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ABSTRACT. We consider a class of partially hyperbolic diffeomorphisms intro-
duced in | ] which is open and closed and contains all known examples. If in
addition the diffeomorphism is non-wandering, then we show it is accessible unless
it contains a su-torus. This implies that these systems are ergodic when they pre-
serve volume, confirming a conjecture by Hertz-Hertz-Ures | , Conjecture
2.11] for this class of systems.
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1. INTRODUCTION

In this paper we study the ergodicity problem for 3 dimensional partially hy-
perbolic diffeomorphisms. It has been shown in | ] that ergodicity (in fact the
K-property) is abundant, establishing a conjecture of Pugh and Shub in this setting
[PS]. This lead to the belief that non-ergodic partially hyperbolic diffeomorphisms
in dimension 3 can be described [ ] (see also [ ).

Many recent works including our own, have tried to show that in certain manifolds
or isotopy classes ergodicity holds for all volume preserving partially hyperbolic
diffeomorphisms (see | , , GS, FP, ]). Thanks to the reductions of
[ , , | the problem boils down to the study of accessibility, and this
has become a problem on its own (see [P, H, HS, F'P] for general results about
accessibility).

Here, instead of fixing a manifold or isotopy class, we work on a specific class
of partially hyperbolic diffeomorphisms that were introduced in | | motivated
by [ , , |. They are called collapsed Anosov flows. Very roughly
the dynamics of the partially hyperbolic diffeomorphism is semiconjugated to a self
orbit equivalence of an Anosov flow, and the semiconjugacy sends flow lines to
curves tangent to the center bundle. See section 2 for a precise definition. The
class of partially hyperbolic diffeomorphisms which are collapsed Anosov flows is an
open and closed subset of all partially hyperbolic diffeomorphisms, and in addition
it includes all known examples in manifolds with non-solvable fundamental group.
We note that this class is strictly larger than the ones previously known to satisfy
[ , Conjecture 2.11] as it contains the partially hyperbolic diffeomorphisms in
the connected component of the examples constructed in | , .

Our main result is the following:

Theorem A. Let f: M — M be a collapsed Anosov flow of a closed 3-manifold M
whose fundamental group is not virtually solvable. Assume that the non-wandering
set of f is all of M. Then, f is accessible. In particular, if f is C'* and volume
preserving it is a K-system (and consequently ergodic and mizing).

S.F. was partially supported by Simons Foundation grant numbers 280429 and 637554. R. P.
was partially supported by CSIC 618.
1



2 SERGIO R. FENLEY AND RAFAEL POTRIE

Again, precise definitions are given in § 2. It is worth noting that in | , ]
the argument to get ergodic examples is perturbative, so not even the concrete
examples constructed there were known to be ergodic (but it was known that an
open and dense subset of the examples in a volume preserving neighborhood were).
The ergodicity for specific examples follows from the results of this paper.

We note that the assumption that M does not have solvable fundamental group
is necessary since the time one map of a suspension of a toral automorphism is
not accessible (and in fact contains a su-torus). We refer the reader to [H] for a
complete treatment of accessibility in the class of 3-manifolds with virtually solvable
fundamental group.

Theorem A is complementary to what was done in [F'P] but some results have
intersection (in [I'P] it is proved that a more restrictive class, that of discretized
Anosov flows, are always accessible without the non-wandering assumption). In
fact, the proof of Theorem A uses ['P] at some point. However, a slightly weaker
version of Theorem A can be proven independently of [F'P] (see § 6.2).

In [I'P] accessibility and ergodicity are established unconditionally in certain man-
ifolds or isotopy classes of diffeomorphisms. On the other hand, in [F'P5] we showed
that every partially hyperbolic diffeomorphism in a hyperbolic 3-manifold is a col-
lapsed Anosov flow, so this paper gives a different proof' of some of the results of
[['P’]. Note that in [I'P’;] we plan to show that every partially hyperbolic diffeomor-
phism in a Seifert 3-manifold is a collapsed Anosov flow, so this paper will imply
that [ , Conjecture 2.11] also holds for Seifert manifolds extending | , FP]
where this was shown for certain isotopy classes.

The results of this article emphasize what | | proposes: it is valuable to under-
stand the dynamics of collapsed Anosov flows and separate it from the classification
of general partially hyperbolic diffeomorphisms. The proof uses some fine proper-
ties of (topological) Anosov flows that had not been previously used in the study of
partially hyperbolic dynamics (see § 2.1).

2. BACKGROUND

In this paper M will always denote a closed 3-manifold. In this section we briefly
recall some basic properties of Anosov flows, partially hyperbolic diffeomorphisms
and collapsed Anosov flows. Except in § 2.1 we only present definitions and quote
results from elsewhere. In § 2.1 we prove Proposition 2.5 which is an observation
about self orbit equivalences of topological Anosov flows that we will use in the proof
of Theorem A. We refer the reader to | , I'P] for more detailed information.

For simplicity and since Theorem A can be shown in finite lifts we will assume
without explicit mention that all objects are orientable and foliations are transver-
sally orientable; we comment on this assumption in § 2.4.

2.1. Topological Anosov flows. A flow ¢; : M — M generated by a continuous
vector field X is said to be a topological Anosov flow if it is expansive and preserves
a topological foliation (see [ , §5] for other equivalent definitions). A topological
Anosov flow ¢; preserves two transverse foliations F“% and F** with the property
that orbits in F*9(x) approach the orbit of z in the future while orbits in F*(z)
approach the orbit of z in the past. Leaves of %5 and F** are planes or cylinders’

1The argument of [['P] achieves accessibility in hyperbolic 3-manifolds in a shorter way as it uses
much less of the classification. In particular to use the proof we present here to deduce ergodicity in
hyperbolic 3-manifolds one should use the full classification of partially hyperbolic diffeomorphisms
in hyperbolic 3-manifolds given in | | which is way longer.

