
xBS-GNN: Accelerating Billion-Scale
GNN Training on FPGA

Yi-Chien Lin⇤
University of Southern California

Los Angeles, California
yichienl@usc.edu

Zhijie Xu⇤
University of Michigan
Ann Arbor, Michigan
zhijiexu@umich.edu

Viktor Prasanna
University of Southern California

Los Angeles, California
prasanna@usc.edu

Abstract—Graph Neural Networks (GNNs) have been suc-

cessfully used in a variety of challenging application areas,

including Electronic Design Automation and molecular property

prediction, among others. However, training GNN models is

time-consuming as it incurs a high volume of irregular data

accessing due to its graph-structured input data; such a challenge

is further exacerbated in real-world applications as they often

involve training GNN models on large-scale graphs with over

billions of edges. While several GNN accelerators have been

proposed, most of them cannot scale to billion-scale graphs due

to the limitation of memory capacity. To this end, we propose

xBS-GNN, a novel accelerator optimized for billion-scale GNN

training. xBS-GNN exploits the multi-level memory hierarchy

on state-of-the-art FPGA-based systems to enable billion-scale

GNN training. To achieve high training throughput, xBS-GNN

jointly exploits several optimizations, including (1) a novel data

placement policy optimized for GNN training, along with (2)

a vertex-renaming technique and memory-efficient lookup table

design for fast data retrieval, and (3) a feature quantization

mechanism to reduce memory traffic. We evaluate xBS-GNN

with a three-layer GCN model on three large datasets. xBS-

GNN achieves up to 8.39⇥ speedup over a widely-used GPU

baseline and up to 5.13⇥ speedup over a state-of-the-art GNN

training accelerator. xBS-GNN also demonstrates high scalability

on multi-FPGA platforms.

Index Terms—GNN training, Accelerator, FPGA

I. INTRODUCTION

Graph Neural Network (GNN) is a widely used Machine
Learning model that extracts useful information from graph-
structured data. GNNs have been applied in many challenging
areas, such as Electronic Design Automation (EDA) [1],
social recommendation systems [2], [3], molecular property
prediction [4], [5], among others. Despite its usefulness, train-
ing a GNN model for these real-world applications is time-
consuming as it often involves large-scale graphs with billions
of edges, incurring massive amount of computations and high
volume of irregular data accessing. While several GPU-based
solutions have been proposed [6]–[8], GPU platforms suffer
from low resource utilization, resulting in limited acceleration;
this is because the fixed datapath and cache design of GPU
cannot efficiently process graph-structured data, leading to
a low cache hit rate [9]. Another line of work [10]–[13]
proposed to accelerate GNN training using FPGA platforms,
and leverage customized hardware designs to address the

*Both authors contributed equally to this research.

inefficiency of irregular data access. However, to achieve
high performance, FPGA accelerators typically assume the
input graph can be entirely stored in the FPGA off-chip
memory (e.g., FPGA DDR or HBM). Consequently, these
accelerators cannot train on billion-scale graphs used in real-
world applications as they exceed the size of the available
FPGA off-chip memory. For example, FPGAs provide 16-
64 GBs of DDR memory, whereas billion-scale graphs like
MAG240M [14] surpass 200 GBs in size. Storing such large
graphs in the CPU main memory can overcome this limitation,
but would lead to poor training performance as a high volume
of data needs to be transferred through PCIe, which has limited
memory bandwidth.

Motivated by these challenges, we propose xBS-GNN, a
novel hardware accelerator optimized for billion-scale GNN
training. Recognizing that billion-scale graphs surpass the
capacity of FPGA off-chip memory, we introduce a novel
data placement policy that selectively stores portions of the
graph in the FPGA on-chip SRAM and its off-chip memory,
while keeping the remainder in the CPU main memory. We
depict the multi-level memory system of xBS-GNN in Figure
2. Furthermore, since traditional caching policy fails to capture
the characteristic of GNN’s irregular data access [9], we
develop a Pre-sampler to estimate the access frequency of
each node, guiding our data placement policy to prioritize
the storage of frequently accessed nodes. The data placement
policy allows xBS-GNN to scale to billion-scale graphs while
still achieving high performance by maximizing on-chip data
access and minimizing the expensive CPU-FPGA data transfer
via PCIe. xBS-GNN leverages the fine-grained hardware con-
trol offered by FPGAs to deploy a novel memory organization
and data placement policy optimized for GNN training; such
optimizations are not feasible on general-purpose processors
and GPUs due to their fixed hardware design. Since the data is
stored across multiple levels of memory, we utilize a vertex-
renaming technique along with a memory-efficient lookup
table design for fast data retrieval. In addition, xBS-GNN
exploits feature quantization that quantizes the node features
from FP32 to INT8. Feature quantization offers several advan-
tages: (1) By compressing the features, it enables xBS-GNN
to allocate more of the frequently accessed nodes in the on-
chip SRAM or FPGA off-chip memory, and (2) it reduces
the PCIe traffic for accessing data stored in the CPU main



TABLE I
NOTATIONS OF GNN

Notation Description Notation Description

G(V, E) graph topology hl
i feature vector of vi at layer l

V set of nodes al
i aggregation of vi at layer l

E set of edges L number of GNN layers

X input feature matrix W l weight matrix of layer l

Vl sampled nodes at layer l N (i) neighbors of vi

El sampled edges at layer l �(.) element-wise activation

memory; (3) It also increases hardware parallelism as modules
implemented in INT8 are more resource-efficient. Finally, we
evaluate the scalability of xBS-GNN on multiple FPGAs. xBS-
GNN demonstrates high scalability on billion-scale graphs.
The key contributions of this work are:

• We propose xBS-GNN, a novel GNN training accelerator
optimized for billion-scale GNN training; xBS-GNN of-
fers high training throughput by jointly exploring several
effective optimizations.

