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Abstract

We prove weak convergence of curvature tensors of Riemannian manifolds for converging

noncollapsing sequences with a lower bound on sectional curvature.

1 Introduction

The weak convergence and measure-valued tensor used in the following theorem are defined in
the next section; a more precise formulation is given in 2.6.

1.1. Main theorem. Let M1,M2, . . . be a sequence of complete m-dimensional Riemannian
manifolds with sectional curvature bounded below by κ. Assume that the sequence Mn Gromov–
Hausdrorff converges to an Alexandrov space A of the same dimension. Then the curvature
tensors of Mn weakly converge to a measured-valued tensor on A.

Note that from the theorem we get that the limit tensor of the sequence depends only on A
and does not depend on the choice of the sequence Mn. Indeed, suppose another sequence M ′

n

satisfies the assumptions of the theorem. If the limit tensor is different, then a contradiction
would occur for the alternated sequence M1,M

′
1,M2,M

′
2, . . . In particular, if the limit space is

Riemannian, then the limit curvature tensor is the curvature tensor of the limit space. The latter
statement was announced by the second author [22].

Analogous statements about metric tensor and Levi-Civita connection were essentially proved
by Perelman [16], we only had to tie his argument with an appropriate convergence. This part
is discussed in Section 7. It provides a technique that could be useful elsewhere as well. For
curvature tensor (which has a higher order of derivative), this argument cannot be extended
directly; we found a way around applying Bochner-type formulas as in [24].

The following statement looks like a direct corollary of the main theorem, and indeed, it
follows from its proof but strictly speaking, it cannot be deduced directly from the main theorem
alone. We will denote by Sc the scalar curvature and volm the m-dimensional volume; that
is, m-dimensional Hausdorff measure calibrated so that the unit m-dimensional cube has unit
measure.

1.2. Corollary. In the assumption of the main theorem, the measures Sc · volm on Mn weakly
converge to a locally finite signed measure m on A.

The following subcorollary requires no new definitions.

1.3. Subcorollary. In the assumption of the main theorem, suppose A is compact. Then the
sequence

sn =

∫

Mn

Sc · volm

converges.
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The main theorem in [24] implies that if a sequence of complete m-dimensional Riemannian
manifolds Mn has uniformly bounded diameter and uniform lower curvature bound, then the
corresponding sequence sn is bounded; in particular, it has a converging subsequence. However,
if Mn is collapsing, then this sequence may not converge. For example, an alternating sequence
of flat 2-toruses and round 2-spheres might collapse to the one-point space; in this case, the
sequence sn is 0, 4·π, 0, 4·π, . . .

From the main theorem (and the definition of weak convergence) we get the following.

1.4. Corollary. Let K be a convex closed subset of curvature tensors on R
m such that all

sectional curvatures of tensors in K are at least −1. Assume that K is invariant with respect
to the rotations of Rm. (For example, one can take as K the set of all curvature tensors with
nonnegative curvature operator.)

Suppose Mn is a sequence of complete m-dimensional Riemannian manifolds that converges
to a Riemannian manifold M of the same dimension. Assume that for any n, all curvature
tensors of Mn belong to K, then the same holds for the curvature tensors of M .

Remarks. The limit measure m in 1.2 has some specific properties; let us describe a couple of
them:

⋄ The measure m vanishes on any subset of A with a vanishing (m−2)-dimensional Hausdorff
measure. In particular, m vanishes on the set of singularities of codimension 3. This is an
easy corollary of [24].

⋄ The measure can be explicitly described on the set of singularities of codimension 2.
Namely, suppose A′ ⊂ A denotes the set of all points x with tangent space TxA = R

m−2×
× Cone(θ), where Cone(θ) is a 2-dimensional cone with the total angle θ = θ(x) < 2·π.
Then

m|A′ = (2·π − θ)· volm−2 .

This statement follows from 4.2.
The geometric meaning of our curvature tensor is not quite clear. In particular, we do not

see a solution to the following problem; compare to [6, Conjecture 1.1].

1.5. Problem. Suppose that the limit curvature tensor of Alexandrov space A as in the main
theorem has sectional curvature bounded below by K > κ. Show that A is an Alexandrov space
with curvature bounded below by K.

The theorem makes it possible to define a curvature tensor for every smoothable Alexandrov
space. It is expected that the same can be done for general Alexandrov space; so the following
problem has to have a solution:

1.6. Problem. Extend the definition of measure-valued curvature tensor to general Alexandrov
spaces.

If this is the case, then one may expect to have a generalization of the Gauss formula for the
curvature of a convex hypersurface, which in turn might lead to a solution of the following open
problems in Alexandrov geometry. This conjecture is open even for convex sets in smoothable
Alexandrov space.

1.7. Conjecture. The boundary of an Alexandrov space equipped with its intrinsic metric is
an Alexandrov space with the same lower curvature bound.

More importantly, a solution to 1.6 might provide nontrivial ways to deform Alexandrov
space; see [20, Section 9].
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Related results. The result of the main theorem in dimension 2 is well known [3, VII §13].
The construction of harmonic coordinates at regular points of RCD space (in particular,

Alexandrov space) given by Elia Bruè, Aaron Naber, and Daniele Semola [5] might help to solve
1.6.

The problem of introducing Ricci tensor was studied in far more general settings [7, 9, 11,
27]. Curvature tensor for RCD spaces was defined by Nicola Gigli [6]; it works for a more general
class of spaces, but this approach does not see the curvature of singularities. It is expected that
our definitions agree on the regular locus.

About the proof. As it was stated, the 2-dimensional case is proved in [3, VII §13]. The
3-dimensional case is the main step in the proof; the higher-dimensional case requires only minor
modifications.

We subdivide the limit space A into three subsets: A◦ — the subset of regular points, A′ —
points with singularities of codimension 2, A′′ — singularities of higher codimension. These sets
are treated independently.

First, we show that limit curvature vanishes on A′′; this part is an easy application of the
main result in [24].

The A′-case is reduced to its partial case when the limit is isometric to the product of the
real line and a two-dimensional cone. The proof uses a Bochner-type formula (6.1) and Theorem
4.3 which is a more exact version of the following problem from [21].

L

D

D′

1.8. Convex-lens problem. Let D and D′ be two smooth discs with
a common boundary that bound a convex set (a lens) L in a positively-
curved 3-dimensional Riemannian manifold M . Assume that the discs
meet at a small angle. Show that the integral

∫
D
k1 ·k2 is small; here k1

and k2 denote the principal curvatures of D.

The A◦-case is proved by induction. The base is the 2-dimensional case. Further, we apply
the induction hypothesis to level sets of special concave functions. By the Gauss formula, these
level sets have the same lower curvature bound. In the proof, we use the Bochner-type formula
together with the DC-calculus developed in [16]. The first step in the induction is slightly simpler.

As a rule, the calculus is done in the approximating sequence of Riemannian manifolds.
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2 Formulations

In this section, we give the necessary definitions for a precise formulation of the main theorem.
For simplicity we will always assume that the lower curvature bound is −1; applying rescaling,
we can get the general case.

We denote by Alexm the class of m-dimensional Alexandrov’s spaces with curvature > −1.
Suppose A,A1, A2, . . . ∈ Alexm and An−→GH A. That is, An converges to A in the sense

of Gromov–Hausdorff; since A ∈ Alexm, we have no collapse. Denote by an : An → A the
corresponding Hausdorff approximations. If A is compact, then by Perelman’s stability theorem
[10, 19] we can (and will) assume that an is a homeomorphism for every sufficiently large n. In the
case of noncompact limit, we assume that for any R, the restriction of an to an R-neighborhood
of the marked point is a homeomorphism to its image for every sufficiently large n.

We say that A ∈ Alexm is smoothable if it can be presented as a Gromov–Hausdorff
limit of a non-collapsing sequence of Riemannian manifolds Mn with secMn > −1; here sec
stands for sectional curvature. Given a smoothable Alexandrov space A, a sequence of complete
Riemannian manifoldsMn as above together with a sequence of approximations an : Mn → A will

be called smoothing of A (briefly, Mn−→∼ A, or Mn
an−→∼ A). By Perelman’s stability theorem,

any smoothable Alexandrov space is a topological manifold without boundary.

A Weak convergence of measures

In this subsection, we define weak convergence of measures. For more detailed definitions and
terminology, we refer to [8].

Let X be a Hausdorff topological space. Denote byM(X) the space of signed Radon measures
on X. Further, denote by Cc(X) the space of continuous functions on X with a compact support.
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We denote by 〈m|f〉 the value of m ∈ M(X) on f ∈ Cc(X). We say that measures mn ∈ M(X)
weakly converge to m ∈ M(X) (briefly mn ⇀ m) if 〈mn|f〉 → 〈m|f〉 for any f ∈ Cc(X).

Suppose An−→GH A with Hausdorff approximations an : An → A and mn is a measure on An.
We say that mn weakly converges to a measure m on A (briefly mn ⇀ m) if the pushforwards
m′

n of mn to A by the Hausdorff approximations an : An → A weakly converge to m. If the
condition 〈m′

n|f〉 → 〈m|f〉 holds only for functions f with support in an open subset Ω ⊂ A,
then we say that mn weakly converges to m in Ω.

Equivalently, the weak convergence can be defined using the uniform convergence of functions.
We say that a sequence fn ∈ Cc(An) uniformly converges to f ∈ Cc(A) if their supports are
uniformly bounded and

sup
x∈An

{ |fn(x)− f ◦ an(x)| } → 0.

Then mn ⇀ m if for any sequence fn ∈ Cc(An) with uniformly bounded supports and uniformly
converging to f ∈ Cc(A) we have 〈mn|fn〉 → 〈m|f〉.

B Test functions

In this subsection, we introduce a class of test functions and define their convergence.
Test functions form a narrow class of functions defined via a formula. It is just one possible

choice of a class containing sufficiently smooth DC functions; see the remarks in the next section.
Recall that the distance between points x, y in a metric space is denoted by |x − y|; we will

denote by distx the distance function distx : y 7→ |x− y|.
Suppose An, A ∈ Alexm and An−→GH A. Then any distance function distp : A → R can be

l i fted to An; it means that we can choose a convergent sequence pn → p and take the sequence
distpn

.
Choose r > 0 and p ∈ A. Let us define smoothed distance function as the average:

d̃istp,r =

∮

B(p,r)

distx dx.

We can lift this function to d̃istpn,r : An → [0,∞) by choosing some sequence An ∋ pn → p ∈ A.
We say that f is a test function if it can be expressed by the formula

f = ϕ(d̃istp1,r1 , . . . , d̃istpN ,rN ),

where ϕ : (0,∞)N → R is a C2-smooth function with compact support. If for some sequences
of points An ∋ pi,n → pi ∈ A and C2-smooth functions ϕn that C2-converge to ϕ with compact
support we have

fn = ϕn(d̃istp1,n,r1 , . . . , d̃istpN,n,rN ),

then we say that fn is test-converging to f (briefly, fn
test−→ f).

