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Abstract

A metric space is said to be all-set-homogeneous if any isometry be-
tween its subsets can be extended to an isometry of the whole space. We
give a classification of a certain subclass of all-set-homogeneous length
spaces.

1 Main result

The distance between two points x and y in a metric space M will be denoted
by |z —y|ar. Recall that M is called length (or geodesic) space if any two points
x,y € M can be connected by a path + such that |« — y|as is arbitrarily close to
the length of v (or |x — y|pr = length v respectively). Evidently, any geodesic
space is a length space, but not the other way around.

A metric space M is said to be all-set-homogeneous if any isometry A — A’
between its subsets can be extended to an isometry of the whole space M — M.

Examples of geodesic all-set-homogeneous spaces include complete simply-
connected Riemannian manifolds with constant curvature and the circle equipped
with length metrics. These will be referred further as classical spaces; they are
closely related to classical Euclidean/non-Euclidean geometry.

It is worth mentioning that an infinite-dimensional Hilbert space is not all-
set-homogeneous; indeed, it is isometric to its proper subset. Also, for n > 2,
the real projective space RP™ with canonical metric is not all-set-homogeneous.
Indeed, it contains two isometric but noncongruent triples of points with pair-
wise distance § (we assume that a closed geodesic on RP™ has length 7); one
triple lies on a closed geodesic and another does not.

Nonclassical examples include the universal metric trees of finite valence;
these are discussed in the next section.

Given a metric space M and a positive integer n, consider all pseudometrics
induced on n points z1,...,x, € M. Any such metric is completely described
by N = % distances |z; — x;|p for i < j, so it can be encoded by a point
in RY. The set of all these points F,,(M) C RY will be called n" fingerprint
of M.

Theorem. Let M be a complete all-set-homogeneous length space. Suppose
that all fingerprints of M are closed. Then M is classical.

The following two results are closely related to our theorem.

o Any complete all-set-homogeneous geodesic space with locally unique nonbi-
furcating geodesics is classical; it was proved by Garrett Birkhoff [2].

o Any locally compact three-point-homogeneous length space is classical. This
result was proved by Herbert Busemann [4]; it also follows from the more



general result of Jacques Tits [8] about two-point-homogeneous spaces. (A
space is called n-point homogeneous if any isometry between its subsets
with at most n points in each can be extended to an isometry of the whole
space.)
For more related results, see the survey by Semeon Bogatyi [3] and the references
therein.

Proof. If M is locally compact, then the statement follows from the Busemann—
Tits result stated above. Therefore, we can assume that M is not locally com-
pact.

In this case, there is an infinite sequence of points x1, s, ... such that ¢ <
< |z; — zjlm < 1 for some fixed ¢ > 0 and all ¢ # j. Applying the Ram-
sey theorem, we get that for arbitrary positive integer n there is a sequence

Z1,Z9,...,Z, such that all the distances |z; — x| lie in an arbitrarily small
subinterval of (g,1). Since the fingerprints are closed, there is an arbitrarily
long sequence x1, 3,. .., T, such that |x; — :Ele = r for some fixed r > 0.

Choose a maximal (with respect to inclusion) set of points A with distance
r between any pair. Since M is all-set-homogeneous, we get that A has to
be infinite. In particular, there is a map f: A — A that is injective, but not
surjective.

Note that f is distance-preserving. Since A is maximal, for any y ¢ A we
have that |y — x|y # r for some z € A. Tt follows that a distance-preserving
map M — M that agrees with f cannot have points of A\ f(A) in its image. In
particular, no isometry M — M agrees with the map f — a contradiction. [

2 Example

Recall that geodesic space T is called a metric tree if any pair of points x,y € T
are connected by a unique geodesic [zy|r, and the union of any two geodesics
[zy]r, and [yz]r contains [xz]p. The valence of € T is defined as the cardi-
nality of connected components in T\ {z}.

It is known that for any cardinality n > 2, there is a space T,, that satisfies
the following properties:

o The space T, is a complete metric tree with valence n at any point.

o T, is homogeneous; that is, its group of isometries acts transitively.
Moreover, this space is uniquely defined up to isometry and n-universal; the
latter means that T,, includes an isometric copy of any metric tree of maximal
valence at most n.

The space T, is called a universal metric tree of valence n. An explicit
construction of T, is given by Anna Dyubina and losif Polterovich [5]. Their
proof of the universality of T,, admits a straightforward modification that proves
the following claim.

Claim. If n is finite, then T,, is all-set-homogeneous.

Note that the claim implies that the condition on fingerprints in our theorem
is necessary. In fact, if n > 3, then the (n+1)t" fingerprint of T,, is not closed —
T,, does not contain n + 1 points on distance 1 from each other, but it contains
an arbitrarily large set with pairwise distances arbitrarily close to 1.



