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Abstract

We prove weak convergence of curvature tensors of Riemannian manifolds for converging
noncollapsing sequences with a lower bound on sectional curvature.

1 Introduction

The weak convergence and measure-valued tensor used in the following theorem are defined in
the next section; a more precise formulation is given in 2.6.

1.1. Main theorem. Let My, Ms,... be a sequence of complete m-dimensional Riemannian
manifolds with sectional curvature bounded below by k. Assume that the sequence M,, Gromouv—
Hausdrorff converges to an Alexandrov space A of the same dimension. Then the curvature
tensors of M, weakly converge to a measured-valued tensor on A.

Note that from the theorem we get that the limit tensor of the sequence depends only on A
and does not depend on the choice of the sequence M,,. Indeed, suppose another sequence M),
satisfies the assumptions of the theorem. If the limit tensor is different, then a contradiction
would occur for the alternated sequence My, M7, Mo, MY, ... In particular, if the limit space is
Riemannian, then the limit curvature tensor is the curvature tensor of the limit space. The latter
statement was announced by the second author [22].

Analogous statements about metric tensor and Levi-Civita connection were essentially proved
by Perelman [16], we only had to tie his argument with an appropriate convergence. This part
is discussed in Section 7. It provides a technique that could be useful elsewhere as well. For
curvature tensor (which has a higher order of derivative), this argument cannot be extended
directly; we found a way around applying Bochner-type formulas as in [24].

The following statement looks like a direct corollary of the main theorem, and indeed, it
follows from its proof but strictly speaking, it cannot be deduced directly from the main theorem
alone. We will denote by Sc the scalar curvature and vol™ the m-dimensional volume; that
is, m-dimensional Hausdorff measure calibrated so that the unit m-dimensional cube has unit
measure.

1.2. Corollary. In the assumption of the main theorem, the measures Sc-vol™ on M, weakly
converge to a locally finite signed measure m on A.

The following subcorollary requires no new definitions.

1.3. Subcorollary. In the assumption of the main theorem, suppose A is compact. Then the
sequence
Sp = / Sc - vol™
M,

CONVETGES.



The main theorem in [24] implies that if a sequence of complete m-dimensional Riemannian
manifolds M,, has uniformly bounded diameter and uniform lower curvature bound, then the
corresponding sequence s, is bounded; in particular, it has a converging subsequence. However,
if M, is collapsing, then this sequence may not converge. For example, an alternating sequence
of flat 2-toruses and round 2-spheres might collapse to the one-point space; in this case, the
sequence S, is 0,4-m,0,4-m, ...

From the main theorem (and the definition of weak convergence) we get the following.

1.4. Corollary. Let R be a convez closed subset of curvature tensors on R™ such that all
sectional curvatures of tensors in R are at least —1. Assume that R is invariant with respect
to the rotations of R™. (For example, one can take as K the set of all curvature tensors with
nonnegative curvature operator.)

Suppose M, is a sequence of complete m-dimensional Riemannian manifolds that converges
to a Riemannian manifold M of the same dimension. Assume that for any n, all curvature
tensors of M, belong to K, then the same holds for the curvature tensors of M.

Remarks. The limit measure m in 1.2 has some specific properties; let us describe a couple of
them:
¢ The measure m vanishes on any subset of A with a vanishing (m —2)-dimensional Hausdorff
measure. In particular, m vanishes on the set of singularities of codimension 3. This is an
easy corollary of [24].
¢ The measure can be explicitly described on the set of singularities of codimension 2.
Namely, suppose A’ C A denotes the set of all points  with tangent space T, A = R™ 2 x
x Cone(#), where Cone(f) is a 2-dimensional cone with the total angle § = 0(z) < 2-7.
Then
mla = (2.7 — 6)-vol™ 2.

This statement follows from 4.2.
The geometric meaning of our curvature tensor is not quite clear. In particular, we do not
see a solution to the following problem; compare to [6, Conjecture 1.1].

1.5. Problem. Suppose that the limit curvature tensor of Alexandrov space A as in the main
theorem has sectional curvature bounded below by K > k. Show that A is an Alexandrov space
with curvature bounded below by K.

The theorem makes it possible to define a curvature tensor for every smoothable Alexandrov
space. It is expected that the same can be done for general Alexandrov space; so the following
problem has to have a solution:

1.6. Problem. FEztend the definition of measure-valued curvature tensor to general Alexandrov
spaces.

If this is the case, then one may expect to have a generalization of the Gauss formula for the
curvature of a convex hypersurface, which in turn might lead to a solution of the following open
problems in Alexandrov geometry. This conjecture is open even for convex sets in smoothable
Alexandrov space.

1.7. Conjecture. The boundary of an Alexandrov space equipped with its intrinsic metric is
an Alexandrov space with the same lower curvature bound.

More importantly, a solution to 1.6 might provide nontrivial ways to deform Alexandrov
space; see [20, Section 9.



Related results. The result of the main theorem in dimension 2 is well known [3, VII §13].

The construction of harmonic coordinates at regular points of RCD space (in particular,
Alexandrov space) given by Elia Brue, Aaron Naber, and Daniele Semola [5] might help to solve
1.6.

The problem of introducing Ricci tensor was studied in far more general settings [7, 9, 11,
27]. Curvature tensor for RCD spaces was defined by Nicola Gigli [6]; it works for a more general
class of spaces, but this approach does not see the curvature of singularities. It is expected that
our definitions agree on the regular locus.

About the proof. As it was stated, the 2-dimensional case is proved in [3, VII §13]. The
3-dimensional case is the main step in the proof; the higher-dimensional case requires only minor
modifications.

We subdivide the limit space A into three subsets: A° — the subset of regular points, A" —
points with singularities of codimension 2, A” — singularities of higher codimension. These sets
are treated independently.

First, we show that limit curvature vanishes on A”; this part is an easy application of the
main result in [24].

The A’-case is reduced to its partial case when the limit is isometric to the product of the
real line and a two-dimensional cone. The proof uses a Bochner-type formula (6.1) and Theorem
4.3 which is a more exact version of the following problem from [21].

1.8. Convex-lens problem. Let D and D' be two smooth discs with D

a common boundary that bound a conver set (a lens) L in a positively-
curved 3-dimensional Riemannian manifold M. Assume that the discs
meet at a small angle. Show that the integral fD ki1-ko is small; here k; D
and ko denote the principal curvatures of D.

The A°-case is proved by induction. The base is the 2-dimensional case. Further, we apply
the induction hypothesis to level sets of special concave functions. By the Gauss formula, these
level sets have the same lower curvature bound. In the proof, we use the Bochner-type formula
together with the DC-calculus developed in [16]. The first step in the induction is slightly simpler.

As a rule, the calculus is done in the approximating sequence of Riemannian manifolds.
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2 Formulations

In this section, we give the necessary definitions for a precise formulation of the main theorem.
For simplicity we will always assume that the lower curvature bound is —1; applying rescaling,
we can get the general case.

We denote by Alex™ the class of m-dimensional Alexandrov’s spaces with curvature > —1.

Suppose A, Ay, As,... € Alex™ and A, z> A. That is, A, converges to A in the sense
of Gromov—Hausdorff; since A € Alex™, we have no collapse. Denote by a,: A, — A the
corresponding Hausdorff approximations. If A is compact, then by Perelman’s stability theorem
[10, 19] we can (and will) assume that a,, is a homeomorphism for every sufficiently large n. In the
case of noncompact limit, we assume that for any R, the restriction of a,, to an R-neighborhood
of the marked point is a homeomorphism to its image for every sufficiently large n.

We say that A € Alex™ is smoothable if it can be presented as a Gromov-Hausdorff
limit of a non-collapsing sequence of Riemannian manifolds M, with sec M,, > —1; here sec
stands for sectional curvature. Given a smoothable Alexandrov space A, a sequence of complete
Riemannian manifolds M,, as above together with a sequence of approximations a,, : M, — A will
be called smoothing of A (briefly, M,, — A, or M, N A). By Perelman’s stability theorem,
any smoothable Alexandrov space is a topological manifold without boundary.

A Weak convergence of measures

In this subsection, we define weak convergence of measures. For more detailed definitions and
terminology, we refer to [8].

Let X be a Hausdorff topological space. Denote by 9t(X) the space of signed Radon measures
on X. Further, denote by C.(X) the space of continuous functions on X with a compact support.



We denote by (m|f) the value of m € MM(X) on f € C.(X). We say that measures m,, € M(X)
weakly converge to m € M(X) (briefly m,, — m) if (m,,|f) = (m|f) for any f € C.(X).

Suppose A, o A with Hausdorff approximations a,: A, — A and m,, is a measure on A,.
We say that m,, weakly converges to a measure m on A (briefly m,, — m) if the pushforwards
m), of m, to A by the Hausdorff approximations a,: 4, — A weakly converge to m. If the
condition (m/,|f) — (m|f) holds only for functions f with support in an open subset 2 C A,
then we say that m, weakly converges to m in Q.

Equivalently, the weak convergence can be defined using the uniform convergence of functions.
We say that a sequence f,, € C.(A4,) uniformly converges to f € C.(A) if their supports are
uniformly bounded and

sup { | fn(x) = foan(z)[} = 0.

TEA,
Then m,, — m if for any sequence f,, € C.(A,) with uniformly bounded supports and uniformly
converging to f € C.(A) we have (m,|f,) — (m|f).

B Test functions

In this subsection, we introduce a class of test functions and define their convergence.

Test functions form a narrow class of functions defined via a formula. It is just one possible
choice of a class containing sufficiently smooth DC functions; see the remarks in the next section.

Recall that the distance between points x,y in a metric space is denoted by |z — y|; we will
denote by dist, the distance function dist,: y — |z — y.

Suppose A,, A € Alex™ and A, -+ A. Then any distance function dist,: A — R can be
lifted to A,; it means that we can choose a convergent sequence p,, — p and take the sequence
disty,,, .

Choose r > 0 and p € A. Let us define smoothed distance function as the average:

(/ﬁs/tp,rz 7{ dist,, dx.