Remarks. Note that test functions form an algebra.
Let M be a Riemannian manifold. Note that for any open cover of M , there is a subordinate

partition of unity of test functions. Further, around any point of M one can take a smoothed
distance coordinate chart. One can express any C2-smooth function in these coordinates, and
then apply partition of unity for a covering by charts. This way, we get the following:

2.1. Claim. On a smooth complete Riemannian manifold, test functions include all C2-smooth
functions with compact support.
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C C
1-delta convergence

Here we introduce C1-delta convergence. It will be necessary to formulate the main theorem
in an invariant way, but, except for 5B, everywhere in the proofs, we will use test convergence
and occasionally DC convergence instead. (As claimed in 2.3 test convergence implies C1-delta
convergence.) By that reason, it would be wise to skip this section for the first reading.

The C1-delta convergence will be used together with other delta convergences introduced
in 5A.

Convergence of vectors. Let A be an Alexandrov space, we denote by TA the set of all
tangent vectors at all points. So far TA is a disjoint union of all tangent cones; let us define a
convergence on it.

We will use gradient exponent gexp: TA→ A which is defined in [1]. Given a vector V ∈ TA,
it defines its radial curve γV : t 7→ gexp(t·V ). We say that a sequence of vectors Vn ∈ TA con-
verges to V ∈ TA (briefly, Vn → V ) if γVn

converges to γV pointwise. Since the radial curve γV
is |V |-Lipschitz, we get that any bounded sequence of vectors with base points in a bounded set
has a converging subsequence of γVn

. Further, the pointwise limit of such curves is a radial curve
as well. Therefore, any bounded sequence of tangent vectors with base points in a bounded set
has a converging sequence.

In a similar fashion, we can define the convergence of tangent vectors to sequences of Alexan-
drov spaces An that converge to A. That is, if Vn ∈ TAn is a bounded sequence of tangent vectors
at points on a bounded distance to the base points, then it has a subsequence that converges to
some vector V ∈ TA.

Note that
|V | 6 lim inf

n→∞
|Vn|

and the inequality might be strict.
Recall that if V ∈ Tp is the unit vector in the direction of [pq], then γV is a unit-speed

parametrization of [pq]. Using this we get the following observation; it provides a way to apply
the convergence.

2.2. Observation. Let Mn−→∼ A be a smoothing, pn, qn ∈Mn, and pn → p, qn → q as n→ ∞.
Denote by Vn ∈ Tpn

and V ∈ Tp the directions of geodesics [pnqn] and [pq]. Suppose that there
is a unique geodesic [pq] in A. Then Vn → V .

C
1-delta smoothness. Given a function f : A→ R and a vector V ∈ TA, set

V f = (f ◦ γV (t))′|t=0.

Note that V f is defined for all DC functions and, in particular, all test functions.
Two vectors V,W ∈ TpA will be called δ -opposite if 1− δ < |V | 6 1, 1− δ < |W | 6 1, and

|〈X,V 〉 + 〈X,W 〉| < δ for any unit vector X ∈ TpA. We say that V,W ∈ TpA are opposite if
they are δ-opposite for any δ > 0; in this case, they are both unit vectors and make angle π to
each other.

A function f : A → R is called C1-delta smooth if for any compact set K ⊂ A and ε > 0
there is δ > 0 such that any sequence of points pn → p ∈ K and unit vectors Vn ∈ Tpn

A that
converges to a vector V ∈ TpA that has a δ-opposite vector we have

|V f − lim
n→∞
´ Vnf | < ε,

where “ liḿ ” stands for an arbitrary partial limit.
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Suppose Mn−→∼ A. A sequence of C1-smooth functions fn : Mn → R is called C1 -delta

converging to f : A→ R (briefly, fn
C1

δ−→ f) if fn converges to f pointwise and for any compact
set K ⊂ A and any ε > 0 there is δ > 0 such that if a sequence of unit vectors Vn ∈ Tpn

Mn

converges to a vector V ∈ TpA such that p ∈ K and V has a δ-opposite vector, then we have

|V f − lim
n→∞
´ Vnfn| < ε.

2.3. Claim. Any test function is C1-delta smooth. Moreover, for any smoothing Mn−→∼ A,
sequence of test functions fn : Mn → R, and a test function f : A→ R we have

fn
test−→ f =⇒ fn

C1

δ−→ f.

Proof. Let V and W be δ-opposite vectors in TpA. Note that for almost all points q ∈ A, we
have

|V distq +W distq | < δ.

It follows that
|V d̃istq,r +W d̃istq,r| < δ ➊

for any q ∈ A and r > 0.
Suppose Vn is a sequence of unit tangent vectors onMn such that Vn → V ; that is, γVn

→ γV
as n→ ∞. By monotonicity of radial curves [1, 16.32], we get

V distq 6 lim inf
n→∞

Vn distqn

if qn → q. Integrating, we get

V d̃istq,r 6 lim inf
n→∞

Vnd̃istqn,r.

Suppose V has a δ-opposite vector W . We can assume that W is a unit geodesic vector; that
is, there is a geodesic [ps] in the direction of W . Moreover, we can assume that [ps] is a unique
geodesic from p to s. Choose points sn and pn that converge to s and p respectively. By 2.2, the
directions Wn of [pnsn] converge to W . Note that Wn is δ-opposite to Vn for all large n.

Repeating the above argument, we get

W d̃istq,r 6 lim inf
n→∞

Wnd̃istqn,r.

Applying ➊ we get C1-delta convergence of d̃istqn,r and, in particular, C1-delta smoothness of

d̃istq,r. Applying the definition of test function, we get the result.

Recall (2B) that for any smoothing Mn−→∼ A and a test function f : A → R there are test

functions fn : Mn → R such that fn
test−→ f .

2.4. Corollary. Given a smoothingMn−→∼ A and a test function f : A→ R, there is a sequence

of C1-smooth functions fn : Mn → R such that fn
C1

δ−→ f .

Remarks. In the next section, we define measure-valued tensor as a functional on an array of
test functions. Note that, one test function might have very different presentations that lead to
different test convergences. Thus to prove the invariance of measure-valued curvature tensor we
need to use the C1-delta convergence which is more general than test convergence. We could use
other classes of functions as well. For example, a subclass of DC0 functions (see Section 7) or a
subclass of C1-delta function (see Section 2C). Of course, we have to have an analog of 2.4 for
the chosen class. Hope a more natural setting will be found eventually.
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D Tensors

In this subsection, we define measure-valued tensors on Alexandrov spaces. Basically, we reuse
the derivation approach to vector fields in classical differential geometry. This definition will be
used in Claim 2.9 that reduces the main theorem to Proposition 2.10 and will not show up ever
after.

Let A ∈ Alexm. Recall that M(A) denotes the space of signed Radon measures on A.
A measure-valued vector fie ld v on A is a linear map that takes a test function, spits a
measure in M(A), and satisfies the chain rule: for any collection of test functions f1, . . . , fk
and a C2-smooth function ϕ : Rk → R, we have

v(ϕ(f1, . . . , fn)) =

n∑

i=1

(∂iϕ)(f1, . . . , fn)·v(fi).

In the same way, we define (contravariant) measure-valued tensor fields. Namely, a mea-
sure-valued tensor fie ld t of valence k on A is a multilinear map that takes a k-array of test
functions, spits a measure in M(A), and satisfies the chain rule in each of its arguments.

Suppose that x1, . . . , xm are local coordinates in an m-dimensional Riemannian manifold M .
Then a measure-valued vector field v on M can be described by m components, these are mea-
sures (v(x1), . . . , v(xm)); these components transform by contravariant rule under change of
coordinates.

By the definition of measure-valued vector field, we get

v(f) =
∑

i

∂if ·v(xi).

Similarly, for arbitrary k, a measure-valued tensor field of valence k is defined by mk components
t(xi1 , . . . , xik); namely,

t(f1, . . . , fk) =
∑

i1,...,ik

∂i1f1 · · · ∂ikfk ·t(xi1 , . . . , xik).

Note that if T is a smooth contravariant tensor field then t = T · vol is a measure-valued tensor
field. In other words, usual tensor fields might be considered as a subspace of measure-valued
tensor fields.

2.5. Definition. Let Mn−→∼ A be a smoothing. Assume that tn is a sequence of measure-
valued tensor fields on Mn and t is a measure-valued tensor field on A, all of the same valence k.
We say that tn weakly converges to t (briefly tn ⇀ t) if

fi,n
C1

δ−→ fi for all i =⇒ tn(f1,n, . . . , fk,n)⇀ t(f1, . . . , fk)

for arbitrary k sequences f1,n, . . . , fk,n of C1-smooth functions and test functions f1, . . . , fk : A→
→ R.

E Dual curvature tensor

The curvature of Riemannian manifold M is usually described by a tensor of valence 4 that will
be denoted by Rm. We will use a dual curvature tensor — a curvature tensor written in
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a dual form that will be denoted by Qm; it is a tensor field of valence 2·(m − 2) defined the
following way:

Qm(X1, . . . , Xm−2, Y1, . . . , Ym−2) =

= Rm(∗(X1 ∧ · · · ∧Xm−2), ∗(Y1 ∧ · · · ∧ Ym−2)),

where Xi, Yi are vector fields on M and ∗ : (∧m−2
T)M → (

∧2
T)M is the Hodge star operator.

This definition will be used further mostly for gradient vector fields of semiconcave functions.
In addition, we will need a measure-valued version of Qm denoted by qm; it will be called

dual measure-valued curvature tensor. Namely, we define

qm(f1, . . . , fm−2, g1, . . . , gm−2)

as the measure with density

Qm(∇f1, . . . ,∇fm−2,∇g1, . . . ,∇gm−2) :M → R.

Remarks. Note that

Qm(X1, . . . , Xm−2, X1, . . . , Xm−2) = |X1 ∧ · · · ∧Xm−2|2 ·Kσ,

where Kσ is the sectional curvature of M on a plane σ orthogonal to (m − 2)-vector X1 ∧ . . .
. . . ∧Xm−2. Hence, the sectional curvatures of M and therefore its curvature tensor Rm can be
computed from qm. By the symmetry

qm(f1, . . . , fm−2, g1, . . . , gm−2)

= qm(g1, . . . , gm−2, f1, . . . , fm−2),

the density of qm is defined by the sectional curvature. Therefore measure-valued tensor qm gives
an equivalent description of the curvature of Riemannian manifolds.

As you will see further, the described dual form of curvature tensor behaves better in the
limit; in particular, it makes it possible to formulate 4.2.

In the 2-dimensional case, the valence of qm is 0; in this case, qm coincides with the curvature
measure — the standard way to describe the curvature of surfaces, [3, 25]. For a smooth surface,
the density of this curvature measure with respect to the area is its Gauss curvature. In this
case, it is known that curvature measures are stable under smoothing [3, VII §13]; in other words,
our main theorem is known in the two-dimensional case.

F Formulation and plan

2.6. Main theorem. Consider a smoothingMn−→∼ A. Denote by qmn the dual measure-valued
curvature tensor on Mn. Then there is a measure-valued tensor qm on A such that qmn ⇀ qm.

Let A be an m-dimensional Alexandrov space without boundary. Let us partition A into
three subsets A◦, A′, and A′′:

⋄ A◦ is the set of regular points in A; that is, the set of points with tangent cone isometric
to the Euclidean space.

⋄ A′ — the set of points in A\A◦ with an isometric copy of Rm−2 in their tangent space; in
other words, for any p ∈ A′, the tangent space Tp is isometric to the product Cone(θ) ×
×R

m−2 where Cone(θ) denotes a two-dimensional cone with the total angle θ = θ(p) < 2·π.
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⋄ A′′ — the remaining set; this is the set of points with tangent space that does not contain
an isometric copy of Rm−2.

