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We characterize learnability for quantum measurement classes by establishing match-
ing necessary and sufficient conditions for their probably approximately correct (PAC)
learnability, along with corresponding sample complexity bounds, in the setting where
the learner is given access only to prepared quantum states. We first show that the
empirical risk minimization (ERM) rule proposed in previous work is not universal,
nor does uniform convergence of the empirical risk characterize learnability. Moreover,
we show that VC dimension generalization bounds in previous work are in many cases
infinite, even for measurement classes defined on a finite-dimensional Hilbert space,
and even for learnable classes. To surmount the failure of the standard ERM to satisfy
uniform convergence, we define a new learning rule — denoised empirical risk minimiza-
tion. We show this to be a universal learning rule for both classical probabilistically
observed concept classes and quantum measurement classes, and the condition for it
to satisfy uniform convergence is finite fat shattering dimension of the class. The fat
shattering dimension of a hypothesis class is a measure of complexity that intervenes
in sample complexity bounds for regression in classical learning theory. We give sam-
ple complexity upper and lower bounds for learnability in terms of finite fat-shattering
dimension and approximate finite partitionability into approximately jointly measur-
able subsets. We link fat shattering dimension with partitionability into approximately



jointly measurable subsets, leading to our matching conditions. We also show that ev-
ery measurement class defined on a finite-dimensional Hilbert space is PAC learnable.
We illustrate our results on several example POVM classes.

1 Introduction

Classical statistical learning theory formulates the broad problem of learning a rela-
tionship between two random quantities X € X — known as features —and Y € Y —
class labels — as follows: the data are assumed to be generated from some unknown
probability distribution Px y, and a learner is given access to a dataset consisting of
m independent and identically distributed samples (X;, Y;). The learner’s task is to
select a hypothesis from a fixed, known set Hyp of functions from X to Y (the hy-
pothesis/concept class) that best approximates the joint distribution Pxy, without
knowledge of Pxy itself.

This work:

The intent of this work is to provide matching necessary and sufficient conditions for
learnability in the following supervised quantum learning! scenario: there is an un-
known joint probability distribution on prepared quantum states and classical labels. A
hypothesis class consisting of quantum measurements is fixed and known to a learner.
The learner is given access to a training dataset of these state-label pairs, but can only
interact with the states by observing the classical outcomes of measuring them. It then
outputs a hypothesis that is as close as possible to minimizing the expected risk over
all hypotheses. This learning scenario was first posed in [1] as a quantum version of the
classical PAC (Probably Approximately Correct) learning setting (see Appendix C) in
which hypotheses are quantum measurements. This setting has extensive motivations
ranging from building universal quantum state discriminators to classification of un-
known quantum processes to classifying quantum phases of multipartite systems (see
also [2, 3]). We discuss the classification of quantum many-body systems further in
Appendix D. The setting was then further developed in [4]. In contrast with more well-
established quantum learning frameworks [5], which deal with quantum algorithms
for learning classical hypotheses (e.g., boolean functions f : {0,1}" — {0,1}) from
superpositions of states corresponding to classical bit strings, our framework covers a
distinct scenario in which input data consists of unknown quantum states, and the goal
is to learn a measurement that predicts attributes (e.g., a class label) of those states.

More specifically, the authors of [1] formulated the quantum PAC learning frame-
work that we study as follows: we fix a domain X consisting of quantum states, along
with a codomain Y. Analytically, quantum states are described by density matri-
ces on a fixed Hilbert space H over the complex numbers C. We take the codomain
Y = {0,1} for binary classification, but our results can be generalized further. A
POVM hypothesis class Hyp is a set of positive operator-valued measures [6]%, which
specify quantum measurements with outcomes in ). Additionally, we fix a loss func-
tion £ : Y x Y — [0,00]. For binary classification, we take the misclassification loss

1 For more background on classical statistical learning theory, see Appendix C.
2See the definitions from quantum mechanics, collected in the supplementary material.



y1,y2) = I[y1 # yo|, where I[-] is the indicator function. The learning process is as
follows: an unknown distribution D on X x Y is fixed. To produce a single training
example, (X,Y) ~ D is sampled, and then a quantum register is prepared in state X.
Here and throughout, a quantum register is a collection of qubits prepared
in a state that is a density matrix in 7, which may be multidimensional.
The learner is given access to the quantum register and Y, and can only interact with
the quantum register by measuring it and observing the outcome. This occurs inde-
pendently m times to produce a training set of size m. The learner is then allowed to
make arbitrarily many measurements of the given quantum registers and by an arbi-
trary procedure then producing a resulting POVM h from the class Hyp. We note that
each measurement alters the state of the register according to the axioms of quantum
mechanics (see Section B and specifically equation (B72)). The risk of a hypothesis is
given by R(h) = E(x y)~p[l(h[X], Y)], where h[X] denotes a random variable whose
distribution is that of the outcome of measuring a quantum register in state X with
POVM h. Then the goal of the learner is to output a hypothesis with risk close enough
to the minimal risk achieved by any hypothesis in the class. We define this setup
formally in Definition 1 below.

The main problems of interest are similar to the ones asked in the classical PAC
learning framework: perhaps the most immediate one is, what is a natural necessary
and sufficient condition for PAC learnability of a POVM concept class? Is there a
learning rule that is universal, in the sense that it is a PAC learning rule whenever the
concept class is learnable? The present paper answers both of these questions. In the
classical case with deterministic (function) concept classes, one of the fundamental re-
sults, which is sometimes called the fundamental theorem of concept learning, gives a
necessary and sufficient condition for learnability of a concept class for binary classifi-
cation under the misclassification loss: namely, learnability is equivalent to finiteness
of the Vapnik-Chervonenkis (VC) dimension of the class [7]. The recent paper [4] gave
one possible generalization of VC dimension to the quantum setting, resulting in a
sufficient condition for learnability of POVM classes, along with a sample complexity®
upper bound for one particular learning rule. However, it gave no necessary conditions
and did not explore the tightness of the upper bound or the universality of the learning
rule. The present paper finds that this sufficient condition is substantially weak and
that the learning rule is very far from universal. We provide a new learning rule — de-
noised empirical risk minimization (DERM), that we can show to be universal, along
with matching necessary and sufficient conditions for learnability. See Section 1.2 for
a fuller list of our contributions.

1.1 Prior work

The literature on statistical problems involving quantum states and measurements
is quite broad. For example, a wealth of quantum state estimation problems have
been posed [8-10], wherein the input is a sequence of multiple quantum registers,
all prepared in a single unknown state. This set of works also includes works on

*The sample complexity of a learning rule is the minimum number of samples required to guarantee that
with probability at least 1 — &, the risk (i.e., expected loss) of the learned hypothesis is within e of the
minimum possible.



state tomography [11-19]. The task in such studies is to glean information about
the single, unknown state — specifically, to estimate it. Estimation is not the same
thing as learning, and so these are is in contrast with our work, in which the goal is
more analogous to the classical supervised learning problem: i.e., our goal is to learn
a statistical association between unknown quantum states sampled according to an
unknown distribution and their classical labels. This statistical association need not
reflect any intrinsic physical information about the states. We also point out that there
are various works, such as [28, 21| that mix what is called PAC learning with quantum
information, but these differ substantially from our setting: e.g., they assume a uniform
distribution on the input, so they are not distribution-free; or they strongly constrain
the input state to correspond to a bit string; or they output a boolean function instead
of a POVM. There is also a large and expanding body of work in quantum machine
learning in which hypothesis classes consist of specially structured POVMs — as recent
examples, [22-26]. The focus in such works is different from that of the framework
we study, since they aim to solve classical learning problems by suitably encoding
classical input data as quantum states, then choosing a suitable measurement from
the hypothesis class. In our case, the inputs X are intrinsically quantum and are not
encodings of known classical inputs.

In the supplementary materials, we give a more extended discussion of prior
works and how they differ from ours, including, in particular, how works on channel
tomography are not applicable to solve our learning problem.

At first glance, the paper [27] has a more related goal to ours — producing an
optimal POVM from training data. However, training samples consist of the density
matrices encoding states, rather than quantum registers, as well as the probabilities
of outcomes of measurements by an unknown POVM. In contrast, in the framework
that we consider, the inputs to a learner are not analytical state descriptions; rather,
they are quantum registers prepared in those states. Furthermore, we are given, not
probabilities of outcomes, but the outcomes themselves. Finally, the statistical rela-
tionship between the state and the label in our case can be arbitrary, whereas in the
cited paper, it is governed by a single unknown POVM.

Two recent papers are the most relevant to the present one and, indeed, are the
sources of the framework that we study in this paper: [i, 4]. The paper [i| formu-
lated the POVM class PAC learning framework, showed that finite-cardinality POVM
classes are PAC learnable, and pointed out the usefulness of joint measurability in
reducing sample complexity, resulting in the Quantum Empirical Risk Minimization
(QERM) learning rule. The QERM rule is a generalization of the classical ERM, which
is the cornerstone of classical statistical learning theory. Joint measurability is a prop-
erty of a set S of quantum measurements that allows one to generate a sample from
the distribution of outcomes of applying every measurement in S to a register pre-
pared in an arbitrary state p. This is not possible for a generic set of measurements,
since applying a measurement to p changes the state of the register. More formally, a
set S of measurements is jointly measurable if there exists a single “root” measurement
II,50t such that the outcome of measuring an arbitrary state p by any measurement
IT in S can be simulated by first measuring p with II,,,; and then post-processing the
outcome with a classical channel ar. This allows for sample reuse across the set S.




The paper [4] studied the same setting, extending the sample complexity upper
bounds for the QERM rule under the assumption that a partition of the hypothesis
class into jointly measurable subsets is given, by formulating one possible generaliza-
tion of the classical VC dimension of a probabilistically observed concept class. This
implicitly showed that there exist PAC learnable POVM classes with infinite cardinal-
ity but left open the problem of giving necessary and sufficient conditions for a given
class to be learnable. For example, no necessary conditions were given, in contrast
with the present work. We will also show in this work that the upper bounds in that
work are frequently vacuous.

In the course of proving our results, it will be convenient to define a PAC learning
framework for what we call probabilistically observed concept classes (POCC), which
we study as a technical tool for our quantum results. In this framework, each concept is
a function from X to the set of probability distributions on ), and the task is, as usual
to learn a risk-minimizing concept. However, on any sampled x € X from the training
set, for any concept h, the learner is only allowed to see a sample from the distribution
h(z). We will denote such samples by h[z]. This is in contrast with the theory of
probabilistic concepts (p-concepts) introduced in [28]. There, concepts are similarly
conditional distributions, but the learner is allowed to see the entire distribution h(z).

