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Abstract. Uncrewed Aerial Vehicle (UAV) trajectory planning has been 
realized to have a significant impact on precision agriculture in enabling 
more efficient monitoring of crops and soil through optimized flight paths 
and data collection. While current learning-based algorithms may yield 
promising results, their training process and the system’s highly dynamic 
channel cause these algorithms to be extremely slow. To address this 
issue, we design a learning acceleration framework with an efficient algo-
rithm, FedTD3. Our main contributions include a channel model that 
characterizes UAV-GS (Ground Sensors) communications features in 
rural areas, a quadrotor UAV energy consumption model for its move-
ment in any direction, and FedTD3–an accelerated RL solver to deal with 
the problem of time efficiency and sustainability. We perform thorough 
evaluations to validate the algorithm’s performance. The results show 
that our design can achieve a significant speedup. 

Keywords: UAV · Trajectory planning · Reinforcement learning · 
TD3 · Federated learning 

1 Introduction 

Uncrewed aerial vehicles (UAV), also known as drones, are aircraft without a 
human pilot onboard that are controlled remotely by an operator or programmed 
to fly autonomously [ 2]. Recent studies have indicated that UAV communica-
tions present tremendous benefits in precision agriculture, especially in the rural 
region of the Midwest [ 1]. By communicating with ground sensors, UAVs col-
lect data such as crop health, growth patterns, and environmental conditions 
to provide a more complete and accurate map of the agricultural environment. 
Moreover, an optimized UAV flying path can help farmers make informed deci-
sions in real time, leading to the optimal application of water, fertilizers, and 
pesticides, reducing waste and environmental impact. Also, with the automation 
of communication between UAVs and ground sensors, continuous monitoring and 
response, streamlining operations, and reduced manual interventions can be real-
ized to achieve more sustainable and productive agricultural practices. 
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Therefore, investigating UAV communications and its trajectory planning is 
imperative, not only because UAV communications have become an indispens-
able component for interconnecting space and terrestrial networks to implement 
the space-air-ground integrated systems in 6G [ 15], but also because they have 
a significant impact on reshaping precision agriculture, enabling more efficient 
crop/soil monitoring through optimized flight paths and data collection. 

While traditional models used for terrestrial systems could theoretically be 
adapted for UAV communications, the unique nature of UAV systems demands 
a more individualized approach. Unlike conventional ground-based communi-
cation systems, UAVs operate at relatively higher altitudes, which calls for a 
customized model to accurately characterize their signal propagation features. 
Such an adaption is crucial in understanding communication dynamics at various 
altitudes. At present, there has been a significant amount of studies in channel 
measurements and modeling specifically for UAV communications [ 11]. However, 
prior research in UAV communications was primarily designed for single-rotor 
UAVs, leading to a significant gap in research for quadrotor UAV scenarios. This 
gap can be even more obvious with the increasing use of quadrotor UAVs across 
various sectors, where existing works fail to meet their requirements [ 8]. In addi-
tion, existing studies typically only take into account the vertical ascension of 
UAVs, which does not reflect the settings of real-world operations. 

For UAV trajectory planning, current works formulate the problem as a 
co-design with system parameters, such as rate/capacity [ 3], phase shift [ 13], 
energy [ 12], and beamforming [ 7]. The integration of trajectory design with vari-
ous system parameters gives rise to the defined optimization problems NP-hard. 
Consequently, various Reinforcement Learning (RL) algorithms have been pro-
posed to tackle these optimization problems. Typical RL algorithms include 
Deep Deterministic Policy Gradient (DDPG) [ 7], Soft Actor-Critic (SAC) [ 3], 
Proximal Policy Optimization (PPO) [ 10], and Twin-delayed DDPG (TD3) [ 13]. 
Although these algorithms may yield promising results, we argue that they delib-
erately neglect the time performance of their solutions. This can be ascribed to 
our recent investigation in [ 9] that the RL-based algorithm’s training process and 
the system’s highly dynamic channel can result in the algorithm being extremely 
slow, even in a simple toy scenario. 