• We propose a data placement policy, tailored for GNN
training, to store billion-scale graphs in the multi-level
memory of FPGAs, and a memory-efficient lookup table
for fast data retrieval from multiple levels of the memory.

• We jointly exploit feature quantization with our data
placement policy, further boosting the training perfor-
mance of xBS-GNN by up to 4.56⇥ while retaining
similar accuracy as using FP32.

• We evaluate xBS-GNN on three large datasets. xBS-GNN
achieves up to 8.39⇥ speedup compared with a widely-
used GPU baseline, and up to 5.13⇥ over the state-of-
the-art multi-GPU training accelerator.

• We show that xBS-GNN offers high scalability for
billion-scale GNN training on multi-FPGA platforms.

II. BACKGROUND

A. Graph Neural Networks

We define the notations related to a GNN in Table I.
Graph Neural Networks (GNNs) are a class of neural networks
specifically designed to process data structured in graph form,
utilizing node-related features as their input. By aggregating
information across the graph’s structure (i.e., feature aggrega-
tion) and subsequently transforming these features into a latent
space (i.e., feature transformation), GNNs generate node rep-
resentations that contain higher-order neighbor information. In
general, a GNN model can be expressed using the aggregate-
transform paradigm [15]:

al
v = AGGREGATE(hl�1

u : u 2 N (v) [ {v}) (1)

hl
v = �(TRANSFORM(al

v,W
l)) (2)

During the feature aggregation stage, for each node v, the
feature vectors hl�1

u of the neighbor nodes u 2 N (v) are
aggregated into alv using model-specific operators such as

Mini-batch Sampling

Aggregate 

2

5

3

6

2

3

5

6

3

5
ℰ!

3

5
(!

)*++

,-./.

Forward propagation

Backward propagation1

2

3

4 Weight update

1

4

Transform 

Fig. 1. Workflow of sampling-based GNN training

mean, max, or LSTM. Since graph-structured data are non-
Euclidean, accessing the feature vectors hl�1

u of the neighbor
nodes incurs a high volume of irregular data access. The
feature transformation stage performs a multi-layer perceptron
(MLP) followed by an activation function � (e.g., ReLU).

GNNs are originally trained with the full graph [16], which
takes the entire graph G(V, E) and the input feature matrix X
as input. However, this approach suffers from low scalability
as it incurs substantial memory overhead as the graph size
increases, and sampling-based GNN training [5] is proposed
to overcome this challenge. Instead of training on the entire
graph, sampling-based GNN training only trains on a mini-
batch (i.e., sampled sub-graph) in each iteration, leading to less
memory overhead. The methodology of selecting the nodes
and edges to produce a mini-batch depends on the sampling
algorithm [5], [17]–[19]. For example, the Neighbor Sampling
algorithm [5] randomly selects nl neighbors for each node for
each layer, where nl is a predefined budget on the sampling
size for layer l. We depict the general workflow of sampling-
based GNN training in Figure 1: First, a mini-batch is sampled
and used as the input of GNN model propagation; GNN
model propagation includes feature aggregation and feature
transformation. After the backpropagation is completed, the
gradient is derived, which is then used to update the model.

B. Related Work

1) GPU-based GNN Accelerator: Several works have been
proposed to accelerate GNN training on CPU or GPU plat-
forms [6], [7], [20]–[22]. Some of these works, like Dist-
DGLv2 [6] and P 3 [7], train the GNN model on a dis-
tributed GPU platform, allowing them to support training on
billion-scale graphs by utilizing the large memory resources.
They adopt graph partitioning algorithms like METIS [23] to
partition the graph and store one partition in each machine.
These works focus on (1) balancing the workload and (2)
minimizing the data communication overhead among the ma-
chines. PaGraph [8] trains the GNN model on a multi-GPU
platform and proposes to store nodes with high out-degree
in the GPU global memory to reduce CPU-GPU data transfer
overhead. However, as mentioned in Section I, due to the fixed
datapath and cache design, GPUs cannot efficiently access



CPU Main Mem.
(access via PCIe)

SRAM (on-chip)

HBM (off-chip)

DDR (off-chip)

1
2

3 4 5

6
7

!!
!"
!#
!$
!%
!&
!'

Graph Topology -(/, ℰ)

Feature Matrix +

Pre-Sampler Quantizer

Memory 
Efficient 

Lookup Table

Model PropagationMini-batch 
sampler

Pre-processing Stage Training Stage

CPU Main Mem.