20ne could have Mébius bands but our standing assumption that everything is orientable ex-
cludes this.
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and all cylinder leaves contain a unique periodic orbit. We refer the reader to [Bar]
for generalities on Anosov flows in dimension 3.

We denote by ggt : M — M the lift of the flow to the universal cover. A funda-
mental property for us is | , Ba] that the quotient Oy of M by the orbits of $t

is homeomorphic to R?. In other words, the flow q?t in M is topologically a product
flow. However, geometrically this is rarely the case, and this will be a key fact (see
Theorem 2.2 below for a precise statement) that we will exploit to show accesibility.

We call Oy the orbit space of ¢. The lifts Fws and F are flow invariant and
therefore induce transverse one dimensional foliations G and G“ in the orbit space
Og. The fundamental group mi(M) preserves the collection of flow lines, hence
induces an action by homeomorphisms on Oy which preserves the foliations §* and
G". Given an orbit 0o € Oy we call half leaf of G°(0) (or §“(0)) to a connected
component of G%(0)\{o} (or §“(0)\{0}).

~

Given an orbit o of ¢; we view it as both an element or point in Oy4 and as a

subset of M consisting of all points in the orbit.

Note that if for some o € O there is some non trivial vy € 71 (M) such that yo = o
then this means that o corresponds to a periodic orbit a = 7(0) of ¢¢. In fact this
is an if and only if property. We say that « acts increasingly (resp. decreasingly)
on o if vz = ¢y(x) for some ¢t > 0 (resp. t < 0) and some z € o (since v does not
have fixed points in M it is easy to see that this is independent on x € o). Our
orientability assumptions imply that if a deck transformation fixes some orbit, then
it also fixes all the half leaves of G°(0) and G*(0), i.e. the connected components of
5°(0)\{o}, §"(0)\{o}.

Let a1, a9 be periodic orbits of ¢;. We say that they are freely homotopic if the
unoriented curves ag, ao are freely homotopic. With our orientation conditions this
is equivalent to saying that there is a non trivial deck transformation v € m (M)
and lifts 01,09 of aq, ay respectively such that yo; = 07 and 02 = 02 (note that
we do not require 7 to act increasingly on both, or any of them). There are many
subtleties with defining freely homotopic orbits, having to do with orientation on
the orbits, taking powers of orbits; but we will not enter into them here. We refer
the reader to [ ] for more details.

A key object for the main result here will be lozenges, see figure 1.

Definition 2.1. An open subset £ of the orbit space Oy is said to be a lozenge if
there are two orbits o1, 09 called the corners of the lozenge which verify that they
have half leaves A] of §%(01) and A} of G%(01) which are disjoint from half leaves
A5 of G%(02) and AY of G%(02) and satisfy the following properties:

o A leaf of G° intersects A} if and only if it intersects A%.

o A leaf of G" intersects A7 if and only if intersects A35.

e every point p € £ satisfies that G°(p) intersects A} and separates o1 from os.
In addition §%(p) intersects A; and separates o1 from os.

The half leaves A7, A5, A}, Ay are called the sides of the lozenge.

A chain of lozenges is a sequence L1,...,L; of lozenges such that the closures
of £; n £;y1 in the orbit space intersect either at a side or at a corner. A chain is
minimal if a given lozenge occurs at most once in the chain — no backtracking.

We will need the following result, the first claim of which is | , Theorem 3.3]
and the second is | , Corollary E]. For the last claim see | ] or [Bal’, Theorem

ql.

Theorem 2.2. Let ¢y : M — M be a topological Anosov flow. Then,
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FIGURE 1. A lozenge. This figure is in the orbit space. So topologically
the region of M which projects into the lozenge is this lozenge times the
reals.

(i) Let o1, 02 orbits in Oy which are fized by a non trivial v € w1 (M). Then o
and o9 are connected by a finite chain of lozenges whose corners are fixed by
y.
(ii) If ¢y is not a suspension then there are freely homotopic periodic orbits of
Pt
Moreover, every Z? subgroup of the fundamental group is associated to at most
two bi-infinite minimal chains of lozenges. The subgroup fixes each such chain of
lozenges. There are infinitely many non trivial elements in the Z* subgroup which
fix every lozenge in these chains.

To get the last statement one uses that the Z? subgroup acts on the linearly
ordered set of lozenges in the bi-infinite chain of lozenges, which is order isomorphic
to Z.

As a consequence one deduces that every topological Anosov flow ¢y : M — M
which is not a suspension contains a lozenge whose corners are lifts of periodic orbits
of ¢; to M. This is the crucial place where we will use that the fundamental group
is not solvable since suspensions are very different from the rest of Anosov flows in
this respect.

Corollary 2.3. If ¢ : M — M is a topological Anosov flow which is not a sus-
pension, then there exists a lozenge L in Oy which is fized by some non trivial
v em(M).

Note that a topological Anosov flow is a suspension if and only if the manifold
has (virtually) solvable fundamental group [Bru].

An important property of lozenges that we will use is the following (see figures 2
and 3):
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Proposition 2.4. Let L < Oy be a lozenge in Oy fized by v € w1 (M). Denote by
01,09 the corners of L which correspond to periodic orbits of ¢;. Then, if v acts
increasingly on o1 then it acts decreasingly on oy and vice versa.