A key concept in learning theory that arises in our necessary and sufficient condi-
tions is the fat shattering dimension of a POVM class. This is our generalization of the
classical learning-theoretic notion having the same name. Classically, the ~-fat shat-
tering dimension is a natural number-valued measure of “complexity” of a hypothesis
class Hyp consisting of either p-concepts or functions whose codomain is a continuous
subset of the real numbers. It is a generalization of the VC dimension, which arises
in binary classification, and it intervenes in a similar fashion to the VC dimension
in generalization bounds (hence, sample complexity bounds) for empirical risk mini-
mization for regression problems and p-concepts, as in [28]. Intuitively, for v > 0, the
~-fat shattering dimension of a hypothesis class Hyp is the maximum cardinality m
of any dataset S that is “shattered” by hypotheses in Hyp, in the sense that one can
produce an arbitrary binary string with length m by first choosing witness numbers
T1y.es Tm € [0,1], then evaluating an appropriate hypothesis A € Hyp on S and round-
ing the outputs of h appropriately to 0 or 1. The rounding scheme depends on the
parameter v and the witness numbers: namely, if the output of h on the jth state is
p > rj 4+, then this rounds to 1; if the output is p < r; — v, then this rounds to 0.
In full generality, this measure of complexity is not necessarily easy to evaluate for a
given hypothesis class. However, by making certain geometric assumptions about the
structure of the hypothesis classes that we consider, we are able to upper bound the
fat shattering dimension of convex POVM classes to their geometry (specifically, their
number of extreme points).

1.2 Our contributions

1. Results on failure of ERM and uniform convergence: We first show that the
natural ERM learning rule proposed and studied in [1, 4] can fail for probabilisti-
cally observed concept classes that are PAC learnable. We probe this phenomenon
further, showing that the empirical risk can fail to satisfy the uniform convergence



property for learnable hypothesis classes Hyp. That is, the supremal deviation of
the empirical risk from expected value, where the supremum ranges over all ele-
ments of Hyp, does not converge to 0 as the number of samples tends to co. This
implies that in the probabilistically observed and the quantum case, the QERM
learning rule cannot be universal in the sense of being a PAC learning rule if and
only if the class to which it is applied is learnable.

. Learnability of finite dimensional hypothesis classes: We then show that
every POVM class defined on a finite-dimensional Hilbert space is PAC learnable.
This implies that the nontrivial qualitative question of learnability /non-learnability
only occurs in the infinite-dimensional case. Furthermore, this implies that recov-
ering classical learning theory from the POVM class framework requires mapping
of classical classes to POVM classes over infinite-dimensional Hilbert spaces. This
is an indication that infinite-dimensional Hilbert spaces are of fundamental interest
for a complete quantum learning theory.

. Matching conditions for learnability of infinite-dimensional hypothesis
classes:

We then turn to the problem of characterizing learning in the infinite-
dimensional case. Motivated by our result on the failure of ERM, we define a new
learning rule, which we call denoised empirical risk minimization (DERM). At the
heart of this is a partition of the hypothesis class into approzimately jointly mea-
surable subsets. Intuitively, approximate joint measurability of a set S of POVMs
allows us to reuse samples in the training set to evaluate the denoised empirical
risk for every element of S.

We show a sample complexity upper bound for DERM in terms of a suitably
defined version of the fat shattering dimension and the approzimate joint measura-
bility (JM) covering number of the hypothesis class, which implies that finiteness of
both of these quantities for a POVM class is a sufficient condition for learnability.

We then exhibit a link between the JM covering number and the fat shattering
dimension, thereby connecting the quantum concept with a learning theoretic com-
plexity measure. Specifically, we show that the JM covering number lower bounds
the fat shattering dimension, which implies that finite fat shattering dimension
alone is a sufficient condition for learnability.

We next show a sample complexity lower bound, again in terms of the fat
shattering dimension. This implies that finite fat shattering dimension is a necessary
condition for learnability. That is, finiteness of the fat shattering dimension
is necessary and sufficient for POVM classes. This constitutes a fundamental
theorem of concept learning for these classes. While the main topic of this paper is
the quantum setting, the result for POCC classes may be of independent interest,
as they are the natural formulation of the learning problem in cases where the value
of the loss function depends on unobserved variables whose joint distribution with
the input X is known.

Our results improve substantially on prior work on this learning scenario, which
did not prove any necessary conditions and which provided sample complexity
upper bounds that are frequently infinite for finite-dimensional hypothesis classes
that we can show to be learnable.



4. Example POVM classes: We then give examples of learnable and non-learnable
POVM classes, including quantum neural networks (learnable) and an infinite-
dimensional, nontrivally quantum example of a non-learnable class.

All proofs are provided in the supplementary material.

2 Main results: learnability, uniform convergence,
and ERM

2.1 Preliminaries

We first define the learning problems relevant to us. Definitions from quantum
mechanics can be found in [¢] and in the supplementary material.

Definition 1 (POVM concept class learning problem [i, 4]). In the POVM con-
cept/hypothesis class learning problem, we fix a set of possible input mized states X,
which are density operators on a common Hilbert space H, and a set of possible classical
outputs Y. We fiz a loss function £: Y x Y — [0, c0].

We fix a POVM concept class Hyp, which is simply a set of POVMs on H having
| V| outcomes. Informally, a learning rule A in this context takes as input a dataset
{(p;,Y;) j=1 consisting of quantum registers in states p; € X and classical outputs
Y; € Y. This dataset is sampled from an unknown joint distribution D on X x Y. The
learning rule interacts with the p; via quantum measurements (formally, POVMs).
More precisely, all decisions made by the learning rule can only depend on any of the
p; via the classical labels Y; and via outcomes of POVMs applied to those states or to
states resulting from previous measurements. A learning rule is thus a Markov decision
process, as detailed in Section . Finally, the learning rule outputs a POVM @, € Hyp
with the goal of minimizing E(x y)~p[l(P«[X],Y)], where ®,[X] € Y denotes the
random outcome resulting from measuring X with p.. We give a more formal definition
of a learning rule in the supplementary materials.

We say that a POVM learning rule A is (e, §)-probably approximately correct (PAC)
for Hyp if there exists a sample size m = m{e,d) such that for all distributions D on
X XY with S ~ D™, with probability at least 1 — 6, A(S) outputs a hypothesis h € Hyp
satisfying

— i <e
R(h) h*lengyp R(h.) <€ (1)

We then say that Hyp is (¢,0)-PAC learnable if there exists an (€,6)-PAC learning
rule for Hyp. Finally, we say that Hyp is PAC learnable if it is (e,8)-PAC learnable
for all e > 0,6 > 0.

The learning problem defined in Definition i is related to the problem of
probabilistically observed concept class learning, which we introduce below.
Definition 2 (Probabilistically observed concept class learning problem). In the prob-
abilistically observed concept class (POCC) learning problem, X becomnes an arbitrary
set, and Hyp consists of functions f : X — A(Y), where A(S) denotes the set of
probability distributions on a set S.



When a hypothesis h € Hyp is applied to an element x € X, the learning rule only
observes a random sample Z ~ h(x), not h(z) itself. We denote a generic sample from
Given this setting, the definition of PAC learning remains the same as before.
Remark 1 (Probabilistic versus probabilistically observed concept learning). We
emphasize the important distinction between the probabilistic concepts (also called p-
concepts) of [25] and the probabilistically observed concepts in the present paper: in the
p-concept framework, the output probability distribution itself is observed, rather than
Just a sample from it. In our setting, in contrast, our learning rules are only allowed

to see a sample from an unknown output probability distribution.

2.1.1 Connecting POVM classes with POCCs

Here we describe the connection between the POVM and POCC frameworks. The
POVM framework is more general than the POCC one: we first show how to translate
the problem of learning a POCC class to one of learning a POVM class, along with
translations of POCC learning rules to POVM learning rules.

Given a POCC learning problem with domain X and hypothesis class Hyp, the
quantumization of this problem is formulated as follows: we introduce a Hilbert space
H with dimension equal to |X| (which may be uncountably infinite), and we choose,
arbitrarily, an orthonormal basis B = {e; }sex. Each x € X corresponds to a basis
element e, € H. The domain of the POVM learning problem is the basis B. Each hy-
pothesis h € Hyp bijectively maps to a corresponding POVM 11}, defined as follows:
II;, first measures in the basis B, uniquely identifying the input state e, with prob-
ability 1, then postprocesses e, through the classical channel corresponding to h(z).
(We note that a POVM may be constructed by measurement of a state with a POVM,
then postprocessing the outcome through a classical channel.)

A POCC learning rule is a function of inputs x and samples from an arbitrary set
of hypotheses h[z]. The analogous POVM learning rule is the same function as in the
classical case, applied to the classical outcome of measurement in the basis B, along
with results of passing this outcome through channels associated with hypotheses in
Hyp.

Thus, a POCC learning rule can be translated to a quantum one with exactly the
same error characteristics. The situation becomes more complicated when we general-
ize to truly quantum learning settings, because certain operations that are possible in
the classical case are not possible in the quantum. In particular, in quantum settings,
the hypothesis class consists of non-orthogonal states, which cannot be almost surely
distinguished from one another. Thus, our learning rules cannot be functions of the
inputs themselves, but instead can only be functions of outcomes of measurements
applied to these inputs.

2.1.2 Jointly measurable sets of POV Ms

We also need to recall the notions of a fine-graining of a POVM and a jointly measurable
set of POVMs [38]. Intuitively, joint measurability will allow us to reuse samples to
evaluate multiple hypotheses.



Definition 3 (Fine-graining of a POVM). Let II be a POVM. We say that I1 has a
fine-graining (IT', &), where I’ is @ POVM and « is a classical channel, if the outcome
of Il on any state has the same distribution as the outcome of II' on the same state,
then passed through the channel o. We call II' the root of the fine-graining.

We denote the set of fine-grainings of I by F(II).

For a given fine-graining ®, we denote its root by R(P).
Definition 4 (Jointly measurable set of POVMs). A set S of POVMs is said to be
jointly measurable if there exists a POVM 11, such that, for every 11 € S, 11 has a
fine-graining with root POVM equal to I1.. We then say that Il is a root POVM for S.

The consequence of joint measurability of S is that one can obtain a sample out-
come from measuring a state p with every element of S by first measuring p with
a root POVM and then passing this outcome through each of the classical channels
corresponding to the fine-grainings of the different POVMs in S.

2.2 Failure of uniform convergence and ERM for PAC
learnable probabilistically observed hypothesis classes

Having dispensed with preliminaries, we next develop our first main results. The em-
pirical risk minimization (ERM) rule is a cornerstone of statistical learning theory
in the setting of deterministic concept classes. For a dataset S = {(X;,Y;)}",, the
empirical risk of a hypothesis h € Hyp is given by

m

R(h,8) = — S~ H(HIX), V). @)

Jj=1

In the deterministic case, a hypothesis class Hyp being PAC learnable is logically
equivalent to ERM being a PAC learning rule, which is logically equivalent to it
satisfying the following uniform convergence property: for any hypothesis o € Hyp
and any data-generating distribution D, Pg.p[|R(k) — R(h,S)| > €] < 6.

The ERM rule has been proposed for use as a subroutine in the quantum setting
in prior work [1] and also adopted in the more recent work [4]. Both of these works
give sample complexity upper bounds for this ERM rule. Our first main result is that
uniform convergence and the ERM rule can fail for a POCC class Hyp, despite Hyp
being PAC learnable. This is in stark contrast to the deterministic case. We will see,
in our Theorem 2, that this has further implications for the quantum setting, and thus
for the tightness of the bounds in [4]. Theorems 1 and 2 imply that our subsequent
quantum learnability results in Sections 3 and 4 cannot simply build on prior work
by either bounding VC dimension or by tighter analysis of the ERM rule — rather, we
must propose new learning rules.