According to [13], A′ is countably (m− 2)-rectifiable, and A′′ is countably (m− 3)-rectifiable.
Observe that the set of regular points A◦ can be presented as

A◦ =
⋂

δ>0

Aδ,

where Aδ denotes the set of δ-strained points of A.
LetM be anm-dimensional Riemannian manifold. Denote byKmax(x) the maximal sectional

curvature at x ∈M . The following statement is a direct corollary of the main result in [24]:

2.7. Corollary. Given an integer m > 0, there is a constant const(m) such that the following
holds:

Let M be an m-dimensional Riemannian manifold (possibly noncomplete) with sectional cur-
vature bounded below by −1. If for some r < 1 the closed ball B̄(p, 2·r)M is compact, then

∫

B(p,r)M

Kmax 6 const(m)·rm−2.

2.8. Observation. There is another constant const′(m) such that

|Qm(X1, . . . , Xm−2, Y1, . . . , Ym−2)| 6
6 const′(m)·Kmax ·|X1 ∧ · · · ∧Xm−2|·|Y1 ∧ · · · ∧ Ym−2|

Note that 2.7 and 2.8 imply the following:

2.9. Claim. Given a smoothing Mn−→∼ A, test functions fi : A → R, and sequences of C1-

smooth functions fi,n : Mn → R such that fi,n
C1

δ−→ fi the sequence of measures qmn(f1,n, . . .
. . . f2·m−4,n) has a weakly converging subsequence.

Moreover, the subsequence can be chosen simultaneously for several choices of function arrays
so that it meets the chain rule. More precisely, choose i; fix all functions f1,n, . . . , f2·m−4,n except
fi,n; suppose qm̂ i,n(fi,n) = qmn(f1,n, . . . , f2·m−4,n). Assume hj,n : Mn → R are C1-smooth

functions such that hj,n
C1

δ−→ hj, each hj is a test function, and

h0,n = ϕ(h1,n, . . . , hk,n)

for a fixed C2-function ϕ : Rk → R. Then the sequence of measure arrays qm̂ i,n(h0,n), . . .
. . . , qm̂ i,n(hk,n) has a partial limit qm̂ i(h0), . . . , qm̂ i(hk), and

qm̂ i(h0) =

k∑

j=1

(∂jϕ)(h1, . . . , hk)· qm̂ i(hj).

By Perelman’s stability theorem, the space A in the claim is a topological manifold. In
particular, A has no boundary; in other words, the singular set in A has codimension at least 2.
Together with the claim, it implies that the main theorem (2.6) follows from the next statement.

2.10. Proposition. Let Mn−→∼ A and dimA = m. Suppose h1, . . . , hm−2 are test functions

on A and h1,n, . . . , hm−2,n are C1-smooth functions on Mn such that hi,n
C1

δ−→ hi for each i.
Let m1 and m2 be two measures on A that are weak partial limits of the sequence of measures
qmn(h1,n, . . . , hm,n, h1,n, . . . , hm,n) on Mn. Then the following statements hold:

10



(i) m1|A′′ = m2|A′′ = 0;
(ii) m1|A′ = m2|A′ ;
(iii) m1|A◦ = m2|A◦ .

The three parts of the proposition will be proved below in sections 3, 4, and 5 respectively.

Proofs

3 Singularities of codimension 3

Proof of 2.10(i). According to [4, 10.6], A′′ has a vanishing (m − 2)-dimensional Hausdorff
measure; that is, A′′ can be covered by a countable family of balls B(xi, ri) such that

∑
rm−2
i is

arbitrarily small. Therefore, 2.8 and 2.7 imply the statement.

4 Singularities of codimension 2

The following lemma will be proved in Section 8.

4.1. Lemma. Let A be an m-dimensional Alexandrov space without boundary. Then the subset
A′ ⊂ A can be covered by a countable set of compact sets Qi such that each Qi admits a bi-
Lipschitz embedding into R

m−2.

Let h : A → R
k be a Lipschitz map defined on an m-dimensional Alexandrov space without

boundary. Suppose Q ⊂ A is a closed subset such that there is a bi-Lipschitz embedding
s : Q → R

k. By the generalized Rademacher theorem, the metric differential of s−1 is defined
almost everywhere in the domain of definition of s−1. Moreover, the metric differential is defined
by a bilinear form; its determinant is the Jacobian of s−1, briefly jac s−1. The same way we can
define jac(h ◦ s−1) (we can apply the standard Rademacher theorem this time). Further, set
jac(h|Q) = jac(h◦s−1)/ jac s−1. It is straightforward to check that this definition is volk-almost-
everywhere independent of the choice of s.

Consider the function
θ(p) = 2·π · volm−1 Σp

volm−1 Sm−1
, ➊

where Σp denotes the space of directions at p. According to [4, 7.14], θ : A → R is lower-
semicontinuous.

Note that θ is identically 2·π on A◦. Further note that for any point p ∈ A′, its tangent cone
is isometric to the product space Cone(θ)×R

m−2, where θ = θ(p) < 2·π. Since volm−2(A′′) = 0,
the measure (2π − θ)· volm−2 vanishes on A′′.

Note that 2.10(ii) follows from Lemma 4.1 and the following statement; it will be proved in
4C–4D.

4.2. Proposition. Let m be one of two limit measures mi in 2.10 and h = (h1, . . . , hm−2) : A→
→ R

m−2 is an array of test functions. Suppose that Q ⊂ A is a compact subset that admits a
bi-Lipschitz embedding into R

m−2. Then

m|Q = (2·π − θ)·(jac(h|Q))2 · volm−2 .

11



A Gauss and mean curvature estimates

4.3. Theorem. Let f , h be a pair of strongly convex smooth 1-Lipschitz functions defined on
an open set of a 3-dimensional Riemannian manifold. Suppose that
(i) |∇f | > 1 and

|∇(f + h)| < ε·|∇f |
for some fixed positive ε < 1

2 ;
(ii) for some a, b ∈ R, the set

Wa,b = { p ∈M | f(p) = a, h(p) 6 b }

is compact.
Denote by k1(p) 6 k2(p), H(p) = k1(p) + k2(p) and G(p) = k1(p)·k2(p), the principal, mean,
and Gauss curvatures of Wa,b at p. Then

∫

Wa,b

G 6 100·ε ➋

and ∫

Wa,b

H 6 10·
√
ε· length(∂Wa,b). ➌

The proof is based on the 2-dimensional case of the following statement, which is the integral
Bochner formula with Dirichlet boundary condition.

4.4. Proposition. Assume Ω is a compact domain with smooth boundary ∂Ω in a Riemannian
manifold and f is a smooth function that vanishes on ∂Ω. Then

∫

Ω

(
|∆f |2 − |Hess f |2 − 〈Ric(∇f),∇f〉

)
=

∫

∂Ω

H ·|∇f |2,

where H denotes the mean curvature of ∂Ω.

Proof of 4.3. Equip Wa,b with unit normal vector field n = ∇f
|∇f | . Let

Sp : TpWa,b → TpWa,b

be the corresponding shape operator, so Sp : v 7→ ∇vn. Since f is strongly convex, we have that

〈Sp(v), v〉 > δ ·|v|2

for a fixed value δ > 0 and any tangent vector v ∈ TpWa,b.
Note that the restriction u = h|Wa,b

is strongly convex. Moreover,

Hessp u(v, v) > (1− ε)·〈Sp(v), v〉 ➍

for any p ∈ Wa,b and v ∈ TpWa,b. Indeed, consider the geodesic γ in Wa,b such γ(0) = p and
γ′(0) = v. Set w = γ′′(t). Note that

w = −〈Sp(v), v〉·n,
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Since h is strongly convex, Hessp h > 0; therefore

(Hessp u)(v, v) = (Hessp h)(v, v) + 〈∇ph,w〉 >
> − 〈∇ph,∇pf〉

|∇pf |
·〈Sp(v), v〉 >

> (1− ε)·|∇pf |·〈Sp(v), v〉.

Since |∇f | > 1, ➍ follows.
Since 〈Sp(v), v〉 > 0 and ε < 1

2 , the inequality ➍ implies that

4· det(Hessp u) > G(p) ➎

and
−2·∆u > H(p) ➏

for any p ∈Wa,b.
Denote by λ1(p), λ2(p) the eigenvalues of Hessp u, so

trace(Hessu) = ∆u = λ1 + λ2,

|Hessu|2 = λ21 + λ22,

det(Hessu) = λ1 ·λ2,

and hence

2· det(Hessu) = |∆u|2 − |Hessu|2.

Since Wa,b is two-dimensional, by Proposition 4.4 we get that
∫

Wa,b

2· det(Hessu) =

∫

Wa,b

K ·|∇u|2 +
∫

∂Wa,b

κ·|∇u|2,

where κ > 0 is the geodesic curvature of ∂Wa,b and K is the curvature of Wa,b.
Since u is a convex function that vanishes on the boundary of Wa,b, it has a unique critical

point, which is its minimum. By the Morse lemma, Wa,b is a disc. Therefore, by the Gauss–
Bonnet formula, we get that ∫

Wa,b

K +

∫

∂Wa,b

κ = 2·π.

Whence, ∫

Wa,b

det(Hessu) 6 π · sup
p∈Wa,b

|∇pu|2.

Note that ∇pu is the projection of ∇ph to TpWa,b. Therefore,

|∇pu|2 = |∇ph|2 − 〈∇ph, n〉2 6

6 1− (1− ε)2 <

< 2·ε.

It follows that ∫

Wa,b

det(Hessu) 6 2·π ·ε.

13



Applying ➎, we obtain ➋.
Similarly, by the divergence theorem, we get that

−
∫

Wa,b

∆u =

∫

∂Wa,b

|∇u|.

Whence ➏ implies ∫

Wa,b

H 6 10·
√
ε· length(∂Wa,b).

B Curvature of level sets

LetM be a 3-dimensional Riemannian manifold. Choose a smooth function f : M → R. Consider
its level sets

Lc = {x ∈M | f(x) = c } .
If the level set Lc is a smooth surface in a neighborhood of x ∈ Lc, then denote by k1(x) 6 k2(x)
the principal curvatures of Lc at x. In this case, set

G(x) = k1(x)·k2(x),
H(x) = k1(x) + k2(x);

that is, G(x) and H(x) are Gauss and mean curvature of Lc at x.
Recall that Cone(θ) denotes a 2-dimensional cone with the total angle θ.

4.5. Theorem. Let Mn−→∼ Cone(θ) × R and fn : Mn → R be a sequence of strongly concave
smooth 1-Lipschitz functions. Suppose that secMn > − 1

n for each n, and fn converges as
n → ∞ to the R-coordinate f : (x, t) 7→ t on Cone(θ) × R. Then Gn and Hn (the Gauss and
mean curvatures of the level sets of fn) weakly converge to zero.

Proof. Choose p ∈ Cone(θ)× R; set a = f(p).
By the theorem of Artem Nepechiy [15], there is a (−2)-concave function ̺ defined in an r-

neighborhood of p such that ̺(x) = −|p−x|2+ o(|p−x|2). Moreover, the function ̺ is l i ftable;
that is, there is a sequence of (−2)-concave ̺n : Mn → R that converges to ̺.