The goal of this paper is to model the UAV-GS (Ground Sensors) commu-
nications precisely, design efficient trajectory planning algorithms, and conduct 
system evaluations to bridge the above research gaps. Our contributions of this 
paper are summarized as follows. 

– We develop a system model that includes: 1) a channel model that charac-
terizes UAV-GS communications features in rural areas and 2) a quadrotor 
UAV energy consumption model for its movement in any direction. Based on 
the system model, we formulate the optimization problem for UAV trajectory 
planning. 

– We present a learning acceleration framework, under which an efficient and 
lightweight RL algorithm for UAV trajectory planning to address the chal-
lenges of time efficiency and sustainability is designed. Our main endeavor
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is to guarantee the designed algorithm can be responsive and accurate for 
complex UAV operations. 

– We perform evaluations of the UAV trajectory planning algorithm to validate 
its performance. We believe that the research efforts made in this work will 
provide empirical evidence and feedback to refine theoretical designs, ensuring 
that these algorithms are not only theoretically sound but also practically 
viable and ready for industry adoption. 

The remainder of this paper is organized as follows. Section 2 presents the 
system model and formulates the problem. In Sect. 3, the proposed approach for 
the problem is given. The simulation results are provided in Sect. 4. We conclude 
the paper in Sect. 5. 

2 System  Model  

We consider a communication system involving a UAV connecting with K 
Ground Sensors (GS) distributed across a farmland. The UAV functions as an 
aerial base station. Both the UAV and GTs are equipped with a single antenna. 

2.1 UAV-Ground-Sensors Communication Model 

The general wireless channel model can be written as h =
√

α(d)h̃. Here, 
α(d) represents the large-scale channel attenuation, which includes distance-
dependent path loss and shadowing. The variable d signifies the distance between 
the UAV and GS. The complex random variable h̃ accounts for small-scale fading 
caused by multipath propagation, with E

[
|h̃|2

]
= 1. In rural areas, the effects 

of shadowing and small-scale fading disappear due to free space transmission. 
As such, we have |h̃| = 1, and the channel power is simplified as α(d) =

(
λ 

4πd

)2 
, 

where λ is the carrier wavelength and α̃0 � (λ/4π)2 is the channel power at 
the reference distance of 1 m. With this model, the channel power is fully deter-
mined by the distance between the UAV and GS, which can be accurately pre-
dicted given known locations. Figure 1a illustrates our initial findings utilizing 
this model, showcasing various potential transmission technologies and wireless 
bands. 

The data rate of UAV is 

Rk,i[n] =  ck,i[n]B log2
(
1 +  

pTX α(d) 
σ2

)
, (1) 

where pTX is the fixed transmit power of the UAV, B is the bandwidth, σ is the 
noise variance, and ck,i[n] =  {0, 1} indicates sensor k being served or not.
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Fig. 1. Preliminary results on channel and power characteristics for UAV communica-
tions and flight. 

2.2 Energy Consumption Model for UAV 

We focus on the UAV’s energy consumption model, emphasizing propulsion, 
which is the dominant factor. We assume that the energy required for commu-
nication and computation tasks remains constant. Additionally, we neglect the 
minor fluctuations in energy consumption due to UAV acceleration or deceler-
ation as long as the communication time slot is relatively short. The model is 
partially adapted from earlier studies [ 6]. 

For a quadrotor UAV, the energy consumption during hovering can be divided 
into two components: 

1) The power consumed due to the aerodynamic drag of the UAV’s rotors: 

PB = 
δ0 
2 

ρs0A0Ω
3 
0R

3 
0, (2) 

2) The power required to balance the UAV’s weight and maintain lift: 

PI = (1  +  k) 
W 3/2 

2
√
2ρA0 

. (3) 

Thus, the total hovering power is P quad h = PB + PI, where  δ0 denotes the pro-
file drag coefficient, ρ accounts for air density (kg/m3), s0 represents rotor solid-
ity, A0 is the rotor disc area (m2), Ω0 is the blade angular velocity (radians/s), 
R0 is the rotor radius (m), k is the incremental correction factor to induced 
power, W is the UAV’s total weight (Newton). 

