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Mental health diseases which affect children’s lives and well-beings have
received increased attention since the COVID-19 pandemic. Analyzing psy-
chiatric clinical notes with topic models is critical to evaluating children’s
mental status over time. However, few topic models are built for longitudinal
settings, and most existing approaches fail to capture temporal trajectories
for each document. To address these challenges, we develop a dynamic topic
model with consistent topics and individualized temporal dependencies on
the evolving document metadata. Our model preserves the semantic mean-
ing of discovered topics over time and incorporates heterogeneity among
documents. In particular, when documents can be categorized, we propose
a classifier-free approach to maximize topic heterogeneity across different
document groups. We also present an efficient variational optimization pro-
cedure adapted for the multistage longitudinal setting. In this case study, we
apply our method to the psychiatric clinical notes from a large tertiary pedi-
atric hospital in Southern California and achieve a 38% increase in the overall
coherence of extracted topics. Our real data analysis reveals that children tend
to express more negative emotions during state shutdowns and more positive
when schools reopen. Furthermore, it suggests that sexual and gender minor-
ity (SGM) children display more pronounced reactions to major COVID-19
events and a greater sensitivity to vaccine-related news than non-SGM chil-
dren. This study examines children’s mental health progression during the
pandemic and offers clinicians valuable insights to recognize disparities in
children’s mental health related to their sexual and gender identities.

1. Introduction.

1.1. Motivation. Mental health conditions, such as anxiety, depression, and substance
abuse, are prevalent among children and can have long-lasting impacts on their social rela-
tionships and academic performance. Without proper intervention, mental health conditions
can lead to school absences, academic failure, isolation from peers, and—in some cases—an
increased risk of suicide. Unfortunately, the outbreak of COVID-19 has intensified pediatric
mental health issues due to the extent level of enforced physical/social isolation (Wu et al.
(2021), Ravens-Sieberer et al. (2022)). In particular, sexual and gender minority (SGM) youth
who live in low-supportive home environments and lose access to previously affirming envi-
ronments, such as schools and social activities, are placed at an increased risk for abuse and
rejections from their family members (McGeough and Sterzing (2018), Thoma et al. (2021)).
Therefore, to develop effective interventions and create post-pandemic support systems, it is
crucial for mental health professionals to understand the dynamic changes and disparities in
children’s mental status concerning their sexual and gender identities during the pandemic
(Salerno et al. (2020)).
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However, evaluating children’s mental health, in general, is challenging due to the self-
reported symptoms and complex heterogeneity among subjects. For instance, studies found
that girls and SGM children tend to report their symptoms differently and are more likely to
be diagnosed with depression, compared to boys and non-SGM youth, even though they ex-
press similar symptoms (Afifi (2007), Rosenfield and Mouzon (2013), Marshal et al. (2011),
Plöderl and Tremblay (2015), Russell and Fish (2016)). To mitigate this bias, questionnaires
and telephone surveys with validated rating scale (Penninx et al. (2008), Barry (2014), Boyd
et al. (2013)) are conducted to quantify patients’ mental health symptoms with derived met-
rics. Yet these study designs still suffer from selection bias and are unable to capture impor-
tant life events or stressors impacting the patient’s mental health.

In this study we leverage inpatient mental health unit notes from a large tertiary pediatric
hospital in Southern California to evaluate children’s mental health over the pandemic period.
Compared to survey metrics, clinical notes contain a more contextualized background of a
patient (e.g., mental health history, hospitalization reasons, interactions with clinicians, etc).
Our goal is to identify major life events and stressors from these clinical records and track
their dynamic shifts to quantify mental health status changes among nearly 2600 inpatient
children throughout the pandemic. Importantly, these contextual factors play a crucial role in
revealing the prevalent and long-lasting themes in mental health, such as depression, anxi-
ety disorders, and suicidal intentions (Scott (1958), Ronald et al. (2010), National Institute
of Mental Health (2021), Ciechanowski, Jemielniak and Silczuk (2023)). By understanding
the evolution trends of these themes, we offer valuable insights into the progression of chil-
dren’s mental health throughout the pandemic era. Moreover, taking into account each child’s
unique life experience and reactions, we incorporate individual-level heterogeneity and aim
to uncover distinct trends between SGM and non-SGM children. This allows investigators to
better recognize mental health disparity among SGM youth during COVID-19 and develop
tailored post-pandemic support systems concerning sexual and gender identities.

1.2. Literature review. Unsupervised topic modeling is a popular statistical approach
which aligns well with our objective of discovering abstract themes (i.e., topics) from a large
corpus of text data. By clustering common patterns and keywords across multiple documents,
topic models uncover the underlying semantics associations and summarize lengthy docu-
ments into a manageable number of interpretable topics. In the existing literature, topic mod-
eling can be typically categorized into two major frameworks: Bayesian probabilistic topic
models (BPTMs) and neural topic models (NTMs). A BPTM proposes a probabilistic genera-
tive model of a document and applies Bayesian inference procedures to estimate the posterior
of latent topics. Representative methods include latent Dirichlet allocation (LDA) (Blei, Ng
and Jordan (2003), Blei and Lafferty (2006a)), the dynamic LDA (Blei and Lafferty (2006b),
Wang, Blei and Heckerman (2012)), where topics evolve with time, and the supervised LDA
(Mcauliffe and Blei (2007), Roberts et al. (2014), Li, Ouyang and Zhou (2015), Sridhar,
Daumé III and Blei (2022)) with augmentation of document metadata. However, BPTMs
generally suffer from low sampling efficiency and high technical difficulties in customizing
the optimization procedure for each model prior specification. NTMs, on the other hand, are
based on neural networks to model the relationships between words and topics. Benefiting
from the standard gradient descent optimization procedure, NTMs can be easily integrated
into different application cases and achieve high training efficiency on large datasets. Under
the NTMs framework, one can find topics via clustering the word embedding representa-
tions (Thompson and Mimno (2020), Sharifian-Attar et al. (2022)) or modeling topics as
latent variables in autoregressive models (Larochelle and Lauly (2012), Gupta et al. (2019)),
generative adversarial networks (GANs) (Wang, Zhou and He (2019), Hu et al. (2020)). In
particular, the variational autoencoder (VAE)-based NTMs (Miao, Yu and Blunsom (2016),
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Srivastava and Sutton (2017), Lin, Hu and Guo (2019)) have received the most attention due
to their ability to capture complex word-topic associations with deep learning architecture
and, meanwhile, provide probabilistic interpretations to the latent topics based on variational
inference.

Among these frameworks discussed above, three methods offer promising solutions to
our problem: the multistage dynamic LDA (Blei and Lafferty (2006b)), the supervised LDA
(Mcauliffe and Blei (2007)), and SCHOLAR, which is the VAE-NTM with metadata aug-
mentation (Card, Tan and Smith (2017)). However, none of these methods is directly appli-
cable to our specific use case. First, the time-varying topics found by the dynamic LDAs
may distort the meaning of each topic, fail to capture consistent mental health themes, and
impose difficulties in interpreting the topic proportion trend due to the loss of time consis-
tency. In addition, both supervised LDAs and SCHOLAR are single-stage topic models and
rely on classifiers, instead of topic distributions, to differentiate groups. Moreover, few stud-
ies have extended the VAE-NTMs framework to the multistage longitudinal setting, though
VAEs with spatiotemporal dependencies have been actively explored in the computer vision
field (Gulrajani et al. (2016), Casale et al. (2018), Fortuin et al. (2020), Ramchandran et al.
(2021)).