Proof. Let A, A’ C T,, and x — z’ be an isometry A — A’. Applying the Zorn

lemma, we can assume that A is maximal; that is, the domain A cannot be

extended by a single point. It remains to show that A =T, and A’ = T,,.
Note that A is closed.

Further, suppose z,y,z € A and s € [yz]r, . Since T, is a y
metric tree, the distance |z — s|r, is completely determined by S
four values |z — ylr,, | — 2|1,,, |s — ¥l1,,, |$ — 2T, -

Denote by s’ the point on the geodesic [¢2']t, such that z
|y’ —&'|1,, = |y—s|r, and therefore |2’ —s'|r, = |z—s|r, . Since
the map preserves distances |x —y|r, and |z —z|t,, we get |s'—a' |1, = [s—z|r,;

that is, the extension of the map by s+ s’ is still distance-preserving.

Since A is maximal, s € A. In other words, A is a convex subset of T,,; in
particular, A is a metric tree with maximal valence at most n.

Arguing by contradiction, suppose A # T,,, choose a € A and b ¢ A. Let
¢ € A be the last point on the geodesic [ab]r, . Note that the valence of ¢ in A
is smaller than n.

Since n is finite, at least one of the connected components in T, \{¢'} does not
intersect A’. Choose a point b’ in this component such that |¢/ —b¥'|r, = |c—b|r,, .
Observe that the map can be extended by b — b — a contradiction. It follows
that A=T,,.

It remains to show that A’ = T,,. Note that A’ is a closed convex set in T,
that is isometric to T,,. In particular valence of any point in A’ is n.

Assume A’ is a proper subset of T,,. Choose a’ € A" and &/ ¢ A’. Let ¢/ € A’
be the last point on the geodesic [a’b']r, . Observe that the valence of ¢’ in A’
is smaller than n — a contradiction. O

3 Remarks

Let us list examples for related classification problems. We would like to see
any other example or a proof of the corresponding classification.

First of all, we do not see other examples of complete all-set-homogeneous
length spaces except those listed in the theorem and the claim.

Without length-metric assumption, we have a vast amount of examples. It
includes finite discrete spaces, Cantor sets with natural ultrametrics; also note
that snowflaking (X,| — |?) of any all-set-homogeneous spaces (X,| — |) is
all-set-homogeneous.

The definition of all-set-homogeneous spaces can be restricted to small sub-
sets A and A’; for example, finite or compact. In these cases, we say that the
space is finite-set-homogeneous or compact-set-homogeneous respectively.

Examples of complete separable compact-set-homogeneous length spaces in-
clude the spaces listed in the theorem, plus the Urysohn spaces U and Uy (the
space Uy is isometric to a sphere of radius g in U). Without the separability
condition, we get in addition the metric trees from the claim.

The finite-set-homogeneous spaces include, in addition, infinite-dimensional
analogs of the classical spaces; in particular the Hilbert space.

Let us also mention that finite-set homogeneity is closely related to the
metric version of Fraissé limit introduced by Itay Ben Yaacov [1].



Acknowledgments. This note is inspired by the question of Joseph O’Rourke
[7]. We want to thank James Hanson for his interesting and detailed comments
on our question [6]. The second author wants to thank Rostislav Matveyev for
an interesting discussion on Rubinstein Street.

The first author was partially supported by the Russian Foundation for Basic
Research grant 20-01-00070; the second author was partially supported by the
National Science Foundation grant DMS-2005279 and the Ministry of Education
and Science of the Russian Federation, grant 075-15-2022-289.

References

[1] 1. Ben Yaacov. “Fraissé limits of metric structures”. J. Symb. Log. 80.1 (2015),
100-115.

[2] G. Birkhoff. “Metric foundations of geometry. I”. Trans. Amer. Math. Soc. 55
(1944), 465-492.

[3] S. A. Bogatyi. “Metrically homogeneous spaces”. Russian Math. Surveys 57.2
(2002), 221-240.

[4] H. Busemann. Metric methods in Finsler spaces and in the foundations of geom-
etry. Annals of Mathematics Studies, No. 8. 1942.

[5] A. Dyubina and I. Polterovich. “Explicit constructions of universal R-trees and
asymptotic geometry of hyperbolic spaces”. Bull. London Math. Soc. 33.6 (2001),
727-734.

[6] J. Hanson. All-set-homogeneous spaces. MathOverflow. eprint: https : / /
mathoverflow.net/q/430738.

[7] J. O’Rourke. Which metric spaces have this superposition property? MathOver-
flow. eprint: https://mathoverflow.net/q/118008.

[8] J. Tits. “Sur certaines classes d’espaces homogenes de groupes de Lie”. Acad. Roy.
Belg. Cl. Sci. Mém. Coll. in 8 29.3 (1955), 268.