Theorem 1 (Failure of uniform convergence and ERM for POCC classes). There
exists a POCC class Hyp that is PAC learnable but for which the ERM rule is not
PAC and does not satisfy the uniform convergence property.

Furthermore, there exists a POCC class Hyp and a choice of X,Y, and D for

which the uniform convergence property is not satisfied, but the ERM rule is PAC.



2.3 Failure of uniform convergence for most finite-dimensional
POVM classes

We next show that the situation regarding ERM is even worse in the quantum case. In
particular, a consequence of what we show next is that the sample complexity upper
bounds in [4] are infinite (i.e., vacuous) for a very large class of POVM classes that
are learnable. To do so, we recall the definition of a deterministic POVM.
Definition 5 (Deterministic POVM). A POVM II = {Ilp,I11} is deterministic if
either Ilp =0 or II; = 0.

That is, the outcome of a deterministic POVM is the same when used to measure
any state.

We also define the Ly operator norm for operators on a Hilbert space H. For an
operator I' : H{ — H, the Ly operator norm is given by

Tz 1
ITlop,z, = sup ITelly
zEH Hle

3)
Any norm generates a topology, which allows us to talk about open and closed sets.
Theorem 2 (Failure of uniform convergence of ERM for most finite-dimensional
POVM classes). Let X be a subset of a finite-dimensional Hilbert space H. Con-
sider an L1 operator norm-closed POVM hypothesis class Hyp satisfying the following
conditions:

1. Hyp is jointly measurable.
2. Hyp has infinite cardinality.

Then exactly one of the following conclusions holds:

1. Uniform convergence for ERM does not hold for Hyp, and ERM is not PAC.
2. The only points of accumulation of Hyp are deterministic POVMs.

One can construct a Hyp satisfying the conditions listed in Theorem 2 by selecting
a two-outcome root POVM II along with the class of binary symmetric channels o,
with crossover probabilities p € [1/4,3/4]. When Hyp is the set of POVMs counsisting
of compositions of II and ¢y, it is immediate that Hyp is jointly measurable, has
infinite cardinality, and is L; norm-closed. In this case, the first conclusion holds,
while the second does not. An example in which Hyp satisfies all hypotheses and
only the second conclusion is as follows: we select the root POVM II := (0, I'), where
I is the identity operator, and binary symmetric channels {ay,}52, with crossover
probabilities p; — 0 monotonically as j — oo, along with «g. Then we define Hyp to
be the set of POVMs that are compositions of IT with the «,, and ag.

Theorem 2 effectively says that an infinite-cardinality (but possibly finite-
dimensional) POVM class can only enjoy the uniform convergence property for ERM
if it “clusters” around deterministic measurements. The only deterministic measure-
ments are the ones whose outcomes do not depend on the states being measured. This
implies that ERM is not a useful learning rule for a rich enough set of POVM classes.
Since ERM was a core subroutine of [4], this provides useful insight on prior work: in
particular, in that work, a sample complexity upper bound for the ERM rule is given
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in the case where one can find a finite-cardinality jointly measurable partition. Our
theorem above implies that this upper bound must be oo unless almost all of the hy-
potheses are close to deterministic (and, thus, independent of the input state). In our
subsequent theorems, we will show that the upper bound of infinity is, in infinitely
many cases, hopelessly loose as a bound on the minimum possible sample complexity
of learning (irrespective of the learning rule). Crucially, in the above theorem, we note
that ERM failing to be PAC for a hypothesis class Hyp does not imply that the class
is not learnable.

3 Main results: Every finite-dimensional POVM class
is learnable

In this section, we give a complete characterization of learnability of POVM classes
in the case where X is a (possibly infinite-cardinality) subset of the set of density
operators on a finite-dimensional Hilbert space H. We call a POVM class defined on
X a finite-dimensional POVM class. It turns out that every finite-dimensional POVM
class is learnable — Theorem 3.

Theorem 3 (Every finite-dimensional POVM class is learnable). Let the span of
the domain X be a finite-dimensional subspace of the space of density operators on a
Hilbert space H. Let Hyp be a POVM class all of whose POVMs are defined on X.

Then Hyp is PAC learnable with the following sample complexity:

nHyp(€, 6) < @ log 22, (4)
€ 1)
where N is the €/4-total variation covering number of Hyp, which is finite.

We note that in the worst case, the covering number in Theorem 3 can be expo-
nential in the dimension of the Hilbert space. However, hypothesis classes of interest,
where the POVMs have constrained structure, have a much smaller covering number.
Additionally, in certain cases, one can take advantage of joint measurability in order
to tighten this bound.

The above theorem provides infinitely many examples of POVM classes that are
learnable. Furthermore, this class of examples includes ones such that the sample
complexity upper bounds given in [4] were infinite. Therefore, this is a substantial
improvement on the previous results.

Interestingly, the proof involves concocting a learning rule that uses ERM, but in
a different way from prior work. This approach only works for the finite-dimensional
case, necessitating yet another learning rule for our subsequent results.

We emphasize that Theorem 3 does not contradict Theorem 2 — the former states
that finite-dimensional POVM classes are learnable by some learning rule and makes
no statement about ERM; the latter is a statement specifically about the failure of
ERM as a learning rule.

11



4 Main results: Matching necessary and sufficient
conditions for infinite-dimensional POVM class
learnability

The result in Theorem 3 leaves open the questions of necessary and sufficient conditions
for infinite-dimensional POVM classes and POCC classes. Furthermore, the results in
Theorems 1 and 2 motivate a search for an alternative learning rule to ERM for both
the POCC and POVM cases.

In Section 4.1, we present our learning rule — the denoised ERM —for POVM classes
and how it specializes to the POCC case. We then show in Section 4.2 necessary and
sufficient conditions for PAC learnability of POCC and POVM classes. Specifically,
Theorem 4 gives distinct necessary and sufficient conditions. In Theorem 5, we show
an inequality relating a quantity called the approzimate joint measurability covering
number to the fat shattering dimension of Hyp, which allows us to conclude with
Corollary 1 that the conditions in Theorem 4 are matching.

4.1 Rescuing ERM: De-noised empirical risk

We now turn to the definition of our new learning rule, called denoised empirical risk
manimization. We first define the denoised empirical risk, which is for a hypothesis in
a set of jointly measurable POVMs.
Definition 6 (Denoised empirical risk of a hypothesis). Let H be a jointly measurable
set of POVMs with a fine-graining (IL, {an ther)-

Let h € H be a hypothesis, and let S = {(X;,Y;)}7; € (X xY)™ be a dataset. Let
Z; denote the random outcome of measurement of X; with the POVM II. We define
the denoised empirical risk of h on input S to be

DER(h, 5) ZE[M[X ) (Z5 YY), (5)

Note that the denoised empirical risk is a random variable.

Remark 2. It is essential to note in this definition what is being conditioned on.
Specifically, one can imagine definitions of the empirical risk that either suffer from
the same flaws as the ordinary empirical risk or, alternatively, cannot be computed
by the learner because of the learner’s inability to see the X;. Intuitively, our defini-
tion “averages out” the randomness from the classical channels, which mitigates the
drawbacks of the ordinary empirical risk.

To state the learning rule, we also need a relaxation of the notion of a jointly
measurable partition introduced in [4]. To state this, we also need to define the total
variation distance between POV Ms.

Definition 7 (Total variation distance between POVMs). Let ITy, Iy be two POVMs
with common domain X. We define the total variation distance between IIi,II> as
follows:

dry (114, 115) = sug dry (Out(Ily, x), Out(Ils, x)), (6)
xE
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where Out(Il, z) denotes the random outcome of the POVM II on the mized state x.

With this in hand, we next define an approximately jointly measurable class.
Definition 8 (Approximately jointly measurable class). We say that a collection S of
POVMs is v-approzimately jointly measurable (or just y-jointly measurable) if there
exists a POVM 11, such that, for every POVM 11 € S, II has a fine-graining with root
IU' satisfying drv (1L, II') < =, where we recall the definition of the total variation
distance between two POVMs in Definition 7. We call Il a center of S.

Our proofs will exploit the fact that an approximately jointly measurable class S
can be approximated by a jointly measurable one by choosing a center POVM II,. of
S and replacing each element of S with a POVM whose root is IT,. This is formalized
in the following definition.

Definition 9 (Joint measurability-smoothed class). Let S be a y-jointly measurable
POVM class, and let IL, be a center for S. For a POVM h € S, we define Syar(h,I1,)
to be the following POVM:

SJM(]’L, H*) = arg min dTV (H, h) (7)
IT : IL.eR(I(ID))

We denote by Syar(S,IL.) the following set of POVMs:
SJM(S7H*) :{SJM(]17H*) ‘ h e S} (8)

We next define joint measurability notions for general hypothesis classes.
Definition 10 (Approximately jointly measurable partition). Let Hyp be a POVM
class. Then a partition P of Hyp is a y-approximately jointly measurable partition of
Hyp if each partition element P; is y-approzimately jointly measurable.

Definition 11 (Approximate joint measurability covering numbers). Let S be a col-
lection of POVMs. We say that a collection of subsets {S;}jeq of S is a y-joint
measurability covering of S if Ujeﬂ S; =5 and every S is y-jointly measurable.

We define the y-joint measurability covering number Njp(7y, S) to be the minimum
cardinality of a ~y-joint measurability covering of S.

Having defined the denoised empirical risk of a hypothesis and the notion of an
approximately jointly measurable partition of a hypothesis class, we present the de-
noised empirical risk minimization rule in Algorithm i. This rule is parametrized by
an approximately-jointly measurable partition with finite cardinality and a choice, for
each partition element P;, of a number of samples n;, satisfying Zf:l n; = m, where
m is the size of the input training set. We will explain how to choose n; based on the
sample complexity bounds that we will derive. The input training set is partitioned
into consecutive subsets 5'1, e S'R, of cardinalities n1, ..., nR.

Remark 3 (The distinction between learning rules and algorithms). A distinction is
made in statistical learning theory between a learning rule and an algorithm. In the
classical case, ERM is a learning rule, not an algorithm, because it does not specify how
to achieve the minimization. Achieving the minimization algorithmically requires more
refined structural knowledge of the hypotheses. Indeed, for many hypothesis classes,
ERM is a PAC learning rule, but it is not efficiently implementable by an algorithm.

13



Algorithm 1: Denoised empirical risk minimization learning rule

Data: Training set S = {(X;,Y})}.; Approximately jointly measurable
partition P = {P; }le of Hyp with centers Y ); partitioned training
set {S;}%,

Result: A hypothesis i, € Hyp meant to have almost minimum risk

for j=1to Rdo

// Process partition element j.
Let PA)] = SJM(Pj7H,(kj));
Compute p; = arg min,,. 5 DER(h, 5;) and R; = DER(p;, 5);

2
3
4 end
5

[

Let 7. = argminje{lwﬁ} Rj;
Let h, be some hypothesis in Hyp such that Sas(h., Hij)) = pj.;
7 return h,;

(=]

The study of efficient algorithmic implementation of learning rules is the subject of
computational, rather than statistical, learning theory.