Consider a point q ∈ Cone(θ)×R above p; that is, its R-coordinate is larger, and its Cone(θ)-
coordinate is the same. If the R-coordinate of q is large, then distq +f is λ-concave for small
λ > 0 and it has a nonstrict minimum at p. Therefore, given λ > 0, we can find q so that the
sum s = f + distq +λ·̺ is (−λ)-concave and has a strict maximum at p. Moreover

− 1
2 ·λ·|p− x|2Cone(θ)×R

> s(x)− s(p) > − 3
2 ·λ·|p− x|2Cone(θ)×R

and therefore
|∇xs| 6 10·λ·|p− x|Cone(θ)×R ➐

if |p− x|Cone(θ)×R is sufficiently small; say if |p− x|Cone(θ)×R 6 r
10 .

Choose a sequence of points qn ∈ Mn that converges to q. Let us apply the Green–Wu
smoothing procedure to distqn +λ·̺n; denote by hn the obtained function; we can assume that
|hn − distqn −λ·̺n| → 0. Observe that ➐ implies that the first condition in 4.3 is met for all
large n in an r

2 -neighborhood of pn with ε = 10·λ·r. Moreover, one can choose b so that the
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second condition is satisfied and Bn = B(pn, r/10) ∩ La ⊂ Wa,b. Applying 4.3, we get that for
any δ > 0, we have ∫

Bn

Gn < δ, and

∫

Bn

Hn < δ.

for all large n. It remains to integrate the obtained inequalities by a and pass to a limit as
n→ ∞.

For a product Rm−2×Cone(θ), denote by V the volm−2-measure on the vertical line Rm−2×
× {0}. Further, consider the curvature measure

ω = (2·π − θ)·V

on R
m−2 × Cone(θ).

4.6. Corollary. Suppose that Mn−→∼ Cone(θ) × R and fn : Mn → R be as in 4.5. Set un =
= ∇fn

|∇fn|
. Then

(i) 〈Ricun, un〉 weakly converges to zero.
(ii) Let vn and wn be sequences of uniformly bounded, continuous vector fields on Mn. Sup-

pose that 〈vn, un〉 and 〈wn, un〉 converge uniformly as n → ∞ to some constants a and b
respectively. Then

Qm(vn, wn)⇀ a·b·ω,
where ω is the measure on Cone(θ)× R described above.

Proof; (i). Passing to a subsequence if necessary, we can assume weak convergence of 〈Ricun, un〉·
· vol3 to a measure m on Cone(θ)× R. Since secMn > − 1

n , we have that m > 0. Therefore it is
sufficient to show that m 6 0.

By 6.1 we have that the following equality
∫

Ω

ϕn ·〈Ricun, un〉 =

=

∫

Ω

[ϕn ·Gn +Hn ·〈un,∇ϕn〉 − 〈∇ϕn,∇un
un〉]

holds for any function ϕn with compact support on Mn, assuming that all expressions in the
formula have sense.

It remains to find a sequence of nonnegative functions ϕn : Mn → R with compact support
that converges to a ϕ : Cone(θ) × R → R such that (1) ϕ is unit in a neighborhood of a given
point p ∈ Cone(θ)× R and (2) we have control on the three terms on the right-hand side of the
formula; the latter means that we have the following weak convergences:

ϕn ·Gn ⇀ 0, Hn ·〈un,∇ϕn〉⇀ 0, 〈∇ϕn,∇un
un〉⇀ 0. ➑

For the first convergence, it is sufficient to choose the sequence ϕn so that in addition it is
universally bounded. Indeed, since |∇fn| → 1, we have that 4.5 implies the first convergence
in ➑.

Similarly, to prove the second convergence in ➑, it is sufficient to assume in addition that
|∇ϕn| is universally bounded and apply 4.5.

To prove the last convergence in ➑, note that |∇un
un| ⇀ 0 away from the singular locus.

The latter follows from 5.3 and 5.4. Indeed, ∇un
un can be written in a common chart away from
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the singular locus. The lemmas imply that its components converge to the components of ∇uu
in the limit space. By assumption u is parallel in the limit space; in particular ∇uu = 0.

This observation will be used to control the term 〈∇ϕn,∇un
un〉 at the points far from the

singular locus of Cone(θ)×R. To do this we only need to assume that |∇ϕn| is bounded. Next,
we describe how to control it near the singularity.

Since |un| = 1, we have ∇un
un ⊥ ∇fn. Therefore if ∇ϕn is proportional to ∇fn at some

point, then 〈∇ϕn,∇un
un〉 = 0 at this point. This observation makes it possible to choose ϕn

so that the term 〈∇ϕn,∇un
un〉 vanish around the singular locus of Cone(θ) × R. Namely, in

addition to the above conditions on ϕn we have to assume that the identity ϕn = ψ ◦ fn holds
at the points of Mn that are sufficiently close to the singular locus of Cone(θ)× R.

ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1ϕn = 1

ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0ϕn = 0

Finally, observe that the needed sequence exists. Indeed, one can
take

ϕn = (σ ◦ distpn
)·(ψ ◦ fn)

for appropriately chosen fixed mollifiers σ, ψ : R → R and Mn ∋
∋ pn → p.

(ii). Since Gn ⇀ 0, we get that the curvature measure of level sets
of fn weakly converges to the curvature of Cone(θ). It follows that

Qm(un, un)⇀ ω.

Suppose v′n ⊥ un for all n. Part (i) implies that Qm(v′n, v
′
n)⇀ 0.

Fix t ∈ R. Since the lower bound on sectional curvature of Mn converges to 0, any partial
weak limit of Qm(v′n + t·wn, v

′
n + t·wn) is nonnegative. It follows that

Qm(v′n, wn)⇀ 0

for any sequence of fields v′n, wn such that v′n ⊥ un.
Consider the vector fields v′n, w

′
n such that

v′n ⊥ un, vn = an ·un + v′n,

w′
n ⊥ un, wn = bn ·un + w′

n.

Since Qm is bilinear, we get that

Qm(vn, wn) = Qm(v′n, wn) + an ·[Qm(un, w
′
n) + bn ·Qm(un, un)].

By assumption, an = 〈un, vn〉 and bn = 〈un, wn〉 uniformly converge to a and b respectively.
Whence the statement follows.

C Three-dimensional case

Proof of the 3-dimensional case in 4.2. Suppose Mn−→∼ A and dimA = 3. Choose a set Q ⊂ A
that admits a bi-Lipschitz embedding into R.

Let us split m into negative and positive parts m = m+ −m−; that is,

m±(X) := sup {±m(Y ) |Y ⊂ X } .

Since the sectional curvature of Mn is bounded below, we get that m− has bounded density; in
other words, m− is a regular measure with respect to vol3 on A. Since Q has zero volume, we
get m−(Q) = 0.
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Set n = m|Q; from above we have n > 0. By [24], n is regular with respect to vol1 on Q.
Therefore it is sufficient to show that

(2·π − θ)·(jac(h|Q))2

is the vol1-density of n at vol1-almost all p ∈ Q.
Choose a bi-Lipschitz embedding s : Q → R; set K = s(Q). Since s−1 and h ◦ s−1 are

Lipschitz, by Rademacher’s theorem, we can assume that s−1 and h ◦ s−1 are differentiable at
almost all x ∈ K. Moreover, we can assume that dxs

−1(y) = (λ·y, 0) ∈ R × Cone(θ) = Tp and
the vol1-density of n at p = s−1(x) is defined.

Shifting and scaling the interval K, we may assume that x = 0 and λ = 1. In this case,
| jacp(h|Q)| = |d0(h ◦ s−1)|.

Note that we can choose a sequence of points pn ∈ Mn and a sequence of factors cn → ∞
such that (cn ·Mn, pn) converges to the tangent space Tp = R× Cone(θ).

Applying Perelman’s construction [20, 7.1.1 and 7.2.3] for a horizontal vector in Tp = R ×
× Cone(θ), we can choose a sequence of functions fn : cn ·Mn → R satisfying the assumptions

in 4.5; let un = ∇fn/|∇fn|. Consider the sequence of functions ĥn : cn ·Mn → R defined by

ĥn(x) = cn ·(hn(x)− hn(pn)).

Since λ = 1, we have that |〈∇ĥn, un〉| uniformly converges to |d0(h ◦ s−1)|. By 4.6(ii), the

sequence of measures qm(ĥn, ĥn) on cn ·Mn → R weakly converges to |d0(h ◦ s−1)|2 ·ωCone(θ)×R.

Recall that vol1-density of ωCone(θ)×R on the singular line is 2·π − θ(p).
Observe that

qm(ĥn, ĥn)[B(pn, 1)cn ·Mn
] = cn · qm(hn, hn)[B(pn,

1
cn
)Mn

]

Whence (2·π − θ(p))·(jacp(h|Q))2 is the vol1-density of n at p as required.

D Higher-dimensional case

Suppose Mn−→∼ Cone(θ)×R
m−2, where Cone(θ) denotes a two-dimensional cone with the total

angle θ < 2·π. First, we will show that the curvatures ofMn in the vertical sectional directions of
Cone(θ)×R

m−2 weakly converge to zero; an exact statement is given in the following proposition.
By combining this result with the 3-dimensional case we get 4.2 in all dimensions.

For X,Y ∈ Tp, denote by K(X ∧ Y ) the curvature in the sectional direction of X ∧ Y .
A function f : Cone(θ) × R

m−2 → R will be called a vertical affine function if f can be
obtained as a composition of the projection to R

m−2 and an affine function on R
m−2.

4.7. Proposition. Let Mn−→∼ Cone(θ)× R
m−2 and fn, hn : Mn → R be sequences of strongly

concave smooth Lipschitz functions. Suppose that secMn > − 1
n for each n, and we have pointwise

convergences fn → f and hn → h, where f and h are vertical affine functions on R
m−2×Cone(θ).

Then
K(∇fn ∧∇hn)· volm ⇀ 0.

Let Σ be a convex hypersurface in an m-dimensional Riemannian manifold M . Suppose x
is a smooth point of Σ; that is, the tangent hyperplane Hx of Σ is defined at x; denote by
e1, . . . , em−1 an orthonormal basis of Hx. Set

ZcΣ(x) =
∑

i,j

K(ei ∧ ej).
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In other words,
ZcΣ = Sc−2·Ric(nΣ, nΣ),

where nΣ is the unit normal vector to Σ.
Since tangent hyperplanes are defined at almost all points of convex hypersurfaces, ZcΣ(x) is

defined almost everywhere on Σ.

4.8. Lemma. Let Σ be a strongly convex hypersurface in an m-dimensional Riemannian man-
ifold M with curvature > −1. Suppose that for some point p ∈ Σ and r < 1 the closed ball
B̄(p, 2·r) in the intrinsic metric of Σ is compact.

Then, ∫

x∈B(p,r)

ZcΣ(x)· volm−1 6 (m− 1)·(m− 2)·const(m− 1)·rm−3,

where const(m− 1) is the constant in 2.7.

Proof. If Σ is smooth, then the inequality follows from 2.7, and the fact that curvature cannot
decrease when we pass to a convex hypersurface.

In the general case, the surface Σ can be approximated by a smooth convex surface; this can
be done by applying the Green–Wu smoothing procedure; compare to [2].