B(p,r)

We can lift this function to cfli\sjupnm: A, — [0,00) by choosing some sequence A4,, 3 p, — p € A.
We say that f is a test function if it can be expressed by the formula

f=(disty, r,-..,distyy ry);

where ¢ : (0,00)Y — R is a C%-smooth function with compact support. If for some sequences
of points A,, 3 pin — p; € A and C2%-smooth functions ¢,, that C%-converge to ¢ with compact
support we have

fn=¥n (diStm,mrw S 7diStPN,n77‘N ),
then we say that f, is test-converging to f (briefly, f,, — f).
Remarks. Note that test functions form an algebra.

Let M be a Riemannian manifold. Note that for any open cover of M, there is a subordinate
partition of unity of test functions. Further, around any point of M one can take a smoothed
distance coordinate chart. One can express any C2-smooth function in these coordinates, and
then apply partition of unity for a covering by charts. This way, we get the following:

2.1. Claim. On a smooth complete Riemannian manifold, test functions include all C%-smooth
functions with compact support.



C C'-delta convergence

Here we introduce C'-delta convergence. It will be necessary to formulate the main theorem
in an invariant way, but, except for 5B, everywhere in the proofs, we will use test convergence
and occasionally DC convergence instead. (As claimed in 2.3 test convergence implies C!-delta
convergence.) By that reason, it would be wise to skip this section for the first reading.

The C'-delta convergence will be used together with other delta convergences introduced
in 5A.

Convergence of vectors. Let A be an Alexandrov space, we denote by TA the set of all
tangent vectors at all points. So far T A is a disjoint union of all tangent cones; let us define a
convergence on it.

We will use gradient exponent gexp: TA — A which is defined in [1]. Given a vector V' € TA,
it defines its radial curve vy : t — gexp(t-V). We say that a sequence of vectors V;, € TA con-
verges to V € TA (briefly, V,, — V) if 4y, converges to vy pointwise. Since the radial curve 7y
is |V|-Lipschitz, we get that any bounded sequence of vectors with base points in a bounded set
has a converging subsequence of 7y, . Further, the pointwise limit of such curves is a radial curve
as well. Therefore, any bounded sequence of tangent vectors with base points in a bounded set
has a converging sequence.

In a similar fashion, we can define the convergence of tangent vectors to sequences of Alexan-
drov spaces A,, that converge to A. That is, if V,, € TA,, is a bounded sequence of tangent vectors
at points on a bounded distance to the base points, then it has a subsequence that converges to
some vector V € TA.

Note that

[V| < liminf |V,|
n—oo

and the inequality might be strict.

Recall that if V' € T, is the unit vector in the direction of [pq], then ~y is a unit-speed
parametrization of [pg]. Using this we get the following observation; it provides a way to apply
the convergence.

2.2. Observation. Let M,, —> A be a smoothing, p,,qn € M, and p, — p, ¢, = q asn — 0.
Denote by V,, € T, and V' € T, the directions of geodesics [pnqn] and [pq]. Suppose that there
is a unique geodesic [pq] in A. Then V,, = V.

C'-delta smoothness. Given a function f: A — R and a vector V € TA, set

V= (fow(®)]i=o

Note that V f is defined for all DC functions and, in particular, all test functions.

Two vectors V,W € T, A will be called j-oppositeif 1 -6 < |[V]|<1,1-6 < |[W]| <1, and
(X, V) 4+ (X,W)| < ¢ for any unit vector X € T,A. We say that V,W € T,A are opposite if
they are d-opposite for any d > 0; in this case, they are both unit vectors and make angle 7 to
each other.

A function f: A — R is called C'-delta smooth if for any compact set K C A and £ > 0
there is 6 > 0 such that any sequence of points p,, — p € K and unit vectors V;, € T}, A that
converges to a vector V € T, A that has a §-opposite vector we have

Vf— lim V,f| <e,
n—oo

)

where “lim ” stands for an arbitrary partial limit.



Suppose M,, ~+ A. A sequence of C’1 smooth functions f,: M, — R is called C'-delta

converging to f A — R (briefly, f, —> f) if f, converges to f pointwise and for any compact
set K C A and any € > 0 there is 6 > 0 such that if a sequence of unit vectors V,, € T, M,
converges to a vector V' € T, A such that p € K and V has a §-opposite vector, then we have

Vf— lim Vpfa| <e.
n— o0

2.3. Claim. Any test function is C*-delta smooth. Moreover, for any smoothing M, ~+ A,
sequence of test functions f,: M, — R, and a test function f: A — R we have

es Cy
fngf - fn—6>f

Proof. Let V and W be J-opposite vectors in T, A. Note that for almost all points ¢ € A, we
have
|V disty +W distq | < 6.

It follows that - .
|Vdist,,, + Wdisty | < ¢ o
for any ¢ € A and r > 0.
Suppose V, is a sequence of unit tangent vectors on M,, such that V,, — V; that is, vy, = v
as n — co. By monotonicity of radial curves [1, 16.32], we get

Vdist, < hm 1an distg,,
if ¢, — q. Integrating, we get
Vdist, , < liminf V,dist,, ,
n—oo

Suppose V has a §-opposite vector W. We can assume that W is a unit geodesic vector; that
is, there is a geodesic [ps] in the direction of W. Moreover, we can assume that [ps] is a unique
geodesic from p to s. Choose points s,, and p,, that converge to s and p respectively. By 2.2, the
directions W, of [p,s,] converge to W. Note that W, is d-opposite to V;, for all large n.

Repeating the above argument, we get

W(;ﬁs/tq,r < liminf W, dlStqn

n— oo

Applying @ we get C'-delta convergence of distqu and, in particular, C'-delta smoothness of
dist, . Applying the definition of test function, we get the result. O

Recall (2B) that for any smoothing M,, —> A and a test function f: A — R there are test

test

functions f,: M,, — R such that f, — f.

2.4. Corollary. Given a smoothing M,, —> A and a test function f: A — R, there is a sequence
(}1

of C'-smooth functions f,: M, — R such that f, —> f.

Remarks. In the next section, we define measure-valued tensor as a functional on an array of
test functions. Note that, one test function might have very different presentations that lead to
different test convergences. Thus to prove the invariance of measure-valued curvature tensor we
need to use the C'-delta convergence which is more general than test convergence. We could use
other classes of functions as well. For example, a subclass of DCy functions (see Section 7) or a
subclass of C!-delta function (see Section 2C). Of course, we have to have an analog of 2.4 for
the chosen class. Hope a more natural setting will be found eventually.



D Tensors

In this subsection, we define measure-valued tensors on Alexandrov spaces. Basically, we reuse
the derivation approach to vector fields in classical differential geometry. This definition will be
used in Claim 2.9 that reduces the main theorem to Proposition 2.10 and will not show up ever
after.

Let A € Alex™. Recall that 2t(A) denotes the space of signed Radon measures on A.
A measure-valued vector field v on A is a linear map that takes a test function, spits a
measure in 9M(A), and satisfies the chain rule: for any collection of test functions f1,..., fx
and a C?-smooth function ¢: R¥ — R, we have

n

0((frs s fn)) = D () (f1, - Fu)-0(fi)-

i=1

In the same way, we define (contravariant) measure-valued tensor fields. Namely, a mea-
sure-valued tensor field t of valence k on A is a multilinear map that takes a k-array of test
functions, spits a measure in 9(A), and satisfies the chain rule in each of its arguments.

Suppose that x1,...,x,, are local coordinates in an m-dimensional Riemannian manifold M.
Then a measure-valued vector field v on M can be described by m components, these are mea-
sures (v(z1),...,0(x,,)); these components transform by contravariant rule under change of
coordinates.

By the definition of measure-valued vector field, we get

o(f) = Z&ifn(aci).

Similarly, for arbitrary k, a measure-valued tensor field of valence k is defined by m* components
(24, .. ., 24, ); namely,

Wi fi) = 3 Bnfie O Sy, ).

Note that if T" is a smooth contravariant tensor field then t = T'- vol is a measure-valued tensor
field. In other words, usual tensor fields might be considered as a subspace of measure-valued
tensor fields.

2.5. Definition. Let M, —> A be a smoothing. Assume that t, is a sequence of measure-
valued tensor fields on M,, and t is a measure-valued tensor field on A, all of the same valence k.
We say that t, weakly converges to t (briefly t, — t) if

cj .
fz,n—6>fz forallz - tn(fl,nv"'vfk,n)At(flv"'afk)

for arbitrary k sequences fi ., ..., fi.n of C'-smooth functions and test functions fi,..., fy: A —
— R

E Dual curvature tensor

The curvature of Riemannian manifold M is usually described by a tensor of valence 4 that will
be denoted by Rm. We will use a dual curvature tensor — a curvature tensor written in



a dual form that will be denoted by Qm; it is a tensor field of valence 2-(m — 2) defined the
following way:

Qm(X17 B 7Xm—2aY17 B aYm—Z) =
= Rm(*(Xl VANKIERIVAN Xm—2)7 *(Yl VANERIVAN Ym_z)),

where X;,Y; are vector fields on M and *: (A" > T)M — (A° T)M is the Hodge star operator.
This definition will be used further mostly for gradient vector fields of semiconcave functions.

In addition, we will need a measure-valued version of Qm denoted by qm; it will be called
dual measure-valued curvature tensor. Namely, we define

qm(fla"'afm—27gl7"'7gm—2)

as the measure with density

Qm(Vfl, .. .,me_g,Vgl, .. .,ng_Q) : M — R.

Remarks. Note that
Qm(X1, .., X2, X1, oo, X)) = | X1 A A X o2 K,

where K, is the sectional curvature of M on a plane o orthogonal to (m — 2)-vector X; A ...
... N X,,_o. Hence, the sectional curvatures of M and therefore its curvature tensor Rm can be
computed from gm. By the symmetry

qm(fl»' . 'afm72aglv cee 7gm72)
= qm(gla ce 7gm—2af17 ceey fm—Q),

the density of qm is defined by the sectional curvature. Therefore measure-valued tensor qm gives
an equivalent description of the curvature of Riemannian manifolds.

As you will see further, the described dual form of curvature tensor behaves better in the
limit; in particular, it makes it possible to formulate 4.2.