SRAM

HBM

DDR

Graph Topology
-(/, ℰ)

CPU FPGA

Weight Update

Multi-level memory
of xBS-GNN

CPU

Reamed
Feature 

Matrix +′ Quantized
Feature 

Matrix +′′

PCIe

on-chip
off-chip

off-chip

Fig. 2. System overview of xBS-GNN

graph-structured data. Thus, GPU-based solutions suffer from
low resource utilization, leading to limited acceleration. To
overcome this challenge, another line of research seeks for
hardware-based solutions.

2) GNN Hardware Accelerator: Several hardware acceler-
ators have been proposed to accelerate GNN computations
[11]–[13], [24]–[26]. They develop dedicated hardware to
accelerate GNN operations or to reduce irregular memory
access overhead of the graph-structured data. However, most
of the accelerators [24]–[26] only support GNN inference
acceleration. Few works like GraphACT [12], HP-GNN [13],
and Rubik [27] supports GNN training; nevertheless, works
like GraphACT and HP-GNN assume the graph is entirely
stored in the FPGA DDR memory, rather than the CPU
main memory. Consequently, these accelerators cannot train
on billion-scale graphs, which exceed the size of the FPGA
DDR. Rubik supports loading data from off-chip memory,
which theoretically enables it to support billion-scale GNN
training. However, the largest dataset used for evaluation in
Rubik, the Reddit [17] dataset, is only within the million-
scale range, and the achievable performance of Rubik when
scaling to billion-scale graphs is uncertain. Supporting billion-
scale graphs is important as they are widely used in real-world
applications [14].

3) Quantization: Quantization is a technique commonly
used in both ML training and inference. While several works
[28]–[31] have been proposed, they primarily focus on quan-
tizing the model weights and activations in Deep Neural
Networks as they account for most of the memory overhead;
however, these works are less applicable to GNNs because
GNN model weights are relatively small, often just a few
megabytes [32]. Instead, the memory overhead is mainly
caused by the feature vectors of the input graph [32]. There-
fore, GNNs require a distinct quantization approach tailored
to their unique characteristics. Several works [32]–[35] have
developed quantization techniques tailored for GNN to reduce
memory overhead or data traffic across distributed nodes.
Nevertheless, most of these works primarily focus on exploring

quantization alone, such as how to adaptively quantize the
data during training to minimize memory overhead while
preserving high model accuracy, and do not jointly explore
other optimizations for further acceleration. Note that the focus
of xBS-GNN is not to introduce a new quantization technique,
but to propose a novel accelerator design that can support
billion-scale GNN training and to demonstrate the perfor-
mance improvements that can be achieved by jointly exploiting
several effective optimizations, including quantization.

III. SYSTEM DESIGN

A. Overview

We depict the overview of our system design in Figure 2.
xBS-GNN operates in two stages: the pre-processing stage
and the training stage. The pre-processing stage, which runs
on the CPU platform, is only performed once. The training
stage, on the other hand, is performed multiple times on both
CPU and FPGA platforms until the training is concluded
(e.g., when model converges). During the pre-processing stage,
xBS-GNN performs a step called pre-sampling to identify the
access frequency of each node, and rename the nodes based
on their access frequency (Section III-B). Additionally, each
feature vector is quantized from FP32 to INT8 (Section III-D)
before being stored into the multi-level memory. Note that for
billion-scale graphs, the overhead of loading the node features
bottlenecks GNN training [33], and requires careful optimiza-
tions. Therefore, the focus of the pre-processing stage is to
efficiently store the node features in the multi-level memory to
minimize the data transfer overhead. During the training stage,
xBS-GNN performs sampling-based GNN training (details in
Figure 1.) xBS-GNN assigns the CPU platform to perform
mini-batch sampling, since CPU platform can flexibly support
a variety of sampling algorithms. On the other hand, xBS-
GNN assigns the FPGA platform to perform the model propa-
gation and model weight update, because FPGA can efficiently
address the irregularity in GNN operations using dedicated
hardware kernels (Section III-E). During model propagation,
the hardware kernels fetch node features from the multi-level



CPU

FPGA

Memory

Multi-Mem Cache

SRAM

HBM

DDR

FPGA-CPU Platform

1
2

3 4 5

6
7

1
2

3 4 5

6
7

12

3

4
5

6

7

Pre-sampling Renaming
!!
!"
!#
!$
!%
!&
!'

Quantization & Caching

SRAM

HBM

DDR

CPU Main

Renamed Feature Matrix 0′

Graph Topology +′(-′, ℰ′)Graph Topology +(-, ℰ)
"! → "%
"" → "$
"# → ""
"$ → "!
"% → "'
"& → "#
"' → "&

Fig. 3. Pre-sampler sorts and renames the nodes based on access frequency

memory to perform feature aggregation; in order to identify
where the required node feature resides (i.e., in which level of
memory hierarchy), we developed a memory-efficient lookup
table (Section III-C) for fast data retrieval.

