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Abstract

Age is the most difficult fundamental stellar parameter to infer for isolated stars. While isochrone-based ages are in
general imprecise for both main-sequence dwarfs and red giants, precise isochrone-based ages can be obtained for
stars on the subgiant branch transitioning from core to shell hydrogen burning. We synthesize Gaia Data Release
3–based distance inferences, multiwavelength photometry from the ultraviolet to the mid-infrared, and three-
dimensional extinction maps to construct a sample of 289,759 solar-metallicity stars amenable to accurate, precise,
and physically self-consistent age inferences. Using subgiants in the solar-metallicity open clusters NGC 2682 (i.e.,
M67) and NGC 188, we show that our approach yields accurate and physically self-consistent ages and
metallicities with median statistical precisions of 8% and 0.06 dex, respectively. The inclusion of systematic
uncertainties resulting from nonsingle or variable stars results in age and metallicity precisions of 9% and 0.12 dex,
respectively. We supplement this solar-metallicity sample with an additional 112,062 metal-poor subgiants,
including over 3000 stars with [Fe/H]−1.50, 7% age precisions, and apparent Gaia G-band magnitudes G< 14.
We further demonstrate that our inferred metallicities agree with those produced by multiplexed spectroscopic
surveys. As an example of the scientific potential of this catalog, we show that the solar neighborhood star
formation history has three components at ([Fe/H], τ/Gyr)≈ (+0.0, 4), (+0.2, 7), and a roughly linear sequence
in age–metallicity space beginning at ([Fe/H], τ/Gyr)≈ (+0.2, 7) and extending to (−0.5, 13). Our analyses
indicate that the solar neighborhood includes stars on disk-like orbits even at the oldest ages and lowest
metallicities accessible by our samples.

Unified Astronomy Thesaurus concepts: Stellar ages (1581); Solar neighborhood (1509); Galactic archaeology
(2178); Milky Way disk (1050); Milky Way dynamics (1051); Milky Way formation (1053); Milky Way stellar
halo (1060); Population II stars (1284); Stellar astronomy (1583); Subgiant stars (1646)

Materials only available in the online version of record: machine-readable table

1. Introduction

Inferring the ages of isolated field stars, and by extension,
the star formation history of the solar neighborhood, remains
among the most challenging and most fundamental problems of
Galactic astronomy (e.g., B. A. Twarog 1980; D. R. Soderb-
lom 2010; L. Casagrande et al. 2016). Several approaches are
currently being both widely used and developed, including
asteroseismic age estimates (S. Sharma et al. 2019; A. Miglio
et al. 2021), probabilistically weighted isochrone-based ages
(F. Pont & L. Eyer 2004; B. R. Jørgensen & L. Lindegren
2005; D. K. Feuillet et al. 2018; C. A. L. Bailer-Jones et al.
2021), rotation-based ages (S. A. Barnes 2007; J. Chanamé &
I. Ramírez 2012), and radioactivity-based ages (C. Sneden et al.
1996; J. J. Cowan et al. 2002). Each of these comes with their
own specific strengths, successes, selection effects, and
limitations.

In this investigation we focus on a specific class of
isochrone-based ages—that of stars along the subgiant branch.
These are the stars which are transitioning from core to shell
hydrogen burning. The luminosities of subgiants are strong

functions of their core masses (M. Salaris & S. Cassisi 2005;
R. Kippenhahn et al. 2013). Since core mass scales with stellar
mass, and main-sequence lifetime scales with stellar mass,
luminosity on the subgiant branch is also a function of age. It
can be estimated quantitatively (see Figure 1) that the absolute
magnitude M of a subgiant star scales with age at a level
approximating:

( ) ( )t t- »M M ln , 11 2 2 1

and thus a 1% measurement in the absolute magnitude of a

subgiant star approximately corresponds to a 1% measurement

in its relative, model-dependent age, with the exact dependence

being a function of location on the subgiant branch, age, and

metallicity. It follows that if parallax measurements with 1%

precision are available, the theoretical lower bound on the

derived ages of subgiants is approximately 2%. Among the

other advantages of subgiants are (i) they are bright, and thus

detailed elemental abundance measurements can be obtained to

large distances, and (ii) they are numerous for stellar

populations older than τ≈ 1 Gyr, enabling study of inter-

mediate and old stellar populations with a quantifiable bias.
In this investigation we neglect to account for possible

variations in the initial helium abundances of stars, and of their
initial rotation, which can affect the relationship between ages
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and luminosity on the subgiant branch (A. Marín-Franch et al.

2010; D. M. Nataf et al. 2012; A. A. R. Valcarce et al. 2012;

G. Valle et al. 2015). A recent investigation of subgiants with

Kepler asteroseismology has found that age inferences of

subgiant stars are much more sensitive to uncertainties in the

assumed metallicities than in either the initial helium

abundance or the mixing length assumed by stellar models

(T. Li et al. 2020). It is also the case that prior investigations

have shown that scaled solar helium abundances are a good fit

to the data for most solar neighborhood stars (L. Casagrande

et al. 2007). Unidentified blends and binaries are undoubtedly a

source of systematic error, which we explore later in this work.
A recent study of the local stellar age distribution using

∼250,000 subgiant stars is that of M. Xiang & H.-W. Rix

(2022). Their methodology differs from ours in several

respects, most significantly that they constrain their stellar

metallicities using spectroscopically derived measurements

from LAMOST (L.-C. Deng et al. 2012; G. Zhao et al. 2012;

M. Xiang et al. 2019), whereas we use photometric measure-

ments across the available wavelength regime, including

ultraviolet measurements, which are the most sensitive to

metallicity. We also note that in principle one can fit for stellar

parameters using the spectra themselves, as done by R. Schö-

nrich & M. Bergemann (2014), rather than to the stellar

parameters derived from the spectra.
The advantage of the approach that we develop and employ

here is the potential for a large, all-sky sample of subgiants

with exquisitely measured stellar parameters. Much of our
ultraviolet data comes from the Galaxy Evolution Explorer
(GALEX; P. Morrissey et al. 2007), which will be augmented
in the future with missions such as ULTRASAT (Y. Shvartzv-
ald et al. 2024) and UVEX (S. R. Kulkarni et al. 2021). Owing
to the significant leverage of GALEX photometry in inferring
stellar atmospheric parameters such as metallicity (S. G. Siche-
vskij et al. 2014; S. Mohammed et al. 2019; X. Lu et al. 2024),
in combination with all-sky astrometric, photometric, varia-
bility, and spectroscopic surveys such as Gaia (Gaia Collabora-
tion et al. 2016), as well as all-sky extinction maps
(L. Capitanio et al. 2017; G. M. Green et al. 2019; J. L. Vergely
et al. 2022), we should eventually be able to measure the
precise stellar parameters (including age) for up to ( ) 107

subgiants. That is a regime where we can expect to be able to
resolve individual star formation events, and thus bring
unprecedented resolution to the story of the Milky Way’s
formation and assembly.
In this investigation, we develop the method of astro-

photometric age and composition inferences of subgiant stars,
with the aims of producing a catalog for further study, identifying
and quantifying the strengths and limitations of this method, and
charting a path for robust future study. The structure of this paper
is as follows. In Section 2, we describe how we build our sample.
In Section 3, we test our methodology in seven specific ways.
Our results are presented in Section 4. We conclude in Section 5.

2. Sample Selection

We select our subgiant sample using a combination of Gaia
Data Release 3 (DR3) magnitudes, distances from C. A. L. Bai-
ler-Jones et al. (2021), and reddening estimates as discussed in
Section 2.3 and in our Appendix. The magnitudes that we use
for our sample selection are the nearly extinction-independent
absolute Wesenheit magnitudes:

( ) ( ) ( )= - - - +W G G G d pc1.90 5 log 5, 2G BP RP

and colors that we use are:

( ) ( ) ( )- = - -G G G G A0.424 . 3VBP RP 0 BP RP

The color and magnitude criteria for our main sample (top

panel of Figure 1) are:

1. WG� 2.50;
2. WG�+ 0.50;
3. (( ) )+ - -W G G2.50 5 0.90 ;G BP RP 0

4. ( )- G G 1.05;BP RP 0 and
5. at least one measurement of GALEX near-ultraviolet

(NUV), Skymapper u (uSM), or Sloan Digital Sky Survey
(SDSS) u (uSDSS).

This subgiant sample inevitably includes some stars on the
turnoff and the base of the red giant branch, as the location of
these phases of stellar evolution on the color–magnitude
diagram is a sensitive function of age and metallicity. The
primary sample defined above is most efficient at targeting stars
with −0.50 [Fe/H]+0.50. Subgiant stars of lower metal-
licity appear at the same location in the Gaia DR3 color–
magnitude diagram as the vastly more numerous more metal-
rich turnoff stars, and thus finding them would otherwise be
akin to searching for a needle in a haystack, but we can
delineate them by making use of metallicity-sensitive ultravio-
let photometry. We select the metal-poor annex (bottom panel
of Figure 1) using the following criteria:

Figure 1. We show our color–magnitude selection function (thick gray lines)
overplotted on the Gaia Catalog of Nearby Stars (small black points) with
MIST isochrones for the main sample (top) and the metal-poor annex (bottom).
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1. (( ) )> + - -W G G2.50 5 0.90 ;G BP RP 0

2. (( ) )- - -W G G1.5 2.5 0.30 ;G BP RP 0

3. (( ) )+ - -W G G1.5 3.625 0.30 ;G BP RP 0

4. (( ) )- - -W G G2.95 3.75 0.70 ;G BP RP 0

5. at least one measurement of GALEX NUV, Skymapper
u, or SDSS u; and

6. each available ultraviolet measurement satisfies the relevant
equation of: (NUV−G)�−0.65+ 13/2(GBP−GRP),
(uSM−G)� 0.19+ 11/6(GBP−GRP), and (uSDSS−G)�
0.11+ 11/6(GBP−GRP).

We also require the following photometric, variability,
reliability, and reddening criteria, for both samples:

1. measurements in all three of of J, H, Ks from the Two
Micron All-Sky Survey (2MASS);

2. measurements in both of W1 and W2 from the Wide-field
Infrared Survey Explorer (WISE);

3. from Gaia DR3, parallax_over_error� 50;
4. from Gaia DR3, duplicated_source = “FALSE”;
5. from Gaia DR3, phot_proc_mode = 0;
6. from Gaia DR3, phot_variable_flag !=

“VARIABLE”;
7. from Gaia DR3, non_single_star = 0;
8. from Gaia DR3, ruwe� 1.4;
9. from Gaia DR3, ipd_gof_harmonic_amplitude�

0.10;
10. from Gaia DR3, astrometric_params_solved=31 ;
11. no match in the ASAS-SN catalog of variable stars

(B. J. Shappee et al. 2014; T. Jayasinghe et al. 2021;
C. T. Christy et al. 2023); and

12. AV� 0.50.

The selection function (in Gaia photometry) is shown in
Figure 1, where we also show the color–magnitude diagram of
the Gaia Catalog of Nearby Stars (Gaia Collaboration et al.
2021) and [Fe/H]=−2.00, −0.50, and +0.00 isochrones from
MIST (B. Paxton et al. 2011, 2013, 2015; J. Choi et al. 2016;
A. Dotter 2016) for comparison.

The selection function described in this section was formed
from a combination of guidelines in the input data, as well as
arbitrary delineations meant to optimize the trade-off between
selecting more subgiants and selecting fewer turnoff and red
giant stars.

2.1. Additional Photometric Criteria

Ideally, crossmatching point sources between different
photometric surveys would be conducted using purely astro-
metric criteria. In practice, that leads to spurious crossmatches
due to factors such as the varying astrometric precision and
accuracy between the different surveys, the varying size of the
point-spread function (PSF) and thus sensitivity to blends, that
the sensitivity to blends will itself be wavelength and thus
bandpass dependent, and the different saturation limits and
photometric depths of each survey.

We implement the ad hoc requirement that in the posterior
calculation for each star, the predicted apparent magnitudes in
GALEX NUV, 2MASS J, WISE W2, SDSS ug, Skymapper
uvg, and Pan-STARRS gy differ by no more than 3σ with the
observed magnitudes. In each case, the photometric errors
given by the catalogs are inflated by 0.01 mag in quadrature,
and the total number of stars flagged as having less certain
photometric matches is 9609 in the primary sample. We find

that the number of flagged stars is typically 5× what one would
expect from purely statistical errors. Upon inspection, we find
that most of the matches are due to large offsets between the
apparent and predicted magnitudes—plausibly mismatches or
blends.
In the example of NUV, our criteria flags 2936 stars from our

sample of 229,156 stars with NUV matches, which is
approximately 5× greater than the expectation from pure
statistical expectations. For those flagged stars, the mean and
1σ astrometric offset between Gaia DR3 and GALEX is 0.″
7± 0 5, whereas for the sample as a whole the separation is
distributed as 0 5± 0 4. The larger mean and scatter in the
astrometric separations are consistent with the inclusion of
more spurious matches.

