIZN in random write tests due to its lack of random write

Figure 10. Write performance in microbenchmark.

support. The ideal write throughput for our 4-SSD RAID 5
constructed from ZNS and conventional SSD are 6.4 and 6.6
GB/s, respectively (i.e., 3 SSDs serve data write while the
other one handles parities). Both mdraid-based methods (i.e.,
mdraid+dmzap and mdraid+ConvSSD) have higher sequen-
tial performance than random ones. This is because mdraid
takes an in-host-DRAM write bu$er to merge multiple se-
quential write requests and handles them simultaneously.
dmzap+RAIZN achieves almost the same sequential write
throughput as RAIZN. However, it can only exploit 47.7%
of ideal performance due to centralized designs in RAIZN
(cf. § 3.3). mdraid+dmzap lags far behind mdraid+ConvSSD in
64 KB tests. This is because, when handling write requests,
mdraid splits the 64 KB data in page size (4 KB) and sub-
mits the 4 KB requests to underlying SSDs. 4 KB requests
cannot fully exploit the throughput of SSDs. Conventional
SSD is not a$ected by the splitting, because the Linux block
layer [6] can merge the 4 KB requests into large-size re-
quests again. However, dm-zap is unable to perform this, as
it only allows one in-!ight 4 KB write. 192 KB tests show
similar results. Interestingly, even employing the state-of-
the-art implementation of mdraid, mdraid+ConvSSD cannot
exhaust the throughput of SSDs (in 192 KB tests) because
of the unsolved design issues in mdraid [89, 100]. In con-
trast, BIZA achieves 2.7↑, 2.5↑, and 0.4↑ higher bandwidth
than dmzap+RAIZN, mdraid+dmzap, and mdraid+ConvSSD in
all scenarios on average and almost exhausts the throughput
of 4 ZNS SSDs (92.2% of the ideal). This is because the key
techniques in BIZA, such as decentralized metadata updates



Figure 11. Read performance in microbenchmark.

Figure 12. Throughput comparison in I/O traces.

and ZRWA-aware I/O scheduler, enable it to exploit all par-
allelisms within ZNS SSDs. This superiority also exists in
average latency comparisons (cf. Figure 10b). For example,
BIZA outperforms RAIZN by 53.8%.
Read performance in microbenchmark. The compar-
ison of read performance is shown in Figure 11. All the
platforms have similar throughput and average latency for
4 KB reads. This is because these designs take roughly the
same read path, that is, lookup a mapping table to locate data
in the !ash backbone and then read it out. mdraid+dmzap
and mdraid+ConvSSD lag behind BIZA and dmzap+RAIZN

in 64 KB and 192 KB scenarios, because of the software
bottleneck in mdraid, echoing the "ndings in prior work
[45, 89, 100]. Both BIZA and dmzap+RAIZN achieve compara-
ble read throughput as the ideal (i.e., 12.8 GB/s when all 4
ZNS SSDs handle requests with maximum bandwidth) since
there is no obvious performance bottleneck on the read path.
Performance in I/O traces. Figure 12 illustrates the
throughput of di$erent AFA platforms in diverse I/O traces.
dmzap+RAIZN lags behind mdraid+dmzap by 98.1% in all
workloads, on average, because of the centralized metadata
zone design in RAIZN. Based on mdraid+dmzap, BIZA fur-
ther improves the average write throughput by 76.5% as
BIZA can better exploit the intra-zone parallelism of ZNS
SSDs. BIZA also achieves comparable throughput to the con-
ventional solution (i.e., mdraid+ConvSSD). This result proves
that our design can be utilized as an alternative to the avail-
able AFAs based on block-interface SSDs while bene"ting
the reduced write ampli"cation and low tail latency (cf. § 5.4

Figure 13. Comparison in ZNS-friendly applications.

and § 5.5). We attribute the minor performance lag of BIZA
to mdraid+ConvSSD in casa, online, and ikki workloads
to two reasons. First, these workloads have small average
write sizes (cf. Table 6), which do not impose burdens on the
parallelism of SSDs. Therefore, they rarely reap the bene"ts
brought by BIZA. Second, the conventional SSDs (SN640)
achieve higher throughput than ZNS SSDs (ZN540, cf. § 5.1).

