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Abstract—Reconfigurable Intelligent Surface (RIS)-assisted
Unmanned Aerial Vehicle (UAV) communications have been realized
as essential to space-air-group system integration in the 6G technology
landscape. Trajectory planning plays a crucial role in RIS-assisted
UAV communications to face the challenges of UAV’s limited power
capacities and dynamic wireless channels. Existing solutions assume
complete channel state information, focus on single-rotor UAVs, and
rely heavily on time-consuming training processes for machine learning;
thus, they lack applicability to deal with highly dynamic real-world
scenarios. To fill these research gaps, we aim to characterize RIS-
assisted UAV communications and design responsive and accurate
UAV trajectory planning algorithms in this paper. We first develop
a communication model with incomplete information and an energy
consumption model for quadrotor UAVs. We then formulate UAV
trajectory planning as an optimization problem to minimize UAV’s
energy consumption while maintaining communication throughput. To
solve this problem, we design an acceleration framework, FedX, for
reinforcement learning (RL) solvers and present two fast trajectory
planning algorithms, FedSAC and FedPPQO, as instantiations of the
FedX framework. Our evaluation results indicate that the proposed
framework is effective and efficient-more than 3 times faster with 5
agents and 7 times faster with 10 agents than standard RL algorithms,
making it suitable for using RL solvers within wireless networks and
mobile computing environments. We also discuss and identify the pros
and cons of our proposed framework.

Index Terms—UAYV, RIS, trajectory planning, reinforcement learning,
training acceleration, federating.
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NMANNED aerial vehicles (UAV), also known as

drones, are aircraft without a human pilot onboard
that are either controlled remotely by an operator or pro-
grammed to fly autonomously [1]. The surge in drone pop-
ularity spans diverse sectors such as Infrastructure, Agricul-
ture, Transport, Entertainment, Security, and Insurance [2].
Recent research shows that combining Reconfigurable Intel-
ligent Surfaces (RIS) with UAV communications has become
essential for connecting space and terrestrial networks. It
involves relaying data between UAVs and ground terminals
(GTs) using RIS. GTs, which are fixed or mobile stations on
the ground, serve as communication points with UAVs. RIS
are engineered surfaces that can manipulate electromagnetic
waves by reflecting, absorbing, or focusing them in specific
directions. When integrated with UAV communications, RIS
can greatly enhance signal strength, coverage, and reliability
by adjusting the propagation environment dynamically. In
urban areas, RIS is particularly useful for overcoming obsta-
cles, reducing signal interference, and extending the range
of UAV communications. This new technology facilitates
the implementation of space-air-ground integrated systems
within the 6G technology landscape [3], [4].

While RIS-assisted UAV communications bring oppor-
tunities to new networking paradigms, they also impose
challenges for the system design [5]. Although traditional
designs for terrestrial systems could potentially be modi-
fied for UAV communications, the distinct nature of UAV
systems requires a more customized approach. The lim-
ited power capacity of UAVs and the highly dynamic
wireless channel states are two special features that make
RIS-assisted UAV communications particularly challenging.
UAV trajectory planning plays a crucial role in facing this
challenge by optimally planning the UAV trajectory and
scheduling the ground terminal connection in order to min-
imize the UAV energy consumption while maintaining the
required data transmission rate. However, prior research on
UAV trajectory planning has limitations in the following
aspects.

First, most current works assumed that the channel state
information is completely available [6]-[11]. Although there
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has been a significant amount of studies in channel mea-
surements and modeling for UAV communications [12]-
[14], the presumption of perfect channel information is too
idealistic in real-world scenarios. Second, prior research
in UAV communications primarily considered single-rotor
UAVs, which leads to concerns about the applicability of the
existing methods to the quadrotor UAV scenarios [15]-[20],
which are becoming more common in various applications.
Also, existing studies typically only consider the vertical
ascension of UAVs, which does not reflect the settings of
real-world operations. Third, although reinforcement learn-
ing (RL) techniques have been employed for UAV trajectory
planning and yielded promising results [6]-[11], [15]-[18],
[21]-[26], previous solutions lack sufficient consideration of
the time performance thus leading to less responsive control
of the UAV trajectory, which might not able to face the
highly dynamic environment of UAV communications, as
illustrated in our recent investigation [27].

In a nutshell, prior studies on this research topic present
the following significant research gaps.

1) Current research assumes that the channel state in-
formation of the UAV-RIS-GT system is completely
known by the UAV trajectory planner, which is too
idealistic and impractical in real-world scenarios.

2) Existing trajectory planning algorithms are dedi-
cated to the cases of single-rotor UAVs, leaving the
quadrotor UAV scenarios grossly uninvestigated. In
addition, they consider UAV’s vertical ascent only,
which does not reflect practical settings.

3) Previous RL-based solutions, have not sufficiently
considered the time performance despite their po-
tential for promising results. The current lack of a
fast UAV trajectory planning framework is a signif-
icant issue that needs to be addressed to face the
challenge of highly dynamic UAV communications.

To fill in the above research gaps, this work aims to char-
acterize RIS-assisted UAV communications and design re-
sponsive and accurate UAV trajectory planning algorithms
leveraging computing acceleration techniques for machine
learning. Specifically, we make the following contributions.

e We develop a new channel model for UAV-RIS-GT
communications in urban areas. To define how sig-
nals fade over a wireless link between two entities,
the new model is established to characterize the
wireless channel under the incomplete information
assumption.

e We design a quadrotor UAV energy consumption
model based on the single-rotor case to precisely
describe the UAV’s movement in any direction, and
we formulate an optimization problem for UAV tra-
jectory planning under multiple constraints.

o We devise a fast UAV trajectory framework by
integrating multithreading and federated learning
techniques for training acceleration. Based on this
framework, we present two fast yet accurate RL
algorithms. Evaluations are conducted to reveal the
performance of the algorithms.

The remainder of this paper is organized as follows.
Section 2 briefly summarizes the related studies. Section 3
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describes the system model and formulates the problem. In
Section 4, we present our proposed approach for the defined
problem. We discuss the simulation results in Section 5 and
draw the conclusion in Section 6.

2 RELATED WORK

Recent studies have shown that UAV trajectory plan-
ning is formulated with other system parameters, such
as rate/capacity [6], [8], [15], [22], [26], phase shift [10],
[17], [23], energy [11], [24], [28], and beamforming [7], [9],
[18], [25]. Together with the trajectory design, these system
parameters lead to the defined optimization problems NP-
hard.

Traditional optimization methods, such as convex [29]
and multi-objective optimization [30], have been effective
in solving NP-hard problems for UAV path planning while
ensuring service quality but barely adapting to dynamic
and complex environments due to high computational
overhead. Heuristic algorithms like Ant Colony Optimiza-
tion [31], A* Search [32], and Particle Swarm Optimiza-
tion [33] offer efficiency but rely on predefined system
models, limiting their adaptability to partial or localized
information and often getting trapped in local optima.
Also, machine learning approaches, such as hybrid neu-
ral networks [34], demonstrate high adaptability for UAV
trajectory planning but demand significant computational
resources and hyperparameter tuning, making them chal-
lenging to deploy in real-world scenarios.