In our case, the DERM is similarly a learning rule, not an algorithm. We do not,
and cannot, prescribe how to construct the jointly measurable partition, for instance.
It is only important that the partition ezists.

4.2 Necessary and sufficient conditions for PAC learnability

We next turn to necessary and sufficient conditions for PAC learnability of POVM and
POCC classes. To do this, we need to define the fat shattering dimension of a class of
POVMs [31]. We start by recalling the fat shattering dimension in the deterministic
hypothesis class case.
Definition 12 (Fat-shattering dimension (classical case)). Let F be a class of func-
tions f : X — R. We say that a dataset (xq,...,Tm) € X™ is vy-fat-shattered by F if
there exist witness numbers 1, ...,7y, such that, for any (b1,...,bm) € {0,1}™, there
exists some f € F such that, simultaneously, f(x;) < r;—vy ifb; =0 and f(x;) > ri+y
if by = 1.

We define the ~y-fat-shattering dimension of F to be the largest m for which there
exists a dataset X € X that is y-fat-shattered by F.

To define an analogous notion for POVM classes Hyp, we identify each POVM
h with its induced function mapping from X to probability distributions on {0, 1},
which themselves can be identified with real numbers in [0, 1]. Thus, each hypothesis
induces a function f, : X — [0,1], and we define the y-fat-shattering dimension of
Hyp to be that of the induced deterministic function hypothesis class.
Theorem 4 (Necessary and sufficient conditions for PAC learnability of POVM
classes). Let Hyp be a POVM class (not necessarily finite-dimensional or finite-
cardinality). Then the following statements hold.

1. Necessary condition: If Hyp is PAC learnable, then for every v > 0, Hyp has
finite vy-fat-shattering dimension.
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2. Sufficient condition: If there exists a finite d > 0 such that, for every small
enough v > 0, Hyp has y-fat-shattering dimension < d and, additionally, for every
a > 0, there exists a finite a-almost-jointly-measurable partition P of Hyp, then
Hyp is PAC learnable by DERM, with sample complexity

%%(1/5))? (9)

NHyp(€,0) < i%f O(|P]

where P ranges over all finite €/8-almost-jointly-measurable partitions of Hyp.

We next present a theorem linking fat-shattering dimension to approximate joint
measurability.
Theorem 5 (Lower bound on fat-shattering dimension via approximate joint mea-
surability covering number). Let Ilyp be a POVM class with k < Ny (7, Hyp) and
with d = fat. 4 (Hyp). Then for every v >0, if m > (g), then

k<2 (m-(2fy +1)%)[@osCE, (10)

In particular, if Ny (v, Hyp) = oo, then fat. /4 (Ilyp) = oo.

Theorem 5 immediately implies the following corollary of Theorem 4.

Corollary 1 (Fundamental theorem of concept learning for POVM classes). Let Hyp
be a POVM class. Then Hyp is PAC learnable if and only if, for every v > 0, Hyp
has finite v-fat-shattering dimension. Furthermore, DERM is a PAC learning rule for
Hyp. That is, DERM is a universal learning rule.

Specifically, this is because finite fat-shattering dimension implies finiteness of
Ny (v, Hyp) for all «, rendering the finiteness of Njpr(7v,Ilyp) redundant as a
sufficient condition for learnability.

Remark 4. Corollary 1 subsumes Theorem 4.

Corollary 1 constitutes a fundamental theorem of concept learning for POVM
classes. As mentioned in the introduction, this implies the same for POCC classes,
which arise whenever the loss function value depends on unobserved variables.

We note that a simple and natural condition for finite fat-shattering dimension of
a POVM class is that the class be convex, with finitely many extreme points. This is
the content of our next corollary.

Corollary 2 (Fat shattering dimension and geometry of Hyp). Suppose that Hyp is
a convexr set with k < oo extreme points V = {H(j)}?zl. Then the v-fat-shattering
dimension of Hyp is < oc. Thus, Hyp is PAC learnable.

Proof. Theorem 1.5 of [32] states that the ~y-fat-shattering dimension of the convex
hull conv(V') of a set V of functions whose range lies in [0, 1] is upper bounded as
follows:

faty /4 (V ofat. 14 (V
fat., (conv(V)) < C'- L‘;()logz ( aty /4 )) '

v

(11)
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Since the ~/4-fat shattering dimension of a finite set of hypotheses (in this case, the
extreme points V' of the convex set Hyp) is finite for any +, this implies that the y-fat
shattering dimension of the convex hull (namely, Hyp) is also finite. O

4.3 Examples and applications

Here we present example POVM classes to illustrate our results. We first present an
application of our results to the learnability of variational quantum circuits (sometimes
called quantum neural networks).

Definition 13 (Quantum neural network [2]). Consider a Hilbert space H with di-
mension d < oco. An £-layer quantum neural network is parametrized by a sequence of
£ unitary operators Uy, Us, ..., Uy and a measurement 11, all mapping H to H, with 11
having two classical outcomes. Each of the unitary operators U; acts nontrivially on
only a subset of qubits.

Corollary 3 (Learnability of quantum neural networks). For any d < oo, the class
of quantum neural networks on a Hilbert space with dimension d is PAC learnable.

Proof. 'This is an immediate consequence of Theorem 3 and the fact that d is stipulated
to be finite. O

We give a more detailed result on learning variational quantum cir-
cuits in the supplementary material, specifically Appendix G. There, in
Theorem 8, we give a concrete sample complexity bound for general
variational quantum circuits.

As in classical learning theory, one advantage of combinatorial bounds on gener-
alization error, such as those in terms of VC or fat-shattering dimension, is that they
are distribution-free, meaning that they do not depend on the data generating distri-
bution. This generality, of course, comes at a cost of tightness, as is well-known to
be the case for neural networks. We have nonetheless included the above example to
illustrate the application of our bounds to a concrete hypothesis class. We emphasize
that our bounds can be applied beyond classes of quantum neural networks, and that
our focus in this work is on generality, as is the case in the classical works using the
fat-shattering dimension.

Non-learnable POVM classes:

We next turn to examples of POVM classes that are not learnable. Theorem 3 implies
that we must consider input state sets spanning an infinite-dimensional Hilbert space.
One can easily concoct an unlearnable class from a classical hypothesis class with
infinite VC dimension. Our next example goes further than this to provide intuition
about legitimately quantum POVM classes that are unlearnable.

Example 1 (A POVM class that is not learnable). Consider a domain X whose span
is infinite-dimensional in some Hilbert space H with a sequence of orthonormal vectors
{pj}521 and a sequence of numbers {B;}32,, with B; € (1/2+~,1). We construct a
sequence of hypotheses as follows (since each hypothesis has two outcomes, we only
need to specify for each hypothesis the operator corresponding to the O outcome): letting
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b= (b1,ba,...) € {0,1}°,
I =376 (1= 8)" log) (o] (12)
j=1

Finally, let Hyp be the class of all such POVMs: Hyp = {H(b)}be{o’l}oo. We claim
that Hyp is not PAC learnable. To show this, by Theorem 4, it is sufficient to show that
Hyp has infinite y-fat shattering dimension. We show this in the following sequence
of steps:

1. We exhibit a candidate sequence x1, %2, ... of elements of X that we will show to be
fat-shattered by hypotheses in Hyp. Specifically, we take x; = |p;) (p;].

2. We exhibit a witness number r = 1/2.

3. We exhibit, for each bit string b = by, ba, ... € {0,1}°°, a hypothesis h € Hyp such
that when b; =1, Plhlz;] = 1] > r +v and when b; = 0, Plh[z;] = 0] <r —~, for
every j. Specifically, we take h = II*=) . We have, when b; =0,

Plhfe;] = 0] = Tx (11 ") (13)
= (p| I py) = By (1= )", (14)

so that Plhz;] = 0] =1 — 8; < 1/2 —~, by assumption. Similarly, when b; = 1,
—b; ,
Plhlag] =1]=1-8;""(1= )" 21-(1/2-7) =1/2+7.

Thus, Hyp has infinite v-fat-shattering dimension, which implies that it is not PAC
learnable.

We note that the results of prior papers were incapable of showing that any POVM
class is unlearnable.

5 Conclusion

We have provided matching necessary and sufficient conditions for learnability of
POVM hypothesis classes in terms of their fat-shattering dimension. To do so, we
connected the learning-theoretic notion of fat-shattering dimension with the quan-
tum concept of approximate joint measurability covering. The proof of our sufficient
condition came via the introduction of a new universal learning rule, the de-noised
empirical risk minimization rule. Additionally, we showed that all finite-dimensional
POVM classes are learnable, and we provided quantitative sample complexity bounds
for some example hypothesis classes.

There are various possible extensions of our work: for instance, a characterization
of the fat-shattering dimension of a hypothesis class in terms of its Hilbert space
geometry would be of interest. Additionally, our learning rule only makes separable
measurements. In quantum hypothesis testing, where the goal is to distinguish between
two known states with minimal error probability from m copies of one of them, block
measurements have a provable advantage in terms of sample complexity. It would be
interesting to understand whether this phenomenon holds in the learning setting.
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Appendix A Supplementary material: proofs

A.1 Proof of Theorem 1

Consider X = {0,1}%,Y = {0,1}, so that each z € X can be written as (z1, z3).
Furthermore, consider the following hypothesis classes ﬁy\p and Hyp: fix some small
enough « > 0, and let Hyp consist of probabilistically observable concepts that, on
input z € X, pass z; through a binary symmetric channel with crossover probability
0.1+ z, where z € [—«, a]. We then define Hyp to consist of Hyp, with one additional
hypothesis: h., which, on input z, outputs a Bernoulli(1/2) random variable with
probability 0.99 and outputs x2 with probability 0.01.

One can think of Hyp as a relaxation of the very simple deterministic hypothesis
class Hyp' consisting of a single hypothesis: f(z) = x1. Of course, Hyp' is agnostic-PAC
learnable.

The theorem statement consists of the following claims:

1. The uniform convergence property for ERM fails to hold for the hypothesis class
Hyp, even for distributions on X x Y for which ERM is PAC.

2. The hypothesis class Hyp is PAC learnable, but there exist distributions for which,
simultaneously, the uniform convergence property fails to hold for ERM and ERM
is not PAC.