In the 2-dimensional case, the valence of gm is 0; in this case, qm coincides with the curvature
measure — the standard way to describe the curvature of surfaces, [3, 25]. For a smooth surface,
the density of this curvature measure with respect to the area is its Gauss curvature. In this
case, it is known that curvature measures are stable under smoothing [3, VII §13]; in other words,
our main theorem is known in the two-dimensional case.

F Formulation and plan

2.6. Main theorem. Consider a smoothing M,, —+ A. Denote by qm,, the dual measure-valued
curvature tensor on My,. Then there is a measure-valued tensor qm on A such that qm, — qm.

Let A be an m-dimensional Alexandrov space without boundary. Let us partition A into
three subsets A°, A’, and A”:
o A° is the set of regular points in A; that is, the set of points with tangent cone isometric
to the Euclidean space.
o A’ — the set of points in A\ A° with an isometric copy of R”™~2 in their tangent space; in
other words, for any p € A’, the tangent space T, is isometric to the product Cone(8) x
x R™~2 where Cone(f) denotes a two-dimensional cone with the total angle § = (p) < 2-7.



¢ A" — the remaining set; this is the set of points with tangent space that does not contain
an isometric copy of R™~2,
According to [13], A’ is countably (m — 2)-rectifiable, and A" is countably (m — 3)-rectifiable.
Observe that the set of regular points A° can be presented as

A° =) 47
>0

where A° denotes the set of d-strained points of A.
Let M be an m-dimensional Riemannian manifold. Denote by K4, (x) the maximal sectional
curvature at © € M. The following statement is a direct corollary of the main result in [24]:

2.7. Corollary. Given an integer m > 0, there is a constant const(m) such that the following
holds:

Let M be an m-dimensional Riemannian manifold (possibly noncomplete) with sectional cur-
vature bounded below by —1. If for some r < 1 the closed ball B(p,2-7)yr is compact, then

Kooz < const(m)~rm_2.

B(p,r)m

2.8. Observation. There is another constant const’(m) such that

‘Qm(Xla aXm727Y15"'7Ym72)| <
< const’ (m) - Koaz | X1 Ao A X o [Y1 A AV o]

Note that 2.7 and 2.8 imply the following:
2.9. Claim. Given a smoothing M, > A, test functions fi: A — R, and sequences of C*'-

1
smooth functions f;,: M, — R such that f; , &> fi the sequence of measures qm,(fin, ...
oo foum—an) has a weakly converging subsequence.
Moreover, the subsequence can be chosen simultaneously for several choices of function arrays
s0 that it meets the chain rule. More precisely, choose i; fix all functions fi n,. .., fo.m—an except
fin; suppose qm; . (fin) = qm,(fin,- s foom—an). Assume hjn: M, — R are C'-smooth

Cl
functions such that h;, —= h;, each h; is a test function, and

hO,n = Sp(hl,na ceey hk,n)

for a fized C?*-function ¢: R¥ — R. Then the sequence of measure arrays am; . (hon), - - -
s qm; o (hin) has a partial limit qm ,;(ho), ..., qm;(hy), and

k
qm ;(ho) = Z(aﬂp)(hh ooy h)-qm g (hy).

By Perelman’s stability theorem, the space A in the claim is a topological manifold. In
particular, A has no boundary; in other words, the singular set in A has codimension at least 2.
Together with the claim, it implies that the main theorem (2.6) follows from the next statement.

2.10. Proposition. Let M, > A and dim A = m. Suppose hy,...,hy,_o are test functions

Cl
on A and higp,... him—2n are C'-smooth functions on M, such that hin —% h; for each i.
Let my and mo be two measures on A that are weak partial limits of the sequence of measures
am,(R1ny -y By Rin, ooy B n) on My, Then the following statements hold:

10



(i) my|ar = malar = 0;
(1) wyfar = mg|ar;
(’LZZ) m1|Ao :m2|Ao.

The three parts of the proposition will be proved below in sections 3, 4, and 5 respectively.

Proofs

3 Singularities of codimension 3

Proof of 2.10(i). According to [4, 10.6], A” has a vanishing (m — 2)-dimensional Hausdorff
measure; that is, A” can be covered by a countable family of balls B(;,7;) such that 3" 772 is
arbitrarily small. Therefore, 2.8 and 2.7 imply the statement. O

4 Singularities of codimension 2

The following lemma will be proved in Section 8.

4.1. Lemma. Let A be an m-dimensional Alexandrov space without boundary. Then the subset
A" C A can be covered by a countable set of compact sets Q; such that each Q; admits a bi-
Lipschitz embedding into R™2.

Let h: A — RF be a Lipschitz map defined on an m-dimensional Alexandrov space without
boundary. Suppose Q C A is a closed subset such that there is a bi-Lipschitz embedding
s: @ — R*. By the generalized Rademacher theorem, the metric differential of s~! is defined
almost everywhere in the domain of definition of s~'. Moreover, the metric differential is defined
by a bilinear form; its determinant is the Jacobian of s~1, briefly jac s~!. The same way we can
define jac(h o s7!) (we can apply the standard Rademacher theorem this time). Further, set
jac(h|g) = jac(hos™1)/jacs—'. Tt is straightforward to check that this definition is vol*-almost-
everywhere independent of the choice of s.

Consider the function o
(p) = 2.7 Yo" Zp o

volm—1g§m—1>
where ¥, denotes the space of directions at p. According to [4, 7.14], §: A — R is lower-
semicontinuous.

Note that 6 is identically 2-7 on A°. Further note that for any point p € A’, its tangent cone
is isometric to the product space Cone(#) x R”~2, where § = (p) < 2-m. Since vol™ 2(A") =0,
the measure (27 — 6)- vol™ 2 vanishes on A”.

Note that 2.10(i:) follows from Lemma 4.1 and the following statement; it will be proved in
4C—4D.

4.2. Proposition. Let m be one of two limit measures m; in 2.10 and h = (hy,..., hp_2): A —
— R™2 s an array of test functions. Suppose that Q C A is a compact subset that admits a
bi-Lipschitz embedding into R™2. Then

mlg = (2.7 — 6)-(jac(h|q))*: vol" 2.
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A Gauss and mean curvature estimates

4.3. Theorem. Let f, h be a pair of strongly conver smooth 1-Lipschitz functions defined on
an open set of a 3-dimensional Riemannian manifold. Suppose that
(i) |Vfl =1 and
IV(f+h)] <e|VS

for some fized positive € < %;
(i) for some a,b € R, the set
Wap ={pe€M|[f(p) =a, h(p)<b}

1s compact.
Denote by ki(p) < ka(p), H(p) = k1(p) + ka(p) and G(p) = ki(p)-ko(p), the principal, mean,
and Gauss curvatures of Wy, at p. Then

/ G <100-¢ (2]
Wa,b
and
/ H < 10-y/e- length(OW, ). (3)

Wa b

The proof is based on the 2-dimensional case of the following statement, which is the integral
Bochner formula with Dirichlet boundary condition.

4.4. Proposition. Assume 2 is a compact domain with smooth boundary OS2 in a Riemannian
manifold and f is a smooth function that vanishes on 0S). Then

[ 8517 = ttess 12 = (Ric(v).v5) = [ 111911,
o

Q
where H denotes the mean curvature of 0f2.
Proof of 4.3. Equip W, with unit normal vector field n = %. Let
Sp: TpyWeap — TpWay
be the corresponding shape operator, so S,: v — V,n. Since f is strongly convex, we have that
(Sp(v),v) = & |v]?

for a fixed value 6 > 0 and any tangent vector v € T,W .
Note that the restriction u = hlyw, , is strongly convex. Moreover,

Hessp, u(v,v) 2 (1 —¢)-(Sp(v), v) (4]

for any p € W, and v € T, W, ;. Indeed, consider the geodesic v in Wy such v(0) = p and
~'(0) = v. Set w = ~+"(t). Note that

w = —(Sp(v), v)-n,

12



Since h is strongly convex, Hess, h > 0; therefore

(Hessy, u)(v,v) = (Hessy, h)(v,v) + (V,h, w) >
> =Tt (S (0),0) >

2 (1 =2):|Vpfl-(Sp(v),v).

Vv

Since |V f| > 1, @ follows.
Since (Sp(v),v) >0 and € < 3, the inequality @ implies that

4- det(Hess, u) > G(p) (5]
and
—2-Au > H(p) (6]
for any p € Wy .
Denote by Ai(p), A2(p) the eigenvalues of Hess, u, so
trace(Hessu) = Au = A\ + Ag,
| Hessu|? = AT + A3,
det(Hessu) = A1-Ag,

and hence
2. det(Hessu) = |Au|? — | Hess ul?.

Since W, p is two-dimensional, by Proposition 4.4 we get that

/ 2. det(Hess u) = / K-|Vul® + / k| Vul?,
Wa,b Wa,b BWa,b
where k > 0 is the geodesic curvature of OW, ; and K is the curvature of W, ;.

Since u is a convex function that vanishes on the boundary of W, s, it has a unique critical
point, which is its minimum. By the Morse lemma, W, ; is a disc. Therefore, by the Gauss—

Bonnet formula, we get that
/ K+ / K =2-T.
Wab

8Wayb
Whence,
/det(Hessu)éﬂ- sup |Vyul*.
W PEWa b
a,b

Note that V,u is the projection of V,h to T, W, ;. Therefore,
IVpul® = [Vph|? = (Vph,n)? <
<1-(1—-e)?<
< 2.
It follows that
/ det(Hessu) < 2-7-¢.

Wa,b
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Applying ©, we obtain @.
Similarly, by the divergence theorem, we get that

—/Au: / |Vul.
Wa,b

OWa

Whence @ implies

/ H < 10-y/z length(OW, ).
Wa,b

B Curvature of level sets

Let M be a 3-dimensional Riemannian manifold. Choose a smooth function f: M — R. Consider
its level sets
Le={zxeM|f(z)=c}.

If the level set L. is a smooth surface in a neighborhood of © € L., then denote by ki (z) < ka(x)
the principal curvatures of L. at z. In this case, set

G(x) = ka1 (z)-ka(2),

H(z) = k() + k2 (2);

that is, G(x) and H(z) are Gauss and mean curvature of L. at .
Recall that Cone() denotes a 2-dimensional cone with the total angle 6.