5.3 Real-World Applications
File system. To demonstrate the superiority of BIZA on
applications, we "rst conduct evaluations on F2FS [48], a
log-structured "le system, with filebench [21]. Although
F2FS is commonly considered a ZNS-friendly "le system
that can exploit the capability of ZNS SSDs [45], it cannot
support ZNS interface alone and requires at least a two-zone-
sized block-interface space to store metadata [5]. Fortunately,
ZN540 SSD has internally integrated a 4 GB block-interface
storage area. We "rst orchestrate the 4 GB areas from 4
ZN540 SSDs as a RAID 5 by employing mdraid and then con-
struct F2FS on both the block-interface RAID 5 and RAIZN.
For simplicity, we still call this prototype as RAIZN. Note that
the 4 GB area doesn’t yield extra performance bene"ts as it
shares the same !ash backbone with the ZNS-interface area.
We use four representative benchmarks from filebench in-
cluding write-dominated (randomwrite), write-read-mixed
(fileserver and oltp), and read-dominated (webserver).
Figure 13a illustrates the throughputs of di$erent AFA set-
tings. We normalized the results to that of RAIZN. Thanks to
our decentralized design and I/O scheduler, BIZA can exploit
the internal parallelism of ZNS SSDs and thereby achieve the
highest throughput in all workloads. To be speci"c, BIZA out-
performs RAIZN by 26.6%, 24.9%, and 18.7% in randomwrite,
fileserver, and oltp, respectively. The improvement is
minor in webserver, as write requests only account for 4.8%
in this workload. Note that our designs focus on optimizing
the write path while taking nearly the same read path as
other AFA platforms.
Key-value store. We further evaluate BIZA on RocksDB
[20], a popular key-value store, with db_bench [19]. We run
RocksDB on F2FS "le system. Both fillseq and fillrandom



are write-dominated workloads that write values in sequen-
tial or random key order, while fillseekseq "rst writes
values sequentially and then reads them by seeking each key.
We set the key and value sizes as 16 B and 1 KB, respectively.
Figure 13b shows the comparison of normalized throughput.
Although on top of the ZNS-friendly RocksDB and F2FS,
BIZA can still outperform RAIZN, echoing the "ndings of
prior evaluations. Speci"cally, BIZA outperforms RAIZN by
up to 10.5%. For all workloads, on average, the improvement
stands at 8.0%.

5.4 Write Ampli!cation Reduction
To evaluate how much our novel zone group selector de-
sign can mitigate the damage of write ampli"cation with
ZRWA, we set an experiment to analyze the number of writes
(i.e., write counts) fallen on "ash backbone (i.e., excludes the
writes absorbed by write bu$er). We normalized the results
to the number of writes sent by the user. BIZA opens 14
zones (the maximum allowed number in ZN540 SSD) for
each ZNS SSD and thereby can exploit 56 MB of ZRWA for
all 4 SSDs. We set the sizes of the LRU cache, HR cache,
and HP cache as 1048576, 262144, and 16384 entries empir-
ically, which can track 4 GB, 1 GB, and 64 MB of chunks,
respectively. Note that all these caches are ghost caches (cf.
§ 4.2) that only maintain the attributes (i.e., reaccess num-
ber and reuse distance) of chunks. Therefore, the memory
footprint of these caches is minor (i.e., 7.6 MB with our set-
tings). Both mdraid and RAIZN employ an in-host-DRAM
write bu$er (named stripe cache [45]) for absorbing updates.
These designs hamper the fault tolerance of AFA, as chunks
that stay in DRAM will be lost after system failures. How-
ever, for fair comparisons, we still equip them with the same
size (i.e., 56 MB) of write bu$er. Note that, dm-zap is a sim-
ple address translation layer that does not produce extra
write requests. Therefore, mdraid+dmzap has similar results
as mdraid+ConvSSD. We omit the latter due to space limi-
tations. In addition, BIZAw/oSelector means the scenario
where we do not employ the zone group selector (cf. § 4.2)
in BIZA. To be speci"c, it randomly selects zone groups to
serve write requests. Finally, no cache and ideal represent
the scenario where no update and all updates are absorbed
in the write bu$er, respectively.
Figure 14 illustrates the results. The lighter and darker