Proof of claim 1: To show that the class ﬁy\p does not satisfy the uniform
convergence property, we will exhibit a data-generating distribution D on & x Y for
which, with non-negligible probability, there exist hypotheses in Hyp whose empirical
risks are bounded away from their true risks. In particular, let us consider a uniform
distribution on X, and a target function f(z) = z5. Call the resulting joint distribution
D. Note that the expected risk E[R(h, f)] = 1/2 for all h € Hyp. In particular, this
implies that we can trivially find a hypothesis whose expected risk is arbitrarily close
to the minimum possible with probability exactly 1, so this distribution does not
pose any fundamental difficulties from a learning perspective. Next, we show that for
every m, with probability 1, there exists some hypothesis h € Hyp whose empirical
risk on a dataset of length m is bounded away from its expected risk. Fix m samples
S = (M., 20™) drawn iid from D. We claim that with probability 1, the set of
outputs of all hypotheses in ﬁy\p on input S has cardinality 2™, so that it is the set of
bit strings of length m. To prove this, we upper bound the probability of the negation
of this event: let B be the event that there exists some bit string that is not the output
of any hypothesis in Hyp:

PB]=P Jyc{0,1}™ (| W(S)#ull< > PL() RS)#ull  (A]

heHyp ye{0,1}™  phefyp
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Each term of the remaining sum can be computed by conditioning on the value of S.
That is,

P () h(S) #yll =E[P[ (] [M(S) # 9] | SW=E[ [[ Pl(S)#y|S] (A2
hEﬁSI\p hEHyp hEHyp
—om Y TIPS #yl5=$) (A3)

5e{0,1}*>*™ heHyp

Now, note that P[i(S) #y | S = §] < ¢ < 1, by our choice of hypothesis class. This
implies that

Pl 10(S) # 4]l = o 2" [T e< [ e=0. (A4)

heHyp heyp heHyp

where the last equality is by the fact that ﬁﬁ) has infinite cardinality. This implies
that

PBJ< Y  0=o0. (A5)
ye{o,l}m

Thus, with probability 1, the set of outputs of all hypotheses in ﬁy\p in input S has
cardinality 2. Now, this means that with probability 1, there exists a hypothesis h
with exactly 0 misclassification error on S, so that its empirical risk is 0, while its
expected risk is 1/2.

Thus, the uniform convergence property does not hold for ﬁ;p, and we have
demonstrated this with a distribution on which empirical risk minimization trivially
outputs a good hypothesis. This implies that uniform convergence is not necessary for
ERM to be PAC. This completes the proof of Claim 1.

Proof of Claim 2: To show that there exist data-generating distributions for
which ERM is not PAC for Hyp and the uniform convergence property fails to hold,
we will consider the same input distribution and target function as in the proof of
Claim 1: then the expected risk of h, is as follows:

E[R(hs, f)] = Plhe(z) # f(2)] = Plhi(2) # z2] = 0.99 - 1/2. (AG)

That is, h, is the unique hypothesis in Hyp with minimum expected risk for this
distribution. By the analysis of Hyp above, though, ERM fails to return h, on this
hypothesis class asymptotically almost surely as the number of samples tends to oo,
because, with probability 1 over the choice of samples, there exists some other hypoth-
esis that has empirical risk 0. Thus, ERM fails in this case — it returns a hypothesis
with expected risk strictly bounded away from the minimum possible with probability
1.

To complete the proof of the claim, and, hence, the proof of Theorem 1, we need to
show that Iyp is PAC learnable. This can be done in a variety of ways. We consider
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the learning rule that works as follows: on input S = {(x1,v1), (z2,92), - (T, Ym ) }+
we perform the following operations:

1. Estimate the joint distribution D empirically:

oy = W+ ) = )] A7)

2. Using the estimate p of D, choose a hypothesis that minimizes the expected risk,
where the expectation is computed according to p instead of D. Le., output a
hypothesis h € IIyp such that

h = argmin Ex yyp[0(h[X],Y)]. (A8)
heHyp

To show that this learning rule is PAC, we note that by the strong law of large numbers
and the fact that |t x Y| is finite, m can be chosen sufficiently large so that the total
variation distance between p and D is less than ¢ with probability arbitrarily close to
1. This immediately implies that, for any h € Hyp, simultaneously,

Ex,v)~pll(h[X],Y)] = R(h)| <e. (A9)

This implies the desired property. With the proofs of Claims 1 and 2 completed, the
proof of Theorem 1 is complete.

A.2 Proof of Theorem 2

We first show that Hyp is compact in the topology generated by the L operator norm
on operators on H (here we note that each hypothesis in Hyp is given by (Ilp, I —Ip),
so that Hyp may be equated with the set of operators Il yielding the 0 outcome).
Because the set of operators on H is finite-dimensional (since H itself was assumed
to be so0), all norms on them are equivalent, in the sense that they generate the same
topology. Furthermore, compactness is equivalent to Hyp being closed and bounded.
We have assumed that Hyp is closed. To show that it is bounded, we note that for any
(ITy, I—II;) € Hyp, we can write IIj as a convex combination of orthogonal projections:

dim(H)
Oo= > ajlvXvl, (A10)
j=1

where a; € [0, 1]. Then a loose bound on the L; operator norm of Il is given by

dim(H)
Mollop,z, < D aj < dim(H). (A11)
j=1

This implies boundedness of Hyp, which implies that Hyp is compact in the topology
generated by the L1 operator norm.
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Compactness, in turn, implies that Hyp must have at least one accumulation point.
Let us assume that Hyp has an accumulation point II, that is non-deterministic. Then
we may use the argument from the proof of Theorem i to show that uniform conver-
gence fails and ERM is not PAC. In particular, there exists an open neighborhood of
I, containing infinitely many non-deterministic elements in Hyp. This was the key
property used in Theorem i, which allows us to conclude that ERM is not PAC for
Hyp, and it does not satisfy the uniform convergence property.

A.3 Proof of Theorem 3
The proof of this theorem consists of the following steps:

1. We introduce a statistical distance between POVMs — the total variation distance
dpy between them. This distance has the property that any two hypotheses within
distance v of each other have expected risks within « of each other. Throughout,
we choose v = €/4.

2. We show that for every v, the dpy ~y-covering number of a finite-dimensional POVM
class is finite: i.e., it can be covered by finitely many dry balls of radius less than ~.

3. Using the finiteness of covering numbers, we define the smoothing of the hypothesis
class by a given y-covering, which is a hypothesis class consisting of the centers of
the balls in the covering. This class is necessarily finite-cardinality.

4. By previous results in the literature [i], the smoothed class is agnostically PAC
learnable because it is finite-cardinality. The output of a (e/4,0)-PAC learning
rule on this hypothesis class has true risk within €/2 of the minimum possible
within the smoothed class. This minimum has, by our result on the total variation
metric, a true risk that is within €/2 of the infimum of possible true risks in the
original hypothesis class. Thus, the hypothesis returned by the learning rule on the
smoothed class has true risk within € of the infimum for the original class, with
probability at least 1 — 9.

We now give the details of the above steps.

Step 1: Defining dry between POVMs

The definition is given in Definition 7.

We next state and prove the lemma connecting dry with the expected risks of the
two hypotheses.
Lemma 1 (Connecting dry with expected risks). Let [Ty, I, € Hyp. Then

|R(ITy) — R(I2)| < 2dpy (111, [I3). (A12)
Proof. We have
[R(I11) — R(ILy)] (A13)
= |P(X7y)N'D[Out(H1, X) # Y] — P(X’y)wp[out(ng, X) # Y” (A14)
— E[IP[Ou(ITy, X) £ Y | X,Y] - POut(Il;, X) £Y | X, Y]] (A15)
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1
=E)_ [POut(Il;, X) = b | X] - POut(Il, X) = b | X]|-P[Y =b]]  (Al6)

b=0
1
< IEX[Z |[P[Out(Ily, X) =b | X] — P[Out(Ilz, X) = b | X]|] (A17)
b=0
1
< sup > [P[Out(Iy, X) = b | X] - P[Out(Ily, X) = b | X] (A18)
rcX b—0
= 2dpy (1, 11,) (A19)

The conditioning on Y disappears in equation (A16) because the event that
Out(IT;, X) = bis independent of Y given X. The first inequality is by upper bounding
P[Y = b] by 1. O

Step 2: Finiteness of the dry covering numbers of Hyp

To show that the d7v covering numbers of Hyp are finite, it is sufficient to show an
upper bound on the corresponding packing numbers. This is the content of the next
lemma, Lemma 2.

Lemma 2 (Finiteness of the total variation packing). Let Hyp be a finite-dimensional
POVM class with outcomes in {0,1}. For every v > 0, the v-dry -packing number of
Hyp is finite.

Proof. Since the Hilbert space H on which the operators in Hyp are defined is finite-
dimensional, we take an orthonormal basis |v1), ..., |vq) for H. We can uniquely encode
each h € Hyp by its outcome-0 operator, which, in turn, can be represented by its
d x d matrix over C with respect to the chosen basis. Thus, we can identify Hyp with
a bounded subset S C C?*? (since we already know, from the proof of Theorem 2,
that finite dimensionality of the POVM class (even if it is not closed) is sufficient to
conclude boundedness of Hyp in the L; operator norm). Bounded subsets of finite-
dimensional Euclidean spaces are known to have finite packing and covering numbers
in every norm. More specifically, letting || - || be an arbitrary norm on C%*¢, since all
norms on C%*? are topologically equivalent, S may be covered by a single sufficiently
large || - [|-ball B, with diameter diam(S, ||-||). Then a covering of this ball is a covering
of the set S. This implies that the | - ||-covering numbers of S are upper bounded by
the || - ||-covering numbers of B. It is known that, for any e > 0, the e-covering number
of a ball in any norm is upper bounded by

. d?
<1 + 2diam(5, || - ”)) 7 (A20)

€
which is finite since S is bounded. This implies finite dpy-packing and covering

numbers for Hyp.
O
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Step 3: Constructing the TV -smoothed version of a hypothesis class

We next define the following T'V-smoothed hypothesis class.

Definition 14 (TV-Smoothed version of a POVM class). Let Hyp be a finite-
dimensional POVM class with outcomes 0 and 1. Let P be a finite v-T'V covering of
Hyp by balls with centers {H(j)}lj?jl. We define the ~y-smoothed version of Hyp to be
simply the set of centers. We denote this by Sty (Hyp, P).

Step 4: Learnability of the TV -smoothed class implies learnability of the
original class

For any =, the v-TV-smoothing of a hypothesis class IIyp has the property that its
infimum expected loss is less than v away from that of the infimum expected loss of
Hyp. This is the content of the next lemma, Lemma 3.

Lemma 3 (Infimal expected loss of Sty (Hyp,P)). Let Hyp = Srv(Hyp, P), where
P is a finite v-TV covering of Hyp. Then

inf R(h) < inf R(h) < inf R(h)+2~. A21
it ()‘hé%ﬁ) ()—hé%yp (h) + 2y (A21)

Proof. For any hypothesis h, € ﬁy\p and h in the element of P corresponding to h.,
we have that dry (h., h) <. This implies, by Lemma 1, that

|R(h.) — R(h)| < 27, (A22)

which implies the desired result. O

Lemma 3 implies that if ﬁy\p is (€/2,9)-PAC learnable, then with probability
at least 1 — §, we can find a hypothesis h, € IrTy\p C Hyp such that R(h,) <
inf, g R(h) + €/2 < infrenyp R(h) + €/2 + 27 = € (recalling that we set v = €/4),
which implies that Hyp is (e, §)-PAC learnable. In fact, since ﬁy\p is finite, it is PAC
learnable for every €,6 — 0, by the results in [1]. This completes the proof of learn-
ability. To provide a more specific sample complexity bound, we recall the following
result of [1].

Theorem 6 ([1], Theorem 2). Any finite POVM class Hyp is agnostic (e,d)-PAC-
learnable with sample complexity bounded by

L
. 8 2|P||Pr|
e (€ 0) = 7’:(7’1,1717121?-477’\7>\) ; € to 6 (423)
where P ranges over all possible joint measurability partitions of Hyp.