4.5. Theorem. Let M, > Cone(d) x R and f,: M, — R be a sequence of strongly concave
smooth 1-Lipschitz functions. Suppose that sec M,, > —% for each n, and f, converges as
n — oo to the R-coordinate f: (x,t) — t on Cone(d) x R. Then G,, and H, (the Gauss and
mean curvatures of the level sets of f,) weakly converge to zero.

Proof. Choose p € Cone() x R; set a = f(p).

By the theorem of Artem Nepechiy [15], there is a (—2)-concave function o defined in an r-
neighborhood of p such that o(x) = —|p— z|? + o(|p — x|?). Moreover, the function g is liftable;
that is, there is a sequence of (—2)-concave g,: M,, — R that converges to p.

Consider a point ¢ € Cone(f) x R above p; that is, its R-coordinate is larger, and its Cone(f)-
coordinate is the same. If the R-coordinate of ¢ is large, then dist, 4+ f is A-concave for small
A > 0 and it has a nonstrict minimum at p. Therefore, given A > 0, we can find ¢ so that the
sum s = f 4 dist, +A-p is (—A)-concave and has a strict maximum at p. Moreover

7%)\|p — xl%one(Q)xR > S(LZJ) — S(p) P 7%A|p - ‘T|éone(9)><R

and therefore
|vf€3‘ < 10)“p - m'Cone(G)xR (7]

if [p — 2| cone(s) xr 1s sufficiently small; say if [p — Z|cone(o)xr < 15-

Choose a sequence of points g, € M, that converges to q. Let us apply the Green—Wu
smoothing procedure to disty, +A-0,; denote by h,, the obtained function; we can assume that
|hyn — distg, —A-0,| — 0. Observe that @ implies that the first condition in 4.3 is met for all
large n in an g-neighborhood of p, with ¢ = 10-A-r. Moreover, one can choose b so that the
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second condition is satisfied and B,, = B(py,r/10) N L, C W, . Applying 4.3, we get that for

any 0 > 0, we have
/Gn<§7 and /Hn<6.
B, B,

for all large n. It remains to integrate the obtained inequalities by a and pass to a limit as
n — 00. O

For a product R™2 x Cone(f), denote by V the vol™ *-measure on the vertical line R”~2 x
x {0}. Further, consider the curvature measure

w=(27m—0)V

on R™~2 x Cone(#).

4.6. Corollary. Suppose that M, —> Cone(f) x R and f,: M, — R be as in 4.5. Set u, =

_ Vfn
= &7 Then

(i) (Ricun,un) weakly converges to zero.

(ii) Let v, and w, be sequences of uniformly bounded, continuous vector fields on M,,. Sup-
pose that (v, un) and (w,,u,) converge uniformly as n — oo to some constants a and b
respectively. Then

Qm(v,, w,) — a-b-w,

where w is the measure on Cone(f) x R described above.

Proof; (i). Passing to a subsequence if necessary, we can assume weak convergence of (Ric ty,, uy, ) -
-vol® to a measure m on Cone(#) x R. Since sec M,, > —L, we have that m > 0. Therefore it is
sufficient to show that m < 0.

By 6.1 we have that the following equality

/gpn'<Ricun,un> =
Q
Q

holds for any function ¢, with compact support on M,,, assuming that all expressions in the
formula have sense.

It remains to find a sequence of nonnegative functions ¢, : M,, — R with compact support
that converges to a ¢: Cone(f) x R — R such that (1) ¢ is unit in a neighborhood of a given
point p € Cone(d) x R and (2) we have control on the three terms on the right-hand side of the
formula; the latter means that we have the following weak convergences:

on-Gp =0, Hy-(up, V‘Pn> =0, (Von, vunun> — 0. (]

For the first convergence, it is sufficient to choose the sequence ¢,, so that in addition it is
universally bounded. Indeed, since |V f,| — 1, we have that 4.5 implies the first convergence
in ©.

Similarly, to prove the second convergence in @, it is sufficient to assume in addition that
|[V,| is universally bounded and apply 4.5.

To prove the last convergence in ®, note that |V, u,| — 0 away from the singular locus.
The latter follows from 5.3 and 5.4. Indeed, V,,, u, can be written in a common chart away from
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the singular locus. The lemmas imply that its components converge to the components of V,u
in the limit space. By assumption w is parallel in the limit space; in particular V,u = 0.

This observation will be used to control the term (Vi,,, V,, u,) at the points far from the
singular locus of Cone(#) x R. To do this we only need to assume that |Ve,| is bounded. Next,
we describe how to control it near the singularity.

Since |u,| = 1, we have V,_u, L Vf,. Therefore if Vi, is proportional to Vf, at some
point, then (V¢,,,V, wu,) = 0 at this point. This observation makes it possible to choose ¢,
so that the term (V,, V,, uy,) vanish around the singular locus of Cone(#) x R. Namely, in
addition to the above conditions on ¢, we have to assume that the identity ¢,, = ¥ o f,, holds
at the points of M, that are sufficiently close to the singular locus of Cone(#) x R.

Finally, observe that the needed sequence exists. Indeed, one can -
take

on = (00 diStpn)'(w o fn)
for appropriately chosen fixed mollifiers o,9: R — R and M, >
S Pn — P

(i). Since G,, — 0, we get that the curvature measure of level sets
of f,, weakly converges to the curvature of Cone(#). It follows that

Qm(tp, uy) = w.

Suppose v], L u, for all n. Part (i) implies that Qm(v],,v}) — 0.
Fix t € R. Since the lower bound on sectional curvature of M,, converges to 0, any partial
weak limit of Qm(v!, + t-wy,, v, + t-w,) is nonnegative. It follows that

Qm(v;, wy) — 0

for any sequence of fields v}, w,, such that v}, L w,,.

Counsider the vector fields v}, w/, such that

’
vy, L Uy, Up = Qp-Up + Uy,

w, 1wy, Wy, = by Uy + W),
Since Qm is bilinear, we get that
Qm(vn, wy) = Qm(vy, wn) + ap - [QM(tn, w),) + by QMU Uy ).

By assumption, a, = (un,v,) and b, = (u,,w,) uniformly converge to a and b respectively.
Whence the statement follows. O

C Three-dimensional case

Proof of the 3-dimensional case in 4.2. Suppose M,, — A and dim A = 3. Choose a set Q C A
that admits a bi-Lipschitz embedding into R.
Let us split m into negative and positive parts m = m* — m™; that is,

mE(X) :=sup{+m(Y)|Y Cc X }.

Since the sectional curvature of M, is bounded below, we get that m™ has bounded density; in
other words, m™~ is a regular measure with respect to vol® on A. Since Q has zero volume, we
get m—(Q) = 0.

16



Set n = m|g; from above we have n > 0. By [24], n is regular with respect to vol' on Q.
Therefore it is sufficient to show that

(2-m = 0)-(jac(h|q))?

is the vol'-density of n at vol'-almost all p € Q.

Choose a bi-Lipschitz embedding s: Q@ — R; set K = s(Q). Since s~! and h o s~ ! are
Lipschitz, by Rademacher’s theorem, we can assume that s~! and h o s~! are differentiable at
almost all z € K. Moreover, we can assume that d,s™(y) = (A\-y,0) € R x Cone(f) = T, and
the vol'-density of n at p = s~ () is defined.

Shifting and scaling the interval K, we may assume that z = 0 and A = 1. In this case,
[jac, (hlQ)| = ldo(h o s~ ).

Note that we can choose a sequence of points p,, € M, and a sequence of factors ¢,, — oo
such that (¢, M, py,) converges to the tangent space T, = R x Cone(6).

Applying Perelman’s construction [20, 7.1.1 and 7.2.3] for a horizontal vector in T, = R x
x Cone(f), we can choose a sequence of functions f,: ¢,-M, — R satisfying the assumptions
in 4.5; let u, = V f,/|V fn|. Consider the sequence of functions B en-M, — R defined by

ﬁn(x) = cn(hn () = hn(pn))-

Since A = 1, we have that |(Vh,,u,)| uniformly converges to |do(h o s~!)|. By 4.6(ii), the
sequence of measures qm(ﬁn, ﬂn) on ¢, M, — R weakly converges to |dy(h o 571)|2'wCone(9)><R'
Recall that vol'-density of Weone(9)xk ON the singular line is 2.7 — 6(p).

Observe that

(A, ) [B(pns Ve, ar,] = - amh, 1) [B(9ns =)o, ]

Whence (2-7 — 6(p))-(jac, (hlqg))? is the vol'-density of n at p as required. O

D Higher-dimensional case

Suppose M,, =+ Cone(#) x R™~2 where Cone(f) denotes a two-dimensional cone with the total
angle 8 < 2-7. First, we will show that the curvatures of M, in the vertical sectional directions of
Cone(#) x R™~2 weakly converge to zero; an exact statement is given in the following proposition.
By combining this result with the 3-dimensional case we get 4.2 in all dimensions.

For XY € T,, denote by K(X AY) the curvature in the sectional direction of X A Y.
A function f: Cone(d) x R™~2? — R will be called a vertical affine function if f can be
obtained as a composition of the projection to R™~2 and an affine function on R™~2.

4.7. Proposition. Let M, ~+ Cone(f) x R™~2 and f,,h,: M, — R be sequences of strongly
concave smooth Lipschitz functions. Suppose that sec M, > —% for each n, and we have pointwise
convergences fn, — f and h, — h, where f and h are vertical affine functions on R™~2x Cone(6).
Then

K(Vf, ANVhy)-vol™ — 0.

Let ¥ be a convex hypersurface in an m-dimensional Riemannian manifold M. Suppose z

is a smooth point of ¥; that is, the tangent hyperplane H, of ¥ is defined at z; denote by
€1,...,em—1 an orthonormal basis of H,. Set

Zes(z) = ZK(ei Aej).
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In other words,
Zcs = Sc —2- Ric(nyg, ny),

where ny; is the unit normal vector to X.
Since tangent hyperplanes are defined at almost all points of convex hypersurfaces, Zcys(x) is
defined almost everywhere on 3.