B. Pre-sampler

Determining the data placement policy for GNN training
is non-trivial due to the intricate nature of graph accessing;
[9] shows that traditional caching policy cannot capture the
graph access pattern, leading to a low cache hit rate. Thus,
we develop a Pre-sampler to estimate the access frequency of
each node; this allows us to place the most frequently accessed
nodes into the on-chip SRAM, followed by HBM, DDR, and
finally, the CPU main memory. The Pre-sampler works in
two steps: pre-sampling and node renaming. Pre-sampling
runs the sampling algorithm on a given dataset for several
iterations prior to the actual training. Note that pre-sampling
is a lightweight operation as it only operates on the graph
topology, and does not involve loading the node features.
While most sampling algorithms perform a random shuffling
at the beginning of the sampling, we observe that the access
frequency of each node remains similar in each iteration.
Therefore, we can approximate the access frequency of each
node by performing pre-sampling for several iterations and
taking the average of the results. Pre-sampling generates
multiple mini-batches that are used to calculate the access
frequency of each node vi; the access frequency is defined as
(# of access of node vi)/(⌃vj2V # of access of node vj).
The Pre-sampler sorts the nodes based on access frequency
and performs node renaming using the ranking of their access
frequency. For example, in Figure 3, assume node 4 has the
highest access frequency, followed by node 3. Then, they
will be renamed as node 1 and node 2, respectively. Node
renaming allows xBS-GNN to place node features into the

"! → "%
"" → "$
"# → ""
"$ → "!
"% → "'
"& → "#
"' → "&

Renamed Feature Matrix 0′

"!
""
"#
"$
"%
"&
"'

SRAM

HBM

DDR

CPU Main
Quantized and Sorted 

Feature Matrix 0′′

FP32 INT8

Fig. 4. Storing the pre-processed feature matrix in the multi-level memory

multi-level memory based on access frequency, by starting
with nodes that have the smallest labeled numbers.

C. Memory-efficient Lookup Table
While storing the feature matrix in the multi-level memory

with our data placement policy allows xBS-GNN to access
data more efficiently, it also comes with the challenge that
the feature vectors are now distributed across multiple levels
of memory. A standard way to retrieve data from a multi-
level memory is to send a query to each memory level to
locate the data. However, this process results in a noticeable
amount of access overhead for GNN training [13]. Another
approach is to use key-value pairs for data retrieval (e.g.,
KVStore used in DistDGL [36]); but this leads to additional
memory overhead to store the key-value pairs, which can be
prohibitively expensive for billion-scale graphs. We propose a
memory-efficient lookup table design for data retrieval. As
mentioned in Section III-B, the feature matrix is renamed
based on the ranking of the accessed frequency, and then sorted
based on the renamed node numbers. Shown in Figure 4, the
node features are stored into the multi-level memory, starting
with the nodes with the smallest labeled number. Therefore,
the lookup table can simply record the dividing line of each
level for data retrieval. For example, in Figure 4, v1 and above
are stored in the SRAM, v3 and above (before v1) are stored
in the HBM, and so on and so forth. xBS-GNN can locate the
node feature by comparing the query node number with the
dividing lines (e.g., v1, v3, v5 in Figure 4). Thus, the memory-
efficient lookup table only records the dividing lines, and each
retrieval only requires a comparison between the query node
number and the dividing lines. Note: FPGAs have multiple
banks of DDR and HBM. xBS-GNN stores the node features
in a cyclic order across these banks to balance the data traffic;
if the node features are stored sequentially, the first bank will
be populated with the most frequently accessed node, leading
to imbalanced traffic among the banks.

D. Feature Quantizater
xBS-GNN features a Feature Quantizer which quantizes the

feature matrix X from FP32 to INT8 format using affine
quantization. Quantization is often used to reduce memory
requirements and improve performance [37], [38]; more im-
portantly, it can be synergistically used with xBS-GNN’s data



Feature
Duplicator

Scatter 
PE

Scatter 
PE

Scatter 
PE

Scatter 
PE

Routing
Network

Gather 
PE

Gather 
PE

Gather 
PE

Gather 
PE

Feat.
vectors

Edge 0
< %'3", )%4" >

Memory 
Efficient LUT

Multi-level
memory

Edge 1
< %'3#, )%4# >

Edge 3
< %'3$, )%4$ >

Edge 2
< %'3%, )%4% >

Fig. 5. Design of the feature aggregation kernel (blue boxes)

placement policy, bringing higher performance improvement
than applying quantization alone. Specifically, compressing
the data into INT8 format allows xBS-GNN to place more
frequently accessed nodes in the on-chip SRAM and the FPGA
off-chip memory, compared with data stored in FP32. Also,
it increases hardware parallelism as kernels implemented in
INT8 are more resource-efficient than in FP32. [39] shows that
a single DSP can perform two parallel multiply–accumulate
(MAC) operations in INT8, but can only perform one MAC
operation in FP32.

While quantization often degrades accuracy, it has been
shown that GNNs have a higher tolerance to quantization error
than traditional Deep Neural Networks because during feature
aggregation (Section II), the node features are aggregated, and
the quantization error can be canceled out during the process
[33]. Thus, quantizing the node feature does not lead to a
noticeable impact on the accuracy.