In our case, we will apply this bound to Sy (Hyp, P), and hence to Hyp itself. In
general, it can be difficult to find a minimal jointly measurable partition, and so we
state the following worst-case bound, which we get from the trivial joint measurability
partition whose elements are all singletons. We let N be the v-TV-covering number
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of Hyp.

8N 2N

il 8 2N
nHyp(€,0) < ng(Hyp,P) (€, 0) Z —2 5 =2 log 5 (A24)

This completes the proof of Theorem 3.

A.4 Proof of Theorem 4
A.4.1 Proof that learnable implies finite fat-shattering dimension
We first prove the necessary condition. The chain of logic is as follows:

1. We first prove that if IIyp is PAC learnable, then the corresponding POCC class is
PAC learnable. We do this by a reduction.

2. We then show that if a POCC class is PAC learnable, then the corresponding
p-concept class is PAC learnable, again by a reduction.

3. It is known that a p-concept class is PAC learnable if and only if, for every =, its ~-
fat shattering dimension is finite. Since all fat-shattering dimensions are the same
in our chain of reductions, this implies that the ~-fat shattering dimension of Hyp
must be finite.

Step 1: POVM learnability implies POCC class learnability

We recall that a POVM class induces in a natural way a corresponding POCC
class. Namely, every POVM induces a unique conditional distribution on outcomes
when used to measure a given state. Thus, each POVM induces a function from
states to probability distributions on outcomes, which define probabilistically observed
concepts.

Lemma 4. Suppose that Hyp is a PAC learnable POVM class. Then it is PAC
learnable as a POCC class.

Proof. Let A be an (e,d)-PAC learning rule for Hyp. We may use exactly the same
learning rule in the POCC framework, and it yields the same guarantees. O

Step 2: POCC class learnability implies p-concept class learnability

We recall that every POCC class has an associated p-concept class, trivially.
Lemma 5. Suppose that Hyp is a PAC learnable POCC class. Then it is PAC
learnable as a p-concept class.

Proof. Let Hyp be a POCC class, and let }Tﬁ) denote the corresponding p-concept
class. Note that these have exactly the same v-fat-shattering dimension, for every ~.
We will show that if Hyp is (e, §)-PAC learnable, then so is Hyp, with the L; risk.

Let A be a learning rule for Hyp. Then it is also a learning rule for ﬁy\p7 and
the risks of all hypotheses in Hyp are the same as those in Hyp, as we show next. In
particular, the misclassification risk for h € Hyp is given by

Ruyp(h) = P[R[X] #Y] (A25)
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=Ph[X] =1,Y = 0]+ P[h[X] =0,Y = 1] (A26)
=E[Ph[X]=1,Y =0 | X]+P[a[X] =0,Y = 1| X]] (A27)
=EPRX]=1]X]P[Y =0 [ X]+Pr[X]=0| X]P[Y =1 [ X]] (A28)
=ERX)A-PY =1] X))+ (1 -nX)PY =1]X]] (A29)
=EMX)+P[Y =1|X]-2P[Y =1 | X]h(X)]. (A30)

Meanwhile, the Lq risk for h € PT}H) is

R (h) = E[[A(X) = Y] (A31)
= E[E[|n(X) - Y]] X]] (A32)
=EPY =1|X](1L-h(X)+(L=PY =1] X])h(X)] (A33)
=EhX)+PY =1] X]-2P[Y =1 | X]h(X)] (A34)
= Ruyp(h) (A35)

This implies that Hyp being PAC learnable implies that ﬁy\p is PAC learnable with
the same parameters. O

Step 3: p-concept class learnability only if fat shattering dimension is finite

It is shown in [28] that p-concept classes are learnable with respect to the Lq risk
only if they have finite y-fat-shattering dimension for every v > 0. By steps 1 and 2 of
our proof, this implies that if a POVM class Hyp is PAC learnable, then it has finite
~-fat-shattering dimension for every ~, which completes the proof of the necessary
condition of the theorem.

A.4.2 Proof that finite fat-shattering dimension and finite
partitionability implies learnable

We now show that the stated sufficient conditions imply learnability of a POVM class.
The proof outline when Hyp is jointly measurable, in which case all that is needed is
finite fat shattering dimension, is as follows.

1. In the preliminaries, we show that the expected value of the denoised empirical risk
of a POVM is its expected risk (Lemma 6 below). We also define an appropriate
generalization of the Rademacher complexity of Hyp.

2. We define @y, (S5), for a training set S, to be the supremum, over all hypotheses
h € Hyp, of the deviation of the denoised empirical risk of A from the expected risk.
We use McDiarmid’s inequality to show that Py, (S) is well-concentrated around
its mean.

3. We upper bound the mean of @y (S) in terms of the Rademacher complexity of
Hyp. It is in this step that we use Lemma 6.

4. We apply known bounds on the Rademacher complexity in terms of covering num-
bers and then a known bound on the covering numbers in terms of the fat shattering

28



dimension. This implies an upper bound on the sample complexity of PAC learn-
ing Hyp using DERM, which implies learnability for jointly measurable hypothesis
classes with finite fat shattering dimension.

To establish that the conditions given in the theorem statement — namely, that
Hyp has finite fat-shattering dimension and that for every « > 0, there exists a finite
a-approximately jointly measurable partition P of Hyp — are sufficient, we reason as
follows:

1. We note that the joint measurability smoothing of a hypothesis class is a jointly
measurable class. Thus, inside the loop of DERM, we are computing the denoised
empirical risk Rj of a jointly measurable class and the denoised empirical risk
minimizer p; of that class.

2. By the reasoning for the jointly measurable class case earlier in this proof, with
probability at least 1 — §/|P|, R; is within /2 of the minimal true risk inside the
smoothed partition element Pj7 provided that |§ |; is chosen to be sufficiently large
as a function of €, §, and the number of partition elements |P|. Taking a union
bound over all partition elements ensures that with probability at least 1 — 4, this
holds for every partition element.

3. We show that the 7-joint measurability smoothing of each partition element P;
results in hypotheses whose risks are at most 2+ away from the risks of the corre-
sponding unsmoothed hypotheses. This is the content of Lemma 11. Taking v = €¢/4,
we get that the resulting hypothesis h, returned by the learning rule is at most
27v+€/2 = € away from the infimal risk of the hypothesis class Hyp, with probability
at least 1 — 4.

Step 1: Preliminaries for upper bounding sample complexity for jointly
measurable Hyp

Our first lemma says that the expected value of the denoised empirical risk of a POVM
hypothesis is the true risk.

Lemma 6 (Expected value of the denoised empirical risk). Let Hyp be a POVM class,
and let h € Hyp. We have the following identity:

E[DER(h, S)] = R(h). (A36)

Proof. This is a result of the tower property of conditional expectation:

E[DER(h, S)] % Z ) 1Y, 2] ZE[E Y;) 1Y, Z]]
- (A37)
- % S R(K) = R(R). (A38)
j=1

More precisely, the first equality uses the definition of DER (%, S). The second equality
uses linearity of expectation and the independence of (X;,Y;,Z;) on (X;,Y;, Z;) for
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j #i. The third equality is where we use the tower property of conditional expectation:
in general, for random variables A, B on a common probability space, E[E[A | B]] =
E[A]. The third equality also invokes the definition of the risk R(h). O

We next define an analogue of the Rademacher complexity [7] of a POVM class.
Definition 15 (Rademacher complexity of a jointly measurable POVM class). Let
Hyp be a POVM class consisting of jointly measurable POVMs with root POVM p,
and let D be some distribution on X X Y.

We define the mth Rademacher complexity (with respect to the specified fine
graining of which p is the root) of Hyp to be

1 m
R, (Hyp) = —Es., [hselllgp ; a;¢(S5)] (A39)

where S ~ D™, S; denotes (X;,Y;), and ((S;) denotes the random wvariable
E[l(h|X;],Y;) | Y5, Z;], and Z; is the random outcome of measuring X; with p.

Step 2: Defining ®uyp(S) — the point generalization gap, and applying
MecDiarmid

We define the following function, called the point generalization gap for DERM of Hyp
on the dataset S € (X x V)™

D1() = Bryp(S) = sup (DER(A, S) ~ R(R)). (A40)

Next, we apply McDiarmid’s inequality to show that ®(.9) is close to its expected
value with high probability. To do this, we need to upper bound the maximum possible
value of |®(S)—®(S)|, where § differs from S in exactly one coordinate (say, coordinate
7). We have

|B(S) — (S| (A41)

=| sup (DER(h,S) — R(h)) — sup (DER(h, S) — R(R))| (A42)
heHyp h€Hyp

< | sup (DER(h,S) — DER(h,S))| (A43)
heHyp

= i\ sup Y E[0(hlze],yr) | (2, m0)] — E[0(R[zr],00) | (20 00)] (Ad4)
m heHypk;é]
+E[l(hlz;]y;) | (z5,95)] — E[(RZ;],95) | (25,95)]] (A45)

= i\ sup [E[¢(hlz;],y;) | (z5.y5)] — E[L(R[Z;],95) | (25, 95)] (A46)
M heHyp

<1/m. (A4T)

The first inequality is because the difference between suprema is less than or equal
to the supremum of the difference. The final inequality is because the loss is bounded
between 0 and 1. This is essentially exactly the same as in the classical case.
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Applying McDiarmid’s inequality, we then get the following intermediate bound.
Lemma 7 (Application of McDiarmid’s inequality to ®(S)). For every v > 0, we have

PII®(S) — Es[®(S)]| > 7] < exp (~2m7?) . (A48)

Since we want this probability to be at most §, we choose v such that

e 2 = g, (A49)
which implies
log(1
logd = —2my? = v = M. (A50)
2m
That is, with probability at least 1 — &, we have
log(1
B(S) < Es[®(S)] + %m/(s). (A51)

Step 3: Upper bounding E[®(S)] via Rademacher complexity

Next, we need an upper bound on the expected value of ®(S) in terms of the
Rademacher complexity defined in Definition 15.
Lemma 8 (Rademacher complexity upper bound). We have the following:

E[®uyp(9)] < 2%R(Hyp). (A52)

Proof. We follow the pattern as in classical statistical learning theory: we first rewrite
R(h) in E[®(S5)] as the expected value of an empirical expectation.

Eg[®(5)] = E[h?ﬁp (DER(h, S) — R(h))] (A53)
= hzlg;p ZE i) | Y5, Z5] = R(h))], (A54)

where we recall that Z; is the random outcome of measuring X; with the root
measurement p.
We rewrite R(h) as
R(h) = E¢[DER(h, 5)], (A55)

where S is independent and equal in distribution to S. Plugging this into (A54),

Es[®(S)] = ”hZ%I;meW AIX),Y5) | Y5, Z5) = BIE(hX ), X5) | Y5 Z3)-

(A56)
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The remaining steps can be carried out exactly as in the classical case, and we will
end up with an upper bound by the Rademacher complexity of the set of denoised
empirical risks of hypotheses in the class. Let ((S;) denote the random variable

E[¢(h|X;],Y;) | Y;, Z;]. Then the above can be more Succmctly written as
1 & e e A
Eg sl sup (— D E[(AIX,)Y)) | Y5 2]~ BIUGRIX),Y) | V5. Z0)) (A7)
heHyp j:1
= —IE s ¢(S5)]- A58
S.5 heHF;pZC ¢(S;5)] ( )

Introducing Rademacher random variables o; € {—1,1}, for j € [m], this is equal to

m

Bl s 3C(S) - (8] = Egs, | s > 0iC(8) oS (A59)
j=1

Note that this is because if two random variables ¢(S;) and ¢(S;) are independent and
identically distributed, their difference is equal in distribution to o; - (C(S;) — ¢(S;)).