It remains to pass to the limit. More precisely, suppose Σn is a sequence of smooth strongly
convex hypersurfaces that converges to Σ. For each n, choose a point pn ∈ Σn such that
pn → p. By [23, Theorem 1.2], (Σn, pn) converges to (Σ, p) as in the pointed Gromov–Hausdorff
convergence.

Recall that volm−1 on Σn weakly converges to volm−1 on Σ (see [4, 10.8]). Further, since M
is smooth, ZcΣn

is bounded in B(pn, r)Σn
. Therefore,

∫

x∈B(pn,r)Σn

ZcΣn
(x)· volm−1 →

∫

x∈B(p,r)Σ

ZcΣ(x)· volm−1 as n→ ∞

follows if for almost all x ∈ Σ we have that for any ε > 0 there is δ > 0 such that if xn ∈ Σn and
|xn − x| < δ for large n, then

|ZcΣn
(xn)− ZcΣ(x)| < ε.

This condition holds if the tangent plane Hx is defined. Whence the nonsmooth case follows.

Proof of 4.7. Passing to a subsequence, we can assume that

K(∇fn ∧∇hn)· volm ⇀ m

for some measure m on R
m−2 × Cone(θ).

First, let us show that m is supported on the singular locus. If p is not singular, then it has a
flat neighborhood. Therefore by a local version of 5.5 (see also Section 9) we get that m vanishes
in a neighborhood U ∋ p. Indeed, we can include copies of U (which is flat) in the approximating
sequence Un ⊂Mn of U and argue as in the introduction.

Let p be a singular point on Cone(θ)× R
m−2; let us denote its liftings by pn ∈Mn. We can

assume that p corresponds to the origin of Rm−2. Choose points a1,n, . . . , am−2,n, b1,n, . . . , bm−2,n

inMn such that the functions fi,n = distai,n
−|ai,n−p| and −hi,n = − distbi,n +|bi,n−p| converge

to ith vertical coordinate function on Cone(θ) × R
m−2. Further, choose points c1,n, c2,n, c3,n

so that the functions gi,n = distci,n −|ci,n − p| converge to Busemann functions for different
horizontal rays in Cone(θ)×R

m−2 emerging from p. Note that the latter implies that the angles
∡̃(pn

ci,n
cj,n) are bounded away from zero for all large n.
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By [20, Lemma 7.2.1], there is an increasing concave function ϕ
defined in a neighborhood of zero in R such that ϕ′ is close to 1 and for
any ε > 0 and i 6= j the function

sij,n = ϕ ◦ gi,n + ϕ ◦ gj,n +
∑

i

[ϕ (ε·fi,n) + ϕ (ε·hi,n)]

is strongly concave in B(pn, R) for fixed R > 0 and every large n.
Denote by sij : Cone(θ)× R

m−2 → R the limits of sij,n. Note that
given w > 0, we can take small ε > 0 so that for all i 6= j the set
s−1
ij [−w,w] covers the singular locus in B(p,R).

Note that we can choose ε0 > 0 so that for almost all points x ∈
∈ B(pn, R) the differential dxsij,n is linear and |dxsij,n| > ε0 > 0 for
some i and j. Indeed, these differentials are linear outside cutlocuses of ai,n, bi,n, and ci,n; in
particular, they are linear at almost any point xn ∈ Mn. Further, if the differential dxn

s12,n is
very close to zero, then the directions of [xn, c1,n] and [xn, c2,n] are nearly opposite. Since xn
is close to pn, we get that for large n the angles ∡[xn

ci,n
cj,n ] is bounded away from zero, we get

|dxn
s13,n| is bounded away from zero as well.
Since fn and hn are converging to vertical affine functions, we get that for large n their

gradients are nearly orthogonal to ∇xn
gi,n at almost all xn ∈Mn. Suppose dxsij,n is linear and

|dxsij,n| > ε0 > 0. Then gradients ∇xn
fn and ∇xn

hn are nearly orthogonal to ∇xsij,n.
Set Σij,n = Σij,n(c) = {x ∈Mn | sij,n(x) = c }. The argument above implies that for almost

all points x ∈ B(pn, R) one of the sectional directions of the tangent directions σ of Σij,n is close
to the sectional direction ∇fn ∧∇hn. In particular, given δ > 0, we have

K(∇fn ∧∇hn)(x) 6 K(σ) + δ ·|Kmax(x)|

for all large n (Kmax is defined in 2.7).
By 4.8 and the coarea formula, the sum of integral curvatures of Mn in the directions of Σij,n

at xn at the subsets where |dxn
sij,n| > ε0 is bounded by const·w. By 2.7, the same holds for the

integral of K(∇fn ∧∇hn) if n is large. The proposition follows since w can be taken arbitrarily
small.

Proof of the general case of 4.2. Choose m− 2 sequences of strongly concave functions f1,n, . . .
. . . , fm−2,n : Mn → R that converge to vertical affine functions f1, . . . , fm−2 on Cone(θ)×R

m−2

with orthonormal gradients. It is done using Perelman’s construction [20, 7.1.1 and 7.2.3] for the
corresponding vertical vectors in Cone(θ)× R

m−2.
Note that the fields e1,n = ∇f1,n, . . . , em−2,n = ∇fm−2,n are nearly orthonormal; in par-

ticular, they are linearly independent for all large n. Let us add two fields em−1,n and em,n so
that e1,n, . . . , em,n form a nearly orthonormal frame in Mn; that is, 〈ei,n, ej,n〉 → 0 for i 6= j and
〈ei,n, ei,n〉 → 1 for any i as n→ ∞.

Observe that 4.7 implies that K(ei ∧ ej)· vol⇀ 0 if i, j 6 m− 2.
Let us show that K(ei ∧ ej)· vol ⇀ 0 for i 6 m − 2 and j > m − 1. The 3-dimensional case

is done already; it is used as a base of induction. Let us apply the induction hypothesis to the
level surfaces of f1,n. (Formally speaking, we apply the local version of the induction hypothesis
described in Section 9.) Since the curvature of convex hypersurfaces is larger than the curvature
of the ambient manifold in the same direction, we get the statement for i 6= 1. Applying the
same argument for the level surfaces of f2,n, we get the claim.

Now let us show that K(em−1 ∧ em)· volm ⇀ ωCone(θ)×Rm−2 . Consider the level sets Ln

defined by
f1,n = c1, . . . , fm−2,n = cm−2. ➒
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Note that Ln−→∼ Cone(θ). Applying the 2-dimensional case to Ln and the coarea formula, we
get that curvatures of Ln weakly converge to ωCone(θ)×Rm−2 . It remains to show that the extra
term in the Gauss formula for the curvature of Ln weakly converges to zero; in other words, the
difference between the curvature of Ln and sectional curvature of Mn in the direction tangent to
Ln weakly converges to zero.

The 3-dimensional case is done already. To prove the general case, we apply the 3-dimensional
case to the 3-dimensional level sets defined by m− 3 equations from the m− 2 equations in ➒.
(The same argument is used in the proof of 5.5, and it is written with more details.)

Note that for θ = 0, the last argument implies the following:

4.9. Claim. Let Mn−→∼ A. If A has a flat open set U , then |Kmax|· voln ⇀ 0 on U .

In particular, the weak limit of dual curvature tensor has support on the singularity of
Cone(θ)× R

m−2.
The same argument as in 4.6 shows that 〈Rm(ei, ej)eq, er〉· volm ⇀ 0 if at least one of the

indices i, j, q, r is at most m− 2. The latter statement implies the result.

5 Regular points

A Common chart and delta-convergence

Choose a smoothing Mn−→∼ A of an m-dimensional Alexandrov space A. Let p ∈ A be a point
of rank m; that is, there are m+ 1 points a0, . . . , am ∈ A such that ∡̃(p ai

aj
) > π

2 for all i 6= j.
Recall [20, Sec. 7] that we can choose small r > 0, finite set of points ai near ai, and a

smooth concave increasing real-to-real function ϕ defined on an open interval such that

fi =
∑

x∈ai

ϕ ◦ d̃istx,r

is strongly a concave function that is defined in a neighborhood U ∋ p; it will be called smoothed
distance chart.

Since r is small, and all points in ai are near ai we get that the functions f0, . . . , fm are tight
in U ; see the definition in [20]. In particular, the map U → R

m defined by x 7→ (f1(x), . . . , fm(x))
is a coordinate system in U .

The presented construction can be lifted to Mn. As a result, we obtain a chart of an open
set Un ⊂ Mn. Passing to smaller sets we may assume that U and each Un is mapped to a fixed
open set Ω ⊂ R

m for all large n. Further, we assume that it holds for all n; it could be achieved
by cutting off the beginning of the sequence Mn.

The obtained collection of charts xn : Un → Ω and x : U → Ω will be called a common
chart at p. It will be used to identify points of Ω, Mn, and A; in addition, we will use it to
identify the tangent spaces TMn and TA with R

m. For example, we will use the same notation
for function Mn → R and its composition Ω → R with the inverse of the chart Un → Ω. We will
use index n or skip it to indicate that the calculations are performed in Mn or A respectively.
For example, given a function f : Ω → R, we denote by ∇nf and ∇f the gradients of f ◦ xn in
Mn and f ◦ x in A respectively.

Recall that Aδ denotes the set of δ-strained points in A. For a fixed common chart x we will
use the notation Aδ

Ω for the image x(Aδ) ⊂ Ω.
Part 2.10(iii) will follow from certain estimates in one common chart.

5.1. Definitions. Let Mn−→∼ A, dimA = m; choose a common chart with range Ω ⊂ R
m.
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A sequence of measures nn defined on Ω is called weakly delta-converging if the following
conditions hold:

⋄ Every subsequence of nn has a weak partial limit.
⋄ For any ε > 0 there is δ > 0 such that for any two weak partial limits m1 and m2 of (nn)
we have

|(m1 −m2)(S)| < ε

for any Borel set S ⊂ Aδ
Ω.

A sequence of bounded functions fn on Ω is called weakly delta-converging if the measures
fn · voln are weakly delta-converging.

A sequence of functions fn defined on Ω is called uniformly delta-converging if the
following conditions hold:

⋄ For any ε > 0 there is δ > 0 such that such that

lim sup
n→∞

{fn(x)} − lim inf
n→∞

{fn(x)} < ε

for any x ∈ Aδ
Ω.

5.2. Observation. If fn is uniformly delta-converging and nn is weakly delta-converging, then
fn ·nn is weakly delta-converging.

B Convergences

5.3. Lemma. Let Mn−→∼ A, dimA = m; choose a common chart with range Ω ⊂ R
m. Let

fn : Mn → R be a sequence of C1-functions such that fn
C1

δ−→ f : A → R. Let us denote by
∂1, . . . , ∂m the partial derivatives on Ω ⊂ R

m. Denote by gij,n and gijn the components of the
metric tensors on Mn. Then
(i) fn uniformly converges to f on Ω;
(ii) ∂ifn are uniformly delta-converging;
(iii) gij,n and gijn are uniformly delta-converging for all i, j; moreover, det gij,n is bounded away

from zero;
(iv) |∇nfn| uniformly delta-converges on Ω;

Proof. Part (i) is trivial.