4.8. Lemma. Let X be a strongly convex hypersurface in an m-dimensional Riemannian man-
ifold M with curvature = —1. Suppose that for some point p € ¥ and r < 1 the closed ball

B(p,2-r) in the intrinsic metric of ¥ is compact.
Then,

/ Zes(x)-vol™ ™ < (m —1)-(m — 2)-const(m — 1)-r™3,
z€B(p,r)

where const(m — 1) is the constant in 2.7.

Proof. If ¥ is smooth, then the inequality follows from 2.7, and the fact that curvature cannot
decrease when we pass to a convex hypersurface.

In the general case, the surface 3 can be approximated by a smooth convex surface; this can
be done by applying the Green—Wu smoothing procedure; compare to [2].

It remains to pass to the limit. More precisely, suppose ¥, is a sequence of smooth strongly
convex hypersurfaces that converges to . For each n, choose a point p, € 3, such that
pn — p. By [23, Theorem 1.2], (3,,, p,) converges to (3, p) as in the pointed Gromov—Hausdorff
convergence.

Recall that vol,,_1 on %, weakly converges to vol,,_1 on ¥ (see [4, 10.8]). Further, since M
is smooth, Zcy, is bounded in B(p,,r)s, . Therefore,

/ Zes, (x)- vol™ ™1 — / Zes(z)- vol™ 1 as n — 00

2€B(pn.,T)xs, z€B(p,r)s

follows if for almost all x € X we have that for any e > 0 there is § > 0 such that if x,, € ¥, and
|z, — x| < 8 for large n, then
| Zes, () — Zex ()] < e.

This condition holds if the tangent plane H, is defined. Whence the nonsmooth case follows. [

Proof of 4.7. Passing to a subsequence, we can assume that
K(Vfy AVhy)-vol™ = m

for some measure m on R™~2 x Cone(f).

First, let us show that m is supported on the singular locus. If p is not singular, then it has a
flat neighborhood. Therefore by a local version of 5.5 (see also Section 9) we get that m vanishes
in a neighborhood U 3 p. Indeed, we can include copies of U (which is flat) in the approximating
sequence U,, C M,, of U and argue as in the introduction.

Let p be a singular point on Cone(f) x R™~2; let us denote its liftings by p,, € M,,. We can
assume that p corresponds to the origin of R™~2. Choose points A1y -y Gm—2.m, 010y Dm—2n
in M,, such that the functions f; , = dist,, , —|ai,n —p| and —h; ,, = —disty, , +|b; , —p| converge
to it vertical coordinate function on Cdne(@) x R™~2, Further, choose points Cl,n,C2,msC3,n
so that the functions g;, = dist., , —|c;,n — p| converge to Busemann functions for different
horizontal rays in Cone(0) x R”~? emerging from p. Note that the latter implies that the angles

Ci,n

A (pn c;) are bounded away from zero for all large n.
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By [20, Lemma 7.2.1], there is an increasing concave function ¢
defined in a neighborhood of zero in R such that ¢’ is close to 1 and for
any € > 0 and i # j the function

Rm—2

Sijm =90 Gin+P0ogin+ > [p (e fim)+ @ (ehin)]

7

is strongly concave in B(p,, R) for fixed R > 0 and every large n.

Denote by s;;: Cone(f) x R™~2 — R the limits of sij,n- Note that
given w > 0, we can take small € > 0 so that for all i # j the set
si_jl[—w, w] covers the singular locus in B(p, R).

Note that we can choose €5 > 0 so that for almost all points z €
€ B(pn, R) the differential dys;;, is linear and |d;s;j,,| > €9 > 0 for
some ¢ and j. Indeed, these differentials are linear outside cutlocuses of a; , b;n, and ¢; »; in
particular, they are linear at almost any point =, € M,. Further, if the differential d, s12 5 is
very close to zero, then the directions of [z,,¢1,,] and [z,,c2,] are nearly opposite. Since z,
is close to p,, we get that for large n the angles £[z, o] is bounded away from zero, we get
|dz, s13,n| is bounded away from zero as well.

Since f, and h, are converging to vertical affine functions, we get that for large n their
gradients are nearly orthogonal to V,,g;» at almost all z,, € M,,. Suppose d;s;j, is linear and
|dzSijn| > €0 > 0. Then gradients V,, f, and V,, h, are nearly orthogonal to V,s;; .

Set Xijn = Zijnlc) ={x € My, |sijn(x) = c}. The argument above implies that for almost
all points x € B(p,, R) one of the sectional directions of the tangent directions o of 3;; ,, is close
to the sectional direction V f,; A Vh,,. In particular, given é > 0, we have

3,m

K(Vfu AVh,)(2) < K(0) 4 0| Kz ()]

for all large n (Kynaz is defined in 2.7).

By 4.8 and the coarea formula, the sum of integral curvatures of M, in the directions of ¥;; ,,
at , at the subsets where |dy, $i;n| > €0 is bounded by const-w. By 2.7, the same holds for the
integral of K(V f, A Vh,,) if n is large. The proposition follows since w can be taken arbitrarily
small. O

Proof of the general case of 4.2. Choose m — 2 sequences of strongly concave functions fi ;...

. fm—2.nt M, — R that converge to vertical affine functions f1,..., fp,—2 on Cone(8) x R™—2
with orthonormal gradients. It is done using Perelman’s construction [20, 7.1.1 and 7.2.3] for the
corresponding vertical vectors in Cone(f) x R™~2.

Note that the fields e; , = Vfin, ..., ém—2n = Vfm_2, are nearly orthonormal; in par-
ticular, they are linearly independent for all large n. Let us add two fields e,,—1,, and e, , so
that €1y, ..., €m,n form a nearly orthonormal frame in M,; that is, (e; »,€;,) — 0 for ¢ # j and

(€in,€in) — 1 for any i as n — oo.

Observe that 4.7 implies that K(e; Aej)-vol = 0if §,5 <m — 2.

Let us show that K(e; A ej)~ vol = 0 for i < m —2 and j > m — 1. The 3-dimensional case
is done already; it is used as a base of induction. Let us apply the induction hypothesis to the
level surfaces of fi ,,. (Formally speaking, we apply the local version of the induction hypothesis
described in Section 9.) Since the curvature of convex hypersurfaces is larger than the curvature
of the ambient manifold in the same direction, we get the statement for i # 1. Applying the
same argument for the level surfaces of f;,, we get the claim.

Now let us show that K(e,—1 A em)- vol™ — wWeone(g)xrm—2. Consider the level sets L,
defined by

fl,n:Cla ceey fm—2,n:0m—2~ 9]
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Note that L, —> Cone(#). Applying the 2-dimensional case to L,, and the coarea formula, we
get that curvatures of L, weakly converge to wcone(g)xrm-2. It Temains to show that the extra
term in the Gauss formula for the curvature of L, weakly converges to zero; in other words, the
difference between the curvature of L,, and sectional curvature of M, in the direction tangent to
L,, weakly converges to zero.

The 3-dimensional case is done already. To prove the general case, we apply the 3-dimensional
case to the 3-dimensional level sets defined by m — 3 equations from the m — 2 equations in ©.
(The same argument is used in the proof of 5.5, and it is written with more details.)

Note that for 8 = 0, the last argument implies the following:

4.9. Claim. Let M, > A. If A has a flat open set U, then |K a2 vol, — 0 on U.

In particular, the weak limit of dual curvature tensor has support on the singularity of
Cone(f) x R™~2,

The same argument as in 4.6 shows that (Rm(e;, e;)eq, e,)- vol™ — 0 if at least one of the
indices 1, j, g, 7 is at most m — 2. The latter statement implies the result. O

5 Regular points

A Common chart and delta-convergence

Choose a smoothing M,, <+ A of an m-dimensional Alexandrov space A. Let p € A be a point
of rank m; that is, there are m + 1 points ag, ..., a, € A such that £(p gg) > 3 for all i # j.

Recall [20, Sec. 7] that we can choose small » > 0, finite set of points a; near a;, and a
smooth concave increasing real-to-real function ¢ defined on an open interval such that

f’i: Z onai\é’%x,r

rea;

is strongly a concave function that is defined in a neighborhood U 3 p; it will be called smoothed
distance chart.

Since r is small, and all points in a; are near a; we get that the functions fy, ..., f,, are tight
in U; see the definition in [20]. In particular, the map U — R™ defined by « +— (f1(x), ..., fm(z))
is a coordinate system in U.

The presented construction can be lifted to M,,. As a result, we obtain a chart of an open
set U, C M,,. Passing to smaller sets we may assume that U and each U, is mapped to a fixed
open set ) C R™ for all large n. Further, we assume that it holds for all n; it could be achieved
by cutting off the beginning of the sequence M,,.

The obtained collection of charts x,: U, — Q and x: U — Q will be called a common
chart at p. It will be used to identify points of 2, M,,, and A; in addition, we will use it to
identify the tangent spaces TM,, and TA with R™. For example, we will use the same notation
for function M,, — R and its composition Q — R with the inverse of the chart U, — €. We will
use index n or skip it to indicate that the calculations are performed in M,, or A respectively.
For example, given a function f: 2 — R, we denote by V,, f and V f the gradients of f o x, in
M, and fox in A respectively.

Recall that A% denotes the set of §-strained points in A. For a fixed common chart = we will
use the notation A, for the image x(A4°%) C (.

Part 2.10(%i) will follow from certain estimates in one common chart.

5.1. Definitions. Let M, > A, dim A = m; choose a common chart with range & C R™.
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A sequence of measures n, defined on  is called weakly delta-converging if the following
conditions hold:
o FEvery subsequence of n, has a weak partial limit.
o For any € > 0 there is § > 0 such that for any two weak partial limits my and my of (ny,)
we have
[(m1 —my)(S)| <e

for any Borel set S C Ag.
A sequence of bounded functions f, on € is called weakly delta-converging if the measures
fn-vol, are weakly delta-converging.
A sequence of functions f, defined on  is called uniformly delta-converging if the
following conditions hold:
o For any € > 0 there is 6 > 0 such that such that

timsup{ £ (@)} ~ i inf{f (@)} < ¢

n—00

for any x € AY,.

5.2. Observation. If f,, is uniformly delta-converging and n, is weakly delta-converging, then
fn-ny is weakly delta-converging.