2.2. Additional Variability Criteria

We use two additional variability criteria to flag stars as less
reliable probes of single-star stellar evolution. We still compute
the posteriors for these parameters of these stars, and still report
them in our data tables, but we do not include the results in our
analysis.
The first additional criterion is based on the Gaia G-band

photometric variability of the star. For each star in our main
sample, we compute the photometric variability σG as follows:

( )( ) ( )s = phot g n obsphot_g_mean_flux_error _ _ _ , 4G

and we then compute the percentile for σG for each star at the

apparent magnitude of that star, in our primary sample. We use

that percentile as an indicator of photometric variability, though

it is certainly a coarse proxy, as the number of measurements is

sparse for many of the stars.
We find that that requiring that the percentile of σG be below

the 95th yields a reasonable metric for removing variables. For
stars with σG below the 95th percentile, approximately 4%
have a derived [Fe/H] less than or equal to −0.50, whereas the
fraction rises to 9% for stars with a σG above the 95th
percentile. In all cases discussed here, we also remove stars
flagged as having less reliable photometric matches. A
reasonable explanation for this trend, whereby more photo-
metrically variables are inferred to more frequently have a low
metallicity, is that rapidly rotating stars have bluer spectra, with
the effect becoming larger at smaller wavelengths, mimicking
metal-poor atmospheres (Luca Casagrande, private commu-
nication, using models discussed in L. Casagrande &
D. A. VandenBerg 2014).
The second criterion makes use of the work of Q. Chance

et al. (2022), who studied the inferred measurement errors in
the radial velocity measurements reported by Gaia. They
showed that these are associated with spectroscopic binaries,
which have the effect of broadening the spectra that are binned
from different measurements taken at different times. In the
context of our study, unresolved spectroscopic binaries would
shift the colors from those expected from single-stellar
evolution, and also include a population of past or present
mass-transfer binaries, such as blue stragglers.
The criterion suggested by Q. Chance et al. (2022) is one

where the p-value to the radial velocity noise satisfies
p� 0.001, where they stress that the p-value in their analysis
represents the likelihood that the sourceʼs radial velocity noise
is indeed anomalously high compared to stars of similar color
and magnitude.
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Of the 289,756 stars in our primary subgiant sample,
266,443 are not flagged as either having less reliable
photometric crossmatches or having photometric variability
above the 95th percentile. Of those, Q. Chance et al. (2022)
reported p-values for 118,636 Gaia sources, for which 23,898,
or 20%, have p-values� 0.001 and thus are likely spectro-
scopic binaries. These 23,898 stars are flagged in our data
tables and removed from the subsequent analysis discussed in
this paper. Our total sample used for analysis in this paper are
those stars with variability below the 95th percentile, with no
photometry flagged as spurious, and for which Q. Chance et al.
(2022) either reported no p-value or one greater than 0.001; this
sample numbers 242,545 point sources.

2.3. Selection of Astrometric, Photometric, and Extinction Data

Our analysis incorporates the following data as input.

1. Parallaxes (π) measurements and associated uncertainties
from Gaia Early DR3 (Gaia Collaboration et al. 2023), as
well as estimates on the distances derived therefrom
(C. A. L. Bailer-Jones et al. 2021) and parallax zero-point
corrections from L. Lindegren et al. (2021). GBP, G, and
GRP magnitudes and associated uncertainties are taken
from Gaia Data Release 2 (DR2; Gaia Collaboration et al.
2018b).

2. Far-ultraviolet (FUV) and NUV magnitudes and asso-
ciated uncertainties are taken from the revised catalog of
GALEX ultraviolet sources (L. Bianchi et al. 2017).

3. u, g, r, i, and z magnitudes and associated uncertainties
are taken from the SDSS (R. Ahumada et al. 2020).

4. u, v, g, r, i, and z magnitudes and associated uncertainties
are taken from DR2 of the SkyMapper Southern Sky
Survey (C. A. Onken et al. 2019).

5. g, r, i, z, and y photometry are taken from the Pan-
STARRS1 (PS1) catalog (H. A. Flewelling et al. 2020).

6. J, H, and Ks magnitudes and associated uncertainties are
taken from the 2MASS Point Source Catalog (M. F. Skr-
utskie et al. 2006).

7. W1 and W2 magnitudes and associated uncertainties are
taken from the WISE AllWISE Source Catalog
(E. L. Wright et al. 2010; A. Mainzer et al. 2011;
R. M. Cutri et al. 2021).

8. We use the extinction maps of G. M. Green et al. (2019),
setting AV= 3.04E(g− r), for those sight lines for which the
quality flags for “converged” and “reliable_dist”
are both equal to “TRUE”. For the majority of the remaining
sight lines, we use the extinction estimates of R. Lallement
et al. (2022) and J. L. Vergely et al. (2022), specifically from
the version 2 medium-resolution 6 kpc× 6 kpc× 0.8 kpc
grid “explore_cube_density_values_025pc_v2.
fits.” In order to make these consistent to first order with
the extinction maps of G. M. Green et al. (2019), we apply
the following corrections: (i) AV=A5500/0.978, (ii)

| |= + A A 0.05V A V A0.15 0.15V V
, and (iii) ∣ =AV A 0.15V

( ) ∣´ A4 3 V A 0.15V
, with the errors subsequently inflated to

s = ´ A0.31A VV
. Finally, for stars for which neither

extinction map provides measurements, we use the Schlegel,
Finkbeiner, and Davis (SFD) maps (D. J. Schlegel et al.
1998), with the value of AV= 2.742E(B−V ) suggested by
the recalibration of E. F. Schlafly & D. P. Finkbeiner (2011).

For each of these parameters, we require that the data satisfy
quality flags which we describe in the Appendix. We also

inflate all photometric errors by the arbitrary value of 0.01 mag
in quadrature.

2.4. Contributions to the Likelihood Function

We construct our likelihood function with the aim of

incorporating as many reliable measurements as possible, but to

do so without redundancy, as many of the measurements probe

nearly identical wavelength regimes. We thus use the following

inclusion criteria for our likelihood function.

1. We require at least one measurement of {NUV, uSM,

uSDSS}.
2. If measurements of both of {uSM, uSDSS} are available,

we use that of uSDSS.
3. If a measurement of vSM is available, we use it.
4. We require a measurement of G, and we use it.
5. We use whichever has the most available measurements

of {GBP,GRP}, {gSM, rSM, iSM, zSM}, {gSSDSS, rSDSS,

iSDSS, zSDSS}, and {gPS, rPS, iPS, zPS}, where “PS” stands
for Pan-STARRS. If the number of available measure-

ments are equal, we prioritize those of Pan-STARRS,

then SDSS, then Skymapper, then Gaia.
6. If a measurement of yPS is available, we use it.
7. We require and use measurements for each of 2MASS {J,

H, Ks} and WISE {W1, W2}.
8. If the extinction measurement is from either the PS1

maps, or the J. L. Vergely et al. (2022) or R. Lallement

et al. (2022) maps, we use it with the associated

measurement errors, where the latter is as described in

Section 2.3. If the extinction measurement is from the

SFD maps, it does not contribute to the likelihood.
9. We use the parallaxes and associated uncertainties from

the Gaia DR3 catalog, with the zero-point corrections

from L. Lindegren et al. (2021).

We keep track of all photometric measurements and model

predictions thereof, even those not contributing to the likelihood

functions, for purposes of subsequent heuristic comparisons.

2.5. Contributions to the Priors

We use the following priors for the exploration of the

parameter space for each star.

1. A flat prior in metallicity, over the interval

−2.0� [Fe/H]�+0.50.
2. A flat prior in age in the interval 1� τ/Gyr� 13.721.
3. A Chabrier prior in the mass of the star, restricted to the

range 0.70�m/me� 2.0.
4. A flat prior in extinction over the interval d- A 3V AV

d+A A 3V V AV , where d s= + 0.01A A
2 2

V V
. Here,

sAV is either the value given for the uncertainty in

extinction from the PS1 or R. Lallement et al. (2022) or

J. L. Vergely et al. (2022) maps, if those are used, or

equal to 10% of the extinction if we use the value from

the SFD maps. If the value of d-A 3V AV is negative, the

lower bound on the extinction is set to 0.
5. A prior in distance that is proportional to the square of the

distance (and thus uniform in volume), but restricted to

the range 1/(π+ 3σπ)� d� 1/(π− 3σπ).
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3. Methodology and Validation Thereof

We compute the posteriors for the parameters of each star in
our sample using the isochrones package (T. D. Morton
2015),6 which uses the PyMultinest implementation
(J. Buchner et al. 2014) of MultiNest (F. Feroz &
M. P. Hobson 2008; F. Feroz et al. 2009, 2019) to compare
astrometric, photometric, and spectroscopic observations of
stars to predictions from MIST isochrones. The isochrones
package has now been widely used to estimate stellar
parameters (e.g., B. T. Montet et al. 2015; D. Huber et al.
2016; S. M. Mills et al. 2016; H. Reggiani et al. 2022b) as has
MultiNest in other contexts such as microlensing (e.g., R. Pol-
eski et al. 2017), where it has been demonstrated to be effective
and efficient in the exploration of degenerate likelihood spaces
as well as those with multiple modes.

The isochrones package fully explores the MIST isochrones
within the bounds of the priors, by varying the distance, age,
initial mass, [Fe/H], and AV at which the isochrones are
evaluated. That is done by interpolating in the variable
equivalent evolutionary point (EEP), and using the bolometric
correction tables from MIST.7

We use seven different methods to validate and investigate
our methodology, which we discuss below.

3.1. Validation of the Diagnostic Potential of Photometric
Measurements Along the Subgiant Branch

In Figure 2, we plot the scatters of various photometric color
measurements of stars in the GALAH survey (G. M. De Silva
et al. 2015; S. Buder et al. 2021). These are selected to be on or
near the subgiant branch (  g3.25 log 4.25), to have
relatively reliable spectroscopic metallicity determinations
(−2.00� [Fe/H]�+0.50, σ[Fe/H]� 0.20), and to have low
extinctions (AKs� 0.03). We compare these to the predictions
from the MIST isochrones with ([Fe/H], τ/Gyr)= (−2.0, 10),
(−1, 10), (−0.50, 4), and (+0.25, 4) with  g3.25 log 4.25.

We draw several conclusions from this comparison. The first
is that measurements in NUV, u, and v are particularly sensitive
to metallicity. The second is that the black arrow (δAV= 0.50
mag) is usually nearly parallel and approximately 30% longer
than the gray arrow (δTeff= 500 K), and thus the uncertainties
between the temperature and reddening measurements will
usually be correlated. That is why constraints from extinction
maps are arguably necessary for our analysis. The third is that
the data are slightly offset from the predictions, by a few
hundredths of a magnitude, in (G− J), (J−Ks), and (Ks−W1).

The fourth, and most substantial, conclusion that we derive
is that there is an impressive match between the metallicity
sensitivity of the color–color relations predicted by the MIST
isochrones, and that which can be measured from the GALAH
data. That need not have been the case, as the latter are
determined by high-resolution spectroscopy, whereas the
former are predicted by the product of model atmospheres
with estimates of the photometric transmission curves. The
qualitative demonstration of this consistency in Figure 2
satisfies two requirements for our methodology to be successful
—that broadband colors of stars on the subgiant branch encode
some information on metallicity, and that the MIST isochrones
reliably predict the trends.

We note that it has long been known that photometry can be
incredibly constraining in the inference of stellar parameters (e.g.,
H. L. Johnson & W. W. Morgan 1953; B. Strömgren 1966;
M. Haywood 2002; L. Casagrande et al. 2011). Where this study
differs is our emphasis on the subgiant branch to infer ages as
well, and the combination of the most widely available ultraviolet
through infrared photometry and astrometry for these stars.