To address these limitations, various RL algorithms
have been proposed. Among these studies, DQN (Deep
Q-Network) is considered the most straightforward and
effective approach. In the paper [6], the authors proposed a
DOQON to solve the problem of maximizing broadcast secrecy
rate in UAV-Empowered IRS (Intelligent Reflecting Sur-
faces) backscatter communications. Another work by Sun
et al. [21] considered the age of information and designed a
DOQON for aerial IRS-assisted IoT networks. In a recent study
[26], the authors designed a DQN to enhance the security
performance of UAV-RIS reflection systems. Several other
forms of DQN have also been proposed, such as centralized-
declined DQN [24] and Decaying DON [9].

Although DQN-based algorithms can produce accept-
able results for UAV trajectory planning, the Double DQN
(DDQN) and deep deterministic policy gradient (DDPG)
algorithms can provide even more precise results. Mei et
al. [17] proposed a DDQN and a DDPG algorithm to solve
3D trajectory and phase shift design for RIS-assisted UAV
systems. In Zhang et al. [15], a DDQN-based approach was
presented for the same purpose with capacity maximization.
Truong et al. [10] recently used a DDPG algorithm for
joint flying IRS trajectory and phase shift design. In [11],
Nguyen et al. developed a DDPG algorithm for RIS-assisted
UAV communications with wireless power transfer in IoT
scenarios. To address the multi-objective optimization issue,
a multi-objective DDPG solver was proposed in [7] for
trajectory optimization and beamforming design.

As DDPG employs the actor-critic learning framework to
improve the accuracy of the solution, contemporary studies
tend to utilize this framework to design more effective RL
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Fig. 1. System model of RIS-assisted UAV communications.

algorithms. In [8], a soft actor-critic reinforcement learn-
ing algorithm called DRRL (distributionally-robust RL) is
developed. Qin et al. [35] proposed both centralized and
decentralized SAC algorithms, effectively addressing the
joint problem of UAV path planning and power allocation.
Tacovelli et al. designed an actor-critic-inspired proximal
policy optimization (PPO) for multi-UAV IRS-assisted com-
munications [22]. In [11], a PPO was also developed. Dong
et al. [36] optimized the UAV trajectory while considering
channel state information based on the PPO algorithm. The
authors of [23] presented a twin delayed deep deterministic
policy gradient (TD3) algorithm for radio surveillance with
a fixed-wing UAV to address the overestimate of Q-value
by DDPG in the critic network. More recently, a multi-
agent RL has been developed in [20] to optimize the energy
consumption of the single-rotor UAV.

Our work differs from the studies mentioned above in
three ways. First, we consider the communication model
with the assumption of incomplete information, which is
more general and applicable in real-world scenarios. Sec-
ond, we develop a quadrotor UAV energy consumption
model that is more commonly used and is expected to be
more widespread in 6G communications. Third, we design
a training acceleration framework for the RL solvers, which
speeds up the training process, addressing a significant
issue that current studies neglect.

3 SYSTEM MODEL AND PROBLEM FORMULATION
3.1 Network Model

We consider a communication system that includes a UAV
and a RIS connecting with K GTs (ground terminals) in an
urban area, as shown in Fig. 1. The UAV acts as an aerial
base station, while the RIS is positioned at the boundary of
the service area to provide a line-of-sight connection to all
GTs. Both the UAV and the ground user are equipped with
a single antenna.

The RIS is made up of M, x M, passive reflection units
(PRUs) arranged in a uniform planar array (UPA). The array
consists of M, PRUs spaced evenly at a distance of d.
meters, and M, PRUs in each row also spaced evenly at
a distance of d,. meters. To adjust the phase shift, each PRU
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applies an independent reflection coefficient that scatters
the incoming signal with an amplitude ¢ € [0,1] and a
phase shift ¢, . € [—m, 7). This means that the reflection
coefficient 7., ,n, = ae’®mrme, where m,. belongs to the
set of integers 1,2,--- , M,, and m, belongs to the set of
integers 1,2,---, M.. The fixed reflection loss of the RIS
is represented by a, while ¢,,, .. indicates the phase shift
applied at the PRU (m,., m.).

Following the same convention of [28], we denote
the length of a particular time slot as d;[n], and thus
the overall flight time T is the sum of §[n]| for all n
from 1 to N. The UAV’s 3D path is represented by

N

a sequence {q[n] = [z[n],y[n],z[n]]"}, _,, where q[n] =
[z[n], y[n], 2[n]]T denotes the 3D coordinates of the UAV at
time slot n. The altitude that the UAV can fly at, denoted
by H, must satisfy the safety regulations and is within the
range H" < z[n] < H®*. The locations of the ground
terminals are fixed and denoted by Ly, = [z, yx, 0]T, where
L, represents the coordinates of ground terminal k. The RIS
is situated on a building wall at a certain altitude Hy, i.e.,
L] = [I[,O,H}]T.

Let UG be the link between UAV and ground terminal %,
Ul be the link between UAV and RIS, IG be the link between
RIS and ground terminal k, so we calculate the distance
between the UAV and ground user k£ during time slot n as
dyS[n] = ||q[n] — Lg||, the distance between the UAV and
the RIS as dV![n] = ||q[n] — L;|| and the distance between
the RIS and ground terminal k as di¢[n] = ||L; — Ly||. The
distances dY%[n] and d"![n] remain constant within each
time slot d; since the UAV’s movement during ¢, is ignorable
compared to these distances.

Due to the substantial path loss and reflection loss, we
neglect the power of signals that undergo multiple reflec-
tions by the RIS [14].

3.2 Channel Model

We assume that the system utilizes orthogonal frequency
division multiple access (OFDMA) and the total system
bandwidth B is divided into N; sub-carriers with sub-
carriers spacing Af = Nﬁ. In time slot n, the channel vector

between the UAV and the RIS on sub-carrier ¢ can be given
by [16]:

b = \/(dug%l])ze_mmfd “hRn, ()

where

. UR B UR
UR _jor f, drsin0UR[n] sin ¢ VR[]
hLoS[n] = [1,6 ganf ¢ P

—j2n fo(My—1)

dq sin GUR[n] sin §UR [n] :| T
e c

)

de sin BUR[H] sin {UR[n]
c

o127 fe (M —1) dein 00  nl sin €7 (n] ] '
Bo is the channel power gain at the reference distance 1 m,
c denotes the speed of light, and f. is the carrier frequency.
Variables #VR[n] and ¢YR[n] are the horizontal and verti-
cal angles-of-arrival (AoAs) at the RIS with sin§VR[n] =
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lzr—=[n]|

|z[n]-Hr| =
2, sing"Rn] = V(zr—z[n])2+(yr—y[n])2’

dUR[TL]
lyr—y[n]|

cos EVR[n] = .
V(@r—a[n)2+(yr—yn])?