E. Hardware Kernels for GNN Model Propagation
xBS-GNN features dedicated hardware kernels optimized

for GNN operations (i.e., aggregation and transformation).
Drawing inspiration from HP-GNN [13] and ThunderGP [40],
the feature aggregation kernel in xBS-GNN adopts a similar
design philosophy to maximize data reuse. As shown in Figure
5, the kernel adopts a scatter-gather model design, which
is widely used in the field of graph processing [40], [41].
xBS-GNN stores the graph topology using the COOrdinate
(COO) format, where each edge is stored as a pair of source
and destination nodes. To maximize data reuse, the edges are
sorted by the source nodes. This ensures that edges sharing the
same source are processed concurrently, preventing the kernel
from repeatedly loading the same node feature. Specifically, a
feature vector of a source node is loaded from the multi-level
memory and then broadcast to each Processing Element (PE)
through the Feature Duplicator. In each iteration, a distinct
edge is loaded into each PE. If the source node of the loaded
edge aligns with the currently loaded feature, the PE reuses it
for computation. If not, the PE awaits the Feature Duplicator’s
broadcast of the next source node’s feature vector to replace
the existing one. Since the edges are sorted, all edges with
the same source nodes are guaranteed to be executed before
the feature in the PE is replaced with the next source node.
Maximizing data reuse (i.e., minimizing memory traffic) is
advantageous when the node is located in the FPGA DDR

TABLE II
SPECIFICATIONS OF THE PLATFORMS

Platforms CPU FPGA GPU

Devices Intel AMD Nvidia
Xeon 6326 Alveo U280 RTX A5000

Technology 10 nm 16 nm 8 nm
Frequency 2.9 GHz 300 MHz 2000 MHz

Peak Performance 537 GFLOPS 24.5 TFLOPS 27.8 TFLOPS
On-chip Memory 24 MB L3 41 MB 6 MB L2

Memory Bandwidth 171 GB/s 460 GB/s 768 GB/s

TABLE III
STATISTICS OF THE DATASETS

Dataset #Vertices #Edges f0 fL

ogbn-products 2,449,029 61,859,140 100 47
ogbn-papers100M 111,059,956 1,615,685,872 128 172

MAG240M 244,160,499 1,729,762,391 768 153

or the CPU main memory, as accessing these memory levels
incurs significant overhead. For the feature transformation
kernel, we adopt a systolic-array-based design to perform the
multi-layer perceptron with a 2-D MAC array. The feature
aggregation kernel is implemented in INT8 to aggregate the
quantized feature vectors. After the aggregation, the data is
dequantized to FP32 for feature transformation as xBS-GNN
keeps the model weights in FP32.

IV. EXPERIMENTS

A. Experimental Setup
1) Environment: We evaluate xBS-GNN on an Alveo U280

FPGA card connected to a dual-socket Xeon 6326 CPU via
PCIe. We implement xBS-GNN using Vitis 2023.1 with High-
Level Synthesis (HLS). Our implementation uses 71% of the
LUTs, 72% of the DSPs, 86% of the BRAMs, and 82% of the
URAMs on the U280. The FPGA kernels run at 300 MHz. We
compare xBS-GNN with a GPU baseline that runs on a Nvidia
A5000 GPU connected to a dual-socket Xeon 6326 CPU. The
GPU implementation uses Python 3.9, PyTorch 2.0 and Deep
Graph Library 2.0. We list the platform details in Table II.

2) GNN model and Dataset: To generate mini-batches for
sampling-based GNN training, we adopt the Neighbor Sampler
[5], and train on a widely-used three-layer GCN [16] model,
which has the sampling size of [15, 10, 5] for each layer, and
the hidden feature size is 128. For datasets, we choose two
billion-scale datasets: ogbn-papers100M [42], and MAG240M
[14]. We also choose the ogbn-products dataset with tens of
millions of edges for comparison with existing works. We list
the details of the datasets, and the dimensions of the input
layer and output layer in Table III.

B. Accuracy
To evaluate the accuracy difference of training with node

features stored in FP32 and in INT8, we run the GNN training
for 20 epochs and measure the model accuracy under the



TABLE IV
ACCURACY (%) COMPARISON OF FEATURES IN FP32 AND INT8

Data Type ogbn-products ogbn-papers100M MAG240M

FP32 93.0% 67.4% 59.1%

INT8 93.7% (+0.7%) 67.7% (+0.3%) 58.1% (-1.0%)

TABLE V
COMPARISON WITH STATE-OF-THE-ART (EPOCH TIME (SEC.))

ogbn-products ogbn-papers100M Geo. Mean
Speedup

PaGraph 1.18 (1.00⇥) 4.00 (1.00⇥) 1.00⇥
xBS-GNN 0.23 (5.13⇥) 3.21 (1.25⇥) 2.53⇥

DistDGL v2 0.3 (1.00⇥) 4.16 (1.00⇥) 1.00⇥
xBS-GNN 0.62 (0.48⇥) 2.53 (1.64⇥) 0.89⇥

two data types. Since all three datasets chosen are multi-
class classification problem, the accuracy is defined as the
proportion of correctly classified cases. As shown in Table
IV, training with INT8 results in a maximum accuracy loss of
1%; in some cases, there is even a slight accuracy gain, which
shows that training with features in INT8 leads to comparable
accuracy as in FP32.