(ii). Suppose a0, a1, . . . , am struts p (see the definition in [1]), and the geodesics [pai] are uniquely
defined. In this case, for any sequence of points ai,n, pn ∈ Mn such that ai,n → ai, and pn → p
as n→ ∞, we have

lim
n→∞

∡[pn
ai,n
aj,n

] > ∡[p ai
aj
].

If Tp is Euclidean, then (n+1)-point comparison implies that equality holds in the last in-
equality.

Note that the angles ∡[pn
ai,n
aj,n ] for all i, j > 0 completely describe the metric tensor at pn in

the basis V1,n, . . . , Vm,n, where Vi,n is the unit vector in the direction of [pn, ai,n].

If fn
C1

δ−→ f , then Vi,nfn completely describes ∇pn
fn in the basis V1,n, . . . , Vm,n. From above,

we can express |∇pn
fn| in terms of Vi,nfn and the angles ∡[pn

ai,n
aj,n ]. Whence we get convergence

|∇pn
fn| → |∇pf | and therefore

〈∇pn
fn,∇pn

hn〉 → 〈∇pf,∇ph〉
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if hn
C1

δ−→ h; the latter follows by identity 4·B(x, y) = B(x+ y, x+ y)− B(x− y, x− y) for any
bilinear form B.

Note that the partial derivatives ∂ifn at a regular point p can be expressed in terms of
〈dpfn, dpxj〉n and 〈dpxj , dpxk〉n, where x1, . . . , xm are the coordinate functions of the chart.
Therefore, we get that all ∂ifn converge at any regular point.

Finally, observe that if p is a δ-strained point for sufficiently small δ > 0, then the calculations
above go thru with a small error. Whence the statement follows.

(iii). This part follows from the proof of (ii) since gijn = 〈dpxi, dpxj〉n and gij,n can be expressed
thru gijn .

(iv). Note that |∇nfn| can be expressed from gijn and ∂ifn. Since these quantities are delta-
converging, so is |∇nfn|.

The following lemma relies on the DC-calculus which is discussed in Section 7; this section
includes the definition of DC and DC0 functions, as well as DC convergence. Since test conver-
gence implies DC convergence (see 7.1), the lemma also holds for test-converging sequences of
functions.

5.4. Lemma. Let Mn−→∼ A. Choose a common chart xn : Un ⊂Mn → Ω and x : U ⊂ A→ Ω
with range Ω ⊂ R

m. Let fn : Mn → R be a sequence of smooth functions that DC converges to a
DC0 function f : A→ R. Let us denote by ∂1, . . . , ∂m the partial derivatives on Ω ⊂ R

m. Denote
by gij,n and gijn the components of the metric tensors on Mn. Then the partial derivatives
∂kgij,n, ∂kg

ij
n , ∂j∂ifn, as well as their products to uniformly delta-converging functions, are

weakly converging.

Proof. The weak convergence of ∂kgij,n, ∂kg
ij
n , and ∂j∂ifn follows from 7.4. By Observation 5.2,

products of these partial derivatives to uniformly delta-converging sequences of functions are
weakly delta-converging.

Let hn : Mn → R be a uniformly delta-converging sequence. Note that its limit is well defined
in A◦; denote it by h; let us extend it by 0 to the whole A.

Denote by mn one of the measures on Ω with the density ∂kgij,n, ∂kg
ij
n , or ∂j∂ifn. Let m be

the corresponding limit measure ∂kgij , ∂kg
ij , or ∂j∂if . We need to show that

∫

Ω

(hn ◦ x−1
n )·ϕ·mn →

∫

Ω

(h ◦ x−1)·ϕ·m as n→ ∞ ➊

for any continuous function ϕ : Ω → R with compact support.
Choose ε > 0; let δ > 0 be as in 5.1 (for hn). The set Sδ

Ω = Ω \ Aδ
Ω is a closed subset of Ω.

By 7.3, |m|(Sδ
Ω) = 0. Therefore we can choose an open neighborhood N ⊂ Ω of Sδ

Ω such that
|m|(N) < ε. Choose two nonnegative continuous functions ϕ0 and ϕ1 such that

ϕ = ϕ0 + ϕ1, suppϕ0 ⊂ N, suppϕ1 ⊂ Aδ
Ω = Ω \ Sδ

Ω.

Note that the sequence an =
∫
Ω
(hn ◦ x−1

n )·ϕ0 ·mn converges with error ε0 = ε·c·max{ |ϕ| },
where c is a bound on |hn|. In other words, the upper and lower limits of an differ by at most ε0.
Similarly, bn =

∫
Ω
(hn ◦ x−1

n )·ϕ1 ·mn converges with error ε1 = ε·|m|·c·max{ |ϕ| }. Since ε > 0 is
arbitrary, we get ➊.
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C Proof modulo key lemma

5.5. Key lemma. Choose a common chart with range Ω ⊂ R
m for a smoothing Mn−→∼ A.

Choose a component Rmijsr,n of the curvature tensor of Mn in Ω. Then Rmijsr,n · volmn is a
weakly delta-converging sequence of measures.

The proof of the key lemma will take the remaining part of this section; in the current
subsection, we show that it implies 2.10(iii).

Proof of 2.10(iii) modulo 5.5. Recall that components of qmn can be expressed from the com-
ponents of Rmn. Therefore, the key lemma implies delta-convergence of components of qmn.

Choose sequences of test functions f1,n, . . . , fm−2,n, h1,n, . . . , hm−2,n onMn that test-converge
to f1, . . . , fm−2, h1, . . . , hm−2 : A → R. By 5.3, we have delta-convergence of the partial deriva-
tives ∂ifj,n and ∂ihj,n to ∂ifj and ∂ihj respectively. The measures qmn(f1,n, . . . , fm−2,n, h1,n, . . .
. . . , hm−2,n) can be expressed as a linear combination of the components of qmn with coefficients
expressed in terms of ∂ifj,n. By 5.2, it follows that the sequence of measures

mn = qmn(f1,n, . . . , fm−2,n, h1,n, . . . , hm−2,n)

is delta-converging.
Finally, recall that

A◦ =
⋂

δ>0

Aδ.

Therefore delta-convergence of qmn(f1,n, . . . , fm−2,n, h1,n, . . . , hm−2,n) implies 2.10(iii).

D Strange curvature

Suppose M is a 3-dimensional Riemannian manifold. Strange curvature tensor Str on M is
a bilinear form that is uniquely defined by

Str(w,w) = Sc ·|w|2 − Ric(w,w)

for w ∈ TM . Note that Str completely describes the Ricci curvature tensor Ric. Further, since
M is 3-dimensional, Str completely describes the curvature tensor Rm of M .

In Riemannian manifolds, we can (and will) use the metric tensor to identify tangent and
cotangent bundles. Therefore the tensor Str can be applied to vector fields and forms; in partic-
ular, for any smooth function f we have

Str(df, df) = Str(∇f,∇f).

5.6. Proposition. Let Mn−→∼ A and dimA = 3; choose a common chart with range Ω ⊂ R
3.

Suppose that f is a convex combination of coordinate functions of the chart. Then the measures

mn = Strn(df, df)· vol3n
are weakly delta-converging in Ω.

The definition of strange curvature tensor is motivated by the following integral expression
from 6.1: ∫

Ω

ϕ· Str(u, u) =
∫

Ω

ϕ· Int+
∫

Ω

[H ·〈u,∇ϕ〉 − 〈∇ϕ,∇uu〉] , ➋

where
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⋄ u = ∇f/|∇f |,
⋄ H(x) — the mean curvature of the level set f−1(f(x)),
⋄ Int(x) — the scalar curvature of f−1(f(x)).

This formula is the main tool in the proof of the proposition. It reduces the proposition to the
following two lemmas; each lemma provides the convergence of an integral term in the right-hand
side of ➋.

5.7. Lemma. In the assumptions of Proposition 5.6, Intn · vol3n is a delta-converging sequence
of measures on Ω.

The proof of this lemma uses the convergence of curvature measures Intn · vol2 on the 2-
dimensional level sets of concave functions f and the coarea formula. Recall that the sequence
|∇nf | is only weakly delta-converge (see 5.3(iv)). Since the factor |∇nf | appears in the coarea
formula, we get that only weak delta-convergence of Intn · vol3n.
Proof. Recall that any point in an Alexandrov space A has a convex neighborhood [20]. This
construction can be lifted to the smoothing sequence (Mn). Let V ⊂ A be an open convex

neighborhood of x and Vn ⊂Mn be open convex sets such that V̄ n−→GH V̄ .
Set

Lt,n = f−1(t) ∩ Vn, Ct,n = f−1[t,∞) ∩ V̄ n,

Lt = f−1(t) ∩ V, Ct = f−1[t,∞) ∩ V̄ .

For every t and n, the set Ct,n is a convex subset in Alexandrov space and hence is an

Alexandrov space with curvature > −1. Note that Ct,n−→GH Ct. Let us equip the boundaries
∂Ct,n and ∂Ct with the induced inner metrics. By [23, Theorem 1.2], ∂Ct,n converges to ∂Ct as
n→ ∞.

By [2], ∂Ct,n is an Alexandrov space with curvature > −1; hence, so is the limit ∂Ct.
Note that Lt,n with induced inner metric is isometric to its image in ∂Ct,n. Since ∂Ct is an

extremal subset of Ct, the inner metric of ∂Ct is bi-Lipschitz to the metric restricted from A. It
follows that we can take r sufficiently small such that for all t and Ut,n = Lt,n ∩B(xn, r) we will
have

hn 6 1
10 · dist(Ut,n, ∂Ct,n \ Lt,n),

where hn denotes the intrinsic diameter of Ut,n. Then the local version of the 2-dimensional case
of the main theorem can be applied to Ut,n; it implies weak convergence of measures Intn · vol2n
on Lt,n.

Choose a smooth function ϕ : B(xn, r) → R with a compact support in Aδ
Ω. Applying the

coarea formula, we get

∫

s∈Ω

Intn(s)·ϕ(s)· vol3n =

h∫

−h

dt·
∫

s∈Ut,n

ϕn(s)

|∇nf(s)|
· Intn(s)· vol2 . ➌

Note that ∇nf is bounded away from zero. By 5.3(iv), 1
|∇nf(s)|

is uniformly delta-converging.

Recall that Intn · vol2 are weakly converging measures on Ln [3, VII §13]. Therefore 5.2 implies
that Intn · vol3n is weakly delta-converging measures on Mn.

The following lemma is related to the convergence of the second integral in ➋, the proof uses
the DC calculus in a common chart; see Section 7.
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5.8. Lemma. In the assumptions of Proposition 5.6, suppose ϕ : Ω → R is a smooth function
with compact support. Then

∫

Ω

[Hn ·〈un,∇nϕ〉n − 〈∇un
un,∇nϕ〉n] · vol3n ➍

converges, where Hn and un as in ➋.

Proof. Note that Hn = div un. Let us rewrite the first term of ➍ in coordinates:
∫

Ω

[∑

i

(
∂iu

i
n +

ui
n

2 ·∂i log det gn
)]

·
[∑

i,j

uin ·∂iϕ
]
·
√
det gn ·dx1dx2dx3.

We also have

uin =

∑
j g

ij ·∂jf√∑
j,k g

jk ·∂jf ·∂kf
.