B Convergences

5.3. Lemma. Let M, > A, dim A = m; choose a common chart with range Q C R™. Let

1

fa: M, — R be a sequence of C'-functions such that f, &> f: A = R. Let us denote by
O1,...,0m the partial derivatives on @ C R™. Denote by g5, and g% the components of the
metric tensors on M,,. Then

(i) fn uniformly converges to f on §);

(i) Oifn are uniformly delta-converging;

(1it) gijn and g% are uniformly delta-converging for all i, j; moreover, det 9ijn s bounded away

from zero;
(1) |V fnl uniformly delta-converges on §2;

Proof. Part (i) is trivial.

(ii). Suppose ag, a1, ..., a, struts p (see the definition in [1]), and the geodesics [pa;] are uniquely
defined. In this case, for any sequence of points a; ,p, € M, such that a;, — a;, and p, = p
as n — 0o, we have

tim_ <[pa &27] > 4[p ).

n—00

If T, is Euclidean, then (n+1)-point comparison implies that equality holds in the last in-
equality.

Note that the angles £[p, q;"] for all 4, j > 0 completely describe the metric tensor at p,, in
the basis Vi n, ..., Vi.n, where V; ,, is the unit vector in the direction of [py, @i n].

1

If f,, &> f, then V; ,, f,, completely describes V,, f,, in the basis Vi ...,V n. From above,
we can express |V, fn| in terms of V; ,, f,, and the angles £[p, Z;"} Whence we get convergence
|V, fnl = |V, f] and therefore

(Voo fns Vo, hn) = (Vp f, V)
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1
if h, &> h; the latter follows by identity 4-B(x,y) = B(x + y,x +y) — B(z — y,x — y) for any
bilinear form B.

Note that the partial derivatives 0;f, at a regular point p can be expressed in terms of
(dpfr,dpz;)n and (dpz;,dpTr)n, Where x1,...,z,, are the coordinate functions of the chart.
Therefore, we get that all 9; f,, converge at any regular point.

Finally, observe that if p is a §-strained point for sufficiently small § > 0, then the calculations
above go thru with a small error. Whence the statement follows.

#1). This part follows from the proof of (i) since g% = (dpz;,d,x;), and g;;, can be expressed
n P plj I,
thru g.

(iv). Note that |V, f,| can be expressed from g% and 9;f,. Since these quantities are delta-
converging, so is |V, fn|. O

The following lemma relies on the DC-calculus which is discussed in Section 7; this section
includes the definition of DC and DCy functions, as well as DC convergence. Since test conver-
gence implies DC' convergence (see 7.1), the lemma also holds for test-converging sequences of
functions.

5.4. Lemma. Let M, —+ A. Choose a common chart x©,,: U, C M,, > Q and x: U C A — Q
with range Q0 C R™. Let f,: M, — R be a sequence of smooth functions that DC converges to a
DCy function f: A — R. Let us denote by 01, ..., 0, the partial derivatives on Q@ C R™. Denote
by gijn and g the components of the metric tensors on M,. Then the partial derivatives
OkGijn, kg, 0;0;fn, as well as their products to uniformly delta-converging functions, are
weakly converging.

Proof. The weak convergence of 9y gij n, Org?, and 9;0; f, follows from 7.4. By Observation 5.2,
products of these partial derivatives to uniformly delta-converging sequences of functions are
weakly delta-converging.

Let h,: M, — R be a uniformly delta-converging sequence. Note that its limit is well defined
in A°; denote it by h; let us extend it by 0 to the whole A.

Denote by m,, one of the measures on  with the density 9xgij.n, kg%, or 9;0; f,. Let m be
the corresponding limit measure dxg;j, Oxg*, or 9;0;f. We need to show that

/(hn ox, ) pm, — /(hoccfl)-@-m as n — 00 (1]
Q Q

for any continuous function ¢:  — R with compact support.

Choose € > 0; let § > 0 be as in 5.1 (for h,,). The set S5 = Q\ A2, is a closed subset of (2.
By 7.3, |m|(S) = 0. Therefore we can choose an open neighborhood N C Q of S such that
|m|(N) < e. Choose two nonnegative continuous functions ¢y and ¢ such that

© = Qo+ p1, supp ¢o C N, supp 1 C Af = Q\ 8§,

Note that the sequence a, = [,(hn 0 2, ')-po-m, converges with error g9 = e-c- max{ |¢| },
where ¢ is a bound on |h,,|. In other words, the upper and lower limits of a,, differ by at most &q.
Similarly, b, = [, (hn o2, !)-1-m, converges with error e; = e-|m|-c- max{ |¢| }. Since & > 0 is
arbitrary, we get @. O
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C Proof modulo key lemma

5.5. Key lemma. Choose a common chart with range @ C R™ for a smoothing M, — A.
Choose a component Rm;;sr,, of the curvature tensor of M, in Q. Then Rm;jsq, - Vol is a
weakly delta-converging sequence of measures.

The proof of the key lemma will take the remaining part of this section; in the current
subsection, we show that it implies 2.10(%ii).

Proof of 2.10(%i) modulo 5.5. Recall that components of gm,, can be expressed from the com-
ponents of Rm,,. Therefore, the key lemma implies delta-convergence of components of qm,,.
Choose sequences of test functions fi n, ..., fm—2n,Rin,- .., Am—2n on M, that test-converge
to fi,. .y fm—2,h1,.. . Am—_2: A — R. By 5.3, we have delta-convergence of the partial deriva-
tives 0; f;» and 0;h; , to 0; f; and 0;h; respectively. The measures qm,,(fin;- -, fr—2.nsR1m, -
- yhm—2) can be expressed as a linear combination of the components of qm,, with coefficients
expressed in terms of 0; f; . By 5.2, it follows that the sequence of measures

my, = qmn(fl,na ) fm—2,n7 hl,na ) hm—Q,n)

is delta-converging.
Finally, recall that

A° = ﬂAé.

6>0

Therefore delta-convergence of qm,,(f1.n,-- -, fr—2,ns P1n, - - s Bm—2.,) implies 2.10 (4. O

D Strange curvature

Suppose M is a 3-dimensional Riemannian manifold. Strange curvature tensor Str on M is
a bilinear form that is uniquely defined by

Str(w,w) = Sc -|w|? — Ric(w, w)

for w € TM. Note that Str completely describes the Ricci curvature tensor Ric. Further, since
M is 3-dimensional, Str completely describes the curvature tensor Rm of M.

In Riemannian manifolds, we can (and will) use the metric tensor to identify tangent and
cotangent bundles. Therefore the tensor Str can be applied to vector fields and forms; in partic-
ular, for any smooth function f we have

Str(df, df) = Str(Vf, V).

5.6. Proposition. Let M, ~+ A and dim A = 3; choose a common chart with range Q C R3.
Suppose that f is a convex combination of coordinate functions of the chart. Then the measures

m,, = Str, (df, df)- vol?

are weakly delta-converging in Q.

The definition of strange curvature tensor is motivated by the following integral expression
from 6.1:

Q/go'Str(u,u) Q/gp~lnt+Q/[H~<u, Vo) — (V, Vo)l e

where
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o u=Vi/Vfl,
o H(x) — the mean curvature of the level set f~1(f(z)),
o Int(x) — the scalar curvature of f=1(f(x)).
This formula is the main tool in the proof of the proposition. It reduces the proposition to the
following two lemmas; each lemma provides the convergence of an integral term in the right-hand
side of @.

5.7. Lemma. In the assumptions of Proposition 5.6, Int,, 'VOli is a delta-converging sequence
of measures on Q.

The proof of this lemma uses the convergence of curvature measures Int, - vol?> on the 2-
dimensional level sets of concave functions f and the coarea formula. Recall that the sequence
|V, f| is only weakly delta-converge (see 5.3(iv)). Since the factor |V,, f| appears in the coarea
formula, we get that only weak delta-convergence of Int,, - voli.

Proof. Recall that any point in an Alexandrov space A has a convex neighborhood [20]. This
construction can be lifted to the smoothing sequence (M,,). Let V' C A be an open convex
neighborhood of  and V,, C M,, be open convex sets such that V,, = V.

Set

Lt,n :f_1<t)ﬂvn7 Ct,n :f_l[t7 OO)ﬂVn,
L= f~H(t)nV, Cy=ft,o0)N V.

For every ¢t and n, the set Cy, is a convex subset in Alexandrov space and hence is an
Alexandrov space with curvature > —1. Note that C;, =+ C;. Let us equip the boundaries
0C},, and OC} with the induced inner metrics. By [23, Theorem 1.2], 9Cy,,, converges to 9Cy as
n — 00.

By [2], 0Cy,y, is an Alexandrov space with curvature > —1; hence, so is the limit 9C}.

Note that L, with induced inner metric is isometric to its image in dC} ,,. Since 0C} is an
extremal subset of Cy, the inner metric of 9C; is bi-Lipschitz to the metric restricted from A. It
follows that we can take r sufficiently small such that for all ¢ and Uy, = Ly, N B(zp, 1) we will

have
hn g % diSt(Ut,’ru 8Ct,n \ Lt,n)7

where h,, denotes the intrinsic diameter of U; ,,. Then the local version of the 2-dimensional case
of the main theorem can be applied to Uy ,; it implies weak convergence of measures Int,, 'VOli
on Ly .

Choose a smooth function ¢: B(x,,r) — R with a compact support in A%. Applying the
coarea formula, we get

h
/ Int,, (s)-¢(s)- vol> = /dt~ / %IHM(S)VOF. (3]
~h

sEQ s€U¢ n

Note that V,, f is bounded away from zero. By 5.3(iv), m is uniformly delta-converging.

Recall that Int, - vol® are weakly converging measures on L, [3, VII §13]. Therefore 5.2 implies
that Int,, - VOli is weakly delta-converging measures on M,,. O

The following lemma is related to the convergence of the second integral in @, the proof uses
the DC calculus in a common chart; see Section 7.
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5.8. Lemma. In the assumptions of Proposition 5.6, suppose p: 2 — R is a smooth function
with compact support. Then

/ [Hn<un7 Vn<p>n - <Vunun, Vnga>n] 'Voli (4)
Q

converges, where H,, and u, as in @.