3.2. Validation of Astro-photometrically Inferred Metallicities
via Comparisons to Spectroscopic Surveys

We compare our astro-photometric metallicity determina-
tions to those from four major spectroscopic surveys in
Figure 3. These four surveys are the Gaia High-Resolution
Spectrograph Survey (Gaia Collaboration et al. 2023), the
APOGEE survey (DR17; S. R. Majewski et al. 2017), the
GALAH survey (DR3; S. Buder et al. 2021), and the LAMOST
survey (low-resolution spectra (LRS) Data Release 7 (DR7);
M. S. Xiang et al. 2015), where we describe our inclusion
criteria for these data in our Appendix.
These comparisons validate the assumption that we can in

fact reliably infer metallicities over a broad metallicity range,
−2.0� [Fe/H]+ 0.50. Our metallicity inferences are approxi-
mately 0.10 dex lower than the spectroscopic values, with a
median absolute deviation between the two values of
approximately 0.10 dex.
We evaluate the comparison with the GALAH data in greater

detail. For those stars, the median offset on the [Fe/H]
determinations is 0.08 dex, with a median absolute deviation of
0.08 dex. That median offset is slightly larger than the median
reported measurement error in our astro-photometrically
derived metallicities (0.06 dex), or the spectroscopically
derived metallicities from GALAH (0.07 dex).
In each of the four panels, we see cloud of points with low

astro-photometric metallicities but with high spectroscopic
metallicities of [Fe/H]�−0.50. For the APOGEE, GALAH,
and LAMOST samples we consider it likely that this
discrepancy is due to issues with our photometric analysis
rather than with the spectroscopic analysis. The reasoning for
this is presented in Section 4.4, where we are able to run tests
on a larger number of such stars.

3.3. Validation of the Precision and Accuracy of Ages and
Metallicities With Well-studied Open Clusters

The open clusters M67 (NGC 2682) and NGC 188 are well
studied, and thus provide an independent means to validate our
methodology to infer ages and metallicities. We can evaluate if
our parameter inferences for subgiant stars within a cluster are
consistent with one another as a proxy for precision, and if they
are consistent with other literature values as a proxy for accuracy.

3.3.1. Empirical Population Parameters for the Validation Clusters

All literature references for cluster parameters that either
inform our choice of priors or the evaluation of our results are
listed in Table 1.
For the distances to the clusters, we assume the inverse of the

parallax values that have been vetted by the Gaia collaboration
(Gaia Collaboration et al. 2018a). Both parallaxes are precisely
measured (π/σπ� 100), and we shift the parallaxes by a zero-
point offset of δπ= 0.054 mas, such that the parallaxes are
increased (R. Schönrich et al. 2019). In contrast, if we used the
parallax measurements for each individual stars, we would

6
https://isochrones.readthedocs.io/en/latest/

7
https://waps.cfa.harvard.edu/MIST/model_grids.html#bolometric
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have a median precision of π/σπ≈ 70 for M67 and π/σπ≈ 30

for NGC 188, and thus the parameter inferences would be

degraded relative to most of our sample.

For the extinction to these clusters, the Pan-STARRS

reddening maps (G. M. Green et al. 2019) would be the ideal

choice for reddening estimates, as using these values would

Figure 2. We show various photometric scatters for stars on or near the subgiant branch. The [Fe/H] measurements (S. Buder et al. 2021) are color coded, as are the
predictions from the MIST isochrones. The effects of increasing the extinction byΔAV = 0.50 mag andΔTeff = 500 K are approximated by the black and gray arrows,
respectively, and representative photometric uncertainties are shown by the cyan error bars. The association between the spectroscopically inferred metallicities and
color–color relations is consistent with the theoretical prediction.

6

The Astrophysical Journal, 976:87 (24pp), 2024 November 20 Nataf et al.



Figure 3. A comparison between our astro-photometric metallicity determinations and those from four major spectroscopic surveys. Legends show the median
difference in [Fe/H], where a positive value denotes a higher metallicity for the spectroscopic determination, and the median absolute deviation between the
metallicity determinations. The black lines denote the lines of equality between the metallicity determinations. This comparison to data from four surveys demonstrates
that our astro-photometric estimates of metallicity are largely consistent with the spectroscopically inferred values.

Table 1

Literature References as Well as the Estimates in This Work for the Population Parameters of the Clusters

Population Parallax (mas) [Fe/H] ( )log Age AV Reference and Comments

M67 1.1865 ± 0.0011 L L L Gaia Collaboration et al. (2018a), R. Schönrich et al.

(2019)

M67 L +0.01 L L U. Heiter et al. (2014)

M67 L +0.00 L L F. Liu et al. (2019)

M67 L +0.03 L L L. Casamiquela et al. (2019)

M67 L +0.01 L L J. Donor et al. (2020)

M67 L +0.00 L L L. Spina et al. (2021)

M67 L L 9.32 L N. V. Kharchenko et al. (2013)

M67 L L 9.63 L T. Cantat-Gaudin et al. (2020)

M67 L L 9.54 L D. Stello et al. (2016)

M67 L L 9.63 L F. Liu et al. (2019)

M67 L L 9.57 L E. L. Sandquist et al. (2021)

M67 L L L 0.124 A. Sarajedini et al. (1999)

M67 L L L 0.186 N. V. Kharchenko et al. (2005)

M67 L L L 0.186 A. K. Pandey et al. (2010)

M67 L L L 0.27 S. Meibom et al. (2009)

M67 L L L 0.127 B. J. Taylor (2007)

M67 L L L 0.109 L. Viani & S. Basu (2017)

M67 L L L 0.093 Y. H. M. Hendy & H. I. Abdel Rahman (2022)

M67 L L L 0.248 D. A. VandenBerg et al. (2007)

NGC 188 0.5593 ± 0.0011 L L L Gaia Collaboration et al. (2018b), Schönrich et al. (2019)

NGC 188 L +0.11 L L U. Heiter et al. (2014)

NGC 188 L +0.03 L L L. Casamiquela et al. (2019)

NGC 188 L +0.09 L L J. Donor et al. (2020)

NGC 188 L +0.09 L L L. Spina et al. (2021)

NGC 188 L L 9.65 L N. V. Kharchenko et al. (2013)

NGC 188 L L 9.85 L T. Cantat-Gaudin et al. (2020)

NGC 188 L L 9.84 L X. Chen et al. (2016)

NGC 188 L L L 0.279 A. Sarajedini et al. (1999)

NGC 188 L L L 0.248 A. K. Pandey et al. (2010)

M67 1.1897 ± 0.0007 0.04 ± 0.08 9.58 ± 0.04 0.12 ± 0.01 Derived means and weighted standard deviations

M67 1.1865 ± 0.0000 0.03 ± 0.05 9.60 ± 0.01 0.12 ± 0.00 Medians and median absolute deviations

M67 (M. Xiang & H.-W. Rix 2022) L −0.11 ± 0.05 9.63 ± 0.03 L Derived means and standard deviations

M67 (M. Xiang & H.-W. Rix 2022) L −0.11 ± 0.02 9.61 ± 0.02 L Medians and median absolute deviations

NGC 188 0.5593 ± 0.0000 0.11 ± 0.18 9.79 ± 0.08 0.26 ± 0.03 Derived means and standard deviations

NGC 188 0.5593 ± 0.0001 0.13 ± 0.06 9.80 ± 0.03 0.26 ± 0.06 Medians and median absolute deviations

Note. Where references report reddening in terms of E(B − V ), we multiply their values by AV/E(B − V ) = 3.1. The inclusion criteria for cluster stars in terms of

photometry and indicators of (non)variability are the same as they are for stars in the main sample, yielding 20 stars in M67 and 34 stars in NGC 188.
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provide the most consistency with the rest of our work.
However, we have found that these estimates are unphysically
noisy toward clusters, varying by a factor of several among the
cluster stars. That may be because of confusion affecting some
of the photometry used to construct those maps, or because a
pileup of stars at a specific distance radically violates the
smooth priors on the distribution of stars in the Milky Way
assumed in the construction of those maps (G. Green, private
communication). We instead use the inferences AV,M67=
0.120± 0.012 and AV,NGC 188= 0.260± 0.026 as part of our
likelihood, with the priors on the extinction modified as they
are for stars in the main sample.

Literature and age estimates of the metallicities of these
clusters vary. For these parameters, we assume the same priors
as we do for the stars in the main sample, a flat prior in
metallicity over the range −2.0� [Fe/H]�+0.50, and a flat
prior in log(age) over the range 1.0� τ/Gyr� 13.721. As
elsewhere, we assume a Chabrier prior in the initial stellar mass
over the range 0.70�M/Me� 2.0

The inclusion criteria for cluster stars in terms of photometry
and indicators of (non)variability are the same as they are for
stars in the main sample, yielding 20 stars in M67 and 34 stars
in NGC 188.

3.3.2. Ages of Cluster Subgiants: Trends and Results

Our results for stars associated with M67 and NGC 188 are
summarized at the bottom of Table 1, and the dependence of
age on location in the color–magnitude diagram is shown in
Figure 4.

The derived metallicities and ages are consistent with the
literature values, and consistent with one another. For M67, the
median absolute deviation and 1σ precision in ages and
metallicities are 3% and 9%, and 0.05 and 0.08 dex,
respectively. For NGC 188, the median absolute deviation
and 1σ precision in ages and metallicities are 6% and 19%, and
0.06 and 0.18 dex, respectively.

For both clusters, the median absolute deviations in the ages
are substantially smaller (≈70%) than the weighted standard
deviations, where we would only expect them to be ≈33%
smaller for normally distributed errors. That is because the

distributions of derived parameters have a high kurtosis as the
ends of the distributions are dominated by outliers. The nature
of those outliers are easy to identify in Figure 4—our
variability criteria can flag many, but not all, of the stars that
are binaries, products of binary evolution, etc. There may also
be some field star contamination, even after selecting for stars
using proper motions.
The subgiant stars in NGC 188 are ≈3× less likely to be

identified as variables than those in M67—and that is not
surprising, as some of of our variability criteria will be less
effective for stars at the greater distance of NGC 188 (1788
versus 843 pc). The brightest unflagged bright subgiant stars in
M67 and NGC 188, which may very well be blue stragglers,
have derived ages of ( ) =log age 9.48 and ( ) =log age 9.64,
respectively. These stars add to the dispersion in the derived
parameters of these clusters in a manner that will be less likely
for nearby field stars.
A key limitation of this comparison, as pointed out by the

anonymous referee, is that stellar isochrones and the stellar
physics that go into them have been evaluated and even
calibrated by comparison to clusters, and thus these compar-
isons are not necessarily independent. In this particular case,
J. Choi et al. (2016) actually fit for a key parameter of stellar
models, the convective overshoot for stellar cores, by
comparing the shape of the main-sequence turnoff in M67 to
the predictions. They derived =f 0.016ov,core .

3.4. Comparison to the Results of M. Xiang & H.-W. Rix (2022)

The work of M. Xiang & H.-W. Rix (2022) is arguably the
most similar comparison that we have to our own investigation.
They too, sought to use the tremendous diagnostic power of
Gaia astrometry to estimate the ages of subgiant branch stars,
and by extension, of the solar neighborhood as a whole. There
are several differences in our methodologies, most particularly.

1. For the most effective constraint on metallicity, our
investigation requires an ultraviolet flux measurement,
whereas that of M. Xiang & H.-W. Rix (2022) required a
LAMOST spectrum and subsequently derived stellar
parameters.

Figure 4. Color–magnitude diagrams of stars in M67 (left) and NGC 188 (right) color coded by the derived age, with the stars identified as variable or otherwise less
reliable shown as cyan squares. Our analysis finds very little dispersion in the derived ages among the subgiant branch stars, but there is some contamination from stars
that are likely to be blue stragglers.

8

The Astrophysical Journal, 976:87 (24pp), 2024 November 20 Nataf et al.



2. Our method estimates a mean total metallicity as “[Fe/
H]” whereas that of M. Xiang & H.-W. Rix (2022) splits

the metallicity into [Fe/H] and [α/Fe] parameters. The

latter approach comes with the “cost” of an extra free

parameter, but it is one which is physically well

motivated and constrained by the LAMOST spectra.

The impact of accounting for [α/Fe] is shown in the right

panel of Supplementary Figure 4 of M. Xiang &

H.-W. Rix (2022): isochrones that underestimate [α/Fe]
by 0.20 dex will overestimate ages by approximately

1.5 Gyr in the mean, but that is in the case where [Fe/H]
is fixed to the spectroscopic value. In our case, we infer

an “effective” [Fe/H] value, which will be shifted for

α-enhanced stars.
3. Both methods derive AV from available extinction maps,

predominantly that of G. M. Green et al. (2019) in this

investigation and entirely from that of M. Xiang & H.-

W. Rix (2022). However, our method assumes a constant

total-to-selective extinction ratio RV= AV/E(B− V )=

3.1, whereas that of M. Xiang & H.-W. Rix (2022) varies

RV for every star as an additional free parameter.
4. The two investigations have different variability

exclusion criteria, which are too numerous to fully

describe here.