1.3. Contribution. This paper proposes a novel multistage dynamic VAE-NTM, namely,
Heterogeneous Classifier-Free Dynamic Topic Model (HCF-DTM), with grouping informa-
tion to address the challenges discussed above. In contrast to the dynamic LDAs, our method
finds a number of time-consistent topics among all documents at any time point. This not only
maintains the semantic meaning of discovered topics over the investigation period but also en-
ables the direct use of obtained topic proportions to infer the dynamic change in the popularity
of each topic. Additionally, we augment the document metadata into the topic-finding pro-
cedure to account for the longitudinal heterogeneity among documents. Moreover, compared
to the supervised LDAs, our proposed model increases the groupwise differences directly
on the latent topic distribution level. Instead of relying on additional downstream classifiers,
we introduce the counterfactual topic proportions and maximize the interdistributional dis-
tances between topic proportions of the ground truth group and those as if the documents
belonged to the other groups. As a result, the distinct characteristics of each group and their
corresponding topic evolution trend can be easily identified.

The main clinical contributions of our paper are as follows. First, this work is among the
earliest to utilize topic models on unstructured psychiatric clinical notes to unfold the longitu-
dinal mental health disparities concerning sexual and gender identities during the pandemic.
Knowledge of possible pronounced reactions among SGM children toward major COVID-
19 events advocates for developing tailored post-pandemic treatments. Clinicians can design
programs, such as virtual support groups and online mental health platforms (Whaibeh, Vogt
and Mahmoud (2022), Karim et al. (2022), McGregor et al. (2023)), to help address the
heightened stress, anxiety, and isolation experienced by SGM youth when their previously
accessible resources become limited due to the pandemic. In addition, our study assists clini-
cians in further examining SGM-related contextual stressors. This not only raises community
awareness about the unique challenges faced by SGM children, promoting family education
and fostering community support, but also informs future research on the mental health of
SGM children and gets better prepared for future pandemics or social crises.

The remainder of this article is structured as follows. In Section 2 we introduce the nota-
tions and limitations of the dynamic LDA method. In Section 3 we propose the generative
process of HCF-DTM, present variational inference details, and introduce a classifier-free
approach to maximize heterogeneity between groups. Section 4 explains the implementation
algorithm. In Section 5 extensive simulation results are presented to illustrate the performance
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advantages of our proposed HCF-DTM method. In Section 6 we apply the proposed method
to the psychiatric inpatient clinical notes provided by a large tertiary pediatric hospital in
Southern California. Lastly, we conclude with discussions in Section 7. Technical details and
proofs are provided in the Supplementary Material (Ye et al. (2024)).

2. Background and related works.

2.1. Notation and preliminary. Consider a balanced multistage study where N partici-
pants undergo a total T finite number of stages (visits). Each participant belongs to a corre-
sponding group. For the illustration purpose, we consider a two-group scenario (e.g., SGM
and non-SGM), denoted as Yi ∈ Y = {0,1}. At the t th stage, where 1 ≤ t ≤ T , a set of sub-
ject’s time-varying covariates and a clinical note (document) are recorded. The structured
subjects’ covariates are regarded as the metadata, denoted as Xit ∈ Xt , and the unstructured
clinical notes are the text data of interest.

To formalize the unstructured text data, we assume that the number of unique words across
all recorded documents is V (vocabulary size). By assigning a unique ID to each word, we
represent any document of an arbitrary number of words Nd with a vector of constant size
V , that is, (cntw1, cntw2 ..., cntwv) ∈ ZV≥0. This vector is known as the Bag of Words (BOW)
representation, where each element counts the number of appearances of the corresponding
word in a document. With BOW we are able to vectorize the entire corpus of documents over
T time points with a structured tensor of size T ×N ×V , denoted as D = [D1,D2, . . . ,DT ].
Now, suppose at each time point t that there exist K topics within documents Dt , and each
document is a mixture of these topics. To capture the proportions of each topic found in a
document, we create a document-topic matrix �t,N×K . Furthermore, we define a word-topic
matrix βt,V ×K to represent the relevance of each word to the K topics. The primary goal
of topic modeling is to find the matrices �t,N×K and βt,V ×K which can best represent the
documents Dt at time stage t (i.e., Dt,N×V ≈ �t,N×K · βᵀ

t,V ×K ).

2.2. Multistage dynamic LDA. Traditional nonnegative matrix factorization (NMF)
methods (Paatero and Tapper (1994), Lee and Seung (1999), Li et al. (2021)) view this prob-
lem as a matrix decomposition task, where �t,N×K and βt,V ×K are treated as two lower-rank
matrices with 1 ≤ K � min(N,V ). By minimizing the distance (e.g., Frobenius norm) be-
tween Dt,N×V and �t,N×K · β

ᵀ
t,V ×K , the NMF methods estimate the representative topics

and proportions. However, NMF is not a probabilistic method and, therefore, is limited in pro-
viding valid statistical inferences to the estimated topics. LDAs, on the other hand, provide
probabilistic distributions on �t,N×K and βt,V ×K and incorporate them into the generative
process of a document. For example, in the multistage dynamic LDA (Blei and Lafferty
(2006b)) generative process 1 defined as below, δ2, ξ2, and a2 are the variance priors for the
latent topics, and σ(x1:V )j = expxj∑V

j=1 expxj
is a softmax function constraining the unbounded

multivariate normal mean parameters to a valid multinomial probability simplex.
Based on the Generative Process 1 formulation, we identify the following three limita-

tions of the dynamic LDA to our application. First, the word-topics distribution βt , which
characterizes the semantic meaning of each topic, changes at each time stage. Commonly,
the meaning of topics can be summarized by a broader theme, and the magnitude of change
can be controlled via the variance prior δ2. However, finding a suitable prior requires manual
inspections of the word-clouds at each time stage to interpret and confirm that the topics are
under the same theme. As the number of stages and topics increases, the cumbersome nature
of this process will inevitably impose a significant challenge in topic interpretations and rep-
resentations. Second, the topic proportion θt,d,1:K is not directly correlated to its precursor
θt−1,d,1:K which describes the topic proportions of the same document d from the previous
time stage. Instead, all {θt,d,1:K}Nd=1 share a common corpus-level hyperparameter αt , mak-
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Generative Process 1 Dynamic LDA

1. Draw word-topics distribution: βt | βt−1 ∼ N (βt−1, δ
2I ).

2. Draw document-topics proportion: αt | αt−1 ∼ N (αt−1, ξ
2I ).

3. For each document d at time t :
a. Draw topics proportion: ηt,d,1:K ∼ N (αt , a

2I ), θt,d,1:K = σ(ηt,d,1:K).
b. For each word at position j :

(i). Draw a topic for this word: Zt,d,j ∼ Mult(θt,d,1:K).
(ii). Draw a word: Wt,d,j ∼ Mult(σ (βt,1:V,Zt,d,j

)).

ing it difficult for the current process to account for document-level heterogeneity. Lastly, the
generative process above does not incorporate subjects’ metadata and group information. De-
spite that the follow-up supervised LDA (Mcauliffe and Blei (2007)) accounts for the group
information by adding an extra classification task to the end of the generative process (i.e.,
Yd |Zt,d,., φ, γ ∼ logit-Normal(φᵀ · Zt,d,., γ

2)), the performance of topic separation relies
heavily on the prior parameters of the classifier, φ and γ , and still, it is challenging to distin-
guish whether a strong classification result is due to the quality of the classifier or the actual
presence of interpretable and separable underlying topic distributions.