Taking the derivatives, we see under the integral a sum of products the following two types of
expressions: the first a partial derivative ∂kgij,n, ∂kg

ij
n , or ∂i∂jf , and the second is an expression

made from gij,n, g
ij
n , ∂if , ∂iϕ. Applying 5.3 and 5.4, we get that the integral converges.

Further, for the second term in ➍ we have
∫

Mn

〈∇ϕn,∇un
un〉· vol3n =

=

∫

Ω

dx1dx2dx3 ·
∑

i,j,k

uin ·∂kϕ·
√
det gn ·

(
∂iu

k
n +

uj
n

2 ·
∑

s

(∂igjs,n + ∂jgsi,n − ∂sgij,n) ·gksn
)
.

The convergence follows by the same argument.

Proof of Proposition 5.6. By ➋, 5.7, and 5.8 we get that Strn(un, un)· vol3n is a weakly delta-
converging sequence of measures. It remains to apply 5.3(iv) and 5.2.

E Three-dimensional case

In this section, we prove Lemma 5.5 in the 3-dimensional case.
Vectors w1, . . . , wm(m+1)/2 ∈ R

m are said to be in general posit ion if the vectors wi ⊗wi

form a basis in R
m·(m+1)/2 — the symmetric square of Rm. In this case, any quadratic form Q

on R
m can be computed from the m(m+1)

2 values

Q(w1, w1), . . . , Q(wm(m+1)/2, wm(m+1)/2).

More precisely, there are rational functions s1, . . . , sm(m+1)/2 that take m(m+1)
2 vectors in R

m

and return a quadratic form on R
m such that

Q =

m(m+1)/2∑

k=1

sk(w1, . . . , wm(m+1)/2)·Q(wk, wk). ➎

Note that the vectors w1, . . . , wm(m+1)/2 ∈ R
m are in general position if and only if sk(w1, . . .

. . . , wm(m+1)/2) are finite for all k. Since sk are rational functions, we get the following:
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5.9. Observation. Suppose that vectors w1, . . . , wm(m+1)/2 ∈ R
m are in general position.

Then the functions s1, . . . , sm(m+1)/2 are Lipschitz in a neighborhood of (w1, . . . , wm(m+1)/2) ∈
∈ (Rm)m(m+1)/2.

Proof of the 3-dimensional case of 5.5. Choose a common chart

Mn ⊃ Un → Ω, and A ⊃ U → Ω.

Let us use it to identify tangent spaces of Mn and A with R
3.

Choose 6 sequences of convex combinations of coordinate functions f1, . . . , f6, such that
∇f1, . . . ,∇f6 are in general position at p ∈ Ω. We can assume that Ω is a small neighborhood
of p, so by Proposition 5.6 the measures Strn(∇nfk,∇nfk)· vol3n weakly delta-converges on Aδ

Ω

for k = 1, . . . , 6.
By 5.9, the functions si are Lipschitz in a neighborhood of (∇f1, . . . ,∇f6) ∈ (R3)6. Applying

➎, we get that

Str =

6∑

k=1

sk(∇nf1, . . . ,∇nf6)· Strn(∇nfk,∇nfk).

Hence the measure Strn(dxi, dxj)· vol3n are weakly delta-converging for all i and j, where x1, x2, x3
is the standard coordinates in R

3.
By Lemma 5.3, the sequence of metric tensors gn of Mn on Ω is uniformly delta-converging.

Since the following equality

Tr Strn =
∑

i,j

gij,n · Strn(dxi, dxj)

holds almost everywhere, we get that the sequence of measures Tr Strn · vol3n is weakly delta-
converging.

Note that for 3-dimensional manifolds we have

Qmn(V, V ) = Strn(V, V )− 1
4 ·|V |2 · TrStrn . ➏

Hence the measures Qmn(dxi, dxj)· vol3n are weakly delta-converging for all i and j.
Finally, according to 5.3(ii), the components αik,n of ∇nfk are uniformly delta-converging.

The result follows since

qm(fk, fk) =
∑

i,j

αik,n ·αjk,n · qm(xi, xj).

F Higher-dimensional case

5.10. Observation. Choose a common chart with the range Ω ⊂ R
m for a smoothingMn−→∼ A.

Consider the sequence of coordinate level sets Ω = Lm ⊃ Lm−1 ⊃ . . . ⊃ L0, where Li =
= Li(ci+1, . . . , cm) is defined by setting the last m− i coordinates to be ci+1, . . . , cm respectively.
Then the level sets Li is a smooth convex hypersurface in Li+1 in each Mn; in particular, each
Li has sectional curvature bounded below by −1.
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Moreover, there is an open set O in the space of linear transformations of Rn such that the
same holds after applying any linear transformation T ∈ O to Ω.

Proof of the key lemma (5.5). Let us use notations as in the observation. By the key lemma
(5.5) in dimensions 2 and 3, we get weak delta-convergence of curvature tensors on L2 and L3.
(Again, we apply the local version of these statements as described in Section 9.) In particular,
applying the coarea formula, we get convergence of sectional curvatures of L3 in the directions of
L2 as well as the sectional curvature of L2 for all values c3, . . . , cm. The difference between these
curvatures is the Gauss curvature Gn of L2 as a submanifold in L3. Therefore, Gn is weakly
delta-converging as well.

Consider a linear transformation of Ω that preserves the direction of L2. By the last statement
in 5.10, the above argument shows weak delta-convergence of Gn(w), where the direction w of
L3 on L2 can be chosen in an open set of Rm−2 — the space transversal to L2. In particular, we
may choose directions w1, . . . , w(m−2)·(m−1)/2 in R

m−2 that form a generic set (see the definition
in Subsection 5E).

Denote by G+
n the term in the Gauss formula for L2 in Mn; that is, G+

n is the difference
between the curvature of L2 and the sectional curvature of Mn in the same direction. Denote by
gn the Riemannian metric of Mn in Ω. Note that

G+
n =

∑
αk,n ·Gn(wk),

where the coefficients αk,n depend continuously on w1, . . . , w(m−2)·(m−1)/2, and the components
of gn. It follows that weak delta-convergence of Gn(wk) implies weak delta-convergence of G+

n as
n→ ∞. Since the curvature of L2 is weakly delta-converging, it implies weak delta-convergence
of sectional curvature in the direction of L2.

By the second statement in the observation, the above argument can be repeated after ap-
plying a linear transformation of Ω that changes the direction of L2 slightly. It follows that
sectional curvatures converge for a generic array of simple bivectors in R

m. Note that the curva-
ture tensor can be expressed from these sectional curvatures and the metric tensor. Hence, the
weak delta-convergence of components of curvature tensor and therefore dual curvature tensor
follows.

Details

6 Bochner formula

LetM be a Riemannian m-manifold and f : M → R be a smooth function without critical points
on an open domain Ω ⊂ M . Set u = ∇f/|∇f |. Let us define Intf (x) (or just Int) to be scalar
curvature of the level set Lx = f−1(f(x)) at x ∈ Lx ⊂M . Set

1. κ1(x) 6 κ2(x) 6 . . . 6 κm−1(x) the principal curvatures of Lx at x;
2. H = Hf (x) = κ1 + κ2 + · · ·+ κm−1 is mean curvature of Lx at x
3. G = Gf (x) = 2·∑i<j κi ·κj is the extrinsic term in the Gauss formula for Intf (x).
Recall that the strange curvature Str is defined as

Str(u) = Sc−〈Ric(u), u〉,

where Sc and Ric denote scalar and Ricci curvature respectively.
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6.1. Bochner’s formula. Let M be an m-dimensional Riemannian manifold, f : M → R be a
smooth function without critical points on an open domain Ω ⊂ M , and u = ∇f/|∇f |. Assume
ϕ : Ω → R is a smooth function with compact support. Then

∫

Ω

ϕ·〈Ricu, u〉 =
∫

Ω

[ϕ·G+H ·〈u,∇ϕ〉 − 〈∇ϕ,∇uu〉] ➊

and ∫

Ω

ϕ· Str(u) =
∫

Ω

[H ·〈u,∇ϕ〉 − 〈∇ϕ,∇uu〉] +
∫

Ω

ϕ· Intf . ➋

The following calculations are based on [12, Chapter II]. The Dirac operator will be denoted
by D. We use the Riemannian metric to identify differential forms and multivector fields on M .
Therefore the statement about differential forms can be also formulated in terms of multivector
fields and the other way around.

Proof. Assume b1, . . . , bm is an orthonormal frame such that bm = u, then

Sc−2·〈Ric(u), u〉 = 2·
∑

i<j<m

sec(bi ∧ bj).

Therefore the Gauss formula can be written as

Int = G+ Sc−2·〈Ric(u), u〉 =
= G+ Str(u)− 〈Ric(u), u〉. ➌

We can assume that bi(x) points in the principal directions of Lx for i < m; so we have
∇biu = κi ·bi at x. We will denote by “ • ” the Clifford multiplication; recall that bi • bi = −1.
Note that

Du =
∑

i

bi • ∇biu =

=
∑

i<m

κi ·bi • bi + u • ∇uu =

= −H + u • ∇uu.

Since 〈∇uu, u〉 = 0, we get H ⊥ (u • ∇uu). Therefore

〈Du,Du〉 =
(
∑

i<m

κi

)2

+ |u • ∇uu|2 =

= H2 + |∇uu|2.

On the other hand
∇u =

∑

i<m

κi ·bi ⊗ bi +∇uu⊗ u,

hence
〈∇u,∇u〉 =

∑

i<m

κ2i + |∇uu|2.

Therefore
〈Du,Du〉 − 〈∇u,∇u〉 = 2·

∑

i<j

κi ·κj = G.
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Following the calculations in [12, II.5.3], we get
∫

Ω

ϕ·
[
〈Du,Du〉 − 〈D2u, u〉

]
= −

∫

Ω

〈∇ϕ • u,Du〉 =

= −
∫

Ω

[H ·〈∇ϕ, u〉 − 〈∇ϕ,∇uu〉] .

Since |u| ≡ 1, we have 〈∇∇ϕu, u〉 = 0. Therefore
∫

Ω

ϕ· [〈∇u,∇u〉 − 〈∇∗∇u, u〉] =
∫

Ω

〈∇∇ϕu, u〉 = 0.

By Bochner formula [12, II.8.3],

D2u−∇∗∇u = Ric(u);

in particular,
ϕ·〈D2u, u〉 − ϕ·〈∇∗∇u, u〉 = ϕ·〈Ric(u), u〉. ➍

Integrating ➍ and applying the derived formulas, we get
∫

Ω

ϕ·G =

∫

Ω

ϕ· [〈Du,Du〉 − 〈∇u,∇u〉] =

=

∫

Ω

ϕ·Ric(u, u)−
∫

Ω

[H ·〈u,∇ϕ〉 − 〈∇ϕ,∇uu〉] .

It remains to apply the Gauss formula ➌.

7 DC-calculus

Let f be a continuous function defined on an open domain of an m-dimensional Alexandrov
space A. Recall that f is DC if it can be presented locally as a difference between two concave
functions. Recall that for any point p ∈ A there is a (−1)-concave function defined in a neigh-
borhood of p [18, 3.6]. Therefore we can say that f is DC if and only if it can be presented locally
as a difference between two semiconcave functions.