There are 31,876 stars in common between our two samples,

including 29,965 that satisfy our sample’s variability and

blending criteria. Among those, our derived [Fe/H] values are
systematically higher, with Δ[Fe/H]∼ 0.19± 0.10, and our

derived ages are systematically lower, with the age ratio

distributed as τThis Work/τXiang∼ 0.94± 0.13.
A diagnostically powerful point of comparison is that of the

open cluster M67, for which there are numerous available

literature benchmark measurements. Our sample includes 20

M67 members, that of M. Xiang & H.-W. Rix (2022) includes

seven member stars, and there are four stars in common

between our two samples. Of the three that do not make it into

our sample, two are excluded because they are bluer than our

subgiant selection cutoff, and one is excluded due to the

absence of an ultraviolet photometric measurement.

Regardless of whether or not we select the four stars in
common or the seven total M67 stars in their sample, M. Xiang
& H.-W. Rix (2022) infer a slightly higher mean age for M67,
and a slightly lower mean metallicity. The respective ratio
(95%) and offset (0.14 dex) are effectively identical to that for
for our samples as a whole.
We conclude our two samples are consistent, showing that

ultraviolet photometry and large-survey spectroscopy currently
have comparable diagnostic power for the inferences of ages
and metallicities of subgiant branch stars.

3.5. Validations of the Assumed Extinction Maps

In this investigation we assume the extinction maps of
G. M. Green et al. (2019), and R. Lallement et al. (2022) and
J. L. Vergely et al. (2022). When extinction estimates from
both maps are available, we prioritize those from the former.
Where only measurements from the latter are available, we
transform them using the prescription in item #8 of the list in
Section 2.3, which we derive here.
Here, we seek to assess the validity of those assumptions as

follows. We use a subsample of stars for which we have an
extinction estimate from both reddening maps, for which
GALEX NUV is measured to a precision of better than 0.10
mag, and for which there is also an ultraviolet measurement
from either Skymapper or SDSS. That yields a sample of
18,176 stars.
For those stars, the combination of both NUV and u

photometry should enable us to reliably estimate extinction
from the photometry and astrometry alone. We thus remove the
extinction measurements from the likelihood, and relax the
prior to being a flat prior in the range AVä [0, AV,Green+
AV,Vergely+ 0.05].
For this sample, we find that the extinction maps of

G. M. Green et al. (2019) fare better than those of J. L. Vergely
et al. (2022) in the mean offsets, with offsets of AV,Maps−

AV,Inferred of 0.035± 0.092 versus 0.066± 0.100, respectively.
Here the errors denote 1σ dispersions. The distributions are
shown in Figure 5.
That may however be an artifact of our sample—we notice,

for example, that the maps of J. L. Vergely et al. (2022) fare

Figure 5. Comparison of our derived extinction values relative to those of the G. M. Green et al. (2019) maps (left) and the J. L. Vergely et al. (2022) maps (right). The
black and white lines denote equality, and the blue line denotes the median trends. Both maps do well in the mean, but the predictions of G. M. Green et al. (2019) fare
better for AV � 0.10, which comprise the majority of our primary sample.
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better than those of G. M. Green et al. (2019) for lower values
of the inferred extinction. If we restrict the comparison to
AV,Inferred� 0.10, the mean offsets are 0.024± 0.058 and
0.038± 0.079 mag, respectively.

3.6. Validation of the Assumed Bolometric Coefficients and
Extinction Curve

The uncertainties of the assumed bolometric corrections and
interstellar extinction curves are among the most obvious
contributors to the uncertainty in photometric investigations
such as this one.

In order to estimate the magnitude of this uncertainty, we
construct a subsample of 5558 stars which have (i) a GALEX
NUV magnitude with measurement precision better than 0.10
mag; (ii) a u-band measurement; (iii) a precision in extinction
from G. M. Green et al. (2019) that is better than 10%; and (iv)
a metallicity measurement from LAMOST with [Fe/H]�
+0.35. For the latter, we then assume a metallicity measure-
ment of [Fe/H]= [Fe/H]LAMOST+ 0.12 in our likelihood (see
Figure 3), and we inflate all photometric uncertainties by 0.05
mag in quadrature, rather than the 0.01 mag used elsewhere in
this text.

Then, for each bandpass X, we plot the scatter of
XPredicted− XMeasured as a function of AV, and compute the
least squares linear fit. We then show the slopes as a function of
the intercepts for each bandpass in Figure 6.

In principle, this should be a scatter of the errors in the
extinction coefficientsΔAX/AV as a function of the errors in the
bolometric corrections ΔBCX for each bandpass X, but in
practice we see that this is unlikely to be the case. The two
variables are anticorrelated, with a Spearman coefficient of
ρ=−0.53 and a p-value of p= 0.02. We consider this
anticorrelation to be indicative of small, undiagnosed systema-
tic errors.

Another way to discern the presence of such errors is that the
coefficients for bandpasses of similar effective wavelengths,
denoted by similar color coding in Figure 6, do not yield the
same derived errors in the extinction coefficients. For example
there is a 0.04 mag offset in ΔAX/AV between uSDSS and uSM,
and a 0.07 mag offset inΔAX/AV between rSDSS and rSM, when

those offsets should be close to 0 on physical grounds.

Separately, it is known that there is an uncertainty of 1%–5% in

the zero-points of the GALEX filters (M. H. Siegel et al. 2010),

which should be reduced for upcoming ultraviolet observa-

tories such as ULTRASAT (Y. Shvartzvald et al. 2024) and

UVEX (S. R. Kulkarni et al. 2021).
Regardless of these issues, it is at least the case that the

offsets are small. The median of the absolute values of the

offsets in the bolometric corrections and the extinction

coefficients are given by ΔBCX= 0.010 and ΔAX/AV=

0.016, respectively. The latter’s impact is further reduced due

to the fact that the median extinction of our primary sample is

AV≈ 0.15 mag.
At this time, we cannot reliably discern if these offsets are

due to the photometric data reduction or in the predictions of

the stellar models, but this may become feasible as more data

become available, in particular data from different observa-

tories measuring photometry in nominally similar bandpasses.

Given these uncertainties, we choose not to investigate the

effects of possible sight-line-dependent variations in the

interstellar extinction curve, which can bias the derived

parameters of stars if not adequately accounted for (H. Roussel

et al. 2005; M. Gennaro et al. 2012; D. M. Nataf 2015, 2021;

D. An et al. 2024; E. Bica et al. 2024).

3.7. Sensitivity of the Derived Parameters to the Input Data
and Priors

Here, we evaluate the sensitivity of our derived stellar

parameters as a function of the input data and priors. For the

tests following the first one, we use a randomly selected sample

of approximately 5000 stars selected to have π/σπ� 100 and

s  0.05AV . We list the effects of these changes in approxi-

mately decreasing order of the size of their effects.

3.7.1. The Effect of Removing the Ultraviolet Measurements from the

Likelihood

We evaluate the effect of removing the measurements of

NUV, uSM, vSM, and uSDSS from the likelihood. The mean offset

in metallicity, where we report the catalog value subtracted from

the adjusted value, is Δ[Fe/H]=−0.02± 0.17, and similarly,

( )D = - log age 0.00 0.06. The Pearson correlation between

these two offsets is ρ=−0.81.
Thus, in the mean, removing the ultraviolet measurements

negligibly biases the results, but it does yield a very large and

very correlated statistical error for the derived ages and

metallicities.

3.7.2. The Effect of Removing the Extinction Priors from the

Likelihood and Adjusting Them in the Prior

We evaluate the effect of removing the available measure-

ments of extinction from both the likelihood and priors, and

replacing them with a flat prior in AV over the range [0, 1].
The mean offset in metallicity, where we report the catalog

value subtracted from the adjusted value, is Δ[Fe/H]=
−0.07± 0.08, and similarly, ( )D = log age 0.08 0.11. The

Pearson correlation between these two offsets is ρ=−0.72.

Figure 6. The scatter of the derived errors of the mean extinction coefficients as
a function of the derived mean errors in the bolometric corrections, color coded
by filter effective wavelength. The fact that the two variables are anticorrelated
is indicative of undiagnosed systematic errors, such as errors in the assumed
filter transmission curves.
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3.7.3. The Effect of Removing Both the 2MASS and WISE Data from

the Likelihood

We evaluate the effect of removing the measurements of J,
H, Ks, W1, and W2 from the likelihood.

The mean offset in metallicity, where we report the catalog
value subtracted from the adjusted value, is Δ[Fe/H]=
0.02± 0.08, and similarly, ( )D = - log age 0.02 0.06. The
Pearson correlation between these two offsets is ρ=−0.70.

3.7.4. The Effect of Removing the WISE Data from the Likelihood

We evaluate the effect of removing the measurements of W1

and W2 from the likelihood.
The mean offset in metallicity, where we report the catalog

value subtracted from the adjusted value, is Δ[Fe/H]=
−0.01± 0.02, and similarly, ( )D = log age 0.01 0.02. The
Pearson correlation between these two offsets is ρ=−0.46.

3.7.5. The Effect of Adjusting the Prior on the Metallicity

We evaluate the effect of changing our metallicity prior,
which is a flat prior in metallicity, over the internal range
−2.0� [Fe/H]�+0.50, to the default prior suggested by
isochrones. The default prior has a dominant peak near [Fe/
H]= 0, with a long tail to lower metallicities.8

The mean offset in metallicity, where we report the catalog
value subtracted from the adjusted value, is Δ[Fe/H]=
0.01± 0.02, and similarly, ( )D = log age 0.00 0.02. The
Pearson correlation between these two offsets is ρ=−0.65.
Approximately 5% of the sample stars have changes in either
[Fe/H] or log(age) exceeding 0.05 dex, and approximately 1%
of the sample stars have changes exceeding 0.10 dex. These
shifts in the derived parameters are represented by the errors:
whereas the stars whose derived values of ( )log age shifted by
less than 0.05 had mean errors in their ages of 9.3%, those for
which ( )log age shifted by more than 0.05 had mean errors in
their ages of 28.4%.

3.7.6. The Effect of Increasing or Decreasing the Number of Live

Points Used in the Nested Sampling

We evaluate the effect of increasing the number of live
points used by MultiNest for the fitting, from 1000 to 3000 live
points, and then from 1000 to 300 live points.

When we increase the number of live points to 3000, the
shift in the mean offset in metallicity, where we report the
catalog value subtracted from the adjusted value, is Δ[Fe/H]=
0.00± 0.00, and similarly, ( )D = log age 0.00 0.01. The
largest change in the derived value of [Fe/H] is 0.03 dex.
For the derived values of ( )log age , some 0.2% of the stars have
parameter shifts of more than 0.05 dex, with the largest
recorded shift being 0.08 dex.

Similar results are obtained when we decrease the number of
live points to 300, where the shift in the mean offset in
metallicity, where we report the catalog value subtracted from
the adjusted value, is Δ[Fe/H]= 0.00± 0.00, and similarly,

( )D = log age 0.00 0.01. The largest change in the derived
value of [Fe/H] is 0.04 dex. For the derived values of ( )log age ,
some 0.6% of the stars have parameter shifts of more than 0.05
dex, with the largest recorded shift being 0.11 dex.

4. Main Results

4.1. Availability of the Derived Parameters and the
Uncertainties Thereof

The table of derived stellar parameters (16th, 50th, and 84th
percentiles of the posteriors) of our program stars can be found
in Table 2 of the online edition of this paper.
The input tables for the 401,819 stars in the primary sample

and the metal-poor annex, including the crossmatches to other
surveys, the Python Jupyter Notebook used to evaluate them,
associated readme file, and links to the table of derived
parameters can be found in a github repository of this paper’s
first author9 and in the Zenodo repository doi:10.5281/
zenodo.13750877.
The data that support the findings of this study are openly

available in the Johns Hopkins Research Data Repository at
doi:10.7281/T1/CGBG4F. It includes the abovementioned
data, as well as the full probabilistic posteriors for the derived
stellar parameters (e.g., [Fe/H], AV, etc.) of each star.

4.2. Primary Sample: Ages and Metallicities

We show, in the right panel of Figure 7, the distribution in
age–metallicity space for 242,489 stars from our primary
sample which are not associated with open clusters, and which
satisfy our other inclusion criteria.
We observe three age–metallicity components in our sample.