shaded segments of each bar represent parity and data writes,
respectively. Compared with no cache, dmzap+RAIZN and
mdraid+dmzap successfully reduce 42.5% and 4.4% parity
writes, respectively. This is because both mdraid and RAIZN
can gather multiple scattered write requests in their write
bu$er and handle them as a whole. This method reduces the
need for parity computations and parity writes [45, 58, 89].
Note that, in RAIZN, all write bu$er is used for bu$ering
parity whilst mdraid uses write bu$er for both parity and
data. Therefore, dmzap+RAIZN reducesmore parity writes but
fewer data writes than mdraid+dmzap. BIZAw/oSelector

Figure 14. Comparison of write ampli"cation.

Figure 15. Comparison of tail latency after GC starts.

outperforms mdraid+dmzap by 32.5% among all workloads,
on average, in terms of data writes. This is because mdraid
needs to periodically !ush data from the volatile in-host-
DRAM write bu$er to SSDs as compensation for the fault
tolerance issue, which causes more !ash writes. In contrast,
BIZA relies on the on-device non-volatile ZRWA to absorb
updates, which avoids periodical !ushing. Bene"ting from
our ghost-cache-based zone group selection algorithm (cf.
§ 4.2), BIZA succeeds in reserving the high-pro"t chunks
in ZRWA, thereby further shrinking the number of writes
by 12.6%, compared with BIZAw/oSelector. BIZA reduces
write ampli"cation less in some workloads (e.g., tencent)
because these workloads have larger reuse distances, mak-
ing it harder for BIZA to utilize the temporal locality with
the limited size of ZRWA. For example, 90.2% of chunks in
tencent have reuse distances larger than 56 MB, while the
ratio is only 8.3% in casa.

5.5 Avoiding the GC-induced Latency Spike
Figure 15 shows the 99𝐿𝑀 and 99.99𝐿𝑀 sequential write la-
tency of di$erent AFA settings after GC occurs. We set the
I/O depth as 32 and 1 to mimic the throughput-sensitive
and latency-sensitive scenarios, respectively. BIZAw/oAvoid



Figure 16. Sensitivity analysis.

means removing the GC avoidance mechanism (cf. § 4.3)
from BIZA, therefore it may handle user I/O and internal
GC events with the same I/O channels. The results have
been normalized to BIZA(no GC), which represents the ideal
case where no GC happens in BIZA. A$ected by the GC,
all AFA platforms su$er higher tail latency. For instance,
BIZAw/oAvoid experiences 1.0↑, 0.9↑, and 1.4↑ higher 4
KB, 64 KB, and 192 KB 99.99𝐿𝑀 write latency than the ideal
(i.e., BIZA(no GC)), respectively, in both scenarios on av-
erage. Compared with BIZAw/oAvoid, BIZA alleviates the
latency spikes by 27.4% in throughput-sensitive scenario.
This is because, with our I/O channel detection technique
and GC avoidance mechanism, BIZA can serve user I/O and
GC events properly with diverse I/O channels, which mit-
igates the interference between them. This improvement
further expands to 74.9% in the latency-sensitive scenario.
This is because, in this scenario, BIZA has more idle stor-
age resources for better isolating GC and user I/O, thereby
reducing more latency spikes on user I/O.