C. Performance Evaluation

1) Comparison with State-of-the-art: We compare xBS-
GNN with two state-of-the-art GNN accelerators that support
large-scale GNN training: DistDGL v2 [6] and PaGraph [8].
We measure the execution time of the training stage (Figure
2) for comparison, as the pre-processing overhead is a one-
time cost that can be amortized. For example, on MAG240
dataset, the pre-processing overhead is less than a minute,
which accounts for less than 3% of the total training time
(assuming training until the model converges, which is around
20 epochs.) PaGraph adopts a two-layer GCN model with
sampling size [25, 10], and DistDGL v2 [6] adopts a three-
layer GCN model with sampling size [15, 10, 5]. To perform
a fair comparison, we adjust our setup accordingly. Note that
both PaGraph and DistDGL v2 are executed on platforms with
multiple GPUs: PaGraph runs on a platform equipped with
8 Nvidia V100 GPUs, and DistDGL v2 runs on a platform
with 64 Nvidia T4 GPUs. Consequently, these accelerators
have access to significantly more computational and memory
resources than xBS-GNN, which runs on a platform with a
single FPGA. Compared with PaGraph, xBS-GNN achieves
2.53⇥ speedup w.r.t. the geometric mean. While PaGraph
also places a portion of node features in the GPU global
memory, the placement policy is simply based on node degree,
leading to a lower hit rate than xBS-GNN. Compared with
DistDGL v2, xBS-GNN can achieve 89% of its performance
using much less resources. DistDGL v2 trains on a distributed
platform, which incurs inter-machine communication over-
head. As mentioned in Section II, state-of-the-art hardware
accelerators [12], [13] do not support training on billion-scale

TABLE VI
CROSS PLATFORM COMPARISON (EPOCH TIME (SEC.))

ogbn-products ogbn-papers100M MAG240M

DGL 4.81 (1.00⇥) 21.35 (1.00⇥) 136.98 (1.00⇥)
xBS-GNN 0.62 (7.77⇥) 2.53 (8.39⇥) 56.61 (2.42⇥)

graphs; thus, we only compare the performance of xBS-GNN
with HP-GNN [13] using two million-scale graphs: Flickr and
Yelp [17], on a two-layer GCN model. Compared with HP-
GNN, xBS-GNN achieves 1.5⇥ and 2.1⇥ speedup on Flickr
and Yelp datasets, respectively. This shows that while xBS-
GNN is optimized for training on billion-scale graphs, it also
offers high performance for training on million-scale graphs.

2) Cross Platform Comparison: We compare the GNN
training performance of xBS-GNN with Deep Graph Library
(DGL) [43], a state-of-the-art GNN library for CPU/GPU
platforms. Different from Table V, where we compare xBS-
GNN with works that run on platforms with multiple GPUs,
we run the DGL baseline on a single RTX A5000 GPU.
Note that for the GPU baseline, we also quantize the node
features into INT8 format for a fair comparison. We show the
performance comparison in Table VI. xBS-GNN achieves up
to 8.39⇥ speedup compared with the DGL baseline. This is
because xBS-GNN efficiently utilizes the multi-level memory
along with our data placement policy optimized for GNN
training, and also supports customized hardware kernels to
process graph-structured data. On the other hand, GPU-based
solutions do not have such fine-grained control over the
hardware, leading to limited performance. On the MAG240M
dataset, xBS-GNN achieves limited speedup over the DGL
baseline because MAG240M has a long feature vector (768
dimensions), and the on-chip memory and HBM can only store
a limited number of nodes; therefore, most of the data access
happens in the FPGA DDR, which only has 38 GB/s of peak
memory bandwidth.

D. Impact of optimizations

To evaluate the effectiveness of our optimizations, we
compare the performance of our optimized designs with a
FPGA baseline design. We show the speedup normalized to
the FPGA baseline design in Figure 6. In the FPGA baseline
design, the input graph is stored in the CPU main memory, and
transferred to the FPGA in a mini-batch fashion during GNN
training. We then apply our data placement policy (DPP) to
store the input graph in the multi-level memory, which results
in a 1.7⇥-7.2⇥ speedup. The ogbn-products dataset shows
a significant speedup because it is a relatively small dataset,
and a high percentage of the frequently accessed nodes can
be stored on-chip and in the HBM. We also apply feature
quantization (without DPP) to the FPGA baseline design,
and observe a 3.4⇥-3.9⇥ speedup. The feature quantization
effectively speeds up training on billion-scale graphs as data
loading heavily dominates the overall training time. Finally, we



0
2
4
6
8

10
12
14
16

ogbn-products ogbn-papers100M MAG240M

N
or

m
al

iz
ed

 S
pe

ed
up

Baseline +DPP +Quant. +DPP&Quant.