The first is an excess concentration centered at (τ/Gyr,
[Fe/H])≈ (4, 0), corresponding to the age and metallicity of
the Sun. The second excess concentration is centered at (τ/Gyr,
[Fe/H])≈ (7, +0.15), and the third is a streak of stars
distributed along a narrow band in age–metallicity space, from
(τ/Gyr, [Fe/H])≈ (8, +0.15) to (13, −0.50). Not one of these
three features would be discernible if we were to look at either
of the marginal distributions of age and [Fe/H] distributions,
but they are easily discernible in the joint distribution of age
and metallicity.
We have verified that the presence of these three components

is robust to the following methodological changes: requiring an
uncertainty in AV of less than 0.05 mag; requiring a low
inferred value for the extinction of AV� 0.20; requiring either a
detection or nondetection in NUV; requiring a detection in vSM;
requiring an inferred distance of less than 500 parsecs; and
finally, requiring an age precision of better than 7%.
We also comment on the ends of our parameter space. First,

the fact that we barely detect any stars with τ/Gyr� 2 is due to
our color–magnitude selection function (see Figure 1). Second,
the lack of stars with [Fe/H]> 0.50 is due to that being the end
of the MIST isochrone grid, and likely as well the fact that
those stars are intrinsically rare. Finally, we have a reassuringly
small excess of stars with τ/Gyr≈ 13.7. That is a cosmolo-
gically motivated end to our allowed parameter space, never-
theless, we would expect to see a large pileup of stars at old
ages if either of our measurement or methodological errors
were larger, for example if we frequently and significantly
underestimated reddening or metallicity. Though there is a
pileup that can be seen at the right end of the left panel of
Figure 7, it is reassuringly small.
We estimate our selection bias as follows. First, we require

the stars to have predicted photometric parameters satisfying
those in the top panel of Figure 1. We then require that the star

8
The default priors for the isochrones package are described more fully at

https://isochrones.readthedocs.io/en/latest/starmodel.html#Priors.
9

https://github.com/DavidMoiseNataf/Subgiants
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either have a predicted 14�NUV� 22, 12� uSDSS� 17, or

11� uSM� 17, as is the case for the stars in our sample, given

a volumetrically uniform distribution satisfying 250�
d/pc� 1000. This approximation of the selection probability,

shown in Figure 8, varies little for stars with 2� τ/Gyr� 12

and −1.0� [Fe/H]�+0.50. As these stars comprise the vast

majority of our sample, the selection function has little effect

on our final sample.
There are certainly factors not included in the estimate of our

selection function that could significantly adjust the selection

probability. These include a possible age and metallicity

dependence to the detectable binary fraction, the correlations

between the spatial selection functions of GALEX, SDSS, and

Skymapper and the metallicity distribution functions of field

stars, and the correlation between high-extinction sight lines

(which tend to be along the Galactic plane) and the age–

metallicity distributions of those sight lines. The computation

of these adjustment factors would constitute a large study of
their own, and are thus beyond the scope of this investigation.

4.3. The Associations Between the Derived Ages and Dynamics

We estimate the dynamical properties of our sample stars
using galpy10

(J. Bovy 2015), and compute the orbits using
the module developed by J. T. Mackereth & J. Bovy (2018).
Some of our results may be inverted relative to other studies as
galpy uses a left-handed Galactocentric coordinate frame.
We adopted the MWPotential2014 described by J. Bovy

(2015). In that model, the bulge is parameterized as a power-
law density profile that is exponentially cut off at 1.9 kpc with a
power-law exponent of −1.8. The disk is represented by a
Miyamoto–Nagai potential with a radial scale length of 3 kpc
and a vertical scale height of 280 pc (M. Miyamoto &

Table 2

Summary Input Data and the Derived Stellar Parameters for 401,819 Stars

Num Label Explanations

1 dr3_source_id Unique source identifier in Gaia DR3 (Gaia Collaboration et al. 2023), for all sample stars

2 objid_GALEX Unique source identifier in GALEX (L. Bianchi et al. 2017) if in catalog, otherwise null

3 R.A. R.A. from Gaia DR3, Epoch J2016

4 decl. decl. from Gaia DR3, Epoch J2016

5 ra2000 R.A. from Gaia DR3, Epoch J2000

6 dec2000 decl. from Gaia DR3, Epoch J2000

7 l2000 Galactic longitude from Gaia DR3, Epoch J2000

8 b2000 Galactic latitude from Gaia DR3, Epoch J2000

9 phot_g_mean_mag G-band mean magnitude from Gaia DR3

10 mass_16 16th percentile of the posterior distribution of the initial stellar mass

11 mass 50th percentile of the posterior distribution of the initial stellar mass

12 mass_84 84th percentile of the posterior distribution of the initial stellar mass

13 age_16 16th percentile of the posterior distribution of the stellar age

14 age 50th percentile of the posterior distribution of the stellar age

15 age_84 84th percentile of the posterior distribution of the stellar age

16 feh_16 16th percentile of the posterior distribution of the stellar metallicity

17 feh 50th percentile of the posterior distribution of the stellar metallicity

18 feh_84 84th percentile of the posterior distribution of the stellar metallicity

19 AV_model_16 16th percentile of the posterior distribution of the extinction to the star AV

20 AV_model 50th percentile of the posterior distribution of the extinction to the star AV

21 AV_model_84 84th percentile of the posterior distribution of the extinction to the star AV

22 Teff_16 16th percentile of the posterior distribution of the stellar surface effective temperature Teff
23 Teff 50th percentile of the posterior distribution of the stellar surface effective temperature Teff
24 Teff_84 84th percentile of the posterior distribution of the stellar surface effective temperature Teff
25 logg_16 16th percentile of the posterior distribution of the stellar surface gravity glog

26 logg 50th percentile of the posterior distribution of the stellar surface gravity glog

27 logg_84 84th percentile of the posterior distribution of the stellar surface gravity glog

28 GP_Jp Azimuthal action, all dynamical variables derived by galpy (J. Bovy 2015)

29 GP_Jr Radial action

30 GP_Jz Vertical action

31 GP_Lz Orbital angular momentum about the Galactic major axis

32 GP_E Energy of orbit, negative for bound orbits

33 GP_Rperi Smallest distance to Galactic center of orbit

34 GP_Rap Largest distance to Galactic center of orbit

35 GP_zmax Largest separation from the plane of orbit

36 GP_ecc Eccentricity of orbit

37 Blend “1” for stars for which photometry appears blended as per the criteria of Section 2.1, “0” otherwise

38 Chance_pvalue p-value from Q. Chance et al. (2022) if measured, otherwise null

39 VarExcess Percentile of photometric variability in Gaia G band with respect to the rest of the sample

40 Sample “PS” for primary sample, “MPannex” for metal-poor annex

Note. Summary input data and derived parameter for 401,819 subgiants. This table is published in its entirety in the machine-readable format in the online edition.

(This table is available in its entirety in machine-readable form in the online article.)

10
http://github.com/jobovy/galpy

12

The Astrophysical Journal, 976:87 (24pp), 2024 November 20 Nataf et al.



R. Nagai 1975). The halo is modeled as a Navarro–Frenk–
White halo with a scale length of 16 kpc (J. F. Navarro et al.
1996). We set the solar distance to the Galactic center to
R0= 8.122 kpc (GRAVITY Collaboration et al. 2018), the
circular velocity at the Sun to V0= 238 km s−1

(R. Schönr-
ich 2012; J. Bland-Hawthorn & O. Gerhard 2016), the height of
the Sun above the plane to z0= 25 pc, and the solar motion
with the respect to the local standard of rest to (Ue, Ve,
We)= (10.0, 11.0, 7.0) km s−1

(M. Jurić et al. 2008), where
the latter is consistent with the values of (Ue, Ve, We)= (11,
12, 7) km s−1 derived by R. Schönrich et al. (2010).

In Figure 9, we show the distribution of estimated orbital
parameters for 105,445 sample stars with derived ages that are
estimated to be precise to 7% or better. The distribution in
action space is shown in the two left columns, and in the right

column we show the distribution as a function of two integrals
of motion (energy and angular momentum around the Galaxy’s
rotation axis). As our assumed gravitational potential for the
Milky Way is axisymmetric, the action Jf is exactly equal to
the angular momentum Lz. Then, in Figure 10, we show the
distribution of stars of our combined sample (including the
metal-poor annex) as a function of E versus Lz, binned by age
and metallicity.
What we find is that the older stars are broadly distributed in

dynamical space, meaning older stars can in fact be found in
any region of dynamical phase space where we find any stars at
all. The trend is for the dynamical distribution of stars to
become more and more localized as the derived ages of stars
become younger and younger. This result is qualitatively
consistent with the Milky Way Disk formation model of
R. Schönrich & J. Binney (2009), who postulated that the thick
and thin disks were born at the same time. That is in contrast to
various other observational arguments that the oldest thick disk
is several gigayears older than the oldest thin disk stars (e.g.,
M. Haywood 2008; M. Kilic et al. 2017). There is evidence
previously discussed in the literature of ancient stars on thin
disk orbits, but these have thus far been few and far between
(G. R. Ruchti et al. 2011; K. C. Schlaufman et al. 2018),
though this subject appears to be on the ascendancy (M. Bell-
azzini et al. 2024; J. Hong et al. 2024; H. Zhang et al. 2024).
To the best of our knowledge, ours is the first analysis of a
sample of these stars for which precise ages are available.

4.4. The Metal-poor Annex

We constructed the metal-poor annex, using the criteria
delineated in Section 2, so as to extract a sample of metal-poor
subgiant stars. These are indistinguishable from the vastly more
numerous metal-rich turnoff stars on the optical color–
magnitude diagram, but can be selected statistically using a
combination of ultraviolet and optical colors, as can be better
understood by inspecting Figure 2.

Figure 7. Left: the distribution in age–metallicity space for 242,489 stars from our primary sample which are not associated with open clusters, and which satisfy our
other variability and blending inclusion criteria. Right: the distribution in age–metallicity space for 96,247 stars from our metal-poor annex which are not associated
with open clusters, and which satisfy our other variability and blending inclusion criteria. The age–metallicity distribution functions show considerable structure that
would not be discernible in either of the marginal distributions.

Figure 8. An approximation of our selection function as a function of age and
metallicity, where the selection weight is normalized to 1 for a star of solar age
and metallicity. The selection function is close to uniform in the age–
metallicity regime where stars are found in numerous numbers.
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The metal-poor annex totals 112,062 stars, of which 96,247
stars meet the photometric and blending criteria used for the main
sample—that is, the distribution that we plot in the right panel of
Figure 7. Of those, 14,670 stars have a derived age precision better
than 7%, and 6768 have derived age precisions better than 5%.

Of the 96,247 metal-poor annex stars that meet our
photometric and variability criteria, 10,015 have matches in
LAMOST DR7, and we show their distribution in Figure 11.
The two samples are consistent, with a median offset of 0.11
dex and a median absolute deviation of 0.10 dex. As with
Figure 3, we do see a cloud of points for which the
spectroscopic metallicities exceed the photometric metallicities.
Here, we find that the error is due to specific failure modes of
the photometric analysis. Some 30% of the stars in Figure 11
with derived metallicities satisfying [Fe/H]�−1.0 have a
difference in their photometric and spectroscopic metallicities
exceeding 0.50 dex. For those, the mean derived ages are 24%
lower, the mean derived extinctions are 2× greater, and the
mean derived errors on the metallicities are 5× greater.

The most significant offset, however, is that due to whether or
not there is an NUV measurement. For the 209 stars in Figure 11
with derived metallicities satisfying [Fe/H]�−1.0 and which
have an offset between the photometric and spectroscopic
metallicity determinations exceeding Δ[Fe/H]= 0.50 dex, only
one has an NUV measurement. In contrast, for the 486 other
stars with derived metallicities satisfying [Fe/H]�−1.0, 399
have NUV measurements. We conclude that NUV is simply
more effective than u band at distinguishing metal-poor subgiant
stars from young metal-rich turnoff stars with similar optical
colors—particularly when the reddening is high.

The metal-poor annex yields significant potential for follow-
up. Among the stars that satisfy our blending and variability
criteria, have 7% precision in their age determinations, and which
are brighter than G= 14, some 4649 have [Fe/H]�−1.00, and
some 3123 have [Fe/H]�−1.5. Of these, roughly half are
brighter than G= 13, further enabling follow-up study.