3. Methodology. To address the challenges listed above, we propose the Heterogeneous
Classifier-Free Dynamic Topic Model (HCF-DTM) with consistent topic interpretations and
dynamic incorporation of documents’ time-varying metadata. In the following we describe
the generative process and a detailed variational inference procedure of our proposed model.
In addition, we introduce a novel classifier-free approach to directly maximize the groupwise
heterogeneity among topics with a notion of counterfactual topic distributions.

3.1. Heterogeneous DTM with consistent topics. The main objective of our proposed
model is to identify a set of time-consistent topics while accounting for the evolving hetero-
geneity within documents over a specified longitudinal timeframe. This subsection presents
the detailed specification of HCF-DTM in Generative Process 2 and illustrates with the cor-
responding graphical model in Figure 1.

Compared to the Generative Process 1 of previous DTMs, our method differentiates itself
in three significant ways. First, instead of allowing each time point to have its own word-
topic matrices {βt }Tt=1, we remove the time dependency and assume the existence of a single
word-topic matrix, β , which is shared by all documents and held constant regardless of time
or group memberships. Specifically, our approach achieves this by parameterizing the gen-
erative distribution of β with a single time-invariant mean prior β0 and sampling it once at
the beginning of the process. In addition, we keep the generative variance prior, δ2I , diag-
onal to ensure orthogonality and maximize disparities among topics. As a result, the topic
matrix β provides a consistent and distinguishable interpretation for each topic at every time

Generative Process 2 Heterogeneous DTM with consistent topics

1. Draw time-consistent word-topics distribution: β ∼ N (β0, δ
2I ).

2. For each document d at time t :
a. Draw topic proportions:

ηt,d,1:K | ηt−1,d,1:K,Xd,t , Yd,φt ∼ N (ft,φt (ηt−1,d,1:K,Xd,t , Yd), a2I ),
θt,d,1:K = σ(ηt,d,1:K).

b. For each word at position j :
(i). Draw the word: Wt,d,j ∼ Mult(θt,d,1:K · σ(β)ᵀ).
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FIG. 1. A graphical model of the heterogeneous DTM in a balanced multistage longitudinal setting, where θ0 is
a prior for the initial topic proportions. Topics β’s are held constant and provided at every time stage. Both θ and
β are the latent variables, whereas W , X, and Y are observed variables.

point. This is more desirable, as it helps uncover long-lasting topics and guarantees consistent
themes without the need to navigate through a multitude of topics {βt }Tt=1 over time.

Apart from providing consistent topics, we augment documents’ metadata into the genera-
tive process and establish individualized trajectories of the longitudinal topic proportions. No-
tably, since the topics β do not vary with time in our design, the topic proportions {θt,d,1:K}Tt=1
encapsulate all temporal correlations within each document d . In particular, we utilize a func-
tion ft : RK ×Xt ×Y �→ RK parameterized by prior φt to capture the mean trend of the topic
proportions. At every time stage t for a document d , the mean function ft takes three inputs:
the past topic proportions θt−1,d,1:K , subject’s longitudinal covariates Xd,t , and group mem-
bership Yd to provide predictions for the expected topic proportions. Consequently, the topic
proportions �t incorporate the dynamic heterogeneity among subjects and are able to con-
trol for confounders, which may affect their distributions. More importantly, we let the topic
proportions �t directly depend on �t−1 from the previous stage rather than a corpus-level
hyperparameter αt used in dynamic LDA. This enables us to better track the individual pro-
gression of topic proportions on the document/subject level.

Furthermore, our heterogeneous DTM generative process simplifies the optimization pro-
cedure. By estimating the time-consistent latent topics simultaneously across different time
periods, we reduce the number of model parameters and decrease the inference complexity
level. Additionally, inspired by the work of Miao, Yu and Blunsom (2016), we collapse the
latent random variable Z, which determines the topic assignment for each word, from the
word sampling distribution based on the following results:

(1) p(wt |θt , β) =
K∑

z=1

p(z|θt ) · p(wt |z,β) =
K∑

z=1

θt,z · σ(βz) = (
θt · σ(β)ᵀ

)
w.

Unlike the two-layer hierarchical dependency outlined in Generative Process 1, we model
the word generative process jointly with the topics β and their proportions �t , as in Wt ∼
Mult(1, θt · σ(β)ᵀ). This collapsing approach has the advantage of eliminating the need to
sample the discrete random variable Z during the optimization process, which is considered
to be more challenging.

Finally, we aim to estimate the posterior of the latent topic proportions via the Bayes rule
according to the defined prior distributions of the latent topics and the likelihood model of the
documents in Generative Process 2. To simplify notations, we use θt , Xt , and Y as shorthand
to represent θt,d,1:K , Xd,t , and Yd , respectively, for each document d from this point onward,

(2) p(θt | θ1:(t−1),wt ,Xt , Y,β) = p(θt |θ1:(t−1),Xt , Y ) · p(wt |θt , β)∫
θt

p(wt |θt , β) · p(θt |θ1:(t−1),Xt , Y ) dθt

.

With the posterior in equation (2), we can infer the latent topic proportions θt at any time t

from the observed document data. However, obtaining this posterior distribution is extremely
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difficult. This is because the marginalized data distribution p(wt |θ1:(t−1), β) in the denom-
inator is intractable due to the unbounded space of the latent variable θt during integration.
To address this challenge, we leverage the variational Bayes and propose a novel solution
to extend the inference procedure of heterogeneous topic models to a multistage longitudi-
nal setting. A detailed explanation of the longitudinal variational Bayes approach under our
generative process specifications is provided in the next subsection.