5.6 Sensitivity Analysis: Di"erent Sizes of ZRWA
BIZA harnesses ZRWA to bu$er both the frequently updated
data and parities. We vary the ZRWA size per open zone
from 4 KB to 1024 KB to examine the bene"ts brought by
di$erent sizes of ZRWA. Figure 16 shows the variation of
write count with ZRWA size in casa and online workloads.
The results have been normalized to the number of writes
sent by the user. Note that all writes in casa and online are
4 KB, which is the same as the chunk size of BIZA. Therefore,
without cache (i.e., red line in Figure 16), BIZA writes 1↑
data and 1↑ parities to the !ash backbone, since every data
write triggers a parity write. 2/3 of these parities are partial
parities while the remaining 1/3 are "nal parities of stripes.
In both workloads, data writes and parity writes decrease
with increasing ZRWA size, which demonstrates our zone
group selector can absorb more writes with larger bu$er.
Interestingly, when the ZRWA size is 4 KB, no data updates
are absorbed, while all partial parity writes are eliminated.
This is because BIZA employs the only-one-chunk-sized
ZRWA to accommodate partial parities that will be refreshed
soon (i.e., when the next write arrives).

Figure 17. Comparison of CPU overhead.

5.7 CPU Overhead
We examine the CPU overhead of di$erent implementa-
tions in 64 and 192 KB sequential write patterns. We em-
ploy perf v5.15 [91] to capture CPU cycles. We de"ne CPU
e#ciency as the CPU usage used to achieve per GB/s band-
width. Each 100% CPU usage means full exploitation of a
CPU core. Figures 17 illustrates the results. mdraid, dmzap,
RAIZN, and BIZA represent the software overheads of each
component, while I/O is CPU ticks consumed by SSD I/O.
dmzap is the main source of CPU overhead for dmzap+RAIZN
and mdraid+dmzap and accounts for 50.4 % and 84.7% of the
total CPU usage in these two settings, respectively. This is
because dm-zap realizes one in-!ight write control with a
centralized lock [82]. This lock solves the I/O reorder issue (cf.
§ 3.2) but causes a huge waste of CPU as CPU spins purpose-
lessly most of the time. Compared with dmzap+RAIZN, BIZA
takes 31.5% more CPU usages to parallelize I/O services, in
64 and 192 KB tests, on average, and thereby achieves 88.5%
higher throughput (cf. Figure 10a). Consequently, BIZA out-
performs all other AFA platforms in terms of CPU e#ciency
(cf. the right axis in Figure 17).

6 Related Work and Discussion
Large zone versus small zone. Available ZNS SSDs can be
classi"ed into two types, large zone and small zone, accord-
ing to their mapping policy between zones and I/O channels.
Large-zone ZNS SSDs (e.g., ZN540 [16]) map a single zone to
a set of !ash blocks from tens of !ash dies whilst the zones in
small-zone ZNS SSDs [29, 30, 78] only consist of one or few
!ash blocks. Although we focus on the large-zone ZN540
SSD in this paper, we argue that our design can be employed
on small-zone ZNS SSDs as they also equip parallel I/O re-
sources [66] that can be used for GC avoidance. Another
requirement of BIZA designs is the hardware support for
ZRWA feature. Table 2 lists this support in diverse commod-
ity ZNS SSDs from di$erent vendors [14, 16, 31, 75], which
is evidence of the popularity and prospect of ZRWA.
Diverse I/O interfaces of SSDs. Extensive discussions
[4, 5, 7, 68] have been taken on the I/O interface of SSDs