Proof. Note that if v acts increasingly on o; then « expands points in §%(o1) and
contracts points in §%(o1). This is counterintuitive so we explain for the action on
G%(01). Let L be stable leaf of ¢; which projects to §%(o1) in Og. Then v acts as
an isometry in L and sends a point = in 01 to ggt(:c) where t > 0. Let y be in L in
a nearby orbit at distance dy from z. Then ~(y) is at distance dy from qz?t(:v) since
~ acts as an isometry on L. But the orbit through y is closer to &t(x) than y is
to x because orbits in a stable leaf converge together. So the orbit through ~(y) is
farther from o7 than the orbit through y is, that is v acts as an expansion on the
set, of orbits in L.

Let A? be the half leaves of §%(0;) which are in the boundary of the lozenge, and
AY the half leaves of G%(0;) which are in the boundary of the lozenge. We proved
that v acts in an exanding manner in §°(01). Let ¢ in G°(01). Then §%(q) intersects

5 and separates o1 from oy by the lozenge property. This implies that v contracts
points in G°(02).

Similarly v contracts points in §%(01) and expands points in §%(02). O
AS
01 =01 Y 42
02 = 702
u

FIGURE 2. A periodic lozenge fixed by a non trivial deck transformation
~v which also fixes the corners 01,02 of the lozenge. The arrows indicate
the action of vy on the stable and unstable leaves of 0;. Notice again that
this figure depicts the situation in the orbit space which is two dimensional.
The figure depicts the situation that v(z) = ®;(x) with ¢ < 0 for z in o;.

We now clarify what we mean by the flow not being a geometric product. Consider
the setup as in Proposition 2.4. Let a; = m(0;) be the corresponding periodic orbits
of ¢y in M (7 : M — M is the universal covering map). Proposition 2.4 implies that
a1, oo are freely homotopic to the inverses of each other. In particular this implies
that a positive ray of o1 is a bounded Hausdorff distance in M from a negative ray of
09 and vice versa. Also a positive ray of 01 is not a bounded distance from a positive
ray of o9. Hence the flow & in M is very far from being a geometric product.
The prototype flow for this behavior is the geodesic flow on a closed, orientable
hyperbolic surface. Here every periodic orbit is freely homotopic to the inverse of
another periodic orbit (the same geodesic traversed in the opposite direction).
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TN

01

02

S~

FIGURE 3. Lifts 01,09 of periodic orbits aj,as which are freely homo-
topic to the inverses of each other. The arrows in the flow lines indicate
the positive flow direction in each orbit. The action of 7 in each orbit is
also indicated. This figure is supposed to be 3-dimensional in M and geo-
metrically correct in that positive rays of 07 are a bounded distance from
negative rays of oo and so on. Hence geometrically the flow is very far from
being a product.

A self orbit equivalence of an Anosov flow ¢; is a homeomorphism § : M — M
sending orbits of ¢; to orbits of ¢; and preserving their orientation. See [ , ]
for more information on them. A self orbit equivalence is trivial if it leaves invariant
every orbit.

We show the following proposition about self orbit equivalences that will be an
important technical ingredient to prove our main result. The proof and statement
will assume some familiarity with the theory of Anosov flows (we note that very
similar arguments can be found in | |; we include the proof since this is not
stated explicitly).

The proposition refers to R-covered Anosov flows. This means that the leaf space
of the stable foliation of the flow lifted to M is homeomorphic to the reals. In case
® is R-covered and not conjugate to a suspension it has what is called skewed type.
The skewed type has a well defined structure, in particular every orbit (periodic or
not) is one corner of a bi-infinite chain of lozenges. If the orbit is periodic then
there is a Z? subgroup leaving this bi-infinite chain invariant. Any such flow has
what is called a one step up map: it is self orbit equivalence of the flow ® which
is homotopic to the identity and has a lift to M which induces a shift by one in
any of these bi-infinite chains. We refer the reader to | | and [Bar] for details on
R-covered Anosov flows, including the one step up map.

Proposition 2.5. Let 8 : M — M be a self orbit equivalence of a topological
Anosov flow ¢ : M — M on a manifold with non-virtually solvable fundamental
group. Then, one of the following three possibilities happens:

(i) there is a lozenge L fized by some non trivial deck transformation ~ and
there is a lift B of an iterate of B such that B(L) =L
(i1) M is hyperbolic, ¢y is R-covered and [ is a non trivial power of an one step
up map, or
(iii) M is Seifert and [ acts in the base as a pseudo-Anosov.

Proof. If a 3-manifold M admits an Anosov flow then it is irreducible and the uni-
versal cover is homeomorphic to R3. It follows that the manifold is either hyperbolic,
Seifert fibered or it has a non-trivial JSJ decomposition (see e.g. [Bar]).
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If M has a non-trivial JSJ decomposition, then there is some iterate of g that fixes
all tori of the decomposition up to homotopy. Each torus in the torus decomposition
is associated with a Z2 subgroup of 71(M) which leaves invariant a minimal chain
of lozenges € (cf. Theorem 2.2). Let £ be a lozenge in C, which has to be fixed
by infinitely many ~ in the Z? subgroup associated with the torus. Since an iterate
of 3 leaves the torus invariant up to homotopy, this implies that some lift BO of an
iterate of 3 leaves invariant C. If 8y does not fix a lozenge in C then it acts as a
translation on the set of lozenges in €. A Z? subgroup leaving C invariant has a non
trivial element ~; acting as translation on €, hence some iterate Bé'y{ with ¢ not zero
fixes £, and this is a lift f3 of a non trivial iterate of B.