Suppose that a sequence of Alexandrov spaces An converges to Alexandrov space A without
collapse. Let fn and f be DC functions defined on open domains Dom fn ⊂ An and Dom f ⊂
⊂ A. Suppose that for any p ∈ Dom f there is a sequence pn ∈ Dom fn and R > 0 such that
pn → p and B(pn, R)An

⊂ Dom fn, B(p,R)A ⊂ Dom f and for some fixed λ ∈ R, and each
large n we have λ-concave functions an and bn defined in B(pn, R)An

and λ-concave functions a
and b defined in B(p,R)A such that fn = an − bn and f = a − b and the sequences an and bn
converge to functions a and b respectively. In this case, we say that fn is DC-converging to
f = a− b : A→ R as n→ ∞; briefly fn−→DC

f .
A DC function f : A → R is called DC0 if it is continuously differentiable in A◦. More

preciously, for any smoothed distance chart x : U ⊂ A → R
m (see Section 5A) the restriction

f ◦ x−1|
x(A◦) is continuously differentiable.

7.1. Observation. Any test function is DC0. Moreover, test convergence implies DC-
convergence.
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Proof. Choose a test function f = ϕ(d̃istp1,r, . . . , d̃istpn,r). Note that the function ϕ can be pre-
sented locally as a difference between C2-smooth concave functions increasing in each argument;
say ϕ = ψ − χ.

For the first part of the observation, it remains to observe that the functions

a = ψ(d̃istp1,r, . . . , d̃istpn,r), b = χ(d̃istp1,r, . . . , d̃istpn,r)

are semiconcave and continuously differentiable in A◦.
Suppose that a sequence of functions ϕi is C

2-converging to ϕ. Choose x = (x1, . . . , xn) in
the domain of definition of ϕ. Note that ϕn and its partial derivatives up to order 2 are bounded;
fix a bound c. Then in a neighborhood of (x1, . . . , xn) we may choose ψn that is uniquely defined
by ψn(x) = 0, ∂iψn(x) = 2·c, ∂i∂jψn ≡ 0 for i 6= j, and ∂2i ψn ≡ −d for a large constant d. In
this case, χn = ψn − ϕn is concave. Moreover, C2-convergence of ϕn implies convergence of ψn

and χn. Hence, the second statement follows.

The definition of DC-convergence extends naturally to sequences of functions defined on a
fixed domain Ω ⊂ R

m. The proof of the following statement is a straightforward modification of
[16, Section 3]:

7.2. Proposition. Let Mn−→∼ A; choose a common chart xn : Un ⊂ Mn → Ω, x : U ⊂ A →
→ Ω ⊂ R

m.
Consider functions fn and f defined on Un and U respectively. Then fn−→DC

f if and only if
fn ◦ x−1

n −→
DC

f ◦ x−1

The following statement follows from the lemma in [16, Section 4].

7.3. Proposition. Let A be an m-dimensional Alexandrov space and x : U → R
m — a smoothed

chart for U ⊂ A. Denote by gij components of metric tensors in this chart and by gij components
of the inverse matrix. Let f : U → R be a DC0 function.

Then the partial derivatives ∂kgij, ∂kg
ij, ∂i∂jf are Radon measures on A that vanish on

x
−1(A′ ∪A′′).

7.4. Theorem. Let Mn−→∼ A, dimA = m; choose a common chart xn defined on Un ⊂Mn, x
defined on U ⊂ A with a common range Ω ⊂ R

m. Denote by gij,n components of metric tensors
in this chart and by gijn components of the inverse matrix. Let fn : Un → R be a sequence of
DC function that DC-converges to a DC0 function f : U → R. Then partial derivatives ∂kgij,n,
∂kg

ij
n , ∂i∂jfn weakly converge to the Radon measures ∂kgij, ∂kg

ij, ∂i∂jf described in 7.3.

By 7.1, the theorem applies to any test-converging sequence fn
test−→ f . In the proof, we

modify the argument in [16, Section 4] slightly.

Proof. Let’s start with the partial derivatives of metric tensors. In [16, Subsection 4.2], it
was shown that components of metric tensors can be expressed as a rational function of partial
derivatives of distance functions to a finite collection of points. The distance functions are
semiconcave, in particular DC.

The base points pi,n ∈Mn of these distance functions can be chosen so that they converge to
some point pi ∈ A. In this case, the distance functions are DC-converging. Now, applying 7.2,
we get the statement.

The case of ∂i∂jfn is similar.
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8 Bi-Lipschitz covering

In this section we will prove Lemma 4.1. A more general version of the lemma can be proved
along the same lines as Lemma 11.1 in [26].

Note that the lemma follows from the next proposition.

8.1. Proposition. Let A be an m-dimensional Alexandrov space with curvature at least −1 and
p ∈ A′. Then there is a compact set Q such that
(i) Q admits a bi-Lipschitz embedding into R

m−2 and
(ii) there is a neighborhood U ∋ p and ε > 0 such that q ∈ Q for any point q ∈ U ∩A′ such that

θ(q) < θ(p) + ε.

Let x be a point in an Alexandrov space A with curvature at least −1. Recall that Bishop–
Gromov inequality implies that

volmB(x,R)A
volmB(x̃, R)Hm

6
volm−1 Σx

volm−1
Sm−1

for any R > 0; here H
m denotes the m-dimensional hyperbolic space. The following lemma

makes this inequality more precise.

8.2. Lemma. Let x be a point in an m-dimensional Alexandrov space A with curvature at least
−1. Suppose y ∈ A is a point such that |x− y| < R and ∡[y x

z ] < π − ε for any point z. Then

volmB(x,R)A
volmB(R)Hm

6 (1− δ)· volm−1 Σx

volm−1
Sm−1

,

where δ is a positive number that depends on m, |x− y|, R and ε.

Proof. To simplify the presentation we will assume that A is nonnegatively curved; it is straight-
forward to adapt the proof to the general case. In this case, we need to show that

volmB(x,R)A
volmB(R)Rm

6 (1− δ)· volm−1 Σx

volm−1
Sm−1

,

Let us denote by p̃ a vector in Tx that is tangent to a geodesic path γ : [0, 1] → A from x
to p. By comparison, the map p 7→ p̃ is a distance-noncontracting map.

Since ∡[y x
z ] < π− ε for any z, the image of the map p 7→ p̃ does not include points in a cone

C behind ỹ of angle ε. It follows that

volm(B(0, R)Tx
\ C) > volm(B(x,R)A)

for any R > 0.

CTx

ỹ̃ỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹỹy00000000000000000000000000000000000000000000000000000000000000000

Since R > |x− y|, the intersection C ∩B(0, R)Tx
includes a ball of

a certain radius r > 0 that can be found in terms of |x − y|, R and ε.
By Bishop–Gromov inequality, we get δ = δ(m, |x − y|, R, ε) > 0 such
that

volm(C ∩B(0, R)Tx
)

volm(B(0, R)Tx
)

> δ.

Further, observe that
volm(B(0, R)Tx

)

volm(B(0, R)Rm)
=

volm−1 Σx

volm−1
Sm−1

.
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— whence the lemma.

Proof of 8.1. Since the tangent cone at p has Rm−2-factor, we can choose points a1, . . . , am−2, b1, . . .
. . . , bm−2 that are δ-strainers of p for arbitrary δ > 0. The corresponding distance map s : x 7→
7→ (|a1 − x|, . . . , |x− am−2|) is an almost submersion of a neighborhood U ∋ p to R

m−2. Choose
small ε > 0 and set

Q′ = {x ∈ U ∩A′ | θ(x) < θ(p) + ε } .

Let us show that s|Q′ is bi-Lipschitz. Once it is done, passing to the closure Q = Q̄
′
gives the

required set.
Note that for some R > 0 the ball B(p, 10·R)A is almost isometric to the ball B(0, 10·R)Tp

and we can assume that U ⊂ B(p,R)A. By the volume convergence (see [4, 10.8]) and Bishop–
Gromov inequality, we can assume that

volmB(x,R)A > θ(p)−ε
2·π · volmB(0, R)Hm

for any x ∈ U ; here H
m denotes the m-dimensional hyperbolic space.

Assume x and y in Q′. Since ε is small, the lemma implies that there is z ∈ A such that
∡[y x

z ] is near π. It follows that ↑[yx] lies very close to the R
m−2-factor in Ty. The same way

we can show that ↑[xy] lies very close to the R
m−2-factor in Tx. In other words [xy] lies nearly

horizontally with respect to almost submetry s. In particular,

|s(x)− s(y)|Rm−2 ≶ λ±1 ·|x− y|A

some constant λ > 1. (In fact, we can take λ arbitrarily close to 1, but we do not need it.)

9 Localization

In this section we formulate a local version of the main theorem. This version is more general,
but its proof requires just a slight change of language. A couple of times we had to use this local
version in the proof. In a perfect world, we had to rewire the whole paper using this language.
However, this is not a principle moment, so we decided to keep the paper more readable at the
cost of being not fully rigorous. A more systematic discussion of this topic is given in [14].

First, we need to define Alexandrov region; its main example is an open set in Alexandrov
space.

9.1. Definition. Let A be a locally compact metric space. We say that a point p ∈ A is
ε- inner if the closed ball B̄(x, 2·ε) is compact.

9.2. Definition. We say that a locally compact inner metric space A of finite Hausdorff
dimension is an Alexandrov region if any point has a neighborhood where the Alexandrov
comparison for curvature > −1 holds.

The comparison radius rc(p) for p ∈ A is defined as the maximal number r such that p is
r-inner point and Alexandrov comparison for curvature > −1 holds in B(x, r).

Any point p in an Alexandrov region admits a convex neighborhood. Moreover, its size can
be controlled in terms of dimension, rc(p), and a lower bound on the volume of ball B(p, rc).
The construction is the same as for Alexandrov space [17, 4.3].

By the globalization theorem (see, for example, [1]), a compact convex subset in an Alexan-
drov region is an Alexandrov space. So the statement above makes it possible to apply most of
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the arguments and constructions for Alexandrov spaces to Alexandrov regions. Moreover, in the
case when an Alexandrov region is a Riemannian manifold (possibly noncomplete) it is possible
to take the doubling of a convex neighborhood from the proposition and smooth it with almost
the same lower curvature bound. This allows us to apply the main result from [24], where the
complete manifold can be replaced by a convex domain in a possibly open manifold.

Further, let us define a local version of smoothing. Let us denote by M
m
>−1 a class of m-

dimensional Riemannian manifolds without boundary, but possibly non-complete, with sectional
curvature bounded from below by −1.

9.3. Definition. Let Mn ∈ M
m
>−1 (with corresponding intrinsic metric) converge in Gromov–

Hausdorff sense to some metric space A via approximation. Suppose that Mn ∋ xn → x ∈ A,
dimA = m, and rc(xn) > R > 0. Let Un = B(xn, R)Mn

. Then we say that Un is a local
smoothing of U = B(x,R)A (briefly, Un−→∼ U).

It is straightforward to redefine test functions and weak convergence for local smoothings.
Using this language we can make a local version for each statement in this paper, the proofs go
without changes. As a result, we get the following local version of the main theorem 2.6.

9.4. Local version of the main theorem. Let Mn ∈ M
m
>−1, Mn−→GH A, Un ⊂ Mm, U ⊂ A,

and Un−→∼ U be a local smoothing.
Denote by qmn the dual measure-valued curvature tensor on Un. Then there is a measure-

valued tensor qm on U such that qmn ⇀ qm.
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