Proof. Note that H,, = divu,. Let us rewrite the first term of @ in coordinates:

/[Z (8211; + UT”(“)Z log det gn)} . {Z uil-aicp] \/det g,,-dztda?da®.
o L i

3

We also have N
uy, = . .
V90, -0t
Taking the derivatives, we see under the integral a sum of products the following two types of
expressions: the first a partial derivative 0xgi;n, Org:, or 0;0; f, and the second is an expression

made from g;j n, g%, 9; f, O;p. Applying 5.3 and 5.4, we get that the integral converges.
Further, for the second term in @ we have

/ (Von, Va, tn) - Voli =

My,
= /dxld-er-fg' Z u:lakw V det 9n- (8zu§l + % Z (8igjs,n + ajgsi,n - asgijﬂ) gng) .
Q .5,k s
The convergence follows by the same argument. O

Proof of Proposition 5.6. By @, 5.7, and 5.8 we get that Str,(u,,u,)- voli is a weakly delta-
converging sequence of measures. It remains to apply 5.3(iv) and 5.2. O

E Three-dimensional case

In this section, we prove Lemma 5.5 in the 3-dimensional case.
Vectors wi, ..., Wy (m+1)/2 € R™ are said to be in general position if the vectors w; ® w;
form a basis in R™ (m+1)/2 __ the symmetric square of R™. In this case, any quadratic form Q

on R™ can be computed from the w values
Q(wh w1)7 ceey Q(wm(m+1)/27 wm(m+1)/2)~
More precisely, there are rational functions si,..., 8y, (m+1)/2 that take W vectors in R™

and return a quadratic form on R™ such that

m(m+1)/2
Q= Z SE(W1s - Win(me1)/2) Q (Wi Wi 5]
k=1
Note that the vectors wi, ..., Wp(m4+1)/2 € R™ are in general position if and only if sg(wy, . ..

- Win(m+1)/2) are finite for all k. Since sy are rational functions, we get the following:
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5.9. Observation. Suppose that vectors wi,...,Wyamy1)2 € R™ are in general position.
Then the functions s1, ..., Sm(m+1)/2 are Lipschitz in a neighborhood of (w1, ..., Wy (m41)/2) €
c (Rm)m(m+1)/2

Proof of the 3-dimensional case of 5.5. Choose a common chart
M,>U,—Q, and ADU — Q.

Let us use it to identify tangent spaces of M,, and A with R3.

Choose 6 sequences of convex combinations of coordinate functions fi,..., fg, such that
Vfi,...,Vfe are in general position at p € €. We can assume that {2 is a small neighborhood
of p, so by Proposition 5.6 the measures Str,,(V, fx, Vi fx)- volf’l weakly delta-converges on Ag
fork=1,...,6.

By 5.9, the functions s; are Lipschitz in a neighborhood of (V fi,..., Vfs) € (R®)S. Applying
O, we get that

6
Str = Z Sk(vnfla ey vnfﬁ) Strn(vnfka ank:)-

k=1

Hence the measure Str,, (dz;, dx;)- volf’l are weakly delta-converging for all ¢ and j, where 1, x2, 3
is the standard coordinates in R3.

By Lemma 5.3, the sequence of metric tensors g,, of M, on 2 is uniformly delta-converging.
Since the following equality

Tr Str,, = Zgij,n' Str,, (da;, dmj)

(2%

holds almost everywhere, we get that the sequence of measures Tr Str, ~v01i is weakly delta-
converging.
Note that for 3-dimensional manifolds we have

Qm,, (V,V) = Str,(V, V) — +-|V|* Tr Str,, . (6]

Hence the measures Qm,, (dz;, dz;)- vol? are weakly delta-converging for all i and j.
Finally, according to 5.3(7i), the components i, of V,, fi are uniformly delta-converging.
The result follows since

an(fr f5) = D Qibon-Qen A (5, 25).

2%

F Higher-dimensional case

5.10. Observation. Choose a common chart with the range Q C R™ for a smoothing M, > A.
Consider the sequence of coordinate level sets Q = Ly, D Ly,_1 D ... D Lo, where L; =
= L;(¢it1,...,cm) 1s defined by setting the last m — i coordinates to be c;y1, ...,y Tespectively.
Then the level sets L; is a smooth convex hypersurface in L; 11 in each M,; in particular, each
L; has sectional curvature bounded below by —1.
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Moreover, there is an open set O in the space of linear transformations of R™ such that the
same holds after applying any linear transformation T € O to €.

Proof of the key lemma (5.5). Let us use notations as in the observation. By the key lemma
(5.5) in dimensions 2 and 3, we get weak delta-convergence of curvature tensors on Ly and Ls.
(Again, we apply the local version of these statements as described in Section 9.) In particular,
applying the coarea formula, we get convergence of sectional curvatures of Lz in the directions of
L5 as well as the sectional curvature of Lo for all values cs, ..., ¢,. The difference between these
curvatures is the Gauss curvature G,, of Lo as a submanifold in Ls. Therefore, G,, is weakly
delta-converging as well.

Consider a linear transformation of €2 that preserves the direction of L,. By the last statement
in 5.10, the above argument shows weak delta-convergence of G,,(w), where the direction w of
Ls on Ly can be chosen in an open set of R™~2 — the space transversal to Lo. In particular, we
may choose directions w1, ..., Wm—2).(m—1)/2 I R™~2 that form a generic set (see the definition
in Subsection 5E).

Denote by G, the term in the Gauss formula for Ly in M,; that is, G, is the difference
between the curvature of Lo and the sectional curvature of M,, in the same direction. Denote by
gn the Riemannian metric of M,, in 2. Note that

G:{ = Z ak,n'Gn(wk)a

where the coefficients ay, ,, depend continuously on ws, ..., Wn—2).(m-1)/2, and the components
of g,,. It follows that weak delta-convergence of G,,(wy) implies weak delta-convergence of G, as
n — 00. Since the curvature of Lo is weakly delta-converging, it implies weak delta-convergence
of sectional curvature in the direction of L.

By the second statement in the observation, the above argument can be repeated after ap-
plying a linear transformation of ) that changes the direction of Lo slightly. It follows that
sectional curvatures converge for a generic array of simple bivectors in R™. Note that the curva-
ture tensor can be expressed from these sectional curvatures and the metric tensor. Hence, the
weak delta-convergence of components of curvature tensor and therefore dual curvature tensor

follows. O

Details

6 Bochner formula

Let M be a Riemannian m-manifold and f: M — R be a smooth function without critical points
on an open domain Q C M. Set u = Vf/|Vf|. Let us define Ints(x) (or just Int) to be scalar
curvature of the level set L, = f~1(f(z)) at z € L, C M. Set

1. k1(x) < Ka(z) < ... < Km—1(x) the principal curvatures of L, at x;

2. H=Hs(x) =K1+ Ko+ + Km—1 is mean curvature of L, at

3. G =Gy(x) =2-3,_; Kikj is the extrinsic term in the Gauss formula for Int ().

Recall that the strange curvature Str is defined as

Str(u) = Sc —(Ric(u), u),

where Sc and Ric denote scalar and Ricci curvature respectively.
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6.1. Bochner’s formula. Let M be an m-dimensional Riemannian manifold, f: M — R be a
smooth function without critical points on an open domain Q C M, and u =V f/|Vf|. Assume
w: Q — R is a smooth function with compact support. Then

/go~<Ricu,u> = /[g&G—i—H-(u,V(p} —(Ve,V,u)] (1]
Q Q
and
/<p Str(u / (u, Vo) — (Vp, V,u)] +/<p-Intf. (2]
Q Q

The following calculations are based on [12, Chapter II]. The Dirac operator will be denoted
by D. We use the Riemannian metric to identify differential forms and multivector fields on M.
Therefore the statement about differential forms can be also formulated in terms of multivector
fields and the other way around.

Proof. Assume by,...,b,, is an orthonormal frame such that b,, = u, then
Sc—2-(Ric(u),u) =2 Y sec(b; Aby).
i<j<m
Therefore the Gauss formula can be written as
Int = G 4+ Sc —2-(Ric(u),u) =

(3]
= G + Str(u) — (Ric(u),u).

We can assume that b;(z) points in the principal directions of L, for i < m; so we have
Vi, u = k;-b; at . We will denote by “e” the Clifford multiplication; recall that b; e b; = —1.
Note that

Du:Zbiovbiu:

= Zfii-biObi—Fuovuu:
<m

=—H+ueV,u.

Since (Vy,u,u) =0, we get H L (u e V,u). Therefore

(Du, Du) (Z /{l> +lue Vuu|2 —

<m

= H? +|V,ul?.

On the other hand
Vu = Z Kib; @b; + Vyu ® u,
i<m
hence
(Vu, Vu) Z K2+ |Vyul?
i<m
Therefore
(Du, Du) — (Vu, Vu) = 2- Zni%j =G.

1<j
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Following the calculations in [12, I1.5.3], we get

Q/cp- [(Du, Du) — (D*u,u)] = Q/ @ eu, Du) =
/ (Vo,u) — (Vo, Vyu)].
Q

Since |u| = 1, we have (Vy,u,u) = 0. Therefore

/ o [(Va, Vi) — (V*Vau, )] = / (Voo u) = 0.

Q Q

By Bochner formula [12, 11.8.3],
D?u — V*Vu = Ric(u);

in particular,
Integrating @ and applying the derived formulas, we get

/gp~G = /ap- [(Du, Du) — (Vu,Vu)] =

)
= /Lp-RlC / (u, V) = (V, Vyu)].
) o)

It remains to apply the Gauss formula ©. O

7 DC-calculus

Let f be a continuous function defined on an open domain of an m-dimensional Alexandrov
space A. Recall that f is DC if it can be presented locally as a difference between two concave
functions. Recall that for any point p € A there is a (—1)-concave function defined in a neigh-
borhood of p [18, 3.6]. Therefore we can say that f is DC if and only if it can be presented locally
as a difference between two semiconcave functions.