This shows that either the first possibility holds or the manifold is hyperbolic or
Seifert fibered.

If M is hyperbolic then up to an iterate we can assume that S is homotopic to
the identity. If 5 has a finite iterate which is trivial, then the finite iterate has a lift
fixing all orbits in M. Since M is hyperbolic then ¢; is not conjugate to a suspension
Anosov flow. Then the first possibility of the proposition is satisfied automatically
because of item (ii) of Theorem 2.2. If no power of § is trivial, then in [ ] it is
shown that ¢; must be R-covered and 3 is a power of a one step up map.

If M is Seifert fibered, then the flow is topologically equivalent to a lift of a
geodesic flow in a hyperbolic orbifold [Bru], in particular, every periodic orbit cor-
responds to a closed curve in the base and all periodic orbits lifted to the universal
cover are the corner of some lozenge. If the action in the base of 3 is not pseudo-
Anosov, then one of these lozenges will be periodic.

This finishes the proof of the proposition. U

2.2. Partially hyperbolic diffeomorphisms. A diffeomorphism f : M3 — M3
is said to be partially hyperbolic if there exists a continuous D f-invariant splitting
TM = E%® E°@® E" into one dimensional bundles such that there exists ¢ > 0 so
that for every x € M and v“ unit vectors in E (0 = s, ¢, u) we have:

IDf%") < min{L, |Dfe]} < max({L, |Dfe]} < |Dfle].

It is well known that £° and E" integrate uniquely into f-invariant foliations W?*
and W* (see e.g. [HP5]). In general, the center foliation does not integrate into a
foliation, though one dimensionality allows to get some structures that we will not
use explicitely here [BI].

Definition 2.6. We say that f is accessible if for every x,y € M there exists a
(piecewise smooth) curve tangent to £ u E* joining z to y.

There is a strong link between accessibility and ergodicity suggested by the Pugh-
Shub conjectures [’S]. In our setting the following result is true (see | ] for
stronger results in higher dimensions that also imply the following):

Theorem 2.7 (Burns-Wilkinson). If f : M — M is a volume preserving partially
hyperbolic diffeomorphism in a closed 3-manifold M which is accessible and of class
CY™*. Then, f is a K-system, in particular it is ergodic and mizing.

Recall that a measure preserving system is a K-system if every non-trivial finite
partition has positive metric entropy, this implies the system is ergodic (i.e. invariant
sets have zero or full measure). See | , ] for more information.

Lack of accessibility in dimension 3 allows to produce a strong structure that is
what we will analyse here (see [ , , )):
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Theorem 2.8 (Hertz-Hertz-Ures). Let f : M — M be a partially hyperbolic diffeo-
morphism on a closed 3-manifold with non-solvable fundamental group whose non-
wandering set is all of M and such that f is not accessible. Then, there exists a
lamination A" tangent to E° @® EY such that:

e A does not have closed leaves,

e the closure of the complementary regions of A*“ (if existing) are I-bundles
where E°€ is uniquely integrable and such that center curves form the I-bundle
structure.

See [P, §2.3] for more discussion on this result. The case where the fundamental
group is solvable is related with the existence of su-tori, see | .

We will use the following easy property of partially hyperbolic diffeomorphisms
that follows directly from uniform transversality of the bundles after iteration (see
e.g. [P, Proposition 4.2]):

Proposition 2.9. There are no closed curves tangent to E° or E“.
A generalization will be given in Proposition 6.3 below.

2.3. Collapsed Anosov flows. We introduce here the notion of collapsed Anosov
flows from | ]. As mentioned earlier, it corresponds to an open and closed class
of partially hyperbolic diffeomorphisms (see | , Theorem C]) that contains all
known examples of partially hyperbolic diffeomorphisms in manifolds with non vir-
tually solvable fundamental group (see | , Theorem A]).

Definition 2.10. A partially hyperbolic diffeomorphism f : M — M is a collapsed
Anosov flow if there exists a (topological) Anosov flow ¢y : M — M, a self orbit
equivalence 8 : M — M and a continuous map h : M — M homotopic to the identity
which is C'! along orbits of the flow and such that d;h(¢¢())]i=0 € E(h(z))\{0} and
such that foh = hof.

In | , Theorem A] we actually show that all known examples verify a slightly
stronger assumption that we call strong collapsed Anosov flow which under our
orientability assumptions is also open and closed among partially hyperbolic diffeo-
morphisms. In §6.2 we introduce this notion since the proof of Theorem A admits
a shortcut if one restricts to this class. (Note that it is an open question if being
collapsed Anosov flow implies being strong collapsed Anosov flow.)

2.4. Orientability assumptions. Here we comment on the assumption we have
made that all bundles are orientable and that D f preserves their orientation. This
is no loss of generality as we shall now explain.

Firstly, let us remark that if f is a partially hyperbolic diffeomorphism of a man-
ifold M and g is a lift of an iterate of f to a finite cover M of M, then, accessibility
of g implies accessibility of f. To see this, notice that the strong stable and strong
unstable manifolds of an iterate of f are the same as those of f, so taking iterates
does not change the fact that the whole manifold is an accessibility class. Further,
an accessibility class in M projects to an accessibility class in M, thus, accessibility
in M for g implies accessibility of f as desired.