We introduce the Rician fading model to characterize the
links from the UAV to users and from the RIS to users. In
time slot n, the channel vector between the RIS and user k
on sub-carrier ¢ can be written as

and

O p— KES emremiar e
ki - (dl,:”G [nDO‘EG 1+ ‘%E k,LoS
T BEG[nQ
1+ gRGTR

®)

where af¢ is the path loss exponent of the RIS-to-user link
for user &, I{EG is the Rician factor, hkR? [n] ~ CN(0,1ns,1,),
h};%os is given by

dy sin QRG sin Ek

—jomf, lron O, SISk
hkLoS*|:176J I c AR

i dy sin 6RC gin ¢RG T
eI fe(My—1) bk

(4)

dc sin 01¥C sin ¢RC

o [nomrmtzde

de sin ORC sin eRG T T
c

e*j27rfc(Mcfl) ,

with ¢ and ¢RC are the horizontal and vertical angles-of-

departure (AoDs) from the RIS to ground users. Note that

we have sin QRG = fn gin¢RG = |2k —zn| ,
e & V(@r—51)2+(yr—yk)?

lyr—yr|

\/(1R 21)2+(yr—yk)?
In time slot n, the channel between the UAV and the

ground user k on sub-carrier ¢ is:

and cos f

UG[,] — Bo KEG e—jzwmf@
2 - UG -
N @ \V T

[ 1 UG
+ Whm[ }>7

where o/ denotes the path loss exponent of the UAV-to-
user link for user k, ;] G is the corresponding Rician factor,
and h$[n] ~ CN(0,1) is the scattering component of user
k on sub-carrier i in time slot 7.

The RIS reflection coefficient matrix in time slot n can be
represented by

®[n] = diag(¢[n]) €

Where ¢[n] — [ej7¢1,1[n]7 e 7ej7¢'7n,»,7nu[n]’ ..
CMrMcx1 Hence, the channel gain of link UAV-RIS-user k
on sub-carrier 7 in time slot n can be given as

o (ni9)"

Note that measuring accurate channel state information
(CSI) by each transceiver in practical settings is not trivial.
We employ minimum mean square error (MMSE) estima-
tion to address the imperfect CSI acquisition [37]. As such,
the composite channel gain can be expressed as

gu$ = V1—PH +VPh, @)

©)

(CMrMcX]\JrMc’ (6)

, el e [”]] c

hi ] = ®[n]h"[n]. @)
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where h' is the estimation of hY$[n] + hg}}G [n], h is the
estimation error that is independent of %/, and parameter P
represents the estimation error variance, taking a constant
value from 0 to 1.

The data rate of UAV is

Ry i[n] = ¢k i[n|Blogy < + 9)

pTngg
- 5 b
where pT* is the fixed transmit power of the UAV, B is the
bandwidth, o is the noise variance, and ¢ ;[n] = {0,1} is
used to indicate terminal £ being served or not.

3.3

While the UAV consumes energy for communications and
task computations, the propulsion plays a dominant role
in UAV energy consumption as a whole. To facilitate a
tangible analysis, we assume that the estimation of energy
consumption for communications and computations is con-
stant, and we ignore the variation in energy consumption
due to UAV acceleration/deceleration as long as the time
slot for communications is short. Our model is primarily
extended from [28], [38], and [39].

To extend the single-rotor UAV’s power consumption
model in [38] to a quadrotor UAV one, we make the fol-
lowing assumption [40]: 1) Every rotor is identical, and it is
symmetrically distributed; 2) The weight assigned to each
rotor is % ; and 3) The thrust of each rotor is % in hovering
status. Thus, the total hovering power is

UAV Energy Consumption Model

quad 50 3 3 ( )3/2
Ph =14 §p80A090R0 (1+k)\/m

5o 33 W3/2 (10)
= —psoAo R 1+k)———,
2 PSoA03 g O+( + )2\/2[)70
—_—
éPBO éPIO

where J( denotes the proﬁle drag coefficient, p accounts for
air density (in kg/ m®), s represents rotor solidity, Ay is the
rotor disc area (in m ) Q is the blade angular velocity (in
radians/s), Ry is the rotor radius (in m), & is the incremental
correction factor to induced power, W is the UAV’s total
weight (in Newton).

According to the horizontal power expression for single-
rotor UAV in [38] and Eq. (10), we have the total power
consumption for quadrotor UAV in horizontal flight is

- 372
P(V) = 4Pp, (1 + 92R2>
Ve vz v

+4P]0< 1+47’116L_27113

2
) + QdopSOA()VB.

Fig. 2 displays our preliminary results using the same
parameter configuration as [40] for this model. An interest-
ing fact is that as the UAV flies at a relatively low speed
(Iess than 15 m/s), the total required power decreases with
the increase in speed.

Now, we consider the power consumption in vertical
flight. We assume that T (T) and D (D) are the thrust
and fuselage drag of the quadrotor UAV in vertical ascend
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Fig. 2. Required power for quadrotor UAV in horizontal flight.

(descend). When the UAV ascends or descends at a constant
speed, we have

(12)

in ascending and

(13)

in descending.

Let us look into the case of ascending first. According
to the above force analysis, the following equation must be
satisfied for each rotor on UAV

w1 X
Ty = — + §SFPLPV25 (14)

4

where Spp is the fuselage equivalent flat plate area in the
vertical movement.

In line with [39], we have
2T,
PAO -

Pquad 1. A
+ TOV+ V24

P Ty) =
0(V,Tp) = 1 2

(15)

So, the total power consumption of the quadrotor UAV
is

P(V) =4Py(V,Ty)
1 N N
= pauad 4 WV + SppLpV?

w DY SFp.L o w
+<2+SFPJ_pV)\/<1+ A, )V +2,0A0'

Similarly, the total power consumption of quadrotor
UAV in descending is

(16)

) quad + WV SFPLpV

(7
w SFPL Y 1o w
(5 SFPMVN( )V g

(17)

3.4 Problem Formulation

By Egs (11), (16), and (17), we have the UAV’s energy
consumption model in time slot n as shown in

3V?2
- o\ /2
V4 V2 _
+4P[0 1+ — ~ 53 + 2d()p80A(]V
4vg 203 (18)
. 1 A -
4 pauad 4 SV + SeppV?
w - SrpL )\ - w
—+ 8 & 1 V2
" < g oL ) \/( A ) * 2/)140> ’
if UAV ascends in time slot n, and
3V?2
v\
+4Py, ( 1+ Tk 22) + 2d0p50A0V3
vh vy (19)
ua ]- ¥ -
—i—P}? d + §WV - Spplpvg
w . SFpL > . w
— -8 & 1-— V2
+ (g —smao??) \/< A0 ) T oA, )
if UAV descends in time time slot n. Here,
— zln —z[n 2 n 2 A -
vV o= V(@ht1]—2n])2+ (y[n+1]—yn)) ad V = V =

o¢[n]
(z[n+1]—z[n])?
&¢[n] .