Suppose that a sequence of Alexandrov spaces A,, converges to Alexandrov space A without
collapse. Let f,, and f be DC functions defined on open domains Dom f,, C A, and Dom f C
C A. Suppose that for any p € Dom f there is a sequence p,, € Dom f,, and R > 0 such that
pn — p and B(pp, R)a, C Dom f,, B(p,R)4 C Dom f and for some fixed A € R, and each
large n we have A-concave functions a,, and b,, defined in B(p,, R) 4, and A-concave functions a
and b defined in B(p, R) 4 such that f,, = a, — b, and f = a — b and the sequences a,, and b,
converge to functions a and b respectively. In this case, we say that f, is DC-converging to
f=a—-b: A— R asn— oo; briefly f, 52> f-

A DC function f: A — R is called DCy if it is continuously differentiable in A°. More
preciously, for any smoothed distance chart : U C A — R™ (see Section 5A) the restriction
fox ! ga0) is continuously differentiable.

7.1. Observation. Any test function is DCy. Moreover, test convergence implies DC-
convergence.
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Proof. Choose a test function f = @((&Ys/tpm, e ,(/ﬁs/tpmr). Note that the function ¢ can be pre-
sented locally as a difference between C?-smooth concave functions increasing in each argument;
say o =1 — x.

For the first part of the observation, it remains to observe that the functions

a = (distp, r,...,disty, r), b= x(distp, r,...,dist,, »)

are semiconcave and continuously differentiable in A°.

Suppose that a sequence of functions ¢; is C%-converging to . Choose x = (1,...,2,) in
the domain of definition of ¢. Note that ¢, and its partial derivatives up to order 2 are bounded;
fix a bound ¢. Then in a neighborhood of (z1, ..., x,) we may choose v, that is uniquely defined
by ¥n(x) = 0, it (z) = 2-¢, 8;0;¢, = 0 for i # j, and 879, = —d for a large constant d. In
this case, X = ¥n — @n is concave. Moreover, C?-convergence of ¢,, implies convergence of v,
and x,. Hence, the second statement follows. O

The definition of DC-convergence extends naturally to sequences of functions defined on a
fixed domain © C R™. The proof of the following statement is a straightforward modification of
[16, Section 3]:

7.2. Proposition. Let M, > A; choose a common chart ,,: U, C M, — Q, x: U C A —

— QCR™.
Consider functions f, and f defined on U, and U respectively. Then f, s> f if and only if
fnoa:r_Llﬁ> foa:_l

The following statement follows from the lemma in [16, Section 4].

7.3. Proposition. Let A be an m-dimensional Alexandrov space and x: U — R™ — a smoothed
chart for U C A. Denote by g;; components of metric tensors in this chart and by g% components
of the inverse matriz. Let f: U — R be a DCy function.

Then the partial derivatives Orgij, kg™, 0;0;f are Radon measures on A that vanish on
x (A UA".

7.4. Theorem. Let M, > A, dim A = m; choose a common chart x,, defined on U, C M, x
defined on U C A with a common range Q@ C R™. Denote by gi;jn components of metric tensors
in this chart and by g% components of the inverse matriz. Let f,: U, — R be a sequence of
DC function that DC-converges to a DCy function f: U — R. Then partial derivatives Orgijn,
Okg¥, 9;0; fr weakly converge to the Radon measures Oxgij, Oxg", 9;0;f described in 7.5.

test

By 7.1, the theorem applies to any test-converging sequence f, — f. In the proof, we
modify the argument in [16, Section 4] slightly.

Proof. Let’s start with the partial derivatives of metric tensors. In [16, Subsection 4.2], it
was shown that components of metric tensors can be expressed as a rational function of partial
derivatives of distance functions to a finite collection of points. The distance functions are
semiconcave, in particular DC.

The base points p; , € M), of these distance functions can be chosen so that they converge to
some point p; € A. In this case, the distance functions are DC-converging. Now, applying 7.2,
we get the statement.

The case of 0;0; f,, is similar. O
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8 Bi-Lipschitz covering

In this section we will prove Lemma 4.1. A more general version of the lemma can be proved
along the same lines as Lemma 11.1 in [26].
Note that the lemma follows from the next proposition.

8.1. Proposition. Let A be an m-dimensional Alexandrov space with curvature at least —1 and
p € A’. Then there is a compact set Q such that

(i) Q admits a bi-Lipschitz embedding into R™~2 and

(i) there is a neighborhood U 3 p and € > 0 such that q € Q for any point ¢ € UN A’ such that

0(q) < 0(p) +e.
Let x be a point in an Alexandrov space A with curvature at least —1. Recall that Bishop—

Gromov inequality implies that

vol™ B(z, R) a vol™ 1'%,
vol” B(#, R)gm  vol™ ' S§m-1

for any R > 0; here H™ denotes the m-dimensional hyperbolic space. The following lemma
makes this inequality more precise.

8.2. Lemma. Letx be a point in an m-dimensional Alexandrov space A with curvature at least
—1. Suppose y € A is a point such that |z — y| < R and L[y*] < m — ¢ for any point z. Then

vol™ 'y,

vol™ B(x, R) 4
vol™~tsm—1’

<(1—25)-
ol B(R)gn S 179

where 0 is a positive number that depends on m, |x —y|, R and €.

Proof. To simplify the presentation we will assume that A is nonnegatively curved; it is straight-
forward to adapt the proof to the general case. In this case, we need to show that

vol™ 1y,

—1 1
vol™ ™" §m—1

vol™ B(x, R) o

<(1—25)-
ol B(R)pe S 179

Let us denote by p a vector in T, that is tangent to a geodesic path v: [0,1] — A from x
to p. By comparison, the map p + p is a distance-noncontracting map.

Since L[y 2] < m — ¢ for any z, the image of the map p — p does not include points in a cone
C behind g of angle . It follows that

VOlm(B(Oa R)TT \ C) P VO]m(B(zyR)A)

for any R > 0.
Since R > |z — y|, the intersection C' N B(0, R)r, includes a ball of

x

a certain radius r > 0 that can be found in terms of |z — y|, R and e.
By Bishop—Gromov inequality, we get 6 = d(m, |z — y|, R,&) > 0 such Tz ,’ c

that
vol™(CNB(0,R)r,) -
vol™(B(0, R)T,) '
Further, observe that
vol™(B(0, R)t,) vol™ 1%,

vol™(B(0, R)gm)  vol™ t§m-1"
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— whence the lemma. O

Proof of 8.1. Since the tangent cone at p has R™~2-factor, we can choose points ay, .. ., Gy_2, b1, ...
. ,b;m_o that are §-strainers of p for arbitrary § > 0. The corresponding distance map s: = —
+ (lap —|,...,|T — am—2]) is an almost submersion of a neighborhood U 3 p to R™~2. Choose
small € > 0 and set
Q ={zeUnA|0(z)<0(p)+e}.

Let us show that s|g/ is bi-Lipschitz. Once it is done, passing to the closure Q@ = Q/ gives the
required set.

Note that for some R > 0 the ball B(p,10-R) is almost isometric to the ball B(0,10-R)z,
and we can assume that U C B(p, R)4. By the volume convergence (see [4, 10.8]) and Bishop—
Gromov inequality, we can assume that

vol™ B(a, R) 4 > Y225 . vol™ B(0, R)sm
for any = € U; here H™ denotes the m-dimensional hyperbolic space.

Assume z and y in Q’. Since ¢ is small, the lemma implies that there is z € A such that
£[y?] is near 7. Tt follows that 1, lies very close to the R™~*-factor in T,. The same way
we can show that 1, lies very close to the R™~2-factor in T,. In other words [zy] lies nearly
horizontally with respect to almost submetry s. In particular,

|s(z) — s(y)|rm—2 S M|z —y|a

some constant A > 1. (In fact, we can take A arbitrarily close to 1, but we do not need it.) [

9 Localization

In this section we formulate a local version of the main theorem. This version is more general,
but its proof requires just a slight change of language. A couple of times we had to use this local
version in the proof. In a perfect world, we had to rewire the whole paper using this language.
However, this is not a principle moment, so we decided to keep the paper more readable at the
cost of being not fully rigorous. A more systematic discussion of this topic is given in [14].

First, we need to define Alexandrov region; its main example is an open set in Alexandrov
space.

9.1. Definition.  Let A be a locally compact metric space. We say that a point p € A is
e-inner if the closed ball B(x,2-€) is compact.

9.2. Definition.  We say that a locally compact inner metric space A of finite Hausdorff
dimension is an Alexandrov region if any point has a neighborhood where the Alexandrov
comparison for curvature > —1 holds.

The comparison radius re.(p) for p € A is defined as the mazimal number r such that p is
r-inner point and Alexandrov comparison for curvature > —1 holds in B(z,r).

Any point p in an Alexandrov region admits a convex neighborhood. Moreover, its size can
be controlled in terms of dimension, r.(p), and a lower bound on the volume of ball B(p,r.).
The construction is the same as for Alexandrov space [17, 4.3].

By the globalization theorem (see, for example, [1]), a compact convex subset in an Alexan-
drov region is an Alexandrov space. So the statement above makes it possible to apply most of
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the arguments and constructions for Alexandrov spaces to Alexandrov regions. Moreover, in the
case when an Alexandrov region is a Riemannian manifold (possibly noncomplete) it is possible
to take the doubling of a convex neighborhood from the proposition and smooth it with almost
the same lower curvature bound. This allows us to apply the main result from [24], where the
complete manifold can be replaced by a convex domain in a possibly open manifold.

Further, let us define a local version of smoothing. Let us denote by MZ'_; a class of m-
dimensional Riemannian manifolds without boundary, but possibly non-complete, with sectional
curvature bounded from below by —1.

9.3. Definition. Let M, € MY_, (with corresponding intrinsic metric) converge in Gromov—
Hausdorff sense to some metric space A via approximation. Suppose that M, > x, — x € A,
dimA = m, and r.(z,) > R > 0. Let U, = B(xpn,R)nm,. Then we say that U, is a local
smoothing of U = B(xz,R)a (briefly, U, —> U ).

It is straightforward to redefine test functions and weak convergence for local smoothings.
Using this language we can make a local version for each statement in this paper, the proofs go
without changes. As a result, we get the following local version of the main theorem 2.6.

9.4. Local version of the main theorem. Let M, € MZ_;, M, A, U, C M,,, U C A,
and U, —> U be a local smoothing.

Denote by qm,, the dual measure-valued curvature tensor on U,. Then there is a measure-
valued tensor qm on U such that qm,, — qm.
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