7.2x

3.4x

14.5x

1.8x
3.7x

8.2x

1.7x

3.9x

7.1x

1x 1x 1x

Fig. 6. Impact of optimizations

apply both DPP and feature quantization, and achieve a 7.1⇥-
14.5⇥ speedup over the FPGA baseline design This combi-
nation shows a synergistic effect on billion-scale graphs, such
as ogbn-papers100M and MAG240M. Specifically, assuming
DPP and feature quantization contribute to the performance
independently, applying both techniques theoretically results
in a 6.6⇥ speedup (1.8 times 3.7) on the ogbn-papers100M
dataset; however, we observe an 8.2⇥ speedup. MAG240M
also shows a similar synergistic effect. This is because the
feature quantization technique effectively complements the
DPP: by compressing the node features into INT8, feature
quantization allows more frequently accessed nodes to be
placed on-chip, boosting the performance by up to 4.56⇥
compared with applying DPP alone. In addition, it also in-
creases hardware parallelism as modules implemented in INT8
requires less hardware resources than in FP32.

E. Scalability

We evaluate the scalability of xBS-GNN using the perfor-
mance model proposed in HitGNN [44]. We assume the same
platform setup as HitGNN, where the CPU is connected to
multiple FPGAs via PCIe. The inter-FPGA communication
is performed using a shared memory space allocated in the
CPU main memory. To train on multiple FPGAs, we follow
the algorithm proposed in P 3 [7], which partition the graph
along the feature dimension, and assigns each partition to an
FPGA for synchronous GNN training [45]. Figure 7 shows that
xBS-GNN achieves good scalability on billion-scale graphs
like ogbn-papers100M and MAG240M. This is primarily due
to the increased memory resources available by deploying
multiple FPGAs, which allows more frequently accessed nodes
to be placed on-chip or in the HBM. Such an effect is more
evident on MAG240M than ogbn-papers100M as MAG240M
is larger in size, and can benefit more from the increased
memory resources. Note that xBS-GNN does not scale on
the ogbn-products dataset. The ogbn-products can be stored
on-chip and in HBM on a single FPGA; therefore, it does
not benefit from the increased memory resources provided
by the multi-FPGA platform, and the performance degrades
with more FPGAs deployed due to higher synchronization

0

1

2

3

4

5

6

ogbn-products ogbn-papers100M MAG240M

N
or

m
al

iz
ed

 S
pe

ed
up

# of FPGAs: 1 2 4 8

Fig. 7. xBS-GNN demonstrates good scalability to 8 FPGAs

overhead. Nevertheless, for small datasets like ogbn-products,
a single FPGA is sufficient to train.

V. CONCLUSION

In this work, we proposed xBS-GNN, an accelerator opti-
mized for billion-scale GNN training. We proposed a novel
data placement policy to store billion-scale graphs in the
multi-level memory based on access frequency. xBS-GNN
jointly exploited multiple optimizations to boost the training
performance, including feature quantization, optimized hard-
ware kernels, and a novel data placment policy along with
a memory-efficient lookup table design. xBS-GNN achieved
up to 8.39⇥ speedup compared with state-of-the-art GNN
library that runs on a RTX A5000 GPU. Compared with
GNN accelerators running on multi-GPU platforms, xBS-GNN
achieved up to 5.13⇥ speedup using only a single FPGA.
While we chose the GCN model for evaluation, xBS-GNN
can be generalized to other models such as GraphSAGE [5]
and GIN [46] by modifying the operators in the hardware
kernels; since our kernels are implemented in HLS, such a
modification can be done by simply updating a few lines
of code. In the future, we plan to generalize xBS-GNN to
support various GNN models, and run on distributed platforms
to further improve performance.

ACKNOWLEDGMENT

This work is supported in part by the Semiconductor
Research Corporation (SRC), and the U.S. National Science
Foundation (NSF) under grants CCF-1919289/SPX-2333009
and OAC-2209563.

REFERENCES

[1] D. S. Lopera, L. Servadei, G. N. Kiprit, S. Hazra, R. Wille, and W. Ecker,
“A survey of graph neural networks for electronic design automation,”
in Workshop on Machine Learning for CAD (MLCAD). IEEE, 2021.

[2] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proceedings of the 24th ACM International
Conference on Knowledge Discovery & Data Mining, 2018.

[3] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and
J. Zhou, “Aligraph: a comprehensive graph neural network platform,”
Proceedings of the VLDB Endowment, 2019.



[4] C.-I. Yang and Y.-P. Li, “Explainable uncertainty quantifications for deep
learning-based molecular property prediction,” Journal of Cheminfor-
matics, 2023.

[5] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

[6] D. Zheng, X. Song, C. Yang, D. LaSalle, and G. Karypis, “Distributed
hybrid cpu and gpu training for graph neural networks on billion-scale
heterogeneous graphs,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022.

[7] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at
scale,” in 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), 2021.

[8] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu, “Pagraph: Scaling gnn training
on large graphs via computation-aware caching,” in Proceedings of the
11th ACM Symposium on Cloud Computing, 2020.

[9] K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding
and bridging the gaps in current gnn performance optimizations,” in
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’21, 2021.

[10] Y.-C. Lin and V. Prasanna, “Hyscale-gnn: A scalable hybrid gnn
training system on single-node heterogeneous architecture,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2023.