Now we need to justify why taking a lift of an iterate of a collapsed Anosov flow
to a finite cover is still a collapsed Anosov flow which will end the justification that
our assumptions are in fact no loss of generality.

First, notice that taking an iterate of a collapsed Anosov flow is still a collapsed
Anosov flow: one just needs to keep the same flow ¢; and map h in Definition 2.10
and pick an iterate of 5. Consider now a collapsed Anosov flow f : M — M and
let 7 : M — M be a finite lift corresponding to the orientation of the bundles (i.e.
7 M — M is a lift so that the bundles E%, E¢, E* are orientable in the cover). In
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addition we assume that f lifts to f : M — M so that f preserves all orientations
of the bundles — this can be achieved by further lifts and iterates. We claim that
f is also a collapsed Anosov flow. The flow ¢; lifts to ¢¢, which is a topological
Anosov flow in M. In addition since h is homotopic to the identity the actions on
homotopy induced by f and 8 on (M) are the same. Therefore § also lifts to B
in M. Clearly 5 is a self orbit equivalence of gbt Flnally the homotopy from the
identity to h, lifts h to hin M. By construction f oh=ho . In other words f is
also a collapsed Anosov flow. This concludes the proof of our claim.

3. IDEA OF THE PROOF OF THEOREM A

Here we explain some of the main ideas to prove Theorem A.

Since f is a collapsed Anosov flow associated with an Anosov flow ¢;, there is a
self orbit equivalence § of the flow ¢, and a map h homotopic to the identity so
that foh =hog.

Our assumptions give that there are periodic orbits ay, as of ¢, which are freely
homotopic to the inverses of each other and which lift to orbits &, &2 that are corners
of a lozenge £ invariant by deck transformation 7 associated to a; (c.f. Corollary
2.3).

By Proposition 2.5 (and because the other cases where dealt in [F'P]) we can
choose a1, ag so that the lozenge £ is also invariant by a lift of a power of the self
orbit equivalence . Let o; = &;.

Roughly, the idea of the proof of Theorem A is that the orbits aj, as above and
the fact that they are (essentially) transverse to the lamination A®* force a closed
curve in a leaf of A*" which is invariant by a power of f. It is easy to show that this
leads to a contradiction (see Proposition 6.3).

02

01

FIGURE 4. E is a leaf of A5* intersecting o;. It cannot intersect oo and
neither its iterates by . Hence y"*(E) (n — o) converges to a unique leaf L
of As* which separates oy from o, (the sequence 4" (E) may also converge to
other leaves as well, but L is uniquely determined). This figure is supposed
to be 3-dimensional, we draw a 2 dimensional slice of it.
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Let us explain how the curve is found: to simplify the explanation let us assume
in this section that h is injective, hence a homeomorphism. Notice that h sends flow
lines of ¢; to C'' curves tangent to E¢ and hence transverse to the lamination A%,

Lift the homotopy of A to the identity to produce h.

We consider the action of v on h(&1) and h(&2). By Proposition 2.4, v acts
increasingly on h(al) and decreasingly on h(ag) This is the crucial fact. In § 5 we
show that this implies that for any leaf E of A** then E cannot intersect both h(al)
and h(Oéz) because E separates M. Hence, starting with F intersecting o1 = &1, we
can produce (see figure 4) a unique leaf L of A*" which separates in a specific way
h(&1) from h(&s) (see Proposition 5.1). This leaf L is fixed by .

In § 4 we do a careful analysis of how a surface like L can intersect the image
under £ of the stable and unstable leaves of a; and Proposition 4.6 produces a curve
in the intersection which is invariant by . By the choice above we can prove this
curve is also invariant by a power of a lift of an iterate of f. This is where the
semiconjugacy betweeen f and § by h is used. This projects to a closed curve in a
leaf of A" which is invariant by a power of f that gives a contradiction as explained
above.

In the rest of the article we carefully carry out this strategy.

4. SURFACES TRANSVERSE TO COLLAPSED ANOSOV FLOWS

In this section we somewhat extend | , Proposition 4.3]. The context is slightly
different since we need to take care of a different setup, but some of the ideas are
very similar. Our result in this direction is Proposition 4.5 below, stating that in the
orbit space of an Anosov flow, the boundary of the orbits that intersect a surface
uniformly transverse to the flow is made of entire weak stable and weak unstable
leaves.

The goal is to understand the intersection between a surface transverse to the
center bundle of a (collapsed) Anosov flow and how it behaves in its boundary in
the “collapsed orbit space”. The main result of this section is Proposition 4.6 which
produces some closed curves in the intersection of certain surfaces transverse to the
center bundle and the image under A of the weak stable or weak unstable foliation
of the Anosov flow. This will be used later for certain su-surfaces to find some
contradiction assuming non accessibility.

4.1. Setup. Let ¢ : M — M be a (topological) Anosov flow and let Y be a non-
singular vector field in M such that there is a map h : M — M continuous and
homotopic to the identity, with h being C' along orbits of the flow, and in addition
such that Y'(h(x)) belongs to R d;h(pi())|t=0. By non singular we mean that Y is
continuous and never zero.

We consider in M the universal cover of M, the orbit space Oy of the flow ¢>t
lifted to M. We can take h a lift of h commuting with deck transformations and at
bounded distance from the identity (i.e. take a lift of a homotopy to the identity to
construct h) and we denote by Y the lifted vector field.

For z € M we denote o, to the orbit of gbt containing it.

Definition 4.1. Given an orbit o of ggt we define ¢, to be the image by I of o which
is a curve tangent to Y.