Our goal is to minimize the energy consumption of the

UAV in all time slots, which is formulated as

min
aln],ck,i[n]

(20)

where the first constraint in (20) indicates that at most one
terminal is served in each time slot, the second constraint
ensures that the data transmission of each task with length
Lj, can be completed within the mission time of the UAV.

Note that the above optimization problem is non-convex
and intractable due to the binary variable ¢y, ;[n]. This moti-
vates us to seek RL techniques to solve it.

4 PROPOSED APPROACH

4.1 Markov Decision Process

We begin by modeling the UAV trajectory planning as an
MDP.
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4.1.1 State

In our implementation, the state space s[n] includes not only
the UAV position but also task-related information:

s[n] = [z[n], y[n], z[n], dgoal [1], Rremain[1]], (21)

where:

o [z[n],y[n], z[n]] represents the UAV’s current posi-
tion

o dgoa[n] denotes the distance to the charging station

. Rremain [Tl] = Zszl Dk - Zszl E::’:l 5tRk7i[n/}' rep-

resents the remaining data transmission tasks

4.1.2 Action

We define A as the action space of the RIS-assisted UAV
system, which includes the horizontal and vertical move-
ments of the UAYV, the selection and scheduling of ground
terminals (GTs), and the selection of time slot length. Specif-
ically, it is defined as a[n] = (I[n], h[n], ¢ ;[n], & [n]) € A =
L xH x C x T, where [[n] and h[n] being the UAV flying
actions in horizontal and vertical dimensions in n-th time
slot. T = [tmin : 0.1 mS : t1,ax] is the space of the discrete
flight times, from where §;[n] will be chosen as the discrete
value between t,i, and tnin, with 0.1 ms as the step size.
C = {ck,i[n], Vk,i,n} is the action space of GT scheduling.

Considering the flying actions of the UAV, assume that
the UAV can only move to one of the adjacent cells from
its current cell during a single time slot in the horizontal
dimension or to an adjacent height level in the vertical
dimension. Thus, the UAV’s horizontal location Ln + 1] =
[z[n + 1], y[n + 1]]T in the next time slot is:

L[n+ 1] = Lin] + {[n],

where [[n] € £, and the horizontal action space L consists
of 17 discrete choices: one option to remain stationary and
16 directions spaced evenly around a 360-degree circle, each
separated by 15 degrees. This configuration allows the UAV
to select from a full range of movement options in each time
slot. Considering vertical flying, the UAV’s vertical location
H,, 1 in next time slot can be defined as:

z[n + 1] = z[n] + hn],

where hin] € H £ {hs, —hs,0}, with H being the vertical
action space of the UAV including ascending, descending or
remaining at its current height respectively.

(22)

(23)

4.1.3 Reward

In our model, the reward function r(s[n],a[n]) comprises
two components, defined as follows:

K n+1

w-o Rk
r( =y gy
k=1n'=1
The first component: 1| 37 %ﬁ;’j[nl] represents

the ratio of the cumulative data throughput from all ground
terminals (GTs) up to time slot n+1 to the UAV’s propulsion
energy consumption. Here:

o 0;Ry ;[n'] denotes the amount of data transmitted by
the k-th GT during time slot n/,

Algorithm 1 FedX

1: Initialize the number of agents M, the number of federated learning
rounds F, the initial global parameters w2, and the learning rate n;

2: Fork M threads as M agents for parallel training;

3: fore € {1,2,- E}do

4 form6{12 ,M} do

5: Wy, = We;

6 end for

7 form € {1,2,--- ,M} do

8: Agent m computes its local update by calling a RL algorithm

X;

9: Set wf,fl = we, — NV Lm (ws,);
10: Send w&H! to Aggregatlon process;
11: end for
12: Aggregation process receives wy, fror]'\n each age&t m;
13: Update global model using we‘H = % ;
14: end for

o E[n/] represents the UAV’s propulsion energy at time
slot n/, and

e w is a weighting factor balancing throughput and
energy consumption.

This component encourages maximizing the cumulative
data throughput relative to energy consumption, promoting
resource-efficient and effective UAV trajectory planning.

The second component penalty term pg is designed as a
function of the state rather than a constant:

Po = )\A '¢Data (Rremam[ ]) + /\B de( goal [ Dv

where:

(25

K Dyp— m,_ 8eRy [0
L wData( remam[n]) = 2= D ZZIC:KI Z[’;; Lok [n]/

representing the normalized remaining data trans-
mission ratio

o YBd(dgoa[n]) = di:j n] , representing the normalized
distance to the chargmg station

e A4 and Ap are scaling weights

This design ensures that both penalty components are
normalized to [0,1] and connected to the state space. By
using state-dependent penalties, the agent can optimize
its trajectory by balancing remaining tasks and destination
distance, providing smooth feedback to guide the learning
process.

With the above MDP formulation, the design of RL
solvers is straightforward. For example, a well-thought-
out DDQN-based algorithm for UAV trajectory planning
is given in [17]. However, its training process is extremely
slow, although it may produce a satisfactory solution. Our
prior investigation in [27] also highlights the challenge of
slow training for deep reinforcement learning algorithms in
wireless communication systems.

4.2 FedX: A Fast UAV Trajectory Planning Framework

To resolve this issue, we leverage the techniques of multi-
threading and federated learning and propose a framework,
called FedX, as shown in Algorithm 1. The idea underlying
this algorithm is to fork multiple threads and treat each
thread as an agent of federated learning to enable parallel
training [41]. “X” in Algorithm 1 can be any RL solver,
including but not limited to DQN, DDON, DDPG [42],
TD3 [43], PPO [44], SAC [45] and other algorithms of the
same kind.
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Note that the proposed framework is different from
conventional federated RL, where multiple agents inde-
pendently interact with distinct parts of the environment.
Instead, it features threads acting as agents interacting with
the environment. FedX folks multiple threads and runs them
in parallel for model training. These threads collaborate by
aggregating their models, similar to the process in federated
learning. FedX allows for centralized control and unified
decision-making while benefiting from the parallelization
and collaborative learning aspects of federated techniques.
In addition, samples are distributed to each thread through
an individual replay buffer, which stores experiences col-
lected by the agent. Each thread independently accesses
this replay buffer and extracts mini-batches of samples for
training. This allows multiple threads to concurrently pro-
cess different subsets of data. By operating on independent
mini-batches, the threads can perform gradient updates in
parallel, leveraging the diverse experiences stored in the
replay buffer. The parallel processing not only speeds up
the training process but also ensures that the model benefits
from a wide variety of experiences. As a result, the proposed
FedX can enhance the efficiency and effectiveness of model
training and deployment.