since the last decade. We classify them into two categories
based on their trade-o$s among compatibility, cost, and open-
ness. Multi-stream SSD [4] and its successor, FDP SSD [68],
still expose the compatible block interface to upper-layer
software. They are aimed to o$er isolated environments to
di$erent I/O streams by utilizing extra hardware resources
(e.g., ARM cores and DRAM) to process I/O hints sent by
the host. On the other hand, open-channel SSD [7] and its
successor, ZNS SSD [5], are more cost-e#cient and !exible.
They simplify the SSD architecture and rely on host-side
management to mitigate write ampli"cation and achieve
high performance. By shifting parts of SSD internal tasks
to the host side, they provide exclusive opportunities for
cross-layer optimization. Therefore, in this paper, we opt to
construct AFA with ZNS SSDs.
Alleviating the impact of GC. Multiple studies [11, 26, 34,
41, 46, 52, 53, 55, 95, 97] have been proposed to alleviate the
performance degradation caused by GC in AFA. SWAN [42],
FusionRAID [34], and IODA [53] mitigate latency spikes by
redirecting I/O requests to other SSDs that are not in GC.
In ZNS SSD scenarios, the unique challenge is that, without
con"rming the mappings between zones and I/O channels,
we cannot properly schedule GC and I/O to independent I/O
resources. Tackling this issue, BIZA employs a guess-and-
verify mechanism to diagnose the mappings online.
Inter-zone parallelism. eZNS [66] tries to exploit inter-
zone parallelism by simply writing multiple zones con-
currently. However, blindly utilizing zones from identical
I/O channels could not enjoy inter-zone parallelism (cf.
Scenario 2 in Table 3). Tackling this issue, we propose
a guess-and-verify mechanism to "rst con"rm the mappings
between zones and I/O channels, and thereafter handle I/O
requests with parallel zones from diverse I/O channels for
higher performance.
Write ampli!cation reduction with ZNS SSDs. Great
e$orts [5, 12, 35, 51] have been taken to alleviate the write
ampli"cation with ZNS SSDs. ZenFS [5] and LL-compaction
[35] achieve this by gathering data from the same SS-
Table (thereby having similar lifetimes) in the same zones.
LSM_ZGC [12] diminishes write ampli"cation with an e#-
cient GC algorithm that exploits the characteristics of log-
structured "le systems. All these designs are tailored for
speci"ed applications (e.g., RocksDB [20]). In contrast, BIZA
mitigates write ampli"cation by absorbing updates in ZRWA,
which is a general-purpose design for all scenarios.
Considering ZRWAas a cache. As ZRWA is an abstraction
of write bu$er (i.e., cache), prior work that targets improving
the e#ciency (or hit rate) of caches [22, 72, 73, 98] could be
utilized for better exploiting the ZRWA. However, there are
two unique challenges in ZRWA scenarios. First, ZRWA has
very limited sizes (e.g., 14 MB in ZN 540[16]), which can
seldom utilize the temporal locality of existing workloads. In
comparison, prior work [67, 73, 98] usually assumes a large
bu$er size. Second, ZRWA always evicts data in the leftmost

position (cf. § 3.1), while prior work [72] allows evicting any
entry from the write bu$er. Therefore, we have to choose the
admission and eviction policies cautiously when adopting
cache designs. In this paper, we take a ghost-cache-based
design [28, 67, 94] for ZRWA, which has been proven to be
useful (cf. § 5.4). We leave the exploration on more cache
algorithms for future work.
Future ZNS designs.We expect future ZNS SSDs can clearly
point out the mappings between I/O channels and zones,
which helps users exploit inter-zone parallelism (cf. § 3.3).
One way to achieve this is piggybacking the mappings in
NVMe completion queue entries (CQE) [69] of OPEN com-
mands. Moreover, the emerging CXL techniques, that allow
cache coherence and fast synchronization between the host
and peripheral devices, may be helpful for making the shift of
write pointer explicit, thereby enabling better I/O scheduling
for exhausting intra-zone parallelism.

7 Conclusion
A deep analysis reveals that the existing interface choices of
AFA are defective in terms of endurance, performance, and
compatibility. Based on these lessons, we propose BIZA, a
self-governing ZNS AFA that can bene"t from the openness
of ZNS interface whilst exposing the user-friendly block in-
terface to upper-layer applications. BIZA achieves these by
fully exploiting the emerging ZRWA feature and the inter-
nal parallelisms of ZNS SSDs. Our evaluation results reveal
that BIZA mitigates write ampli"cation by 42.7%, enhances
throughput by 93.2%, and decreases tail latency by 62.8%,
compared to the state-of-the-art AFA solutions.
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