We consider the sets V/V?S(co) and W(co) to be the images by h of the weak
stable and weak unstable foliations of 0. Note that these are a priori only topological
objects and not necessarily C'' immersed surfaces. In addition a priori there may
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be topological crossings, so the collection of these may not form a (topological)
branching foliation.

4.2. Transverse surfaces. We consider S a properly embedded surface in M which
is uniformly transverse to Y. We will assume that for each o € Oy the curve c,
intersects S in at most one point®.

It will be important to understand better which curves ¢, the surface S intersects.
Since Y is only continuous, distinct curves ¢, may intersect. Hence it is easier and
more convenient to understand this set of intersections with S from the point of
view of the orbit space of 515 as follows. We define:

So={0€0y : con S # T}
Lemma 4.2. The set Sg is open in Og.

Proof. This is just transversality of S and Y and that - maps orbits of ® to curves
tangent to Y. O

We will define a function that indicates how the surface approaches c¢,, particularly
when o is a boundary point of Sy. This function depends on some choices, but its
asymptotic behavior for points in the boundary is well defined. Fix x € o and a
transversal D to o at 2. We can define 7% : D — R u {0} as

™(y) = o0 if %(oy) NS =, and

(y) =t,eR if h(d,(y)) €S
The funtion 7° also depends on the choice of D which is left implicit. Suppose
that the orbit o of  intersects D. Then clearly ¢, intersects S if and only if 75 (onD)
is a real number, that is, it is finite. But in fact one deduces that 7° is uniformly
bounded in a neighborhood of 0 n D when ¢, cuts S. Intuitively if 7°(y) > 0 then
S is “above” (or flow forward of) h(y) and if 75(y) < 0, then S is “below” h(y). By
uniform transversality, it is easy to see that:

S

Lemma 4.3. The function 7° is continuous in every point on which 7° is finite.

4.3. Boundaries. We want to understand how the function 7° goes to infinity when
one approaches from Sp the points of Oy which are in the boundary of Sp.

Lemma 4.4. Ifo ¢ So then the function 75 is uniformly bounded above in ?M(O)OD
and uniformly bounded below in F*(o) N D. More precisely, for every x € o and

transverse disk D we have that there exists K > 0 such that for every z € D such
that o, ¢ Sg then:

o Ifye ?M(oz) A D we have that 7°(y) € (=0, K) U {o0}.
o If ye Fwu(o,) N D then we have that 7°(y) € (=K, +0) U {o0}.

Proof. By uniform transversality between S and the vector field Y, we know that
if points z,y € M verify that d(x,y) < € and = € S then every curve tangent to Y
through y will intersect S.

We prove the first property as the second is entirely analogous. Since h is contin-
uous there is & > 0 so that if d(x,y) < & then d(h(z), h(y)) < e. By the contraction
property of Anosov flows we know that there exists tg > 0 such that for every z € D

we have that if y € g’"?“/s(oz) A D and t > to then d(¢y(y), pr(z)) < 4. It follows that

3This is the case for instance, when S separates M in two connected components, e.g. if S is the
lift of a leaf of a Reebless foliation.
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if 0, ¢ So but o, € Sp, then 73(y) < to. Since the o above can be chosen uniform
over D, this implies the result. O

Recall that we denote by G° and G* to the foliations in O4 induced by fﬁrs and
Fwu  As a consequence, we get:

Proposition 4.5. If o € 0So then either §°(o) or §“(o) is contained in 0Sg. The
first case happens if there is V' a neighborhood of o D in D such that ° is bounded
below in V and the second case happens if 75 is bounded above in a similar neigh-
borhood.

Proof. As in the previous setup, pick z € o and a disk D transverse to q?t through
x. Consider x, € D so that x, € D verify that o,, € Sp, and x,, converges to z. In
particular 7(z,,) is a real number for all n. First notice that |7°(z,,)| converges to c.
Otherwise up to subsequence it converges to a real number and then by continuity
S intersects h(oy), contradiction.

Up to subsequence and without loss of generality we can assume that 7°(z,) —
+00. Since 7(x,) is a real number, Lemma 4.4 implies that for n sufficiently big
and for every y € @/s(oxn) N D we have that o, € Sy. Therefore we get that given

z € é’T’;"’(o) N D there is a sequence z, € D such that z, — z and o,,, € Sy. Moreover,
0, ¢ So since 7°(z,) — +oo: this is because if 0, € Sp then 7°(2) is real and
uniformly bounded in a neighborhood of z in D. This shows that the local weak
stable of the manifold of o is contained in 0Sg.

Now we iterate this analysis. For any v in §%(0) we find D1 = D, Da, ..., D,, small
disks transverse to ggt, consecutive ones intersecting a common orbit of ggt, and so
that the segment in G°(0) between o and v is contained in the union of the orbits of
q?t through the D;. In the last paragraph we showed that for any z € 5@75(0) N Dy
we find

Zn € D with Zn — Z, 0y, € So, and TS(Zn) — +00.

Choose z so that o, also intersects Do and now apply the result to Do. We get that
for every y € .";'”V’L”S(o) N Dj then o, € 0Sy. Induction proves that §°(o) < 0Sp.

In addition Sy is connected and hence in this case intersects only one complemen-
tary component of §°(0) in Og.