3.2. Longitudinal variational inference. Variational inference is a powerful technique for
estimating the intractable posterior of interest P with a parametrizable distribution Q, such as
a Gaussian distribution. To ensure Q is a valid approximation to P , variational methods min-
imize the Kullback–Leibler (KL) divergence between the two distributions. This transforms
the inference problem into an efficient optimization task, as future posterior inference can be
conducted directly from Q. In our specific case, we aim to find the optimal set of parame-
ters ψ∗

1:T over the T number of stages so that the parameterized approximating distribution
Q∗ .= Qψ∗

1:T is as close as possible to the true topic posterior distribution P , that is,

ψ∗
1:T = argmin

ψ1:T ∈
 |T |
KL

(
Qψ1:T (θ1:T |w1:T ,X1:T , Y )||P(θ1:T |w1:T ,X1:T , Y,β)

)
(3)

= argmin
ψ1:T ∈
 |T |

KL
(
Qψ1:T (θ1:T |w1:T ,X1:T , Y )||p(θ1:T |X1:T , Y )

)
︸ ︷︷ ︸

Approximation error: Variational distribution Q and geneartive prior p

(4)

−Eθ1:T ∼Qψ1:T
(
logP(w1:T |θ1:T , β)

)
︸ ︷︷ ︸

Reconstruction error: Model likelihood from variational topics

.

In a single-stage setting, optimizing ψ∗ is straightforward through minimizing the nega-
tive evidence lower bound (ELBO) in equation (4). However, the inference is more difficult to
define when there are multiple stages involved, since additional temporal dependencies arise
among the topic proportions θ1:T . Moreover, as θ1:T are latent variables and not directly ob-
servable, we sample θt along with its temporal predecessors θ1:(t−1) at each time stage, which
increases the computational complexity exponentially with the number of stages. Therefore,
it is more desirable to derive a variational objective, which can efficiently break the long
dependent sequence into smaller sets of stages while preserving temporal correlations in a
multistage longitudinal setting. Before presenting our longitudinal ELBO, we first introduce
the following regularity assumptions.

ASSUMPTION 1 (Markov property of latent topic proportions). Topic proportions at the
next stage only depend on the current stage, not on any past stages: θt+1 ⊥⊥ θ1, . . . , θt−1|θt .

ASSUMPTION 2 (Independence generation of documents). The distribution of every
word from documents at time t only depends on the time-consistent topics and current-stage
topic proportions: wt ⊥⊥ (w1:(t−1), θ1:(t−1),X1:t , Y ) | θt , β .

Assumption 1 relaxes the temporal dependencies between topic proportions which are
more than two stages apart, since topics of a document are majorly influenced by the ones
from the previous stage. In other words, current-stage topic proportions capture all the past
information required for the proportions at the next stage. Assumption 2 states that it is suffi-
cient to generate all words in a document given the current-stage topic proportions and topics,
as subjects’ heterogeneity and potential confounders have been considered in θt by the mean
trend function ft . Under these two assumptions and the variational distribution factorization
Qψ1:T (θ1:T ,w1:T ,X1:T , Y ) = ∏T

t=1 qψt (θt ,wt ,Xt , Y ), we present the following ELBO as the
variational objective under our multistage heterogeneous DTM Generative Process 2.
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PROPOSITION 1. Under Assumptions 1–2, the evidence lower bound (ELBO) for a single
document generated by Process 2 over a finite T -stage longitudinal time horizon is

logP(w1:T |X1:T ,Y,β)
(5)

≥ −KL
(
qψ1 (θ1|w1,X1, Y )||p(θ1|θ0,X1, Y )

) + E
θ1∼qψ1

(
logP(w1|θ1, β)

)
︸ ︷︷ ︸

Single-stage ELBO for the first stage
(6)

+
T∑

t=2

{− E
θt−1∼qψt−1

(
KL

[
qψt

(θt |wt ,Xt , Y )||p(θt |θt−1,Xt , Y )
]) + E

θt∼qψt

(
logP(wt |θt , β)

)}
︸ ︷︷ ︸

Temporal-dependent ELBO for the follow-up stages

.

Equation (6) provides a lower bound for the log-likelihood of a document generated ac-
cording to Generative Process 2. Maximizing this lower bound is equivalent to minimizing
the negative ELBO in equation (3), where both optimizations result in the same set of opti-
mal variational parameters ψ∗

1:T . Under the regularity assumptions, the presented longitudinal
ELBO can be further decomposed into two components: the standard single-stage ELBO for
the first stage, and the temporal-correlated ELBO for the follow-up stages. Specifically, the
latter divides all future stages into adjacent-stage pairs based on Assumption 1. By calculating
the KL divergence of current-stage topic proportions using the proportions sampled from the
variational distribution at the previous stage, the approximation error across all time stages
can be divided into adjacent stages. This leads to a more efficient inference process, as the
adjacent-stage dependency eliminates the need for sampling proportions of the entire time
sequence at each stage. Additionally, based on Assumption 2, the reconstruction error can
be calculated individually at each time stage, even without the pairwise dependency, which
further enhances the efficiency of the variational learning process.

In summary, the longitudinal ELBO shown in equation (6) extends variational inference
for DTMs to a multistage longitudinal setting. It provides an efficient optimization objective
to approximate the true posterior of the topic proportions according to our proposed hetero-
geneous DTMs generative process. However, as the posterior of topic proportions θt depends
on the topics β shown in equation (2), the proportion of a topic can vary significantly based
on the learned latent topics. For instance, the differences in the topic proportion distributions
between non-SGM and SGM youth may be more pronounced if the topic is related to men-
tal health rather than physiological measures. Depending on the provided latent topics, the
estimated topic proportions may not optimally present the heterogeneity from the groups.
Thus, to better understand groupwise differences, we propose a classifier-free approach via
distributional distances to learn the latent topics.

3.3. Groupwise topic separation. In this subsection our goal is not only to identify the
most representative topics under Generative Process 2 but, more importantly, to maximize the
heterogeneity between groups in their respective proportions. To achieve this, we introduce
the counterfactual topic distributions, which describe the topic proportion distributions for
subjects who have the same documents w1:T and measurements X1:T but belong to different
groups Y . The value function of HCF-DTM is presented as follows:

V HCF(ψ1:T ) = −KL
(
Qψ1:T (θ1:T |w1:T ,X1:T , Y )||P(θ1:T |w1:T ,X1:T , Y,β)

)
︸ ︷︷ ︸

Variational inference objective (6)

+ Dist
({

Qψ1:T (θ1:T |w1:T ,X1:T , Y = y)
}
y∈Y

)
︸ ︷︷ ︸

Groupwise topic proportion distribution distance

,
(7)
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FIG. 2. Comparison of topic proportion distributions under two sets of latent topics: β1, β2 vs. β̃1, β̃2. The
shapes displayed on a two-dimensional plane correspond to optimal topic proportions for each latent topic speci-
fication. Solid outlines indicate proportions from the true group identity, while dashed outlines represent counter-
factual proportions.

where information radius (Sibson (1969/70)), average divergence score (Sgarro (1981)), or
mutual information (MI) in a two-group setting can be selected as the distance metrics. To
represent the counterfactual distribution, we use the constructed variational Q by changing
its group membership covariate Y under the no unmeasured confounding assumption (Robins
(1986)). The main objective is to find the set of variational parameters which maximizes
the value function, that is, ψ∗

1:T = argmaxψ1:T ∈ψ |T | V HCF(ψ1:T ). In particular, the first term
encourages closer approximation of variational distribution Q to the underlying posterior
P ; meanwhile, the second term aims to increase the distances among the marginal topic
proportion distributions, P(θ1:T |Y), for each group membership Y.