4.4.1. Metal-poor Annex Systematics and Uncertainties

We investigated the fidelity of our photospheric stellar
parameters for the metal-poor annex by performing spectroscopic

observations of apparently metal-poor subgiants (i.e., [Fe/H]
−1.0), one young and one old. To remain as unbiased as
possible, we selected stars observable at the time and from the
place of observation based on their inferred metallicities and ages
alone. We selected Gaia DR3 6032690864784481664 (Teff=

6430± 50 K, = glog 3.90 0.02, [Fe/H]=−1.13± 0.13,
and τ= 6.3± 0.4 Gyr) and Gaia DR3 6310653893928413696
(Teff= 6010± 60 K, = glog 4.02 0.02, [Fe/H]=−0.82±
0.08, and τ= 11.2± 0.8 Gyr).
We collected their spectra with the Magellan Inamori

Kyocera Echelle spectrograph on the Magellan Clay Telescope
at Las Campanas Observatory (R. Bernstein et al. 2003;
S. A. Shectman & M. Johns 2003). We used the 0 7 slit with
standard blue and red grating azimuths, yielding spectra
between 335 and 950 nm with resolution R≈ 40,000 in the
blue and R≈ 31,000 in the red arms. We collected all
calibration data (e.g., bias, quartz and “milky” flat fields, and
ThAr lamp frames) in the afternoon before each night of
observations. We reduced the raw spectra and calibration
frames using the CarPy11 software package (D. D. Kelson
et al. 2000; D. D. Kelson 2003; D. D. Kelson et al. 2014). We
placed the spectra in the rest frame and continuum normalized
them using Spectroscopy Made Harder (A. R. Casey 2014).12

We analyzed Gaia DR3 6032690864784481664 and
Gaia DR3 36310653893928413696 using the methodology
described in H. Reggiani et al. (2021, 2022a, 2022b, 2023,
2024). That methodology initially uses the classical excitation–
ionization–reduced equivalent width balance approach to infer
an initial set of photospheric stellar parameters. Those
parameters are then included in the likelihood of an
isochrones analysis that in all other details corresponds to
the analyses described in Section 3. We next use (Teff, glog )

samples from the resulting isochrones posteriors as
constraints on the spectroscopic analysis and recalculate [Fe/
H] using reduced equivalent width balance. The photospheric
stellar parameters are again included in an isochrones
analysis. This procedure is iterated a few times until the
photospheric stellar parameters have converged. Using this

Figure 9. Older stars can be found in any populated region of dynamic phase space, but younger stars are virtually purely associated with cold disk kinematics. The
dynamical distribution of our sample stars in action space (left two panels) and in terms of integrals of motion (right panel). The points are color coded by their derived
age, and the size of the points is proportional to their isolation in Jr−Jz space.

11
http://code.obs.carnegiescience.edu/mike

12
https://github.com/andycasey/smhr/tree/py38-mpl313
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Figure 10. The derived E vs. LZ distribution functions for the orbits of the stars in our combined primary + metal-poor annex sample, in six different bins of age
(increasing upwards) and four different bins of metallicity (increasing to the right) for 24 total bins. We include 169,411 stars that satisfy our variability and blending
criteria, for which the 1σ precision in the derived ages is better than 10%, and for which the 1σ precision in the derived [Fe/H] is better than 0.20 dex. Younger stars
have nearly entirely disk-like kinematics, whereas older stars can be found in any region of kinematic phase space where there are stars to be found, including the disk.
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approach, for Gaia DR3 6032690864784481664 we find Teff=
6310± 50 K, = glog 3.99 0.02, [Fe/H]=−0.44± 0.10,
and τ= 4.8±0.3 Gyr; for Gaia DR3 6310653893928413696
we find Teff= 6030± 10 K, = glog 3.96 0.01, [Fe/H]=
−1.21± 0.02, and τ= 13.4± 0.1 Gyr.

While our spectroscopy-based metallicity inference for
Gaia DR3 6032690864784481664 is much higher than the
metallicity returned by our default analysis, the age inferences
from both approaches agree that the star is mature. Likewise,
the Teff and glog inferences from both approaches agree to
within 120 K and 0.1 dex. While our spectroscopy-based
metallicity inference for Gaia DR3 6310653893928413696 is
marginally lower than the metallicity returned by our default
analysis, the Teff and glog values are in excellent agreement.
Both our default and spectroscopic analyses agree that
Gaia DR3 6310653893928413696 is ancient.

As we argued above, GALEX data are a necessary ingredient
for our highest-quality stellar parameter inferences. GALEX
data are unavailable for both Gaia DR3 6032690864784481664
and Gaia DR3 6310653893928413696 though, so the spectro-
scopic results presented here represent a worst-case scenario for
the accuracy of our metal-poor stellar parameter inferences.
Gaia DR3 6032690864784481664 has Teff≈ 6400 K placing it
at the warm end of our subgiant Teff distribution, so it seems
that GALEX photometry is especially important for accurate
metallicity inferences for relatively warm subgiants.

4.5. On the Uncertainties in the Derived Ages

As delineated in Equation (1) and can be inferred from
Figure 1, a 1% precision in the parallaxes should correspond to
a 2% precision in the derived ages in the best-case scenario
where the stellar temperature and metallicity are precisely
determined. It thus needs to be better understood why, in spite
of a median parallax precision of π/σπ= 80, we achieve, for
the 335,778 stars in our combined primary sample and metal-
poor annex that meet our quality inclusion criteria, a median
age precision of 9.5% and a mean age precision of 13.4%
(distribution shown in Figure 12). We note that these values
drop to 8.4% and 12.7%, respectively, for stars with GALEX

photometry, indicative of the greater diagnostic power of
space-based, ultraviolet photometry.
Here we discuss two factors that are exacerbating the

uncertainties in the derived ages, and their prospects for
improvement.
The first factor is the degeneracy between the uncertainties in

metallicity and age. The average correlation coefficient
between the uncertainties in log(age) and [Fe/H] is −0.72.
Thus, the error in metallicity, which can be largely attributed to
uncertainties in the ultraviolet photometry and in the 3D
extinction maps, is responsible for most of the error in the
derived ages. This problem will be mitigated in the near future
as the availability of robust ultraviolet photometry is expected
to both increase and improve.
To further explore the origin of the uncertainties in the

derived ages, we define a coarse estimate of the uncertainty in
apparent distance modulus σμ, as follows:
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In the middle panel of Figure 13, we show that the derived
ages are indeed more precise for stars with smaller values of
σμ, but that another significant contributor to the uncertainty in
derived ages is that of the derived EEP of the star. That is
because our selection function inevitably includes not only
subgiant branch stars, but also main-sequence turnoff and first-
ascent red giant branch stars, as shown in the left panel.
Returning to the middle panel, we see that we do achieve
excellent precision in the derived ages for stars with EEP
values of around 460, corresponding to subgiant branch stars.
The errors are much higher for those stars which are either
turnoff stars (EEP≈ 420) or first-ascent red giant branch stars
(EEP� 475). In our case, some 75% of the stars in our sample
have derived EEPs in the range (450� EEP� 475) approxi-
mately corresponding to the subgiant branch. On the left panel,
we show that the normalized distribution of the derived ages for
the subgiant stars, as approximated by those stars with
(450� EEP� 475), has a mode at around 5%. A selection
function that is more tightly focused on these stars could likely
be constructed by making a finer use of ultraviolet photometry,

Figure 11. For stars in our metal-poor annex that have been observed by
LAMOST. The cloud of stars for which the photometric metallicities are
underestimated are largely a product of less reliable ultraviolet photometry and
less certain reddening measurements. For the vast majority of stars, the astro-
photometric metallicities are generally consistent with the spectroscopically
derived metallicities

Figure 12. Distribution of the derived age precision for 335,778 stars in our
combined primary sample and metal-poor annex that meet our quality inclusion
criteria for variability and crossmatching between surveys. The median age
precision is 9.5% and the mean age precision of 13.4%, with a long tail to
higher errors.
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and to make the color–magnitude selection box more
metallicity dependent.

5. Summary, Discussion, and Conclusion

In this investigation, we have demonstrated that the
combination of available data for parallaxes, ultraviolet through
infrared photometry, variability, and three-dimensional extinc-
tion maps are adequate to obtain precise ages and metallicities
for nearly half a million subgiant stars. This is, among other
successes, an indicator of the spectacular triumph within
astronomy of each of improving observations and related
technology, increasingly sophisticated computational and data
analysis methods, and improving stellar evolution models. Our
metal-poor annex is also, arguably, among the largest samples
available for detailed investigative and spectroscopic follow-up
of the earliest phases of Milky Way formation and assembly.
Below, we discuss some of the larger sources of uncertainty in
our results, and prospects for improved analysis in the future,

5.1. Major Systematic Uncertainties: Variability, Elemental
Abundance Variations, and Bolometric Corrections

Undiagnosed binaries, products of binary evolution, and
other variables are plausibly the most significant source of
systematic error in our sample. As can be seen in Figure 4, our
methods identify some, but not all, such stars on the subgiant
branches of the open clusters M67 and NGC 188. This may be
an overrepresentation of this error source, as these clusters are
both more distant than the majority of our sample, and so the
binary diagnostic criteria may be less reliable. The issue may
also mitigate over time—we are eager to find out how many
additional variables will be identified once Gaia Data Release 4
(DR4) is released, as the astrometric and photometric time
series will cover 66 rather than 34 months of data, and
individual radial velocity measurements will become available.

A second systematic uncertainty is that our analysis has
assumed the scaled solar composition isochrones available
from the MIST database. We have done so as these are the
stellar models used by the isochrones package. The most

obvious uncertainty here is that the assumption of scaled solar
composition is not valid for stars of the thick disk, halo, and
many accreted streams (and thus the most metal-poor stars), as
these stars tend to be enhanced in the α-elements (O, Ne, Mg,
Si, S, Ar, Ca, and Ti; see, e.g., C. Sneden et al. 1991;
A. McWilliam & R. M. Rich 1994; A. Alves-Brito et al. 2010;
T. Bensby et al. 2014; M. R. Hayden et al. 2015), and often
also have variations in carbon and nitrogen abundances
(T. Masseron & G. Gilmore 2015; D. Horta et al. 2021), and
possibly helium (L. Casagrande et al. 2007; M. Gennaro et al.
2010). These abundance changes will effect the evolutionary
state, temperature, luminosity, and intrinsic colors of stars of
otherwise identical mass and age. This is an issue that should
resolve itself in the future, as the next generation of MIST
isochrones will include stellar models of variable α-abundance
(A. Dotter, private communication).

5.2. Major Quantitative Limitation: The Availability of
Ultraviolet through Infrared Photometry for Stars with Precise

Parallaxes

Our optical, Gaia-based selection query for candidate
subgiant stars in our primary sample, which is shown
graphically in Figure 1 and for which we provide the ADQL
query in the Appendix, yields 1,998,909 sources. Once we
require unambiguous matches between Gaia DR2 and Gaia
DR3 and full photometry from 2MASS and WISE, we are left
with 1,661,347 matches. Once we require reddening data, and
correct the color–magnitude selection box in Figure 1 to be
based on estimated values of ( )-G GBP BP 0, we are left with a
sample of 618,598 stars. Once we then require AV� 0.50, the
sample drops to 462,045 stars. Once we also require an
ultraviolet photometric measurement, the sample drops to
289,718 stars.
These numbers will be shifted upwards by a significant

amount with future data. For example, Gaia DR4 and Gaia
Data Release 5 will, respectively, cover an expected 66 and 120
months of data, resulting in parallaxes that are respectively 2
and 4 times more precise than those of Gaia DR3. We should
eventually be able to sample stars at distances that are up to 4

Figure 13. Left: MIST isochrones of solar metallicity and of ages τ = 3 and 8 Gyr, with indicative EEPs shown as red points. Middle: the uncertainty in the derived
ages as a function of EEP, color coded by the uncertainty in the apparent distance modulus. Right: Normalized distribution of the age precisions for stars with
450 � EEP � 475 (subgiants, orange) and other stars (blue). We see that the derived ages are more precise at all phases of stellar evolution when the assumed apparent
distance moduli are more precise, and the best precision is achieved on the subgiant branch.
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times further away, enabling the initial sample to exceed 107

subgiant stars. At the ultraviolet end, vastly more data will be
available in the future by missions such as ULTRASAT
(Y. Shvartzvald et al. 2024), UVEX (S. R. Kulkarni et al.
2021), and the Vera Rubin Observatory (Ž. Ivezić et al. 2019).
The first two will provide in measurements in two bands similar
to those of GALEX but down to 23rd and 25th magnitudes,
respectively, and the third will provide u-band photometry for
three quarters of the sky down to 26th magnitude. For each of
these, it is expected that the PSF will be sharper and that the
absolute flux calibration will be more accurate than currently
available ultraviolet data. At the near-infrared end, large parts
of the sky will be observed to 10 or more magnitudes deeper
than 2MASS, and with a 5–10× smaller PSF, by Euclid
(R. Laureijs et al. 2011) and the Nancy Grace Roman Space
Telescope (D. Spergel et al. 2015).

