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Abstract

A metric space is said to be all-set-homogeneous if any isometry be-
tween its subsets can be extended to an isometry of the whole space. We
give a classification of a certain subclass of all-set-homogeneous length
spaces.

1 Main result

The distance between two points x and y in a metric space M will be denoted
by |x−y|M . Recall that M is called length (or geodesic) space if any two points
x, y ∈ M can be connected by a path γ such that |x− y|M is arbitrarily close to
the length of γ (or |x − y|M = length γ respectively). Evidently, any geodesic
space is a length space, but not the other way around.

A metric space M is said to be all-set-homogeneous if any isometry A → A′

between its subsets can be extended to an isometry of the whole space M → M .
Examples of geodesic all-set-homogeneous spaces include complete simply-

connected Riemannian manifolds with constant curvature and the circle equipped
with length metrics. These will be referred further as classical spaces; they are
closely related to classical Euclidean/non-Euclidean geometry.

It is worth mentioning that an infinite-dimensional Hilbert space is not all-
set-homogeneous; indeed, it is isometric to its proper subset. Also, for n > 2,
the real projective space RPn with canonical metric is not all-set-homogeneous.
Indeed, it contains two isometric but noncongruent triples of points with pair-
wise distance π

3 (we assume that a closed geodesic on RPn has length π); one
triple lies on a closed geodesic and another does not.

Nonclassical examples include the universal metric trees of finite valence;
these are discussed in the next section.

Given a metric space M and a positive integer n, consider all pseudometrics
induced on n points x1, . . . , xn ∈ M . Any such metric is completely described

by N = n·(n−1)
2 distances |xi − xj |M for i < j, so it can be encoded by a point

in R
N . The set of all these points Fn(M) ⊂ R

N will be called nth fingerprint

of M .

Theorem. Let M be a complete all-set-homogeneous length space. Suppose

that all fingerprints of M are closed. Then M is classical.

The following two results are closely related to our theorem.
⋄ Any complete all-set-homogeneous geodesic space with locally unique nonbi-

furcating geodesics is classical; it was proved by Garrett Birkhoff [2].
⋄ Any locally compact three-point-homogeneous length space is classical. This

result was proved by Herbert Busemann [4]; it also follows from the more
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general result of Jacques Tits [8] about two-point-homogeneous spaces. (A
space is called n-point homogeneous if any isometry between its subsets
with at most n points in each can be extended to an isometry of the whole
space.)

For more related results, see the survey by Semeon Bogatyi [3] and the references
therein.

Proof. If M is locally compact, then the statement follows from the Busemann–
Tits result stated above. Therefore, we can assume that M is not locally com-
pact.

In this case, there is an infinite sequence of points x1, x2, . . . such that ε <
< |xi − xj |M < 1 for some fixed ε > 0 and all i 6= j. Applying the Ram-
sey theorem, we get that for arbitrary positive integer n there is a sequence
x1, x2, . . . , xn such that all the distances |xi − xj |M lie in an arbitrarily small
subinterval of (ε, 1). Since the fingerprints are closed, there is an arbitrarily
long sequence x1, x2, . . . , xn such that |xi − xj |M = r for some fixed r > 0.

Choose a maximal (with respect to inclusion) set of points A with distance
r between any pair. Since M is all-set-homogeneous, we get that A has to
be infinite. In particular, there is a map f : A → A that is injective, but not
surjective.

Note that f is distance-preserving. Since A is maximal, for any y /∈ A we
have that |y − x|M 6= r for some x ∈ A. It follows that a distance-preserving
map M → M that agrees with f cannot have points of A\f(A) in its image. In
particular, no isometry M → M agrees with the map f — a contradiction.

2 Example

Recall that geodesic space T is called a metric tree if any pair of points x, y ∈ T
are connected by a unique geodesic [xy]T , and the union of any two geodesics
[xy]T , and [yz]T contains [xz]T . The valence of x ∈ T is defined as the cardi-
nality of connected components in T \ {x}.