The proposed distance maximizing approach has the following two advantages. First, it
provides explicit guidance to learn the latent topics that have the largest groupwise difference
in their corresponding proportions. Due to the co-dependency between the latent topics and
their proportions, the maximum amount of group heterogeneity, which can be captured by
the topic proportions, depends on the provided latent topics. To illustrate this, consider the
example of a two-group scenario shown in Figure 2. Compared to latent topics β1 and β2,
topics β̃1 and β̃2 lead to a larger averaged distance between the topic proportion marginal
distributions and, noticeably, can better disentangle the group identities. To make β̃1 and β̃2
more likely to be identified in practice, the proposed second term in value function (7) ex-
plicitly maximizes the interdistributional distances during the optimization procedure. As a
result, latent topics that have larger distances in their proportion distributions are favored. In
addition, regularized by the first variational term, the optimized latent topics are also per-
tained to the Generative Process 2 and aimed to obtain the best representation of the docu-
ments.

Second, we maximize the group disparity in topic proportions via a classifier-free man-
ner. Unlike the previous supervised topic models (Mcauliffe and Blei (2007), Card, Tan
and Smith (2017)), which rely on a parameterized classifier to distinguish group identi-
ties, we evaluate groupwise topic proportion similarity by calculating the closed-form dis-
tance metrics directly from their distributions. At the groupwise distribution level, we op-
timize the variational free-parameters to increase the groupwise disparity. As a result, this
approach not only relieves the need to posit and estimate extra parameters for the clas-
sifier but also protects the latent topics from any semantic distortion resulting from po-
tential projections applied by the classifier. Moreover, by leveraging the counterfactual
topic proportions, we no longer require separating topic proportion distribution for each
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group and, therefore, can increase the sample efficiency and reduce the label imbalance
level.

To conclude, we propose the HCF-DTM, which extends the VAE-NTM to a longitudi-
nal setting and provides an efficient variational objective by segmenting the long dependent
sequence into adjacent stages. To preserve the semantic meaning of the topics, HCF-DTM
finds a number of time-consistent latent topics and maximizes groupwise heterogeneity via
interdistributional distances. In the next section, we present the implementation details of the
proposed method.

4. Implementation and algorithm. The optimization procedure focuses on two sets of
parameters of interest: the generative parameters � and the variational parameters 
 . Pre-
cisely, � specifies the Generative Process 2, including the time-invariant topics β and pa-
rameters φ1:T of the mean trend functions f1:T , whereas 
 parameterizes the mean functions
g

μ
1:T and variance functions gσ

1:T of the variational distribution Q. Our goal is to find the
optimal set of � and 
 , which maximize the value function presented in equation (7).

The implementation detail is summarized in Algorithm 1. It starts with learning the varia-
tional mean and variance, μq and σq , and then estimates the proposed value function which
can be decomposed into three major components: the KL divergence between the variational
and generative priors (μ0 and σ 0), the log-likelihood of the documents generated from the la-
tent topics, and the distributional distances between the counterfactual topic proportions. For
demonstration purpose we consider a two-group setting and adopt the MI as the distance met-
rics. Calculating the log-likelihood and the groupwise MI is straightforward and can be con-
ducted at each time stage. However, obtaining the longitudinal KL divergence is more chal-
lenging due to the temporal dependencies present in the follow-up stages. Though equation
(6) breaks down the long temporal dependency to adjacent stages, it is still required to com-
pute an expectation of KL divergence over the intractable space of all latent topic proportions
at the previous stage, as shown in Eθt−1∼qψt−1

(KL[qψt (θt |wt ,Xt , Y )||p(θt |θt−1,Xt , Y )]).
To address this challenge, we apply the reparametrization schemes M times to have a

random sample of θt−1 with size M drawn from the variational distribution. The sampled
θt−1 are later used to generate the prior distribution of θt based on the mean function ft ,
which enables us to obtain an empirical estimate of the expected KL divergence at time t .

Algorithm 1 Heterogeneous Classifier-Free Dynamic Topic Model
1. Initialize generative parameters � = {β,φ1:T } and variational parameters 
 =

{ψμ
1:T ,ψσ

1:T }, variational mean functions g
μ
1:T and variance functions gσ

1:T , topic pro-
portion mean prior μ0

1 and variance prior σ 0
1 , KL sample number M , learning rate λ,

maximum iterations Tmax, and a stopping error criterion εs .
2. Input all observed documents, metadata, and group {Wi,1:T ,Xi,1:T , Yi}Ni=1.
3. For k ← 1 to Tmax, do
4. Compute variational μ

q
t = g

μ
t (Wt ,Xt , Y ) and std.err σ

q
t = gσ

t (Wt ,Xt , Y ).
5. For j ← 1 to M , do
6. Sample Gaussian errors εj,t ∼ N(0,1) and reparametrize η

q
t,j = μ

q
t + εj,t · σq

t .

7. Compute prior mean μ0
1,j = f1(μ

0
1,X1, Y ), and μ0

t,j = ft (η
q
t−1,j ,Xt , Y ).

8. Compute counterfactual μ̃
q
t = g

μ
t (Wt ,Xt ,1 − Y) and σ̃

q
t = gσ

t (Wt ,Xt ,1 − Y).
9. Compute gradient ∇ of equation (8) w.r.t. � and 
 .

10. Update (�,
)k ← (�,
)k−1 − λ · ∇ .
11. Stop if |Lk −Lk−1| ≤ ε.
12. Return estimated topics β and variational functions {gμ

t }Tt=1 and {gσ
t }Tt=1.
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Together with two other loss terms, the final objective function can be derived as follows:

(8)

(
�∗,
∗)

= argmin
�,


1

N · M
N∑

i=1

T∑
t=1

M∑
j=1

{
log

(
σ 0

σ
q
i,t

)
+ (σ

q
i,t )

2 + (μ
q
i,t − μ0

i,j,t )
2)

2 · (σ 0)2 − 1

2

}
︸ ︷︷ ︸

Gaussian KL divergence term

− Wi,t · log
{
σ

(
η

q
i,t,j

) · σ(β)
}

︸ ︷︷ ︸
Multinomial likelihood term

− 1

2

{
log

(
σ

q
i,t + σ̃

q
i,t

4 · σq
i,t · σ̃ q

i,t

)
+ (μ

q
i,t − μ̃

q
i,t )

2

σ
q
i,t + σ̃

q
i,t

+ 1

2

}
︸ ︷︷ ︸

Mutual Information term

,

where εt,j
iid∼ N (0,1), ηq

i,t,j = μ
q
i,t +εt,j ·σq

i,t is the unnormalized variational topic proportion

sample and μ0
i,j,t = ft (η

q
i,t−1,j ,Xi,t , Yi) is the resulting prior proportion mean. Parameters of

interest are updated jointly via stochastic gradient descent (Robbins and Monro (1951)). For
further reference we present a graphical illustration of our model architecture and leave more
detailed optimization choices, such as hyperparameter tuning, in the Supplementary Material
(Ye et al. (2024)).