5.3. Major Improvements Feasible with Currently
Available Data

Our aim with this project was both to develop a catalog and
to develop a methodology. Thus, our use of publicly available
data was extensive, but it was not exhaustive.

Four large photometric surveys that we did not make use are
the Southern Photometric Local Universe Survey (C. Mendes
de Oliveira et al. 2019), the VST Photometric Hα Survey of the
Southern Galactic Plane and Bulge (J. E. Drew et al. 2014),
The Blanco DECam Bulge Survey (C. I. Johnson et al. 2020),
and the DeCam Plane Survey (E. F. Schlafly et al. 2018). The
first three have ultraviolet and optical photometry for large
parts of the sky down to approximately 20th magnitude, and
the fourth has optical grizY photometry for approximately two
billion point sources across the Galactic plane. These data sets
would undoubtedly significantly increase our sample size, and
are obvious candidates for inclusion in any follow-up study.

Another option with the possibility of qualitatively enhan-
cing the analysis in this work is the inclusion of the spectra
from Gaia, specifically the BP/RP spectra (J. M. Carrasco et al.
2021) and that from the radial velocity spectrometer (RVS;
D. Katz et al. 2019). The former cover the wavelength range
300–10500 Å with a resolution between 13 and 85, and the
latter cover the wavelength range 8450–8720 Å with a
resolution of 11,500.

In our Figure 3, we show that metallicity measurements from
the RVS are reliable down to [Fe/H]≈−0.50, and this was
also shown to be the case for the BP/RP spectra by
C. E. C. Witten et al. (2022), see their Figure 4. However, in
both cases the limitations of these spectra, likely due to a
degeneracy between metallicity and temperature in the regime
of weaker absorption lines, have been quantified when the
spectra are used to determine stellar parameters on their own.
The diagnostic power would undoubtedly be greatly enhanced
once one includes information from parallaxes, precise
photometry in the ultraviolet and infrared, and constraints
from published three-dimensional extinction maps.

5.4. Conclusions

This study of astro-photometric age and metallicity determi-
nations for solar neighborhood subgiant stars represents one of
the largest catalogs of stars with precisely measured relative
ages, for which the distribution is shown in our Figure 7.

We have validated our analysis using several different
independent and complementary methods. We showed, via
comparisons with open clusters, that we can infer precise
relative ages; and we showed, via our comparison to large
spectroscopic surveys (APOGEE, GALAH, and LAMOST)
that we can infer consistently accurate metallicities across the
interval −2.0� [Fe/H]�+0.50 to a precision no worse than
∼0.10 dex, and which include the effect of systematics such as
undiagnosed binaries. We have also shown that the median
systematic error in the bolometric zero-points is approximately
0.01 mag, and that our analysis is insensitive to small changes
in the input data and priors.
Our dynamical analysis, shown in Figures 9 and 10, shows

that older stars are to be found in any region of dynamic phase
space where there are stars of any age to be found, but that
younger stars are progressively more constrained to colder
regions of dynamic phase space. The range of values of Jr and
Jz drops to being closer and closer to zero as the ages drop, and
the orbits become more tightly constrained to circular orbits as
per their distributions in the integrals of motion E and Lz.
Our metal-poor annex is one of the largest catalogs of metal-

poor stars with precise metallicities and ages—it includes over
4500 stars with both [Fe/H]�−1.00, age precisions better
than 7%, and that are brighter than G= 14. Of those, 3123 stars
have best-fit metallicities satisfying [Fe/H]�−1.50.
We look forward to further vetting of this method by

subsequent studies, as well as the promising prospects to see
the sample sizes increase as future data become available, and
for the precision to improve as more data are included.
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Software: Astropy (Astropy Collaboration et al. 2013;

A. M. Price-Whelan et al. 2018), SciPy (E. Jones et al. 2001;

P. Virtanen et al. 2020), NumPy (T. Oliphant 2006), isochrones
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F. Feroz et al. 2009, 2019), pandas (W. McKinney 2010), scipy

(P. Virtanen et al. 2020), Matplotlib (J. D. Hunter 2007), and
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Appendix A

Photometric Data Catalog Construction and Quality Flags

We aim to select data which are relatively robust, by making use of the data quality flags suggested by the collaborations

responsible for each data set, which are restated below.

1. From the Gaia data archive,14 we select numerous measurements, including some that are ultimately not used. The most

significant measurements that we select are the DR3 astrometric measurements, the DR2 mean photometric measurements and

the SkyMapper DR2, SDSS DR13, 2MASS PSC, and WISE AllWISE crossmatches identified by the Gaia collaboration. Here,

we show the full query that can be used to download a parent sample to our main sample; the color–magnitude selection box for

the metal-poor annex is adjusted in the manner described in Section 2. When we last ran the query on 2023 March 1, it took the

Gaia server 4269 s to complete, for which we got 1,998,909 matches. We then removed 902 sources for which there were

multiple Gaia DR2 sources per Gaia DR3 source. As this query may take longer to compute in periods of heavy user use, we

recommend splitting it into subqueries in R.A.

SELECT gaiadr3.source_id AS dr3_source_id,

e.original_ext_source_id AS skymapper_id,

f.original_ext_source_id AS sdss_id,

g.original_ext_source_id AS twomass_id,

h.original_ext_source_id AS allwise_id,

i.original_ext_source_id AS panstarrs1_id,

b.dr2_source_id AS dr2_source_id,

gaiadr2.phot_g_mean_mag AS dr2_gmag,

gaiadr2.phot_bp_mean_mag AS dr2_bpmag,

gaiadr2.phot_rp_mean_mag AS dr2_rpmag,

gaiadr2.phot_bp_mean_flux_over_error as dr2_phot_bp_mean_flux_over_error,

gaiadr2.phot_g_mean_flux_over_error as dr2_phot_g_mean_flux_over_error,

gaiadr2.phot_rp_mean_flux_over_error as dr2_phot_rp_mean_flux_over_error,

gaiadr3.solution_id,

gaiadr3.random_index,

COORD1(EPOCH_PROP_POS(gaiadr3.ra, gaiadr3.dec, gaiadr3.parallax, gaiadr3.pmra,

14
http://gea.esac.esa.int/archive/
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(Continued)

gaiadr3.pmdec, gaiadr3.radial_velocity, gaiadr3.ref_epoch,2000)) AS ra2000,

COORD2(EPOCH_PROP_POS(gaiadr3.ra, gaiadr3.dec, gaiadr3.parallax, gaiadr3.pmra,

gaiadr3.pmdec, gaiadr3.radial_velocity, gaiadr3.ref_epoch,2000)) AS dec2000,

gaiadr3.ref_epoch,

gaiadr3.ra,

gaiadr3.dec,

gaiadr3.parallax,

gaiadr3.parallax_error,

gaiadr3.parallax_over_error,

gaiadr3.pmra,

gaiadr3.pmra_error,

gaiadr3.pmdec,

gaiadr3.pmdec_error,

gaiadr3.phot_g_n_obs,

gaiadr3.phot_g_mean_flux,

gaiadr3.phot_g_mean_flux_error,

gaiadr3.phot_g_mean_flux_over_error,

gaiadr3.phot_g_mean_mag,

gaiadr3.phot_bp_mean_mag,

gaiadr3.phot_rp_mean_mag,

gaiadr3.phot_bp_mean_flux_over_error,

gaiadr3.phot_rp_mean_flux_over_error,

gaiadr3.phot_variable_flag,

gaiadr3.l,

gaiadr3.b,

gaiadr3.astrometric_excess_noise_sig,

gaiadr3.visibility_periods_used,

gaiadr3.ruwe,

gaiadr3.astrometric_params_solved,

gaiadr3.ipd_gof_harmonic_amplitude,

gaiadr3.phot_bp_mean_flux_over_error,

gaiadr3.phot_rp_mean_flux_over_error,

gaiadr3.nu_eff_used_in_astrometry,

gaiadr3.pseudocolour,

gaiadr3.ecl_lat,

gaiadr3.radial_velocity,

gaiadr3.radial_velocity_error,

gaiadr3.grvs_mag,

gaiadr3.grvs_mag_error,

gaiadr3.rvs_spec_sig_to_noise,

d.r_lo_geo, d.r_med_geo, d.r_hi_geo,

j.teff_gspphot, j.logg_gspphot, j.mh_gspphot,

j.teff_gspspec, j.logg_gspspec, j.mh_gspspec, j.alphafe_gspspec, j.fem_gspspec,

j.mh_gspspec_lower,

j.mh_gspspec_upper,

j.flags_gspspec

FROM gaiadr3.gaia_source as gaiadr3

LEFT OUTER JOIN gaiadr3.dr2_neighbourhood b ON gaiadr3.source_id=b.dr3_source_id

LEFT OUTER JOIN gaiadr2.gaia_source gaiadr2 ON b.dr2_source_id=gaiadr2.source_id

LEFT OUTER JOIN external.gaiaedr3_distance d ON gaiadr3.source_id=d.source_id

LEFT OUTER JOIN gaiaedr3.skymapperdr2_best_neighbour e ON gaiadr3.source_id=e.source_id

LEFT OUTER JOIN gaiaedr3.sdssdr13_best_neighbour f ON gaiadr3.source_id=f.source_id

LEFT OUTER JOIN gaiaedr3.tmass_psc_xsc_best_neighbour g ON gaiadr3.source_id=g.source_id

LEFT OUTER JOIN gaiaedr3.allwise_best_neighbour h ON gaiadr3.source_id=h.source_id

LEFT OUTER JOIN gaiadr3.panstarrs1_best_neighbour i ON gaiadr3.source_id=i.source_id

LEFT OUTER JOIN gaiadr3.astrophysical_parameters j on gaiadr3.source_id=j.source_id

WHERE gaiadr3.phot_g_mean_mag—1.90*(gaiadr3.bp_rp) - 5*LOG10(d.r_med_geo) + 5 < =2.5

AND gaiadr3.phot_g_mean_mag—1.90*(gaiadr3.bp_rp) - 5*LOG10(d.r_med_geo) + 5 >=0.50

AND gaiadr3.phot_g_mean_mag—1.90*(gaiadr3.bp_rp) - 5*LOG10(d.r_med_geo) + 5 < =

5*(gaiadr3.bp_rp-0.90)+2.5

AND gaiadr3.bp_rp < =1.30

AND gaiadr3.duplicated_source=’FALSE’

AND gaiadr3.phot_proc_mode=0

AND gaiadr3.phot_variable_flag !=’VARIABLE’
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(Continued)

AND gaiadr3.non_single_star=0

AND gaiadr3.ruwe < =1.4

AND gaiadr3.parallax_over_error >=50

AND gaiadr3.ipd_gof_harmonic_amplitude < =0.10

AND gaiadr3.astrometric_params_solved=31

AND abs(gaiadr2.phot_g_mean_mag-gaiadr3.phot_g_mean_mag) < =0.20

2. Corrected zero-points to the Gaia DR3 parallaxes are applied using the prescription of L. Lindegren et al. (2021), with the

source code downloaded from https://gitlab.com/icc-ub/public/gaiadr3_zeropoint.
3. GALEX FUV and NUV photometry and associated uncertainties data are downloaded from the Revised Catalog of GALEX

Ultraviolet Sources (L. Bianchi et al. 2017). We require that the centroid of the GALEX source be within 2 5 of the centroid of

the Gaia DR3 source, where we use the J2000 coordinates of the latter for the comparison. We use the FUV photometry if the

parameter FUV_artifact (called Fafl in the Vizier table) does not have bits 2 or 3, and similarly for NUV photometry and the

parameter NUV_artifact (called Nafl in the Vizier table). To avoid contamination from ultraviolet-bright sources that are not the

intended stars, we require that the FUV and NUV match be the same, and that (FUV−NUV)� 3.75.