The remaining option in the analysis above is that 7°(z,) converges to —o0 as
x, converges to x. Then the same type of arguments show that §*(o) < dSy. In

addition for any z € 3;?”7’“(0) and for z, in D with o,, € So converging to z then

79(2,) converges to —0.
By the complementary condition these two possibilities are incompatible. This
proves the proposition. ]

4.4. Additional invariance. We now assume in addition that there is a nontrivial
~v € m (M) such that:

(i) ~ fixes a lozenge £ of ¢; whose corners we denote by e; and ey and such that
~ acts increasingly in the orientation of e; and decreasingly in the orientation
of ea,

(i) 4(S) = S, X X

(iii) S does not intersect ¢1 := c., = h(e1) nor ¢a := ce, = h(ea),
(iv) S intersects some orbit of the lozenge, that is, there is o € £ such that

~

h(o) n S # .

Our purpose is to show:
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Proposition 4.6. Under the above assumptions it follows that there is a y-invariant
curve in We(c1) n'S or in We(c1) n'S. Moreover, if a homeomorphism preserves
S, Wes(er) and We(c1) then it also preserves this y-invariant curve.

The first thing we need to prove is that:
Lemma 4.7. The set Sy contains L.

Proof. The set Sy is an open connected set which intersects £ and it is y-invariant,
because S, £ and the sides are ~ invariant.

Assume that there is a point 0 € £ n 0Sg. Using Proposition 4.5 assume without
loss of generality that G%(0) — 0Se. Since o is in the interior of the lozenge it follows
that G*“(0) n G°(e;) for i = 1,2. Since Sy is y-invariant and + acts as an expansion
on G%(e1) (resp v acts as a contraction on G°(e2)) we get that Sy must accumulate
in both e; and es from inside C.

However, since Sy is connected this is forbiden by the fact that §*(0) < 0Sp and
so Sy cannot accumulate in both. This contradiction proves the lemma. O

We can now prove

Proof of Proposition 4.6. Since L < Sg and e1,es ¢ Sy by assumption we deduce
that e1,€e2 € 850

We can then apply Proposition 4.5 agd\ without loss of generality we assume that
G%(e1) < 0Sp. We will find a curve in W (cq) n .S which is invariant under .

First, we note that since e; is in the boundary of Sy and G°(e1) < 05 it follows
that G*(e1) is not contained in 0Sy. Since £ is contained in Sy which is 7 invariant,
then it follows that there is a half leaf A of G%(e1) (i.e. a connected component of
G%(e1)\{e1}) such that every o € A verifies that h(o) intersects S. In other words
Ac S@.

We know that both A and S are y-invariant. Since for each /or\bit o we have that
the intersection point S n (o) is unique, we deduce that S n We(c;) is connected.
This implies that it is a y-invariant curve as desired and that if a homeomorphism
preserves S and We(c;) then it must preserve this curve. ]

Remark 4.8. The curve may auto-intersect both in M as well as in its projection
in M. But the point is that its projection to M is the image by a continuous map of
a circle. This is because the curve is preserved by the non trivial element ~y € w1 (M).

5. TRANSVERSE LAMINATIONS

We continue in the setup of § 4.1.
Let A be a lamination transverse to Y which verifies that:

e A does not have compact leaves,

e the closure of the complementary regions of A (if existing) are I-bundles
where Y is uniquely integrable and such that flowlines of Y form the I-
bundle structure.

The standing assumption will be that the Anosov flow ¢; is not a suspension (see
Corollary 2.3). Under this assumption we can show that the assumptions in § 4.4
are verified for any surface L in the lift of the lamination A to the universal cover,
as follows. First notice that since A is transverse to Y and A is closed, then A is
uniformly transverse to Y. In addition, the second condition above implies that A
can be completed to a foliation F so that it does not have compact leaves and F is
transverse to Y (this is well known, but see explicit proofs and explanations in [P,
Lemma 3.9]). Since F does not have compact leaves it is Reebless, therefore any
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curve in M transverse to J intersects a leaf of F at most once. In particular any
curve tangent to Y intersects a leaf of A at most once as required in § 4.2.

Proposition 5.1. For every lozenge £ ﬁa;ed by a non trivial deck tmnsformatzon
~v € m (M) there is a y-invariant leaf L of A so that L intersects the image by h
of some orbit in the interior of the lozenge but does not intersect the image of the
corner orbits of L.

Proof. Let 01,09 be the corners of the lozenge £. Take a leaf E € A intersecting
c1 = E(ol). There is always such a leaf because c; is a properly embedded curve
tangent to Y and the closures of complementary regions of A are I-bundles where
Y is uniquely integrable.

Claim 5.2. The leaf E cannot intersect cg = 7»(02).

Proof. Assume that v acts increasingly on o;. Proposition 2.4 implies that v acts
decreasingly on os. Since h commutes with deck transformations we get that the
same happens in ¢; and c3. Now we agaln use that A can be completed to a Reebless
foliation. This implies that any leaf of A separates M. Since ~ acts increasingly in
o1 and hence also in ¢y, it follows that «(E) is on the positive side of E with respect
to Y. If F intersects co then since v acts decreasingly on os, the same argument
shows that v(E) is contained in the negative side of E with respect to Y. This is a
contradiction and proves the claim. O

Therefore, we can consider V to be the region in M between E and v(E). We
claim that co cannot intersect V': cg is v-invariant, and if it intersects V' then it must
intersect 4~ 1(V) and thus intersect E a contradiction.

Therefore, the open region

= " (vuE)

contains ¢y and is disjoint from cp. The boundary of R is accumulated by translates
of E under 4", n — o0, therefore is saturated by leaves of A. There must be a single
leaf L € A in the boundary of R that separates ¢; from co. By construction this leaf
does not intersect c; nor ¢y and is invariant by ~.