According to Eqs. (2) and  (3), due to the varying effects of horizontal flight 
on the different power components, including increased aerodynamic drag on the 
rotors, the non-linear variation of induced power with speed, and the growing 
parasite power caused by air resistance, we will now present the corrected power 
for the aerodynamic drag of the rotor PBh = 4PB0

(
1 +  3 V̄ 2 

Ω2 
0 R

2 
0

)
, the induced 

power correction PIh = 4PI0

(√
1 +  V̄ 4 

4v4 
0 

− V̄ 2 
2v2 

0

)1/2 

, and the parasite drag power
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PDh = 2d0ρs0A0 V̄ 3, respectively. Based on this, we can derive the total power 
consumption for the UAV in horizontal flight: 

P̄ ( V̄ ) =  PBh + PIh + PDh . (4) 

Figure 1b displays our preliminary results using the same parameter config-
uration as [ 6] for this model. 

Next, we analyze the power consumption during vertical flight. Let F̂ and F̌ 
represent the upward and downward forces, and R̂ and Ř denote the drag during 
ascent and descent, respectively. Next, taking the ascent process as an example, 
the thrust of the UAV during ascent satisfies: 

F̂0 = 
W 
4 

+ 
1 
2 
SEQ⊥ρ ̂V 2 , (5) 

where SEQ⊥ is the fuselage equivalent flat plate area in the vertical movement. 
In line with [ 5], we have 

P̂0( V̂ ,  ̂F0) =  
P quad h 

4 
+ 

1 
2 
F̂0 V̂ + 

F̂0 

2

√

V̂ 2 + 
2 F̂0 

ρA0 
. (6) 

Since the UAV is a quadrotor, we can easily derive the total power consump-
tion during ascent P̂ ( V̂ ) = 4  ̂P0

(
V̂ ,  ̂F0

)
and descent P̌ ( V̌ ) = 4  ̂P0

(
V̂ ,  ̂F0

)
− 

2SEQ⊥ρ ̌V 3. 

2.3 Problem Formulation 

Following the same convention of [ 14], we make the assumption that the dura-
tion of flight for a particular time slot, denoted by δt[n], as well as the  overall  
flight time T , which is the sum of δt[n] for all n from 1 to N . The UAV’s 
3D path is represented by a sequence

{
q[n] = [x[n], y[n], z[n]]T

}N 
n=1

, where  
q[n] = [x[n], y[n], z[n]]T denotes the 3D coordinates of the UAV at time slot 
n. The altitude that the UAV can fly at, denoted by H, must satisfy the safety 
regulations and is within the range Hmin 

U ≤ z[n] ≤ Hmax 
U . The locations of the 

ground sensors are fixed and denoted by Lk = [xk, yk, 0]T, where  Lk represents 
the coordinates of GS k. 

Based on the aforementioned settings for the flight time slots and posi-
tions, we can separately derive the UAV’s speed during horizontal flight V̄ =√

(x[n+1]−x[n])2+(y[n+1]−y[n])2 

δt[n]
, as well as its speed during ascent and descent 

V̂ = V̌ = 
√

(z[n+1]−z[n])2 

δt[n]
. 

Based on the UAV’s flight speed, flight time slots, and total power consump-
tion, we can derive the UAV’s energy consumption model: 

E[n] =  δt[n]
(
P̄ ( V̄ ) +  P̂0( V̂ )

)
, (7)
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if the UAV descends during the n-th time slot, we have: 

E[n] =  δt[n]
(
P̄ ( V̄ ) +  P̌ ( V̌ )

)
. (8) 

Our goal is to minimize the energy consumption of the UAV in all time slots, 
which is formulated as 

min 
q[n],ck,i[n] 

N∑

n=1 

E[n] 

s.t. 
K∑

k=1 

ck,i[n] ≤ 1 

N∑

n=1 

δt[n]Rk,i[n] ≥ Lk 

V̄ ≤ V̄max 

V̂ ,  ̌V ≤ Ṽmax 

Hmin 
U ≤ z[n] ≤ Hmax 

U 

(9) 

where the first constraint in (9) indicates that at most one GS is served in each 
time slot, the second constraint ensures that the data transmission of each task 
with length Lk can be completed within the mission time of the UAV. 