4. Skymapper uvgriz photometry and associated uncertainties (C. A. Onken et al. 2019), for sources as delineated by the Skymapper

identifiers from the Gaia archive are downloaded from the dr2.master table, which is accessible from the ESO Gaia archive at https://
gea.esac.esa.int/archive/ using the following query:

SELECT a.object_id, a.u_flags, a.u_nimaflags, a.u_ngood, a.u_psf, a.e_u_psf, a.v_flags, a.

v_nimaflags, a.v_ngood, a.v_psf, a.e_v_psf, a.g_flags, a.g_nimaflags, a.g_ngood, a.g_psf, a.

e_g_psf, a.r_flags, a.r_nimaflags, a.r_ngood, a.r_psf, a.e_r_psf, a.i_flags, a.i_nimaflags, a.

i_ngood, a.i_psf, a.e_i_psf, a.z_flags, a.z_nimaflags, a.z_ngood, a.z_psf, a.e_z_psf FROM
external.skymapperdr2_master AS a INNER JOIN user_ID.InputTable AS b ON a.object_id=b.sky-

mapper_id

For each bandpass “x,” we require (x_flags=0), (x_nimaflags=0), and (x_ngood>=1). We also require

|G− gsm+ 0.35|� 0.30, to reduce the number of spurious matches. The Skymapper data are described at http://skymapper.anu.
edu.au/data-release/.

5. SDSS ugriz photometry and associated uncertainties (R. Ahumada et al. 2020), for sources as delineated by the SDSS

identifiers from the Gaia archive, are downloaded using CASJobs at http://skyserver.sdss.org/casjobs/ using the query

described below. We also require |G− gSDSS+ 0.55|� 0.40, to reduce the number of spurious matches.

SELECT S.objID,

CASE WHEN ((S.flags_u & 0x10000000) !=0) AND ((S.flags_u & 0x8100000c00a4)=0) AND (((S.flags_u & 0x400000000000)

=0) or (S.psfmagerr_u < =0.2)) AND (((S.flags_u & 0x100000000000)=0) or (S.flags_u & 0x1000)=0) THEN S.

psfMag_u ELSE null END AS psfMag_u,

CASE WHEN ((S.flags_u & 0x10000000) !=0) AND ((S.flags_u & 0x8100000c00a4)=0) AND (((S.flags_u & 0x400000000000)

=0) or (S.psfmagerr_u < =0.2)) AND (((S.flags_u & 0x100000000000)=0) or (S.flags_u & 0x1000)=0) THEN S.

psfMagErr_u ELSE null END AS psfMagErr_u,

CASE WHEN ((S.flags_g & 0x10000000) !=0) AND ((S.flags_g & 0x8100000c00a4)=0) AND (((S.flags_g & 0x400000000000)

=0) or (S.psfmagerr_g < =0.2)) AND (((S.flags_g & 0x100000000000)=0) or (S.flags_g & 0x1000)=0) THEN S.

psfMag_g ELSE null END AS psfMag_g,

CASE WHEN ((S.flags_g & 0x10000000) !=0) AND ((S.flags_g & 0x8100000c00a4)=0) AND (((S.flags_g & 0x400000000000)

=0) or (S.psfmagerr_g < =0.2)) AND (((S.flags_g & 0x100000000000)=0) or (S.flags_g & 0x1000)=0) THEN S.

psfMagErr_g ELSE null END AS psfMagErr_g,

CASE WHEN ((S.flags_r & 0x10000000) !=0) AND ((S.flags_r & 0x8100000c00a4)=0) AND (((S.flags_r & 0x400000000000)

=0) or (S.psfmagerr_r < =0.2)) AND (((S.flags_r & 0x100000000000)=0) or (S.flags_r & 0x1000)=0) THEN S.

psfMag_r ELSE null END AS psfMag_r,

CASE WHEN ((S.flags_r & 0x10000000) !=0) AND ((S.flags_r & 0x8100000c00a4)=0) AND (((S.flags_r & 0x400000000000)

=0) or (S.psfmagerr_r < =0.2)) AND (((S.flags_r & 0x100000000000)=0) or (S.flags_r & 0x1000)=0) THEN S.

psfMagErr_r ELSE null END AS psfMagErr_r,

CASE WHEN ((S.flags_i & 0x10000000) !=0) AND ((S.flags_i & 0x8100000c00a4)=0) AND (((S.flags_i & 0x400000000000)

=0) or (S.psfmagerr_i < =0.2)) AND (((S.flags_i & 0x100000000000)=0) or (S.flags_i & 0x1000)=0) THEN S.

psfMag_i ELSE null END AS psfMag_i,

CASE WHEN ((S.flags_i & 0x10000000) !=0) AND ((S.flags_i & 0x8100000c00a4)=0) AND (((S.flags_i & 0x400000000000)

=0) or (S.psfmagerr_i < =0.2)) AND (((S.flags_i & 0x100000000000)=0) or (S.flags_i & 0x1000)=0) THEN S.

psfMagErr_i ELSE null END AS psfMagErr_i,
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(Continued)

CASE WHEN ((S.flags_z & 0x10000000) !=0) AND ((S.flags_z & 0x8100000c00a4)=0) AND (((S.flags_z & 0x400000000000)

=0) or (S.psfmagerr_z < =0.2)) AND (((S.flags_z & 0x100000000000)=0) or (S.flags_z & 0x1000)=0) THEN S.

psfMag_z ELSE null END AS psfMag_z,

CASE WHEN ((S.flags_z & 0x10000000) !=0) AND ((S.flags_z & 0x8100000c00a4)=0) AND (((S.flags_z & 0x400000000000)

=0) or (S.psfmagerr_z < =0.2)) AND (((S.flags_z & 0x100000000000)=0) or (S.flags_z & 0x1000)=0) THEN S.

psfMagErr_z ELSE null END AS psfMagErr_z

INTO mydb.OutputFile FROM Star as S

INNER JOIN MyDB.InputFile AS c ON S.objID=c.sdss_id

6. PS1 grizY photometry and associated uncertainties (J. L. Tonry et al. 2012; H. A. Flewelling et al. 2020), for sources as

delineated by the PS1 identifiers from the Gaia archive, are downloaded using CASJobs at https://mastweb.stsci.edu/
ps1casjobs/default.aspx using the following query described below. Here, the values 14.5, 15.0, 15.0, 14.0, and 13.0 represent

thresholds that we use as precautions against saturation artifacts. We also require |G− gPS+ 0.50|� 0.30, to reduce the number

of spurious matches.

SELECT a.objID,

CASE WHEN ((a.gQfPerfect > 0.85) AND (a.gMeanPSFMag > 14.5)) THEN a.gMeanPSFMag ELSE null END AS gMeanPSFMag,

CASE WHEN ((a.gQfPerfect > 0.85) AND (a.gMeanPSFMag > 14.5)) THEN a.gMeanPSFMagErr ELSE null END AS gMeanPSFMagErr,

CASE WHEN ((a.rQfPerfect > 0.85) AND (a.rMeanPSFMag > 15.0)) THEN a.rMeanPSFMag ELSE null END AS rMeanPSFMag,

CASE WHEN ((a.rQfPerfect > 0.85) AND (a.rMeanPSFMag > 15.0)) THEN a.rMeanPSFMagErr ELSE null END AS rMeanPSFMagErr,

CASE WHEN ((a.iQfPerfect > 0.85) AND (a.iMeanPSFMag > 15.0)) THEN a.iMeanPSFMag ELSE null END AS iMeanPSFMag,

CASE WHEN ((a.iQfPerfect > 0.85) AND (a.iMeanPSFMag > 15.0)) THEN a.iMeanPSFMagErr ELSE null END AS iMeanPSFMagErr,

CASE WHEN ((a.zQfPerfect > 0.85) AND (a.zMeanPSFMag > 14.0)) THEN a.zMeanPSFMag ELSE null END AS zMeanPSFMag,

CASE WHEN ((a.zQfPerfect > 0.85) AND (a.zMeanPSFMag > 14.0)) THEN a.zMeanPSFMagErr ELSE null END AS zMeanPSFMagErr,

CASE WHEN ((a.yQfPerfect > 0.85) AND (a.yMeanPSFMag > 13.0)) THEN a.yMeanPSFMag ELSE null END AS yMeanPSFMag,

CASE WHEN ((a.yQfPerfect > 0.85) AND (a.yMeanPSFMag > 13.0)) THEN a.yMeanPSFMagErr ELSE null END AS yMeanPSFMagErr

INTO mydb.OutputFile

FROM PanSTARRS_DR2.MeanObjectView AS a

INNER JOIN MyDB.InputFile AS b ON a.objid=b.panstarrs1_id

INNER JOIN (

SELECT DISTINCT d.objid

FROM PanSTARRS_DR2.StackObjectAttributes AS d

INNER JOIN MyDB.InputFile AS e ON d.objid=e.panstarrs1_id

WHERE d.primaryDetection > 0

) c ON a.objid=c.objid

WHERE a.nDetections > 5

AND (a.rMeanPSFMag—a.rMeanKronMag < 0.05)

7. 2MASS JHKs photometry and associated uncertainties (M. F. Skrutskie et al. 2006) are downloaded from the NASA/IPAC
Infrared Science Archive at https://irsa.ipac.caltech.edu/frontpage/. For each source, we require use_src = 1, for each band

we require (ph_qual = “A”) or (rd_flg = {“1”,“3”}), and we require a 1″ match between the 2MASS astrometry and

that from the R.A. (J2000) and decl. (J2000) astrometry computed from Gaia DR3 astrometry.

8. WISEW1W2 photometry and associated uncertainties (E. L. Wright et al. 2010) are downloaded from the NASA/IPAC Infrared Science

Archive. For brighter sources (8�W1� 2, 7�W2� 1.5) we use the WISE All-Sky photometric catalog, whereas for fainter (W1� 8,

W2� 7) sources we use the AllWISE catalog. For each bandpass, we require (ph_qual= {“A”,“B”}), (ext_flag=0), and

cc_flags= {“0”,“d”,“p”,“h”,“o”}. We also download the W3 and W4 photometry and associated uncertainties, but they do

not contribute to our analysis.

Appendix B

Spectroscopic Comparison Data Catalog Construction and Quality Flags

1. Gaia spectroscopic parameters from the high-resolution channel are downloaded from the Gaia data archive, specifically from the

gaiadr3.astrophysical_parameters catalog. For the parameter flags_gspspec, which has an injective mapping

onto gaiadr3.source_id, we require that the first six parameters of the string be equal to “0,” the seventh character be one

of {“0,” “1”}, and the eighth, eleventh, and twelfth characters be equal to “0.” There are no constraints on the remaining

characters.
2. APOGEE spectroscopic parameters are downloaded from the DR17.aspcapStar catalog on CASJobs, subject to the criteria (a.

aspcapflag & 261033871) = 0, as well as ((a.teff_flag & 87903) = 0) AND (a.teff> –9999)), and similarly

for the parameters logg, m_h, and fe_h. We used the query described below.
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SELECT a.apogee_id, b.gaiaedr3_source_id AS dr3_source_id,

CASE WHEN (((a.teff_flag & 87903)=0) AND (a.teff > -9999)) THEN a.teff ELSE null END AS teff,

CASE WHEN (((a.teff_flag & 87903)=0) AND (a.teff > -9999)) THEN a.teff_err ELSE null END AS teff_err,

CASE WHEN (((a.logg_flag & 87903)=0) AND (a.logg > -9999)) THEN a.logg ELSE null END AS logg,

CASE WHEN (((a.logg_flag & 87903)=0) AND (a.logg > -9999)) THEN a.logg_err ELSE null END AS

logg_err,

CASE WHEN (((a.m_h_flag & 87903)=0) AND (a.m_h > -9999)) THEN a.m_h ELSE null END AS m_h,

CASE WHEN (((a.m_h_flag & 87903)=0) AND (a.m_h > -9999)) THEN a.m_h_err ELSE null END AS m_h_err,

CASE WHEN (((a.fe_h_flag & 87903)=0) AND (a.fe_h > -9999)) THEN fe_h ELSE null END AS fe_h,

CASE WHEN (((a.fe_h_flag & 87903)=0) AND (a.fe_h > -9999)) THEN fe_h_err ELSE null END AS fe_h_err into mydb.

OutputFile from DR17.aspcapStar a

INNER JOIN DR17.apogeeStar b ON a.apstar_id=b.apstar_id

WHERE (a.aspcapflag & 261033871)=0

3. The main GALAH DR3 spectroscopic catalog, GALAH_DR3_main_allstar_v2.fits, is downloaded from the GALAH webpage

at https://www.galah-survey.org/. We require that snr_c3_iraf>30, flag_sp =0, and flag_fe_h= 0.

4. The LAMOST DR7 data selection are as described by J. H. Hamer (2021).
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