5. Simulation. In this section we present extensive simulation studies to illustrate the
longitudinal interpretability and groupwise separation ability of our proposed method. To
compare, we consider several BPTM-methods: LDA (Blei, Ng and Jordan (2003)), multi-
stage dynamic LDA (mdLDA) (Blei and Lafferty (2006b)), and supervised LDA (sLDA)
(Mcauliffe and Blei (2007)) as well as NTM-based approaches: prodLDA (Srivastava
and Sutton (2017)) and SCHOLAR (Card, Tan and Smith (2017)). Note that sLDA and
SCHOLAR are the two methods augmenting the document metadata, and mdLDA is the
only multistage topic model which incorporates the longitudinal dependency of the docu-
ments. The main objective of the simulation is to investigate whether the topic models can
recover the underlying topic distributions and identify subjects’ group memberships under
various settings, such as the number of time stages and topics.

The detailed simulation setting is described as follows. First, we consider a cohort of N

subjects over T number of stages. At the baseline stage (t = 1), we assign 20 random fea-
tures {Xi1p}20

p=1 generated from a standard normal distribution N(0,1) to each subject i.
During all follow-up stages (2 ≤ t ≤ T ), we let those features be correlated over time ac-

cording to Xi,t,p = Xi,t−1,p + ε, where ε
iid∼ N(0,1). The subjects are randomly assigned

to one of the two groups Y ∈ {−1,1} with equal probabilities. After the subjects’ metadata
({Xi,t,.}Tt=1, Yi)

N
i=1 are generated, we define the document-level generative priors, that is, top-

ics β and proportions �.
Under each simulation setting, we assume the existence of K number underlying top-

ics βV ×K , where each topic β1:V,k describes a distribution over V number of words. For
ease of denotations, the words are represented as numerical integer values ranging from 1
to V . To maximize the differences among topics, we let βv,k ∼ logit-Normal(μk,1), where
μk = �k · V

K
�, and keep them constant across the time stages. Then we design functions

{ft,1, . . . , ft,K}Tt=1 to generate time-varying topic proportions based on the document-level
metadata. Specifically, the topics proportions at time t for subject i can be represented
as (θt,i,1, . . . , θt,i,K) = σ(ft,1(Xi,t,., Yi, θt−1,i,1), . . . , ft,K(Xi,t,., Yi, θt−1,i,K)), where each
function ft,k is parameterized into the following three components:

(9) ft,k = γ m
t,k · Xi,t,.︸ ︷︷ ︸

covariates main effect

+ γ θ
t · θt−1,i,k︸ ︷︷ ︸

dependency from previous θ

+ Yi · γ g
t,k · Xi,t,.︸ ︷︷ ︸

group membership effect

.
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The regression coefficients γt,k
iid∼ N(0,1) are shared among all subjects at time t . In addi-

tion, equation (9) lists a linear relationship between the document metadata and the topic
proportions. To increase the prior function complexity, we also impose nonlinearity by trans-
forming metadata based on a specified function basis {X,X2,X3, arctanX, sign(X)}. Fi-

nally, we generate documents di,t
iid∼ Mult(cnti,t , θt,i,1:K · β

ᵀ
1:V,1:K) with number of words

cnti,t
iid∼ Unif({50, ..,150}).

We train the topic models on 80% of the generated documents and make inferences on
a hold-out 1000 document set. Each topic model provides a posterior of the topic distribu-
tions β̂ and proportions θ̂ and can be evaluated based on the following three criteria: topics
recovery rate, dominant topics identification, and groupwise topic separation capability. All
evaluation metrics are reported after 50 times of repeated experiments under each parameter
setting. For demonstration purpose, we set N = 1000, V = 200, T ∈ {3,5,8}, K ∈ {3,5,8},
and generate topic proportions under nonlinear function setting. Additional parameter spec-
ifications and ablation studies are provided in Supplementary Material Section 3 (Ye et al.
(2024)).

5.1. Topics recovery rate. To assess the model topic recovery rate, we compute the aver-
aged empirical KL-divergence between the model estimated topic distributions β̂ and ground-
truth simulated topics β , that is,

(10) K̂L
(
β̂1:T ||β) = 1

K · T
T∑

t=1

K∑
k=1

V∑
v=1

β̂t,v,k · log(βv,k/β̂t,v,k),

where a lower KL divergence indicates a smaller distributionalwise discrepancy and is more
desired. However, due to the nature of unsupervised learning, the correspondence between
the predicted and ground-true topics is undetermined. To incorporate this, we find the best
permutation order O∗ of the predicted topics, which reaches the minimum KL divergence
metric, that is, O∗

t = argminOt∈perm(1,..,K) K̂L(β̂t,1:V,Ot ||β1:V,1:K), as the recovered corre-
spondence at each time stage t . Following the above procedure, we summarize the obtained
KL metrics under each simulation setting in Table 1.

As shown in Table 1, HCF-DTM outperforms all other competing methods with respect
to the topic distribution KL divergence. In particular, under a fixed number of topics, HCF-
DTM obtains a better topics recovery rate, and the improvement margin enlarges compared to

TABLE 1
Empirical KL divergence between the estimated and actual topic word distributions when the generative prior

function is nonlinear. Standard errors are summarized in the parentheses next to the estimated means. The
improvement rate compares HCF-DTM against the best performer of the competing methods

K T LDA sLDA prodLDA SCHOLAR mdLDA HCF-DTM Imp-rate

3 3 15.326 (2.363) 19.319 (0.153) 22.066 (0.030) 15.663 (0.783) 9.633 (5.594) 3.990 (0.429) 58.580%
5 15.243 (2.278) 19.274 (0.207) 22.071 (0.024) 15.298 (0.528) 11.007 (5.933) 3.805 (0.390) 65.431%
8 15.334 (2.327) 19.293 (0.152) 22.072 (0.015) 15.022 (0.566) 14.438 (2.683) 3.532 (0.395) 75.537%

5 3 18.976 (1.811) 23.154 (0.825) 27.007 (0.016) 21.843 (0.491) 13.042 (3.294) 11.772 (1.454) 9.738%
5 19.051 (1.864) 23.312 (0.711) 27.002 (0.015) 21.662 (0.615) 16.773 (3.001) 9.017 (2.460) 46.241%
8 19.037 (1.868) 23.066 (0.695) 27.003 (0.013) 21.548 (0.596) 18.708 (2.077) 8.740 (2.877) 53.282%

8 3 23.384 (1.117) 27.544 (1.077) 31.004 (0.012) 27.097 (0.252) 23.737 (0.606) 17.945 (1.629) 23.259%
5 23.452 (1.051) 27.577 (0.578) 30.999 (0.010) 26.971 (0.239) 24.940 (0.670) 15.280 (1.939) 34.846%
8 23.592 (1.051) 27.815 (0.460) 31.001 (0.009) 26.763 (0.287) 26.491 (0.543) 13.068 (2.041) 44.608%
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the best-performing competing method (mdLDA) when the number of time stages increases.
This illustrates the advantage of HCF-DTM which assumes a time-constant topic distribution
by design. Such an assumption minimizes the number of inference parameters and eases the
optimization procedure. Notably, though the single-stage topic model could adaptively search
the optimal topics at each time stage, our time-consistent assumption, in alignment with the
generative process, allows HCF-DTM to fully utilize documents across all time stages and
thus makes it powerful to recover underlying consistent topics if there exists any.