Note that our problem takes GS locations Lk and tasks Lk as inputs, and 
outputs the optimized UAV trajectory. The optimization problem is non-convex 
and intractable due to the binary variable ck,i[n]. This motivates us to seek RL 
techniques to solve it. 

3 Proposed Approach 

We start with modeling the UAV trajectory planning as an MDP: 

1. State: the current position of UAV in time slot n, s[n]; 
2. Action: the UAV trajectory, flight time, and ground terminals scheduling 

choices that have been taken in time slot n, a[n]; 
3. Reward : the reward of state-action pair (s[n], a[n]) is defined as r(s[n], a[n]) =

∑K 
k=1

∑n+1 
n′=1 

δtRk,i[n] 
E[n] − λd′ − p0, and the Q-value of each action is given as 

Q(s[n], a[n]) = E
[∑N 

n′=n γr(s[n′], a[n′])|s(n), a(n)
]
, p0 is a penalty employed 

for the second constraint in (9). γ ∈ (0, 1] is the discount factor. 

3.1 FedX: A Flower-Based Accelerated Learning Framework 

To resolve this issue, we leverage the federated learning technique provided 
by the Flower and propose an accelerated framework called FedX, as shown  
in Algorithm 1. The key idea behind this algorithm is to utilize the Flower
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Algorithm 1: FedX with Flower 
Data: Number of clients M , federated learning rounds E, initial global 

parameters w0 
G, learning rate η 

1 Initialize Flower server and M clients 
2 for e ← 1 to E do 
3 for each client m ∈ {1, . . . , M} in parallel do 
4 Server sends global model we 

G to client m 
5 Client m initializes local model we 

m = we 
G 

6 Client m computes local update using RL algorithm X 
7 Client m updates model and sends we+1 

m to server 
8 end 
9 Server receives updates we+1 

m from each client m 
10 Server aggregates: we+1 

G =
∑M 

m=1 Dmwe+1 
m 

D 
11 Server sends updated global model we+1 

G to all clients 
12 end 

platform to manage multiple clients (they can be processes, threads within a 
process, hosts, or mobile terminals), where each client acts as an agent in the 
federated learning process to enable parallel training [ 4]. “X” in Algorithm 1 can 
be any RL solver, including but not limited to DQN, DDQN, DDPG, TD3, and 
other algorithms of the same kind. 

Note that the UAV’s action space combines flight parameters and scheduling 
decisions. Discrete RL methods (DQN/DDQN) would sacrifice precision, while 
DDPG suffers from Q-value overestimation for continuous actions. We, therefore, 
employ TD3 to optimally handle this complex action space. 

3.2 FedTD3 

TD3 is an off-policy DRL technique using dual critics to mitigate DDPG’s 
overestimation bias. Algorithm 2 shows our system framework. TD3 uses actor 
networks π (s | ϑπ), critic networks Q (s, a | ϑqi

), and their target versions. It 
employs delayed policy updates and target policy smoothing with clipped noise 
ζ ∼ clip

(
N (0, σ2 

ζ ), −c, c
)

to enhance stability. Transitions are stored in a replay 
buffer and randomly sampled to break sequential correlations during training. 