4.3 FedSAC and FedPPO

To implement FedX as the optimizer for Problem (20), we
instantiate “X” in Algorithm 1 as Soft Actor-Critic (SAC)
and Proximal Policy Optimization (PPO).

SAC is an off-policy RL algorithm that offers significant
advantages over other off-policy algorithms like TD3 and
DDPG. It balances exploration and exploitation through en-
tropy regularization [45]. In UAV trajectory planning, SAC
ensures comprehensive exploration of different paths in
complex environments, thus avoiding local optima. Further-
more, SAC boasts higher sample efficiency and a more stable
training process, leading to faster convergence towards the
optimal trajectory planning solution.

The framework of SAC is depicted in Algorithm 2. The
complexity of the SAC algorithm is primarily determined
by the update processes of the Q-network and the policy
network. Suppose these networks have n layers, each with
m neurons. The complexity of initialization (lines 1 to 5) is
constant. The forward propagation for an action selection
(lines 6 to 12) takes O(n - m?) time. From line 13 to line
18, Sampling a mini-batch of transitions spends O(B), and
computing the target value y, which includes the forward
propagation through two Q-networks and the policy net-
work, is O(B - 3n - m?). In lines 19 and 20, the complexity
of computing the losses Lg, and Lq, is O(B - m?), and
that of updating the parameters ¢; and ¢, via gradient
descent is O(2-n-m?). Computing the policy loss L, costs
O(B-m?) time, and updating the policy network parameters
6 via gradient descent takes O(n - m?) in lines 21 to 22. If
the temperature parameter « is not fixed, the complexity
of computing the temperature loss L, and updating the
parameter « is constant time (lines 23 and 26). In line 27, the
time for the soft update of the target networks is O(2-n-m).
Therefore, the overall complexity of the SAC algorithm for
E episodes with N steps each is O(E - N - n-m?), assuming
the value of B is small.

Algorithm 2 SAC

: Initialize the replay memory O;

: Initialize actor network my with parameters 6;

: Initialize critic networks Qg,, Q4, with parameters ¢1, ¢2;

: Initialize target networks Q & Q ) with parameters ¢}, ¢/, (with
B D1, Py < P2);

5: Initialize temperature parameter «;

6: for episode =1,...,E do

7: Set n = 1, initialize the initial state s(1);

8

9

0

=W N =

whilen = 1,..., N and task Dy is not finished do
Select action a ~ my(als)
if (UAV out of desired region) and (UAV exceeding horizon-
tal/vertical velocity) then

11: Cancel the action and apply the penalty;

12: end if

13: Execute action a, observe reward r and next state s’

14: Store transition (s, a, r, ) in replay buffer O

15: end while

16: Sample a random mini-batch of transitions (s, a, r, s’) from O

17: Compute target value y:
y=r+y Y mo(a]s") [min (Qu (5", a), Quy (5", a)) —alog mo(a'[s") |5

18: where a’ ~ mg(a’|s’)
19: Update critic networks by minimizing the loss:

LQl = %Z (Q(bl (Sva) - y)2

Lo, = % > (Qoy(s,a) —y)?
20: Update parameters ¢1 and ¢o:
1+ ¢1 —nVy, Lo,
@2 < 2 — Ve, Lag,

21: Update actor network by minimizing the loss:

Ly = - molals) [alogma(als) — @, (s,0)]

22: Update parameters:
0 6—nVgLnr
23: if temperature parameter « is not fixed then
24: Update temperature parameter a by minimizing the loss:

Ly = —aZﬂ'e(a|s) [log wo(als) + Hlarget]
a

25: Update parameter:
a<+— a—nValy

26: end if
27: Soft update target networks:

@) — To1+ (1 — 7))
&b T2 + (1 — 7))

28: s+ s

29: if done then
30: break
31: end if

32: end for

PPO is an on-policy RL algorithm with significant ad-
vantages over other on-policy algorithms, such as Trust
Region Policy Optimization (TRPO) [46] and Advantage
Actor-Critic (A2C) [47]. Using a clipping mechanism, PPO
maintains stability and enhances performance during policy
updates [44]. In UAV trajectory planning, PPO ensures that
the UAV can efficiently learn optimal paths while reducing
stability issues during training. The framework of PPO is
illustrated in Algorithm 3.

The complexity of the PPO algorithm is dominated by
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Algorithm 3 PPO
1: Initialize actor network my with parameters 6;
2: Initialize critic network V;, with parameters ¢;
3: Initialize replay buffer D;
4: Set learning rate 7, clipping parameter ¢;
5: for episode =1,...,E do
6: Initialize state sg;
7: whilen = 1,..., N and task Dy is not finished do
8: Select action at ~ g (at|st);
9: if (UAV out of desired region) and (UAV exceeding horizon-
tal/vertical velocity) then
10: Cancel the action and apply the penalty;
11: end if
12: Execute action a¢, observe reward r; and next state s¢41;
13: Store transition (s¢, at, r¢, s¢+1) in replay buffer D;
14: St < St+1;
15: if s; is terminal then
16: break;
17: end if
18: end while .
19: Compute advantage estimates Ay;
20: fork=1,...,K do
21: Sample a random = mini-batch of  transitions
(st,at, Ay, mg(at|st)) from D;
22: Compute the ratio:
) — Tolatls)

6,4 (at]5t)
23: Compute the clipped objective:
LEUP(0) = By [min (r+(6) Ae, clip(re(6), 1 — e, 1+ €) Ay )|
24: Update actor network parameters:
0+ 6 + VoL (8)

25: Update critic network by minimizing the loss:
1 2
\% L _ ytarget
LY () = 5 20 (Valso) = V™)
26: Update critic network parameters:

¢ ¢ —nVyLY(9)

27: end for
28: end for

the update processes of the actor and critic networks. As-
suming these networks have n layers, each with m neurons,
the complexity of initialization (lines 1 to 4) remains con-
stant. The forward propagation for action selection (lines 5
to 11) takes O(n-m?) time. Starting from line 19, computing
the advantage estimates A; using the critic network costs
O(N -n-m?). In lines 12 to 22, sampling a mini-batch of size
B takes O(B) time, and computing the ratio (), which
involves forward propagation through the actor network, is
O(B - n - m?). The complexity of computing the clipped
objective LMF(9) (line 23) is O(B). Updating the actor
network parameters via gradient ascent takes O(n - m?)
(line 24). Computing the critic loss LY (¢) is O(B - m?), and
updating the critic network parameters through gradient
descent costs O(n-m?) (lines 25 to 26). Therefore, the overall
complexity of the PPO algorithm for E episodes with N
steps each is O(E - (N + K - B) - n-m?), which simplifies to
O(E - N - n - m?) assuming B is small.

4.4 FedSAC vs. FedPPO

FedSAC excels in adaptability through its entropy max-
imization mechanism, which promotes broad exploration

TABLE 1
Parameter settings for simulations.