Finally, this is less than or equal to

m

1 N 2
—E.& [ su o:((8;)— o;((S;)] < — su o = 2R, (Hyp).
m S’S’O[heHI;zpj; C(S5) iC(55)] < m ssg[ I;p; Fi (Hyp)

(A60)
O

Step 4: Upper bounding the Rademacher complexity via covering numbers
and fat shattering dimension

By Step 3, if we want to show that a hypothesis class is learnable, then we should
show that the Rademacher complexity above is o(1) as m — oco. We will show that
the fat-shattering dimension is the relevant quantity, and that it is sufficient for this
quantity to be finite. Lemmas 9 and 10 below establish the connection between the
Rademacher complexity and the fat shattering dimension.
Definition 16 (Covering numbers N'(«, F,m)). Let F be a metric space with metric
d. We say that a subset F C F is an a-covering of F with respect to d if for every
f € F, there exists g € F such that d(f,9) < a. The a-covering number of F with
respect to d is defined to be the minimum cardinality of any «-covering of F and is
denoted by Ng(a, F). In place of d in the subscript, we may pul a norm, in which case
the relevant metric is the one induced by that norm.

For a class F of functions f : X — Y, we define the following norm with respect
to a set S = (1,...,Tm) € X™:

1f = glloos = sup |f(z;) = g(z;)l. (A61)
j€{1727'“7m}
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The covering numbers of F with respect to this norm on the set S are well-defined.
We then define the covering number N(a, F,m) = supge ym N s (@, F, S).
Lemma 9 (Upper bound on Rademacher complexity via covering numbers [31]). Let
F be a function class. Then

Ron(F) < intf <oc + \/ 2logW(a, 7, m”) . (A62)

m

Lemma 10 (Upper bound on covering numbers via fat-shattering dimension [31]).
Let F be a class of functions with range [0, 1]. Then the following upper bound on the
covering numbers holds: let o > 0 and d = fat, /4(F). Then

Nla, Fym) <2+ (m- (2/a+ 1)2)[ (5] (A63)

Plugging the upper bound in Lemma 10 into the one in Lemma 9, and then plugging
that into Lemma 8 and, finally, using Lemma 7 yields the following statement: with
probability at least 1 — 9,

21og 2 + 2[dlog (222)]1 92/a 1+ 1)2
B(S) < 2R, (Ilyp) < 2inf aﬂ/ og2 +2[dlog ()] log(m(2/a + 1)?) }
@ m

(A64)

which can be upper bounded by setting o = @(IOJ\/%) This results in the following
bound:

Es[@(5)] < O( ) =

\/E\;(gm @(S)SO(\/EIOgm:’/_W_;/IOg(l/d)) (A65)

This directly translates to a finite upper bound on the number of samples nyp (€, 6)
required to achieve a risk within € of the infimum, provided that the fat shattering
dimension d is finite. Specifically,

d +log(1/5)

nHyp(€75) S 1%f0(|7)| 62

), (A66)

where P ranges over all finite €/8-almost-jointly-measurable partitions of Hyp.
This completes the proof of sufficiency of finite fat shattering dimension for
learnability in the case where Hyp is a jointly measurable class.

Completing the proof of the theorem

It remains to prove the following lemma, which is the remaining detail for com-
pleting the argument in the case where Hyp can be partitioned into finitely many
approximately jointly measurable classes:
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Lemma 11 (Risk of joint measurability-smoothed hypothesis classes). Let Hyp =
Sym(Hyp, P), where P is a finite y-joint measurability smoothing of Hyp. Then

inf R(h) —2y < inf R(h f R(h)+27. A67
piif B =2y s i R(h) < fuf R(h)+2y (A7)

Proof. Tt suffices to prove the analogous chain of inequalities for any single hypothesis
h and its smoothed version h. For this, we use the data processing inequality for total
variation distance: let (IL, o) and (II, &) be respective fine grainings of h and h, noting
that by definition of the smoothing operation that the two classical channels are the
same. Then for any z € X,

dry (oo Out(II, z), o 0 Out(II, 2)) < dy (Out(IL, ), Out(IL, z)) < ~. (A68)

This implies, by Lemma 1, that |R(h)—R(h)| < 2y, which implies the stated result. [

This completes the proof of the sufficient condition part of Theorem 4.

A.5 Proof of Theorem 5

We start by defining the packing numbers of a set S with respect to a metric.
Definition 17 (Packing numbers). Let d be a metric on a set S, and let v > 0. We
say that a subset A C S is a y-d-packing of S if for all a,b € A, we have d(a,b) > ~.

Then we define the v-d-packing number of S to be the maximum cardinality of any
~v-d-packing of S. We denote this number by M(v, S, d).

Before stating and proving the main lemmas used in the proof of the theorem, we
recall that a maximal ~-d-packing of a set S is also a y-d-covering of S: otherwise, if
there is some x € S that is not within ~ of any packing element, then we could enlarge
the packing by including z. So the cardinality of this packing is an upper bound on
the y-d-covering number of S, so that N(v, S, d) < M(~,S,d).

Lemma 12 (Relating dry covering and packing numbers to Myas(vy,S9)). Let S be a
collection of POVMs We have

NJM(V? S) S N(Va Sa dTV) S M(’)/7S, dTV)' (Aﬁg)

Proof. The second inequality is well-known, so we focus on the first. Let S be a ¥-
covering of S. We will show that $ is also a ~v-jm covering of .S, which immediately
implies the inequality.

Let II be the center of one element of S. We claim that the closed dry ball
Bry(I1,~) centered at II with radius « is ~-jointly measurable. We choose the root
POVM to be II itself. Now, for every II' € By (I, ~), we consider the trivial fine-
graining (IT', Id), where Id is the identity channel. Trivially, drv (I, II') < ~. This
completes the proof of the claim. O

The next lemma relates the dpy-packing number of a set of POVMs to the m-
sample dpy-covering number, which we recall is upper bounded by a function of the
fat-shattering dimension.
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Lemma 13 (Relating the dpy-packing number to the m-sample dpy-covering num-
ber). Let Hyp be a class of POVMs. Suppose that k is some number satisfying
k< M(y,Hyp,dry). If m > (MO then

M(y,Hyp, dpy) < N (v, Hyp, m). (A70)

Proof. To lower bound the m-sample covering number of Hyp by some number k, we
must exhibit a set S of m points {p;}7*; such that N(y,Hyp, S) > k.

An important consequence of Lemma 12 is that if there exists a -jm partition of
Hyp with cardinality at least k, then there exist hypotheses h1, ..., iy, € Hyp such that
for every i # j € [k], we have dry (h;, h;) > . This is a direct consequence of the
packing number bound in the lemma.

The fact that dpy (R, hj) > v means that there exists a state p; ; € X' such that
drv (hi(pij), hj(pij)) = 7. Thus, we choose our set S to be {p; ; }izjc[r), along with an
arbitrary collection of m — (g) other states. It is then easily checked that the covering
number N (v, Hyp, S) > k, and we can set k = M(~, Hyp,dry). This completes the
proof. O

The proof of the theorem is then a direct application of Lemmas 12, 13, and 10.

Appendix B Definitions from quantum mechanics

We give below a brief introduction to relevant definitions and notation from quantum
information. This is meant only to highlight the bare minimum necessary concepts for
this paper. The reader is encouraged to consult [6] for more extensive discussions of
quantum information. We note that the reader does not need any physics background
at all, and the required mathematics is not beyond the training of most learning
theorists.

To describe quantum states, we fix a Hilbert space H over the complex numbers C.
A pure state is a unit vector in H, which, in the bra-ket notation of quantum mechanics,
is denoted by |v). The dual space to H is the vector space of linear functionals (v| :
H — C, where (v|w) is defined to be the inner product of |v) with |w). It is frequently
convenient to identify pure states |v) with their outer product forms |v)v|, which are
operators from H — H. The reason for this is the outer product forms fit nicely into
the density matrix formalism, which we discuss next.

Mixed states (which we just call states in this paper) are more general: they are
convex combinations of pure states and are also called density matrices. They capture
statistics resulting from drawing pure states from a probability distribution. However,
it should be noted that a single density matrix can arise from multiple distinct convex
combinations of pure states.

A quantum measurement is specified by a positive operator-valued measure
(POVM), defined as follows.

Definition 18 (POVM). A POVM with k outcomes, defined on a Hilbert space H, is
a k-tuple IT = (I1y, ..., i) of positive semidefinite Hermitian operators on H that sum
to the identity operator.
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We note that each operator II;, by virtue of being positive semidefinite Hermitian,
has a decomposition as II; = M7 M;, where M denotes the adjoint operator.

Measurement of a mixed state p by a POVM II works as follows: it produces
an outcome Out(Il,p) in {1,...,k}, which is observed by the measurer and a post-
measurement state p’, which is not. The outcome is drawn from the following
distribution:

P[Ow(IL, p) = j] = Tr{pIL;}, (B71)

where Tr{-} denotes the trace.
The post-measurement state p’ is dependent on Out(Il, p). If the outcome is j,
then p’ is given by

M, pM;
- Te{Ip}

/

p (B72)

These measurement rules are collectively called the Born rule. One can thus think
of a POVM as a particular type of stochastic map from density matrices to ordered
pairs whose first component is an outcome index and whose second component is a
post-measurement density matrix. The particulars of the Born rule become important
when one tries to define specific hypothesis classes and study their learning-theoretic
measures of complexity (e.g., fat-shattering dimension). It is also worth emphasizing a
few phenomena that differentiate the quantum learning setting from the classical case:

¢ Unknown states cannot be copied. That is, there is no general procedure that takes
as input a register prepared in some state p and produces two registers, both in
state p. Thus, for example, a learner cannot make a “backup copy” of a state in the
training set.

® States cannot be directly observed by a learner. The only thing that can be observed
is the outcome index of measurement of a state.

Appendix C Aspects of learning theory for those
only familiar with quantum
information

Here we describe the basics of classical statistical learning theory for an audience that
may not be familiar with it. Our goal is to avoid common confusions, such as the
distinction between state estimation and learning. This distinction is important in
Section E.

In classical statistical learning theory, supervised learning is formulated as follows:
a domain & and a co-domain Y (which we think of as the label set in a classification
problem) are fixed and known to the learner. There is an unknown joint distribution
D on X x Y. A known hypothesis class Hyp consisting of deterministic functions A :
X — Y is fixed. These hypotheses are meant to approximate the statistical association
between inputs € X and labels y € Y. To measure the quality of approximation, a
loss function £ :Y x Y is fixed, and the loss of a hypothesis on a pair in X x Y is
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defined by €(h,x,y) = £(h(z),y). The risk of a hypothesis is its expected loss on a
pair (X,Y) ~D: R(h) = Ex yyop[l(h, X,Y)].