For each mini-batch, the target value Y is computed using the reward r 
received from the environment and the bootstrapped estimate of the future value 
of the state-action pair, discounted by the factor γ. The target value is calculated 
as follows: 

Y = r + γ min 
i=1,2

{
Qϑ′

i 
(st+1, ̄a)

}
, (10) 

where mini=1,2

{
Qϑ′

i

}
refers to the minimum of the two target critic networks, 

and ā represents the action chosen at the next time step st+1, which has been 
smoothed by adding random noise ζ to prevent the deterministic policy from 
overfitting to specific actions.
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Algorithm 2: TD3 Algorithm 
Data: Episodes E, steps per episode N , buffer size NM, batch  size  ND, 

discount γ, learning rate η, noise  ζ 
Result: Optimal action a(n) = (xh 

n, xdh 
n , x

dv 
n , ck,n, δt[n]) 

1 Initialize actor network πϑπ , target actor πϑ′
π 

2 Initialize critic networks Qϑq1 
, Qϑq2 

and targets Qϑ′
q1 

, Qϑ′
q2 

3 Initialize replay buffer M with size NM 
4 for episode ← 1 to E do 
5 Set n = 1, initialize state s(1) 
6 while n ≤ N and task Lk not finished do 
7 Select action a ∼ πϑπ (a|s) 
8 if UAV out of region or exceeding velocity then 
9 Cancel action and apply penalty 

10 end 
11 Execute action a, observe reward r and next state s′

12 Store transition (s, a, r, s′) in buffer M 
13 Sample mini-batch from M 
14 Compute target value Y using ( 10) 
15 Update critics by minimizing ( 11) 
16 if every two critic updates then 
17 Update actor using ( 12) 
18 end 
19 Update target networks using ( 13) 
20 n ← n + 1  

21 end 
22 end 

Once the target value Y is computed, the two critic networks Q (s, a | ϑq1) 
and Q (s, a | ϑq2) are updated by minimizing the Bellman loss. The loss function 
for each critic is given by: 

L (ϑqi
) = argminϑqi 

1 
ND 

ND∑

j=1

(Y −  Qϑqi 
(st, at)

)2 
. (11) 

The critics are trained by minimizing the difference between the predicted 
Q-value and the target value Y, ensuring accurate value estimation. 

After every two critic updates, the actor network π (s | ϑπ) is updated using 
the deterministic policy gradient algorithm. The actor aims to maximize the 
expected return by adjusting its policy according to the first critic network Qq1 . 
The policy gradient can be expressed as: 

∇ϑπ J (ϑπ) =  
1 

ND 

ND∑

j=1 

∇aQq1 (st, at) ∇ϑπ π (st | ϑπ) . (12)
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In this process, the gradient of the critic with respect to the action is used 
to update the actor’s parameters ϑπ. By following the gradient of the critic, the 
actor is guided toward selecting actions that maximize the expected return. 

To maintain stability during training, TD3 applies delayed updates to the tar-
get networks. The parameters of the target actor and target critics are updated 
with soft updates, controlled by a Polyak averaging coefficient τ , ensuring that 
the target networks evolve more smoothly: 

ϑπ′ ← τϑπ + (1  − τ)ϑπ′

ϑq′
i 
← τϑqi + (1  − τ)ϑq′

i 
. 

(13) 

The complexity of TD3 is O(n · m2) per network forward pass, where n is 
the layer count and m is the neuron count. With mini-batch operations and 
network updates, the overall complexity for E episodes with N steps becomes 
O(E · N · n · m2). 

4 Performance Evaluation 

The simulation settings for the RIS-assisted UAV system are shown in Table 1. 
We set up an air-to-ground communication scenario where the UAV’s initial 

position is set at [0, 0, 0]. At each stage, the UAV operates to achieve an optimal 
balance between communication quality and energy efficiency. The simulation 
was conducted in Python 3.10 to implement the deep neural networks (DNNs) 
used in the TD3 algorithm. 

Table 1. Parameter settings for simulations. 