5.2. Dominant topic identification. In this subsection we test model inference perfor-
mance on topic proportions and evaluations according to the dominant topic alignment accu-
racy, that is,

(11) ÂCCdom-topic = 1

T · N
T∑

t=1

N∑
i=1

I
{
argmax(θ̂t,i,1:K) = argmax(θt,i,1:K)

}
.

A topic is considered dominant when its probabilistic proportion is the largest among all
other topics for each document and, therefore, accurately identifying the dominant topics
is essential, as the number of dominant topics at each time stage could be utilized to track
the topic’s popularity. After updating the order of the estimated topics with the sequential
correspondence from previous simulations, we provide simulation results for N = 1000 and
K = 8 in Figure 3.

Based on Figure 3, we notice that the proposed HCF-DTM method obtains the highest av-
eraged dominant topic identification accuracy and, meanwhile, achieves the smallest standard
errors, compared to all the rest competing methods. This result is expected due to the fol-
lowing three reasons. First, compared to the single-stage methods, the proposed HCF-DTM
incorporates the dynamic document metadata, which utilizes the topic proportion genera-
tive function with the subject-level longitudinal information and is able to control potential
confounders. Second, instead of letting the topic proportions share a common corpus-level
hyperparameter as mdLDA, our method directly establishes temporal dependency on topic
proportions from previous stages so that the information on dominant topics can be propa-
gated into the future stages. Lastly, due to the mutual dependency between the topics and
corresponding proportions, the topic proportions generated by HCF-DTM can be enhanced
from the previously best-performing estimated topic distributions.

FIG. 3. Boxplots of the dominant topic accuracy from estimated topic proportions vs. the number of time stages
when N = 1000, K = 8, where the generative prior function is nonlinear. The left-to-right order of boxplot methods
matches the top-to-bottom order of the legend.
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FIG. 4. Boxplots of the group-membership accuracy from estimated topic proportions vs. the number of time
stages when N = 1000, K = 8, and the generative prior function is nonlinear. The left-to-right order of boxplot
methods matches the top-to-bottom order of the legend.

5.3. Groupwise topic separation. In this simulation we examine the model capability of
distinguishing topic proportions based on the subjects’ group membership. In terms of eval-
uation metrics, we fit a simple logistic regression on the topic proportion posterior to predict
subjects’ group membership, that is, Yi ∼ Logistic(θ̂t,i,1:K) and use the resulting classifica-
tion accuracy to evaluate the modeling of groupwise topic separation capability. As the clas-
sification task is directly applied to the obtained topic proportions, a higher accuracy score
indicates more groupwise information having been incorporated within the proportions and
thus more desired. According to this criteria, we show the simulation results in Figure 4.

From Figure 4 we observe that, while the HCF-DTM model performance drops as the
number of time stages increases, HCF-DTM still outperforms the rest of competing methods
under each simulation setting. In particular, when there are three number of stages (T = 3),
HCF-DTM improves the group-membership accuracy most substantially due to the small
number of inference tasks. More importantly, according to the simulation results, we con-
clude that the proposed classifier-free approach to maximize the topic proportion differences
among different groups is more efficient in embedding groupwise heterogeneity to the topic
proportions compared to the additional classifiers imposed by the SCHOLAR and sLDA.

6. Real data analysis. In this section we apply the proposed topic model HCF-DTM to
the clinical notes provided by the pediatric mental health department of the Children’s Health
of Orange County (CHOC). Over a five-year period from 01/10/2019 to 06/01/2023, CHOC
has collected a total number of 25,957 notes from 2564 inpatient children with an average
age of 14.48 years. These notes contain detailed contextual information about a patient, such
as hospitalization reasons, initial nursing assessment, and conversations/interactions with the
clinicians. The goal of this study is to understand the progression of children’s mental health
from the text data during COVID-19. In particular, we investigate any disparities in the SGM
and non-SGM children’s mental responses to stress factors associated with the pandemic.

In our analysis we first consolidate the time frame of interest by selecting three impor-
tant events based on the timeline of COVID-19 (Centers for Disease Control and Prevention
(2023)), which are 03/15/2020 when the states began to implement shutdown, 05/13/2021
when the vaccines were released and became available to the 12+ teenagers, and 08/01/2021
when the school reopen policy was announced. These three events segment the collection of
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notes into four distinct time periods and are able to formulate the task into a four-stage lon-
gitudinal topic modeling setting. Additionally, as the sexual and gender identity of a patient
is undisclosed, we search glossary terms, such as “pronouns” and “transgender” provided
by the national LGBTQIA+ health education center, from the notes. This procedure reveals
more than one-third (36%) of the children in our dataset potentially belonging to SGM. Re-
markably, this number is much larger compared to the 2.2%–4.0% survey estimates of SGM
proportion in the United States (Gates (2014)).

Within each specified time period, we preprocess the clinical notes according to standard
procedure, including stemming, lemmatization, and removal of stop words. However, there
still remain significant challenges. Due to the unstructured and distinctive characteristics of
clinical notes, we encounter frequent spelling errors and extensive usage of medical terminol-
ogy abbreviations, which largely increase the vocabulary size. To maintain a more manage-
able bag of words, we select terms which can be found in more than one-third of the notes.
This filtering process results in a set of 273 instead of 37,890 number of unique words. To-
gether with the tabular patients’ demographic information and vital measurements, we apply
the proposed HCF-DTM and competing methods to extract consistent themes from the notes
to investigate inpatient children’s mental status over the four stages of the pandemic.

In our application all methods are evaluated under two criteria: the accuracy in predicting
children’s sexual and gender identity based on the inferred topic proportions and the UCI
coherence score (Newman et al. (2010)) for the extracted topics. Specifically, the first mea-
sures the extent of groupwise heterogeneity captured by the topic proportions, and the later
score quantifies the semantic interpretability of the topics. To comprehensively analyze model
performance, we randomly select 80% of the notes as a training set and repeat the process
20 times to obtain a Monte-Carlo sample of the model performance scores. The results are
summarized in Table 2, where higher accuracy and coherence scores indicate better model
performance.