The learner sees a training set consisting of independent samples from D, and the
goal of the learner is to choose a hypothesis h from Hyp with risk as close as possible
to the worst risk of any hypothesis in the class. Formally, a hypothesis class is (e, d)-
PAC learnable if there exists a learning rule (i.e., a function from datasets to Hyp)
A and a number of samples m(e, d) such that, for every distribution D, A outputs a
hypothesis i such that with probability at least 1 — 4,

R(h) < inf R(h. . C73
()<, inf R(h)+e (c13)

Note that Hyp may be uncountably infinite, and so the infimum may not be achievable.
The number of samples required for the risk bound (C73) to hold with probability
> 1— 0 is the sample complezity of learning the hypothesis class.

We emphasize a few things about this:

® The above framework is distribution-free, in the sense that the number of samples
and the learner must not depend a priori on any assumption about the form that
D takes. However, the learner is assumed to have full knowledge of X, Y, £(-,-, ).
and Hyp.

® Statistical learning theory does not deal with computational efficiency, as learning
rules are not algorithms. Indeed, a hypothesis class may be PAC learnable but not
efficiently so.

® The goal is to choose a hypothesis that captures the statistical association between
X and Y as well as possible compared to any other hypothesis in the class. This is a
distinct approach from estimating the distribution D of the data. The reason that
the theory is formulated this way is that the problem of selecting a hypothesis from
a well-designed class Hyp can have dramatically smaller sample complexity than
that of estimating D. This is a key difference between PAC learning and estimation.

Further philosophical grounding for statistical learning theory can be found in any of
a number of textbooks on the subject (e.g., [7]).

C.1 Empirical risk minimization

The quintessential learning rule in classical learning theory is empirical risk minimiza-
tion. Given a dataset S = ((X},Y;))72; and a hypothesis h € Iyp, the empirical risk
of h is given by

R(h,S) = = S Uh(X;), V). (C74)
Then the empirical risk minimization (ERM) learning rule outputs the following:

h, = argmin R(h, S). (C75)
heHyp
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This is a central learning rule in the classical theory, as explained in Section .2.

C.2 The fundamental theorem of concept learning

One of the fundamental results in classical statistical learning theory is the funda-
mental theorem of concept learning, sometimes called the fundamental theorem of
PAC learning or of statistical learning (see [7], Theorem 6.7). It gives matching nec-
essary and sufficient conditions for a hypothesis class to be learnable, under certain
assumptions on the codomain Y and the loss function. Specifically, there is a combina-
torial notion of complexity of the hypothesis class, known as the Vapnik-Chervonenkis
(VC) dimension of Hyp. The fundamental theorem of concept learning relates the VC
dimension of Hyp to its learnability. We summarize it below.

Theorem 7 (Fundamental theorem of concept learning [7]). Let Hyp be a hypoth-
esis class of functions from a domain X to {0,1}, and let the loss function be the
misclassification loss. Then the following are equivalent:

1. The ERM rule is a successful PAC learner for Hyp.
2. Hyp is PAC learnable.
3. Hyp has finite VC dimension.

Appendix D Further discussion of motivating
applications

Here we spell out a class of motivating applications in which the learning scenario that
we study arises. While these exist in the literature, others may be possible.

Classifying quantum many-body systems:

We consider scenarios in which a quantum many-body system has a state with n
qubits, and we would like to learn to classify such systems into one of a finite number
of categories. This arises in the problem of quantum phase recognition, which has been
studied in the literature [3, 33].

To perform quantum phase recognition, one could perform state tomography to
estimate the system state p, then classify it using a classical machine learning ar-
chitecture, but this involves estimation of an exponential number of parameters as a
function of n, followed by manipulation of exponentially large feature vectors. Learn-
ing a quantum measurement hypothesis, which takes quantum state inputs, avoids this
exponential bottleneck. This motivates the formulation of the learning problem stud-
ied in our paper. Indeed, avoiding the exponential bottleneck is precisely the reason
given for the development of quantum machine learning architectures with quantum
inputs in the work [33], which proposes quantum convolutional neural networks for
quantum phase recognition, among other applications (such as learning quantum error
correction schemes via supervised learning on quantum states).

We furthermore note that study of the basic classification scenario is a theoreti-
cal stepping stone toward more advanced learning scenarios, such as sequential and
transfer learning in a quantum setting.
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Appendix E Further discussion of prior work and
relationship to tomography problems

Here we contrast our work with works on state and channel/process tomography. Our
main messages are as follows:

1. Tt is not obvious how channel or state tomography can be used to construct a
learning rule;

2. In particular, none of our results seem to follow from PAC learning results for state
or channel tomography.

Our motivation for emphasizing these points is that readers sometimes confuse PAC
frameworks for estimation/tomography with PAC learning, despite the fact that these
are distinct problems.

We start by defining the basic versions of both state and channel tomography.

In state tomography, the problem is as follows: given m copies of an unknown
mixed state p, produce an estimate p such that with probability > 1 -6, ||p—p||% <€,
where || - ||F is the Frobenius norm.

In channel tomography, one is given access to a quantum channel (formalized by a
completely positive trace-preserving (CPTP) map) ®, and one is allowed to query it
m times by preparing input states, passing them through the channel, and measuring
the output. The goal is to produce an estimate d that is within € of ® in some metric,
with probability > 1 — 4.

In both state and channel tomography, it is known that in the finite-dimensional
case, only finitely many samples are needed. One may be tempted to try to use a
solution to either problem to perform PAC learning with respect to a hypothesis class
Hyp. We give a few examples to show the flaws in such approaches.

1. One can imagine viewing the POVM that we want to learn as a quantum channel
and using channel tomography to estimate it. There are multiple problems with this
approach: the result of channel tomography need not be a POVM in the hypothesis
class. More seriously, channel tomography requires that we be allowed to prepare
registers in arbitrary states (which we know) and feed them into the channel. Such
power is not given to the learner in the PAC learning setting: in fact, input states
are drawn from an unknown distribution, and they are not known to us.

2. One might suppose that if we give a little bit more power to channel tomography,
then it might become relevant to PAC learning. In particular, suppose that, by any
method whatsoever, we could produce a POVM II (not necessarily in the hypothesis
class!) such that R(II) < e + infry, R(IL.), where the infimum is taken over all
POVMs. A learning rule that uses this ability must still produce an k., that lies in
the hypothesis class Hyp and is within € of inf, <3, R(h) with probability at least 1 —
4. One natural idea would be to choose h. = arg min, ¢y, drvy (h,II). But this does
not solve the problem: there exist learning scenarios in which there are multiple,
well-separated II, that achieve nearly the minimum possible risk (which is not
necessarily 0, since the distribution on input states may place positive probability
on states that are close together) over all possible POVMs (not just the ones in
the hypothesis class). In this case, channel tomography may output a II that is far
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from every hypothesis in the class, while there may exist a hypothesis h € H that
is very close to some other POVM II, with nearly minimal risk. This would violate
the agnostic PAC learning condition.

3. One might instead think to use state tomography. In particular, the Choi-
Jamiotkowski isomorphism result states that, given a CPTP map, if we input a
suitably defined maximally mixed state in a larger space and have access to the
extended CPTP map that acts via the identity on the environment, then the result-
ing state completely characterizes the CPTP map. We should note that the learner
cannot construct this output state, because the learner cannot provide arbitrary
inputs to the CPTP map (the inputs are decided strictly by the data-generating
distribution D, not the learner, as is the situation in classical statistical learning
theory). Thus, quantum state tomography cannot be brought to bear to recover
this state, and so we cannot even estimate it, let alone attack the learning problem.

Appendix F A formalization of quantum learning
rules

There is some mathematical subtlety in defining a learning rule in the quantum setting.
In particular, what it means, informally, for a learning rule to only be able to interact
with a quantum register by measurement may be clear, but the formalization in terms
of mathematical objects is less straightforward. For completeness, we give such a
formalization in this section, in terms of Markov decision processes.

We define the following Markov decision process for a given dataset S =
(X1, Y1), ey (X, Y3)): the state Zp is initialized to @7 ; X;. At any timestep ¢, the
set of possible actions consists of POVMs operating on the state Z;, producing an ob-
servable outcome w; via the Born rule. The state Z;11 is then derived from S; again
via the Born rule.

A POVM learning rule specifies a policy for this MDP, where, at each timestep
t > 0, the action A; at time ¢ is conditionally independent of Z; for any j, given
the outcomes wy, ..., w;_1. Finally, the learning rule specifies a conditional distribution
from outcome sequences to hypotheses h € Hyp.

Appendix G More details on sample complexity
bounds for variational quantum circuits

Here we give more details for our sample complexity bounds for hypothesis classes
corresponding to variational quantum circuits.
In great generality, one can define the following hypothesis class.
Definition 19 (General variational quantum circuit). Let H be a Hilbert space with
dimension d. We fix a POVM 11 on ‘H with two outcomes. We define the hypothesis
class G to consist of hypotheses parametrized by an arbitrary unitary operator U from
H to H that apply U to the input state p, then measure the resulting state with II.
We have the following theorem giving the sample complexity of G.
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Theorem 8 (Sample complexity bound for G). The class G is (€,0)-PAC learnable
with sample complezity

ng(e, 8) < 0(86—? log %) < (C/e)21og(1/6). (G76)

Proof. By Theorem 3, it is suflicient to upper bound the €/4-TV-covering number of
G. We first note that for any v > 0, the v-TV covering number of G is upper bounded
by the ~-Li-operator norm covering number of the set of d x d unitary matrices, which
in turn is upper bounded by the +-L; norm covering number of the set of d x d unitary
matrices, viewed as vectors.

The ~-Lq-operator norm covering number of the set of d X d unitary matrices is

<d(C/v)?, (G77)
for some positive constant C', by upper bounding by the - Lo-operator norm covering

number and using Theorem 7 of [34].
This implies that N < d(C/v)%, and setting v = ¢/4, we get

N <d(C/e)?, (GT8)
resulting in the bound
d d
n(e.8) < O(AL) 1 Qd((“;/ . (G79)
€

Upper bounding factors that are polynomial in d and € by (C/€)?, this can be simplified
to

n(e,8) < (C/e)* 2 1og(1/6), (G80)

which completes the proof. O

This sample complexity scales exponentially with the dimension — as one might
expect, since the hypotheses may be thought of as applying an arbitrary circuit to the
input, then measuring by a fixed POVM, and so such a hypothesis class is not used in
practice. Our purpose in spelling out this example is to illustrate the type of analysis
that one would undertake in applying our results to a specific hypothesis class. Instead,
the approach taken in works on variational quantum circuits is to constrain the form
of the unitary operator. Specifically, [2] constrains U to be bandlimited in terms of its
Fourier spectrum, which reduces the number of trainable parameters and, hence, the
TV-covering number of the hypothesis space to a polynomial value in the dimension.
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