Parameter Value

Bandwidth B, 2MHz

GTs: K, Task: Dy, 4,1024 ~ 2048Kb
‘_/maxa Vmax 101'1'1/5, 10m/s
tmin, tmaz 15/ 2s

Flying height: hrmin, hmax 60m, 200m

Time slots and episodes 1000, 60

Area size (width x depth x height)

500m x 500m x 300m
Channel power gain (3o) 1

Speed of light (c) 3 x 108m/s
Carrier frequency (fc) 2 x 10°Hz (2GHz)
Noise power spectral density (No) 1x 1079

Number of reflecting elements (M, M.) 10, 10

Path loss exponent for RIS-to-user link 2

(af%)
Rician factor for RIS-to-user link (nkRG) 10
Path loss exponent for UAV-to-user link 2

(@)

Rician factor for UAV-to-user link (nga) 10

Transmission power (pTX) 1w

Path loss factor (A4, C) 1,1

Noise power (o) V/3.98 x 1012

Number of sub-carriers (Ny) 64

Estimation error variance (P) 0.3

The positions of the GTs [100m, 100m] T,
[100m, 400m]T,
[400m, 100m] T,
[400m, 400m] T

The position of RIS wr = [250m,250m]T
with a height of 60m.

in high-dimensional spaces. However, its dependence on
target networks and delayed updates can lead to parameter
mismatches between local and global models in the asyn-
chronous FedX setup, resulting in possibly lower update
stability. In contrast, FedPPO ensures stability through its
clipping mechanism and synchronization of actor and critic
networks alongside their previous versions, avoiding the
instability caused by delayed updates. While FedSAC offers
superior exploration capabilities, FedPPO achieves more
stable updates and faster convergence, making it reliable
for tasks requiring scalability and consistent performance.

5 PERFORMANCE EVALUATION

In this section, we validate the effectiveness of FedSAC and
FedPPO in an RIS-assisted UAV system through simula-
tions. We compare the trajectory optimization of different
algorithms and their acceleration performance. To ensure
the fidelity of the results, we collect data by averaging the
results from 100 simulations.

5.1 Parameter Settings

The simulation settings for the RIS-assisted UAV system are
shown in Table 1.

Note that according to [48], the impact of the Doppler
effect on the system can be safely ignored when the Doppler
shift fp is significantly smaller than the sub-carrier spacing
Af, as its influence becomes minimal and can reasonably be
disregarded under these conditions.
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Fig. 3. Rewards of SAC and FedSAC.

With the above parameter settings, the sub-carrier spac-

ing A f and maximum Doppler shift f};%* are calculated as:
B 2x10°Hz

A =R T

= 31.25kHz
and

max_g _ 10
5™ = cf”_sxlos

Since f3® < Af, it is reasonable to assume that the
Doppler effect has a negligible impact under these system
parameters.

We set up the air-to-ground communication scenario
based on the discussion in [16] and configure the propulsion
model of the rotor UAV as described in [28], [38], and
[39]. The initial position of the UAV is set to be [0, 0, 200].
To minimize energy consumption during exploration while
encouraging the UAV to establish communication channels
with ground terminals for data transmission, we introduce
a scaling coefficient w = 10 in the reward function. The
simulations were conducted in Python 3.10 to implement
the Deep Neural Network (DNN) in the SAC and PPO
algorithms.

In the SAC algorithm, the original network consists of a
3-layer structure with 64 neurons in each layer. The Rectified
Linear Unit (ReLU) activation function is used in the hidden
layers, and the Tangent Hyperbolic (Tanh) function is ap-
plied in the output layer. The Adam optimizer [49] is used
to train the DNN, with its parameters randomly initialized
following a zero-mean normal distribution.

For the PPO algorithm, both the original and target
networks of the policy network consist of 2-layer DNNs. The
first and second layers each have 128 neurons and utilize
Tanh as the activation function, while the output layer uses
Softmax. The Adam optimizer is applied to train the DNNs
of the policy network.

x 2 x 10° = 66.67 Hz.

5.2 Performance Metrics

5.2.1 Rewards

We examine the fluctuations of the reward functions
throughout the training process. The reward function is

critical to RL algorithms as it directly influences the agent’s
behavior and learning process. Observing the variations in

—PPO 1
FedPPO with 5 agents
-------- FedPPO with 10 agents

4000 6000
Episode

0 2000 8000 10000

Fig. 4. Rewards of PPO and FedPPO.

the reward function offers insights into the convergence of
the algorithms being evaluated.

5.2.2 Training Time

We evaluate the training times for FedSAC and FedPPO
to explore their computational efficiency and practicality.
This metric is crucial as accelerated training processes can
significantly reduce time costs in practical scenarios. By
comparing the time taken for training with and without the
accelerated frameworks, we can highlight the advantages of
our developed framework in terms of time performance.

5.2.3 UAV’s Trajactory

We assess the effectiveness of the proposed algorithms
through a qualitative analysis of UAV trajectories. The
flight paths of the UAV in simulated scenarios visually
demonstrate the performance of the algorithms in practical
applications. This enables us to compare the variations
in UAV trajectories planned by different algorithms and
demonstrates the effectiveness of the FedX framework in
UAV path planning.

5.2.4 System Performance

We also investigate the system performance in terms of
throughput and energy consumption of the UAV. These
two metrics reflect the quality of solutions obtained by
our proposed algorithms, facilitating a direct comparison
between the original algorithms (SAC and PPO) and their
accelerated versions (FedSAC and FedPPO).

5.3 Results

Fig. 3 demonstrates the convergence of the SAC algorithm
and its accelerated versions, FedSAC with 5 agents and
FedSAC with 10 agents, across 10,000 training episodes. It
is evident that all three configurations ultimately converge.
Notably, the convergence rate of FedSAC with 5 agents is
slower, gradually stabilizing around the 6000-th episode.
This slower convergence is attributed to the use of asyn-
chronous updates. With fewer threads initiated (such as
FedSAC with 5 agents), each thread’s weight update exerts
a more significant impact on the global model yet occurs
less frequently. This may result in infrequent updates to the
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Fig. 6. Time comparison between PPO and FedPPO.

global model, thereby affecting the speed and efficiency of
the learning process '.

In contrast, increasing the number of threads to 10
(as in FedSAC with 10 agents) results in more frequent
updates of the global model, even with asynchronous up-
dates, which aids in faster convergence. However, in asyn-
chronous updates, the completion times of local updates
across different agents can vary significantly. As the number
of agents increases, these temporal discrepancies become
more pronounced, exacerbating parameter inconsistencies
during global model aggregation. In addition, FedSAC ag-
gregates four distinct networks: actor, critic, target actor,
and target critic, causing instability, particularly under the
asynchronous participation of a larger number of agents.
Furthermore, SAC’s entropy maximization mechanism, de-
signed to enhance exploration, introduces greater update
variability. This increased variability further impedes the
convergence rate as the number of participating agents
continues to grow.