We need to show that L intersects the image of some orbit in the lozenge. But this
is true because otherwise one could connect ¢; and ¢z by a path with endpoints one
in ¢1 one in ¢o and the interior a path which is the projection of a path in the lozenge
L. Hence ¢1,co would be in the same connected component of the complement of
L. This completes the proof. O

As a consequence of Proposition 5.1 and Proposition 4.6 we deduce:

Corollary 5.3. A lamination with the properties stated in the beginning of this
section verifies that there is a leaf L € A invariant under a non trivial v € (M)
and a ~y-invariant orbit o € Oy such that V/VC\S(CO) N L contains a curve which is
y-1nvariant.

6. ACCESSIBILITY AND ERGODICITY OF PARTIALLY HYPERBOLIC
DIFFEOMORPHISMS

6.1. Setup. We let f : M — M be a collapsed Anosov flow with respect to an
Anosov flow ¢, : M — M which is not a suspension. There is a self orbit equivalence
B:M — M and h : M — M a map homotopic to the identity, so that h sends
orbits of ¢; injectively onto curves tangent to E°. In addition foh = ho .



ACCESSIBILITY AND ERGODICITY 15

In addition Remark | , Remark 2.6] shows that for a collapsed Anosov flow,
the center bundle E° is orientable, and it shows that 0:h((¢+(x))[t=0 induces an
orientation on the center bundle E¢. Therefore we choose Y to be the vector field
of norm one such that

Y(h(z)) € Ridh(én())]o.

The vector field Y is contained in the E° bundle. Note that this is the context of
§4.1.

To prove Theorem A we will assume that the non-wandering set of f is all of M.
This allows us to apply Theorem 2.8. We will assume by contradiction that f is
not accessible so that Theorem 2.8 implies that there is a lamination A" tangent to
E* @ E" which satisfies the conditions of § 5

As explained before, the proof of Theorem A is not affected if we take finite lifts
and iterates, so we will assume for simplicity that all bundles of f are orientable and
their orientation is preserved by D f. We will reach a contradiction that will prove
that f is accessible, then the ergodicity part of Theorem A follows immediately from
Theorem 2.7.

6.2. Strong collapsed Anosov flows. We first give a direct proof under the extra
assumption that f is a strong collapsed Anosov flow (see | | for discussions). This
implies in particular that the map h maps weak stable and weak unstable leaves of
¢; into surfaces tangent to £ = E* @ E° and E* = E°@® E" respectively. The
reason we first show this case is that here we will not need to use the dynamics at
all, and will get a direct contradiction to Proposition 2.9.

The contradiction follows from applying Corollary 5.3 which in this case produces
a closed curve tangent to Es/zvhlch is v invariant, contradicting Proposition 2.9.
This is because in this case W¢s is tangent to E° and A®" is tangent to E* @ EY,
hence the intersection is tangent to E°.

Remark 6.1. As explained above, in principle, collapsed Anosov flows may al-
ways have this stronger property (that is, we currently know no example which is a
collapsed Anosov flow, but not a strong collapsed Anosov flow).

6.3. Collapsed Anosov flows. The proof of Theorem A is harder since it will
need to appeal to ['P] for some cases. However, for the other cases it is just slightly
harder: instead of using Proposition 2.9 we will use some properties of self-orbit
equlvalences (cf. Proposition 2.5) to show that the curve given by Corollary 5.3 is
also f invariant for some lift f of some iterate of f which will be enough to get a
contradiction.

We now come back to the setting of § 6.1 and do not make the assumption on h
we did in the previous subsection (Subsection on strong collapsed Anosov flows).

Lemma 6.2. If f is not accessible then there is some iterate of 5 which has a lift

B to M which fizes some lozenge £ in Oy, and so that £ is invariant by some non
trivial v € w1 (M)..

Proof. We apply Proposition 2.5. Unless the conclusion of the lemma is verified,
we get that either M is hyperbolic or M is Seifert and 8 acts as pseudo-Anosov in

the base. Both cases where treated in ['P] (see [F'P’, Theorem B] for the hyperbolic
manifold case and [I']’, Theorem D] for the Seifert case with base pseudo-Anosov).
Specifically, in both cases, we proved in ['P] that f is accessible. In the other cases
we obtain a lozenge as in Proposition 2.5. O

As a consequence we deduce from Corollary 5.3 that there is a leaf L € A% which
is invariant under the deck tansformation 7 as in the previous lemma, as well as L
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is invariant under some lift f : M — M of an iterate of f. The proof of Theorem A
is therefore completed with the following extension of Proposition 2.9:

Proposition 6.3. There are no closed curves (not necessarily injectively embedded)
mwvariant under f in an f invariant surface tangent to E° @ K.

Proof. If an f-invariant curve is not tangent to E*, then iterates of it have segments
closer and closer to segments in unstable leaves. Again since the curve is invariant
one obtains that the curve contains a segment which is contained in an unstable
leaf. But then invariance implies that the entire curve is contained in an unstable
leaf. This is impossible by Proposition 2.9. U

Remark 6.4. Another proof of the previous proposition follows from the fact that
one can construct a Lyapunov function for the action of f in the image of n to show
that f is an expansive homeomorphism in the image of 1 (see [Pot, §2]) . Since the
circle does not admit expansive homeomorphisms, that gives a contradiction.

Acknowledgements: The authors would like to thank Santiago Martinchich for discussions
and his comments on the paper.
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