According to Table 2, our HCF-DTM outperforms all other methods under each specifi-
cation of the number of topics. Compared to the supervised models (sLDA and SCHOLAR)
which rely on additional classifiers, our increased accuracy scores demonstrate that the intro-
duced groupwise topic separation component of our model can be more effective in incorpo-
rating the sexual and gender identities of patients into the inferred topic proportions. Mean-
while, our augmentation of longitudinal covariate information further improves the obtained
topics by capturing more enriched time-dependent heterogeneity among subjects. Further-
more, the proposed model’s generative assumption of time-invariant topics, as opposed to the
dynamically changing topics found by mdLDA, significantly enhances the interpretability of

TABLE 2
Model performance scores evaluated on the testing set of Monte-Carlo samples. Each test set consists of 1587

notes from 564 patients. Standard errors are summarized in the parentheses next to the estimated means

K LDA sLDA prodLDA SCHOLAR mdLDA HCF-DTM

Accuracy 3 62.979% 65.119% 62.060% 65.693% 62.186% 66.200%
(1.627) (2.181) (1.455) (1.969) (1.922) (1.705)

5 62.956% 65.642% 62.060% 65.456% 63.147% 68.017%
(1.663) (2.289) (1.455) (2.026) (1.866) (2.205)

8 64.512% 66.592% 62.060% 65.759% 64.749% 70.615%
(1.450) (2.231) (1.455) (2.086) (2.425) (2.906)

Coherence 3 −0.162 (0.005) −0.035 (0.038) −0.344 (0.051) 0.096 (0.024) −0.202 (0.023) 0.152 (0.037)
5 −0.091 (0.021) 0.099 (0.012) −0.282 (0.044) 0.108 (0.110) −0.219 (0.026) 0.161 (0.058)
8 −0.143 (0.007) 0.096 (0.020) −0.246 (0.017) 0.164 (0.036) −0.116 (0.027) 0.181 (0.035)
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FIG. 5. Wordclouds of three topics extracted by HCF-DTM.

the topics, indicated by the higher coherence scores. We summarize that our approach, com-
bining document longitudinal metadata and group membership, efficiently addresses existing
heterogeneity and thus attains the best performance in this data application.

Furthermore, with the highest coherence score achieved, we proceed to retrain HCF-DTM
using the entire clinical note dataset with three specified topics for demonstration purposes.
Detailed justification of this choice can be found in Supplementary Material Section 4.3 (Ye
et al. (2024)). Figure 5 displays the wordclouds of the extracted topics that persist over time.
Upon analyzing the word distributions, we assign the label “Interaction” to the first topic, due
to the recurring words such as “parent, school,” and “interaction” which describe the social
support related to inpatient children. Similarly, we name the second and third topics “Posi-
tive” and “Negative,” respectively, to reflect their positive or negative emotion and feelings.
Finally, we identify the dominant topic with the highest topic proportion for each patient and
time period. The dominant topic, which reflects a patient’s primary mental status, illustrates
the evolution of inpatient children’s mental health over time. We first visualize the progres-
sion of the dominant topic proportions on a two-dimensional latent space extracted by t-SNE
(Van der Maaten and Hinton (2008)) in Figure 6.

A direct observation of Figure 6 reveals that each topic is well separated and their relative
positions on the two-dimensional latent space change dynamically across the four time peri-
ods. Notably, during the implementation of shutdown measures, the interdistances between
three topics decrease while their variations increase, suggesting a significant impact on topic
distributions from the shutdown event. Similarly, there is an increase in the “Negative” topic’s
variance in the latent space upon the reopening of schools. To further investigate how each
topic progresses over the four COVID periods, we compute the percentage changes of the
dominant topics and illustrate it in Figure 7.

Figure 7 shows there is an increase in the prevalence of “Negative” emotions and a de-
crease in the “Interaction” topics among both SGM and non-SGM children after the imple-
mentation of state shutdowns, whereas both trends reverse once schools began to reopen. In
particular, compared to non-SGM children, SGM inpatient children exhibit more pronounced
shifts, and their “Negative” emotions started to decline one stage earlier when news of vac-
cine availability was released. These disparities in topic trajectories suggest the existence of

FIG. 6. Dynamic changes in the topic proportions on a latent space extracted by the t-SNE. Each shape repre-
sents the corresponding dominant topic.
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FIG. 7. Percentage changes in the three topics fitted by HCFDTM within two patient groups according to sexual
and gender identities.

heterogeneity associated with children’s sexual and gender identity. Importantly, our findings
also align with recent research which shows that social isolation due to quarantine measures
has led to elevated levels of anxiety but decreased vaccine hesitancy in the SGM community
during COVID-19 (Pharr et al. (2022), Adzrago et al. (2023)).

To conclude, the proposed HCF-DTM method effectively extracts interpretable topics
from the unstructured clinical notes. Our classifier-free groupwise separation approach re-
veals noticeable disparities in the progression of mental status between SGM and non-SGM
children. This study effectively demonstrates the feasibility of using clinical notes to evaluate
children’s mental status and provides valuable insights for clinicians.

7. Discussion. In this paper we develop a heterogeneous dynamic topic model with an
efficient variational inference procedure. The proposed model is designed to extract consis-
tent topics in a multistage longitudinal setting. Specifically, our method maintains a set of
time-invariant topics and incorporates document metadata into the topic proportions, where
the first preserves the semantic meaning of each topic and the second captures the document
temporal heterogeneity. In addition, when the documents can be categorized, we introduce a
classifier-free topic learning approach that utilizes counterfactual topic distribution and inter-
distributional distances to maximize topic heterogeneity across different document groups.

The proposed topic model is applied to clinical notes data from a large tertiary pediatric
hospital in Southern California to evaluate inpatient children’s mental health concerning their
sexual and gender identities during the COVID-19 pandemic. We demonstrate three unique
advantages of our method in this data application. First, without the need to navigate through
a multitude of similar topics at each time stage, the extracted time-invariable topics readily
represent children’s mental status over time and enable us to quantify the children’s men-
tal health progression via the corresponding topic proportions. Second, the augmentation of
documents metadata can efficiently incorporate the heterogeneity among inpatient children,
such as their demographics features and evolving vital measurements. Lastly, our classifier-
free groupwise heterogeneity maximization approach can effectively identify any disparity in



3182 H. YE ET AL.

children’s mental status related to their sexual and gender identities. Importantly, our model
can be applied to other scenarios using topic modeling for longitudinal text data, particularly
in the presence of heterogeneity.

Our real data analysis indicates that children tend to express more negative emotions dur-
ing the state shutdowns and more positive when schools reopen. In particular, SGM children
exhibit more pronounced reactions toward major COVID-19 events and greater sensitivity to
vaccine-related news. This implies that increased social isolation due to enforced quarantine
has a noticeable negative impact on children’s mental health, especially among SGM chil-
dren. As a result, engaging more social activities and support can be crucial for children’s
mental well-being, and our study may facilitate clinicians to understand the importance of
rebuilding social connections and activities as a post-pandemic support system for children
to recover from mental distress.

SUPPLEMENTARY MATERIAL

Supplementary Material to “Dynamic topic language model on heterogeneous chil-
dren’s mental health clinical notes” (DOI: 10.1214/24-AOAS1930SUPP; .pdf). The sup-
plement contains variational inference proof, details of the optimization algorithm, additional
simulations and ablation studies, and descriptions of real-world applications along with an
examination of model assumptions.
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