Parameter Value 
Bandwidth B 2 MHz  
GTs: K, Task:  Lk 4, 1024 ∼ 2048 Kb 
V̄max, Ṽmax 10 m/s, 10 m/s 
tmin, tmax 1 s,  3  s  
Flying height: hmin, hmax 0, 200 m 
Time slots and episodes 600, 1000 
Area size (width × depth × height) 500 m × 500 m × 200 m 
Transmission power (pTX ) 1 W  
Noise power (σ)

√
3.98 × 10−12 

The positions of the GTs [100 m, 100 m]T , [100 m, 400 m]T , 
[400 m, 100 m]T , [400 m, 400 m]T 

In the TD3 algorithm, the Actor network consists of a four-layer structure. 
The first layer contains 128 neurons, followed by two residual blocks, each con-
sisting of two fully connected layers and ReLU activation functions. The output
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layer uses a Tangent Hyperbolic (Tanh) function to ensure the actions are within 
the required range. The Critic network also has a four-layer structure, starting 
with 128 neurons, followed by two residual blocks, and a final fully connected 
layer to output the estimated Q-value. The Adam optimizer is used to train the 
neural networks, with weights initialized using Xavier uniform initialization. 
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Fig. 2. Rewards and time comparisons of TD3 and FedTD3. 

Figure 2 shows the rewards and training time of the TD3, FedTD3 with 5 
agents, and FedTD3 with 10 agents over 1,000 episodes. Figure 2a shows that the 
algorithms converge around the 380th episode. Notably, the convergence of the 
TD3 and FedTD3 are very similar. This indicates that the strong performance of 
FedTD3 can be attributed to the synchronous updates used by the Flower-based 
federating implementation, which ensures stability in model updates during the 
learning process. Figure 2b illustrates the average time required by the TD3 and 
FedTD3 to complete 1,000 episodes of training. For each curve, the shaded area 
represents the standard deviation. The results in this figure faithfully demon-
strate that the adoption of FedX significantly reduced training durations. 

Figure 3 illustrates a comparison of 2D and 3D trajectories generated by the 
TD3 and FedTD3. It can be observed that, as the UAV takes off from the origin, 
it must reach the minimum required altitude to ensure safety and avoid low-
altitude flight. After reaching the minimum flight altitude, the UAV typically flies 
close to each GT to establish a stable communication link, potentially descending 
to a lower altitude or hovering as needed. The underlying reason for this behavior 
is to optimize signal reception quality while minimizing energy consumption. 

Figure 4 shows the cumulative distribution function (CDF) of UAV energy 
consumption and throughput. The results indicate that the performance of the 
TD3 and FedTD3 is essentially the same. This demonstrates that our proposed 
framework can significantly reduce training time without compromising solution 
accuracy.



FedTD3: An Accelerated Learning Approach for UAV Trajectory Planning 23

0 100 200 300 400 500 
X 

0 

100 

200 

300 

400 

500 

Y 

(a) 2D-TD3 

0 100 200 300 400 500 
X 

0 

100 

200 

300 

400 

500 

Y 

(b) 2D-FedTD3-5 

0 100 200 300 400 500 
X 

0 

100 

200 

300 

400 

500 

Y 

(c) 2D-FedTD3-10 

0 
100 

200 
300 

400 
500 X 0 

100 
200 

300 
400 

500 

Y 

0 

100 

200 

Z 

(d) 3D-TD3 

0 
100 

200 
300 

400 
500 X 0 

100 
200 

300 
400 

500 

Y 

0 

100 

200 

Z 

(e) 3D-FedTD3-5 

0 
100 

200 
300 

400 
500 X 0 

100 
200 

300 
400 

500 

Y 

0 

100 

200 

Z 

(f) 3D-FedTD3-10 

Fig. 3. Trajectory comparison between TD3 and FedTD3. 
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Fig. 4. System performance comparison. 

5 Conclusion 

In this work, we proposed FedTD3, a novel algorithm for UAV trajectory plan-
ning in precision agriculture, addressing slow training and dynamic commu-
nication challenges. Our model improves time efficiency and sustainability by 
incorporating realistic UAV-GS communication and energy consumption mod-
els. The distributed nature of our federated approach enables seamless scalability 
to larger networks with increasing numbers of agents and diverse environmental 
conditions. Evaluations showed significant speedup over conventional methods, 
which makes our solution highly effective for rural environments. Future work 
can extend this approach to more complex and multi-UAV scenarios, in order to 
offer a scalable solution for UAV-based agricultural practices.
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