It is known that for any cardinality n > 2, there is a space Tn that satisfies
the following properties:

⋄ The space Tn is a complete metric tree with valence n at any point.
⋄ Tn is homogeneous; that is, its group of isometries acts transitively.

Moreover, this space is uniquely defined up to isometry and n-universal; the
latter means that Tn includes an isometric copy of any metric tree of maximal
valence at most n.

The space Tn is called a universal metric tree of valence n. An explicit
construction of Tn is given by Anna Dyubina and Iosif Polterovich [5]. Their
proof of the universality of Tn admits a straightforward modification that proves
the following claim.

Claim. If n is finite, then Tn is all-set-homogeneous.

Note that the claim implies that the condition on fingerprints in our theorem
is necessary. In fact, if n > 3, then the (n+1)th fingerprint of Tn is not closed —
Tn does not contain n+1 points on distance 1 from each other, but it contains
an arbitrarily large set with pairwise distances arbitrarily close to 1.
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Proof. Let A,A′ ⊂ Tn and x 7→ x′ be an isometry A → A′. Applying the Zorn
lemma, we can assume that A is maximal; that is, the domain A cannot be
extended by a single point. It remains to show that A = Tn and A′ = Tn.

Note that A is closed.

x

y

z

s

Further, suppose x, y, z ∈ A and s ∈ [yz]Tn
. Since Tn is a

metric tree, the distance |x−s|Tn
is completely determined by

four values |x− y|Tn
, |x− z|Tn

, |s− y|Tn
, |s− z|Tn

.
Denote by s′ the point on the geodesic [y′z′]Tn

such that
|y′−s′|Tn

= |y−s|Tn
and therefore |z′−s′|Tn

= |z−s|Tn
. Since

the map preserves distances |x−y|Tn
and |x−z|Tn

, we get |s′−x′|Tn
= |s−x|Tn

;
that is, the extension of the map by s 7→ s′ is still distance-preserving.

Since A is maximal, s ∈ A. In other words, A is a convex subset of Tn; in
particular, A is a metric tree with maximal valence at most n.

Arguing by contradiction, suppose A 6= Tn, choose a ∈ A and b /∈ A. Let
c ∈ A be the last point on the geodesic [ab]Tn

. Note that the valence of c in A
is smaller than n.

Since n is finite, at least one of the connected components in Tn\{c
′} does not

intersect A′. Choose a point b′ in this component such that |c′−b′|Tn
= |c−b|Tn

.
Observe that the map can be extended by b 7→ b′ — a contradiction. It follows
that A = Tn.

It remains to show that A′ = Tn. Note that A′ is a closed convex set in Tn

that is isometric to Tn. In particular valence of any point in A′ is n.
Assume A′ is a proper subset of Tn. Choose a′ ∈ A′ and b′ /∈ A′. Let c′ ∈ A′

be the last point on the geodesic [a′b′]Tn
. Observe that the valence of c′ in A′

is smaller than n — a contradiction.

3 Remarks

Let us list examples for related classification problems. We would like to see
any other example or a proof of the corresponding classification.

First of all, we do not see other examples of complete all-set-homogeneous
length spaces except those listed in the theorem and the claim.

Without length-metric assumption, we have a vast amount of examples. It
includes finite discrete spaces, Cantor sets with natural ultrametrics; also note
that snowflaking (X, | − |θ) of any all-set-homogeneous spaces (X, | − |) is
all-set-homogeneous.

The definition of all-set-homogeneous spaces can be restricted to small sub-
sets A and A′; for example, finite or compact. In these cases, we say that the
space is finite-set-homogeneous or compact-set-homogeneous respectively.

Examples of complete separable compact-set-homogeneous length spaces in-
clude the spaces listed in the theorem, plus the Urysohn spaces U and Ud (the
space Ud is isometric to a sphere of radius d

2 in U). Without the separability
condition, we get in addition the metric trees from the claim.

The finite-set-homogeneous spaces include, in addition, infinite-dimensional
analogs of the classical spaces; in particular the Hilbert space.

Let us also mention that finite-set homogeneity is closely related to the
metric version of Fraïssé limit introduced by Itay Ben Yaacov [1].
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