Fig. 4 illustrates the convergence over 10,000 training
episodes for the PPO algorithm and its accelerated versions,
FedPPO with 5 agents and FedPPO with 10 agents. It is ev-

1. Note that the time required to run the same episodes by different
algorithms (SAC and FedSAC) is different. This can be observed in
Fig. 5.

10
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4000 6000
Episode

0 2000 8000 10000

Fig. 7. Speedup performance.

ident that all configurations converge quickly, with conver-
gence occurring around 2000 episodes. Despite the varying
numbers of threads initiated, the PPO algorithm maintains
update stability by constraining the difference between new
and old policies, thereby reducing the risk of significant
performance degradation during updates. In comparison to
the SAC algorithm and its associated accelerated algorithms,
PPO can uphold update stability even in asynchronous en-
vironments [50], thus mitigating global model fluctuations
caused by inconsistent learning processes among agents.
Fig. 5 and Fig. 6 show the average time required to
complete 10,000 training episodes by SAC, FedSAC, PPO,
and FedPPO algorithms. For each curve, the shaded areas
represent the standard deviations. The results in these two
figures faithfully demonstrate that the utilization of FedX,
notably FedSAC, significantly reduced training durations.
Such an enhancement highlights the efficiency of FedX
in expediting the training process, making it a powerful
framework for scenarios requiring rapid model updates.
Fig. 7 further confirms the effectiveness of FedX in terms
of Speedup 2. In the figure, the Speedup for FedSAC is
approximately 3.72 and 7.43 for configurations with 5 and
10 agents, respectively, whereas for FedPPO, these ratios are
about 4.53 and 7.44, respectively. In addition, the Speedup
exhibits a trend of initially increasing and then decreasing
as the number of training episodes grows. This can be
attributed to the parallel operation of multiple agents in
the initial training phases, especially when each agent starts
with a relatively high initial communication or synchroniza-
tion overhead. However, as training progresses into the mid-
dle and later stages, with the increase in data volume and
the model nearing convergence, the update rate slows while
overhead remains, resulting in a decline in Speedup [51].
Fig. 8 and Fig. 10 show a comparison of the 2D and 3D
trajectories produced by the SAC and PPO algorithms along
with their accelerated ones, FedSAC and FedPPO. It is clear
to see that all the algorithms are capable of generating high-
quality solutions. Specifically, we can observe that in order
to establish stable communication links with GTs, UAVs

2. Speedup, a.k.a. Amdahl’s Law, refers to the performance improve-
ment achieved by parallelizing a computational task. Speedup was
given by Gene Amdahl, an alumnus of EECS@South Dakota State
University.
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Fig. 9. Comparison of energy consumption.

typically fly close to each GT and may descend to lower
altitudes and hover as needed. This behavior primarily aims
to optimize signal reception quality and enhance communi-
cation reliability, especially in complex practical settings.

Fig. 9 and 11 display the Cumulative Distribution
Functions (CDF) of UAV energy consumption and through-
put under different algorithms and their accelerated ver-
sions. The results demonstrate that the performance of both
algorithms and their accelerated versions are almost the
same. This observation further validates that our proposed
framework significantly reduces training time while not
compromising solution accuracy.
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5.4 Discussion and Lesson Learned
5.4.1 Summary of Evaluation Results

We investigated the convergence properties, training du-
ration, acceleration effects, trajectory quality, and compar-
ative system performance of FedX and its implementa-
tions, FedSAC and FedPPO. The training results indicate
that while all algorithms eventually converge, FedSAC and
FedPPO exhibit significant advantages in accelerating the
training process without compromising solution accuracy.
Additionally, FedSAC and FedPPO demonstrate exceptional
performance in planning UAV flight trajectories. The results
show that these algorithms achieve similar system perfor-
mance in terms of energy consumption and throughput,
which indicates that UAVs can effectively approach each
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Algorithm 4 A* Algorithm for UAV Trajectory Planning

1: Initialize environment parameters and UAV initial state (position,
data served as zero, energy consumed as zero);

2: Initialize the open list with the start node and closed set as empty;
3: while n < N do
4: if open list is empty then return No feasible path found;
5: end if
6: Pop node with lowest fcost[n] from open list as current_node;
7o Af Y S SiRyin'] > SOf | Dy, then
8: Retrieve and return path from the start node to current_node;
9: end if
10: for all possible actions in A’ do
11: Simulate the action to obtain the next state (position, data
served, energy consumed);
12: Calculate gcost[1] as cumulative cost from start to next state,
including energy and penalties;
13: Calculate heost[n] as heuristic estimate to fulfill GT require-
ments from next state;
14: Calculate feost[n] as geost[n] + hcost[n];
15: if next state is not in closed set then
16: Create neighbor_node with next state, fcost[n], and action
leading to it;
17: Add neighbor_node to open list;
18: end if
19: end for

20: Add current_node to closed set;
21: end whilereturn No feasible path found if max_iterations reached;

ground terminal and adjust their altitude to establish stable
communication links, optimize signal reception quality, and
enhance communication reliability.

Although the acceleration effects may lessen in the later
stages of training, likely due to the slowdown in model
update rates while the potential high communication and
synchronization overheads remain, the accelerated training
frameworks still effectively shorten the overall training time
and significantly improve training efficiency.

5.4.2 Pros and Cons of FedX

The FedX framework proposed in this study has achieved
remarkable results in UAV trajectory planning. The basic
idea behind FedX is trading-space-for-time. It efficiently uti-
lizes computational resources by forking multiple threads
for parallel training and significantly accelerates the train-
ing process, enabling the model to converge in a shorter
time. This is particularly suitable for wireless networks and
mobile computing environments.

On the other hand, the assumption underlying FedX for
training acceleration is that the dataset for training must
be homogeneous. For those heterogeneous datasets, FedX
needs to be redesigned, which is our future work. More-
over, in an asynchronous update environment, coordinating
the updates from multiple agents becomes more complex,
potentially making it challenging to ensure the stability of
the global model.

5.4.3 Comparison with Non-RL Solution

We employed a model-based A* algorithm [32] for per-
formance comparison, with results presented in Fig. 12
(including 2D and 3D trajectory plots) and Table 2, where
we analyze UAV throughput and energy consumption. The
pseudocode framework of the A* algorithm is shown in
Algorithm 4.