[11] B. Zhang, S. R. Kuppannagari, R. Kannan, and V. Prasanna, “Efficient
neighbor-sampling-based gnn training on cpu-fpga heterogeneous plat-
form,” in 2021 IEEE High Performance Extreme Computing Conference
(HPEC), 2021.

[12] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-
fpga heterogeneous platforms,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020.

[13] Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: Generating high
throughput gnn training implementation on cpu-fpga heterogeneous
platform,” in International Symposium on Field-Programmable Gate
Arrays, 2022.

[14] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “Ogb-lsc:
A large-scale challenge for machine learning on graphs,” arXiv preprint
arXiv:2103.09430, 2021.

[15] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” CoRR, vol.
abs/1704.01212, 2017.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[17] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Interna-
tional Conference on Learning Representations, 2020.

[18] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-
gcn: An efficient algorithm for training deep and large graph convo-
lutional networks,” in Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2019.

[19] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan,
V. Prasanna, L. Jin, and R. Chen, “Decoupling the depth and scope of
graph neural networks,” in Advances in Neural Information Processing
Systems, 2021.

[20] J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yu, and
J. Zhou, “Gnnlab: A factored system for sample-based gnn training over
gpus,” in Proceedings of the 17th European Conference on Computer
Systems, 2022.

[21] Y.-C. Lin, G. Deng, and V. Prasanna, “A unified cpu-gpu protocol for
gnn training,” in Proceedings of the 21st ACM International Conference
on Computing Frontiers, 2024.

[22] Y.-C. Lin, Y. Chen, S. Gobriel, N. Jain, G. K. Jha, and V. Prasanna,
“Argo: An auto-tuning runtime system for scalable gnn training on
multi-core processor,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2024.

[23] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[24] B. Zhang, R. Kannan, and V. Prasanna, “Boostgcn: A framework
for optimizing gcn inference on fpga,” in 2021 IEEE 29th Annual

International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2021.

[25] S. Abi-Karam and C. Hao, “Gnnbuilder: An automated framework
for generic graph neural network accelerator generation, simulation,
and optimization,” in 2023 33rd International Conference on Field-
Programmable Logic and Applications (FPL), 2023.

[26] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “Flowgnn:
A dataflow architecture for real-time workload-agnostic graph neural
network inference,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2023.

[27] X. Chen et al., “Rubik: A hierarchical architecture for efficient graph
neural network training,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2021.

[28] Y. Xu, Y. Wang, A. Zhou, W. Lin, and H. Xiong, “Deep neural network
compression with single and multiple level quantization,” in Proceedings
of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[29] Y. Guo, “A survey on methods and theories of quantized neural net-
works,” arXiv preprint arXiv:1808.04752, 2018.

[30] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong,
R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large language
models are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[31] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” Advances in Neural Information
Processing Systems, 2024.

[32] B. Feng, Y. Wang, X. Li, S. Yang, X. Peng, and Y. Ding, “Sgquant:
Squeezing the last bit on graph neural networks with specialized
quantization,” in 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI), 2020.

[33] Y. Ma, P. Gong, J. Yi, Z. Yao, C. Li, Y. He, and F. Yan, “Bifeat:
Supercharge gnn training via graph feature quantization,” in arXiv
preprint arXiv:2207.14696, 2023.

[34] M. Ding, K. Kong, J. Li, C. Zhu, J. Dickerson, F. Huang, and
T. Goldstein, “Vq-gnn: A universal framework to scale up graph neural
networks using vector quantization,” in Advances in Neural Information
Processing Systems, 2021.

[35] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant:
Quantization-aware training for graph neural networks,” in International
Conference on Learning Representations, 2021.

[36] D. Zheng et al., “Distdgl: distributed graph neural network training for
billion-scale graphs,” in 2020 IEEE/ACM 10th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), 2020.

[37] J. Zhou, J. Wu, Y. Gao, Y. Ding, C. Tao, B. Li, F. Tu, K.-T. Cheng,
H. K.-H. So, and N. Wong, “Dybit: Dynamic bit-precision numbers
for efficient quantized neural network inference,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2023.

[38] Y. Wong, Z. Dong, and W. Zhang, “Low bitwidth cnn accelerator on
fpga using winograd and block floating point arithmetic,” in 2021 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2021.

[39] Y. Fu, E. Wu, and A. Sirasa, “8-bit dot-product acceleration,” in White
Paper: UltraScale and UltraScale+ FPGA, 2017.

[40] X. Chen, H. Tan, Y. Chen, B. He, W.-F. Wong, and D. Chen, “Thun-
dergp: Hls-based graph processing framework on fpgas,” in ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2021.

[41] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013.

[42] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[43] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[44] Y.-C. Lin, B. Zhang, and V. Prasanna, “Hitgnn: High-throughput gnn
training framework on cpu+multi-fpga heterogeneous platform,” in IEEE
Transactions on Parallel and Distributed Systems (TPDS), 2024.

[45] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed
synchronous sgd,” in International Conference on Learning Represen-
tations Workshop, 2016.

[46] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations, 2019.