The A* algorithm utilizes three key cost components to
evaluate the efficiency of UAV trajectory planning:

12

o feost (Total Cost): It is the sum of the actual cost
incurred from the start node to the current node
(geost[n]) and the estimated cost to reach the goal
(hcost[n]). The algorithm selects the node with the
lowest fcost[n] at each step to explore:

fcost [n] = Jcost [’I’L] + hcost [n]

e geost (Accumulated Cost): Representing the actual
cumulative cost from the start node to the current
node:

YGcost [Tl] = E[n} + PBd,

where E[n] denotes the energy consumption of the
UAV in the current time slot, and ppg is the penalty
for the UAV crossing the boundary. This setup al-
lows geost[n] to comprehensively reflect the actual
operational cost of the UAV, taking into account both
energy consumption and penalties for non-compliant
flight behaviors, such as exceeding boundaries. It
helps improve the efficiency and reliability of the
path-planning process.

o heost (Heuristic Cost): The heuristic estimate of the
remaining effort from the current node to the goal:

K K n+1
Peost [n] = Z Dy, — Z Z 61‘/Rk,i[n,]a
k=1 k=1n'=1

where Zle Dy, represents the total data demand
of all ground terminals, and Y+, Y7 6, Ry, i [n]
represents the total amount of data transmitted by
the UAV to each ground terminal up to the current
time slot. As shown, the heuristic function hgost[n]
is expressed as the remaining data to be transmitted.
This setup allows hcost [n] to reasonably estimate the
remaining transmission tasks, helping the UAV plan
its path more efficiently and prioritize routes that
maximize data transmission.

The A* algorithm finds the optimal UAV trajectory
through heuristic search. The idea is to select the node to ex-
pand at each step based on the cost function feost[n], giving
priority to expanding the node with the smallest cost. Each
node state contains the current position of the UAV and
the accumulated total energy consumption. At each step,
the UAV’s action space A’ is traversed, and its definition is
consistent with the action space in reinforcement learning,
specifically:

a/(n) = (lnahnack,nat:i) ceA= Eu X Hu x C x 7—,

where [,, and h,, represent the UAV’s movement directions
in the horizontal and vertical dimensions, respectively. 7 =
[tmin : 0.5 mSs : t1,ax] denotes the duration of the flight time
slot, and ¢ is a discrete value chosen between ¢ i, and ¢ ax.
C = {ckn,k,n} represents the scheduling actions for the
ground terminals.

We simplified the action space in the designed A* algo-
rithm to improve search efficiency during heuristic search.
In the horizontal dimension, the action space is restricted to
five directions (forward, backward, left, right, and hover),
and the time slot interval is adjusted to 0.5. The reduction
in the search space guarantees that the A* algorithm can
efficiently find optimal paths even in large-scale problems.
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Fig. 12. Trajectory of A*.

TABLE 2
System performance comparison.

Algorithm Energy Throughput Energy
(KJ)) (Kbs) efficiency
(bits/])
A* 53.38  3230.09 60.51
SAC 7232 6580.25 90.98
SAC with 5 agents 76.54  6636.58 86.71
SAC with 10 agents 79.02  6592.88 83.02
PPO 7612 6607.22 86.80
PPO with 5 agents 7823  6742.74 86.19
PPO with 10 agents 79.53  6883.10 86.55

Fig. 12 shows the 2D and 3D trajectories of the UAV
obtained by the A* algorithm. As shown in the figure,
given the known system model, the A* algorithm selects
the action with the lowest total cost (f0st) at each step (e.g.,
hovering and circling at the lowest altitude) while ensur-
ing the completion of data transmission tasks. However,
the UAV demonstrates limited exploration, as it does not
attempt to cover a wider spatial range. For example, the
UAV does not choose to fly closer to the ground terminals
to maximize data transmission rates; instead, it prioritizes
energy saving. To some extent, such a behavior limits the
overall optimization potential of its performance.

Table 2 compares the system performance between the
A* algorithm and our proposed RL-based algorithms, in-
cluding metrics such as energy consumption, throughput,
and energy efficiency. It can be observed that the A* algo-
rithm demonstrates significant optimization in terms of en-
ergy consumption, achieving lower energy usage compared
to the RL methods. However, since the A* algorithm chooses
the direction with the lowest cost function at each step, It
does not sufficiently explore the global state, limiting action
choices. This lack of exploration prevents the A* algorithm
from fully utilizing the available space and resources to
maximize data transmission rates, leading to lower overall
energy efficiency compared to RL methods. While the A*
algorithm excels in local optimization, it is less effective at
finding globally optimal solutions in complex and dynamic
environments compared to RL algorithms.
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Fig. 13 illustrates a typical flight pattern comprising four
phases: Ascend (from 0 to ¢1), Communication (¢; to £3), Re-
turn (2 to t3), and Descend (¢3 to t4). Our work in this study
only considers the flight and communication phases of the

Impact of Flight Pattern

13
\Height
o/ : UAV :
,35 i Communication :
< Period

0 th to
Fig. 13. A general UAV flight pattern.

UAV trajectory (green area in Fig. 13) without accounting
for the takeoff (Ascend), return ((t2 to t3)), and landing
(Descend) phases. Recall that Fig. 2 provides a useful in-
sight into the power consumption of UAVs under different
speeds and conditions, offering critical data support for our
subsequent research. In the next stage, we will incorporate
the takeoff, landing, and return phases. By comprehensively
analyzing the energy consumption and communication re-
quirements of UAVs during these various flight phases, we
aim to further optimize UAV path planning and energy
management. This will contribute to the development of a
more comprehensive and efficient UAV flight model.

To validate the above idea, we deployed a charging
station at coordinates (500, 500, 0) as a navigation target. The
reinforcement learning framework was accordingly modi-
fied with:

e Reduced action space to five horizontal directions
(stay, forward, backward, left, right) for improved
training efficiency;

e Enhanced reward function incorporating target dis-
tance: r(s[n], a[n])’ = r(s[n], a[n]) + Ad;

e Modified termination condition requiring the UAV to
reach the charging station.

We conducted experiments with 20 agents and 20
ground terminals to test the scalability of our method. The
results demonstrate stable convergence and robust perfor-
mance in this larger-scale scenario, as shown in Fig. 14 and
Fig. 15.

6 CONCLUSION

In this paper, we have investigated UAV trajectory planning
in RIS-assisted UAV communications in urban areas. We
have developed an incomplete information communication
model and a quadrotor UAV energy consumption model
and formulated the UAV’s energy consumption problem
toward an optimized UAV trajectory. To solve the problem,
we have designed an acceleration framework, FedX, for re-
inforcement learning solvers. Two responsive and accurate
trajectory planning algorithms, FedSAC and FedPPO, are
developed. Our evaluation results show that the proposed
framework is effective and efficient and, thus, is applicable
to RL solvers in wireless network and mobile computing
scenarios. We believe that our work stands out from pre-
vious studies by creating an impact on the field of UAV
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Fig. 14. FedSAC performance with 20 agents and 20 ground terminals.
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Fig. 15. FedPPO performance with 20 agents and 20 ground terminals.

communications. By developing novel models and new
algorithms, researchers and practitioners can gain not only

in-d
nica

epth insight into the complex nature of UAV commu-
tions but also design fast machine learning algorithms

by following our outcomes, paving the way for networking
innovations in 6G.
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