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Abstract—Graph neural networks (GNNs) have gained sig-
nificant attention across diverse areas due to their superior
performance in learning graph representation. Many models
have emerged to handle heterogeneous graphs using GNNs and
have achieved significant success. However, the challenge of
incomplete attribute values remains prevalent, particularly in
heterogeneous graphs where some types of nodes lack attributes.
Existing approaches often separate the attribute completion
from the graph learning process. This separation falls short of
fully exploiting the rich information inherent in heterogeneous
graphs. In this paper, we propose a methodology by using a
heterogeneous graph neural network based on bandit sampling
for attribute completion. Our approach consists of three key
modules: topological embedding, adaptive node sampling, and
representation learning. It first learns topological information,
and then by integrating a modified multi-armed bandit algorithm,
our proposed method adaptively samples informative nodes. This
enhances the attribute completion process. Finally, it learns the
final embedding of the heterogeneous graph using the graph
with completed attributes. We conduct extensive experiments
on three real-world datasets. Compared with the state-of-the-art
heterogeneous GNN models on the node classification task and
the node clustering task, our approach improves the performance
by up to 2% and 2.2%, respectively. This shows that the
completed attributes from various node types will be aggregated
into the target node types, hence improving the model’s predictive
performance.

Index Terms—Graph representational learning, Graph neural
networks, Heterogeneous graphs, Attribute Completion, Multi-
armed Bandit

I. INTRODUCTION

Heterogeneous graphs are extensively employed to model
complex network systems, where objects are involved in dis-
tinct interactions, such as wireless networks, social networks,
and recommendation systems [1]-[3]. Heterogeneous graphs
consist of multiple node types and edge types, corresponding
to various entities and their interactions in real-world appli-
cations. For example, the citation network dataset DBLP!
consists of four types of nodes: papers, authors, terms, and
venues, as well as three types of relationships: paper-author,
paper-term, and paper-venue. Heterogeneous graphs can model
real-world systems more accurately because they contain more
comprehensive information and complex relationships com-
pared to traditional homogeneous graphs.
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Graph Neural Networks (GNNs) utilize deep neural net-
works to aggregate feature information from neighboring
nodes, enhancing the power of the aggregated embeddings.
Numerous efforts have been made to apply GNNs to hetero-
geneous networks [4]-[6]. These heterogeneous GNN-based
models can learn node representation via nodes’ attributes.
However, some nodes have no attributes due to the high cost
of obtaining them. Especially in heterogeneous graphs, it is
challenging to acquire attributes for all types of nodes. Taking
the DBLP dataset as an example, its heterogeneous graph is
shown in Figure 1. For each paper node, the keywords are
considered as its attribute. However, although we usually per-
form downstream tasks on author nodes, it is difficult to obtain
their attributes. Recent research has shown that the attribute
information of authors on node analysis tasks is important
for learning the embeddings of heterogeneous graphs [7].
Therefore, addressing the issue of missing node attributes
is crucial for improving the performance of heterogeneous
GNNE .

Although some types of nodes lack attributes, existing work
leverages their connectivity to attributed nodes to address this
issue in heterogeneous graphs. However, since there is no
relevant information in such a dataset, existing approaches
provide less effective information, as the attributes obtained
is just the mean of their neighbors’ attributes. State-of-the-art
methods based on heterogeneous GNNs primarily complete
features by (1) filling the missing features with the average
of directed connected nodes’ features and (2) using their
topological information as the node features. These methods
are effective; however, there are some challenges for existing
Heterogeneous graph neural networks. One challenge is that
the heterogeneous information is not fully explored. For ex-
ample, some heterogeneous GNNSs rely on partial neighboring
information on customized metapaths [7], [8], making it im-
possible to distinguish the importance of different node types.
Moreover, most existing approaches for attribute completion
rely on information from directly connected attributed nodes,
neglecting other higher-order connected nodes that are also
informative. For example, in the DBLP dataset, coauthors who
collaborated on writing the same paper should share some
similarities in their research interests, so the relation author-
paper-author plays an important role in attribute completion.
Therefore, there is a urgent need to develop methods that
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Fig. 1. A heterogenous graph of DBLP dataset.

can capture the heterogeneity in the graph to address these
challenges.

In this paper, we propose a novel methodology by using a
heterogeneous graph neural network based on bandit sampling
for attribute completion. It consists of three key modules:
topological embedding, adaptive nodes sampling, and repre-
sentation learning. Specifically, we employ a heterogeneous
graph neural network to incorporate the graph’s topological
information. The topological relationship help complete miss-
ing attributes by aggregating information from their neigh-
boring attributed nodes. Then, instead of using the traditional
neighbor attention mechanism as in existing work [7], [9]-
[11], we integrate a modified multi-armed bandit algorithm
to adaptively sample nodes, so that informative nodes can
be captured. This adaptive sampling approach allows us to
identify relevant nodes for attribute completion, even if they
are not directly connected to the target node. Finally, the
heterogeneous graph neural network model is used to learn
the node embeddings on the completed heterogeneous graph.

The main contributions of this paper are:

o We propose a methodology of heterogeneous graph neu-
ral network based on bandit sampling for attribute com-
pletion, which can effectively complete missing attributes
of certain types of nodes.

By incorporating a modified multi-armed bandit algo-
rithm, our proposed methodology adaptively samples
informative nodes, resulting in more effective attribute
completion and improved performance.

We conduct extensive experiments on the DBLP, IMDB,
and ACM datasets to evaluate the performance of the
proposed methodology on several downstream tasks.
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Compared with the state-of-the-art heterogeneous GNN
models on the node classification task and the node
clustering task, our approach improves the performance
by up to 2% and 2.2%, respectively.

The rest of this paper is organized as follows: Section II
presents the background of a GNN model and defines attribute
completion. Section III defines the heterogeneous graph repre-
sentation learning problem and the attribute completion prob-
lem. Section IV provides an overview of heterogeneous graph
neural networks and bandit sampling methods. Section V
presents a detailed description of our proposed methodology.
Section VI presents experimental results that validate the
performance of the proposed algorithm. Finally, Section VII
concludes the paper.

II. BACKGROUND

In the following section, we introduce the formal notations
that define our problem setting and provide an overview of
graph neural networks, as well as the neighbor sampling
problem. In particular, we focus on bandit sampling method
that is applicable to graph neural networks. The notations are
summarized in Table I.

A. Basic Notations

A graph G = (V,€) is defined by a set of nodes V =
{v1,v2,...,v,} and a set of edges £ among these nodes. Let
(vi,vj) € € denote an edge going from node v; € V' to node
v; € V, denote N(v;) = {v; € V| (v;,v;) € £} as the
neighborhood of node v;. Assume that G is undirected, that
is, v; € N(v;) if and only if v; € N(v;). Let N(T) = {v €
V| (vi,v;) € E,v; € T} denote the neighborhoods of a set
of nodes S. [L] denotes {1,...,L} for a positive integer L.
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TABLE I
NOTATIONS AND EXPLANATIONS
Notations Explanations

g A heterogeneous graph

v The set of nodes

& The set of edges

Oy The set of node types
Re The set of edge types

) The node type mapping function from V to Oy
) The edge type mapping function from £ to Rg
vt The set of nodes with attributes in V

% The set of nodes without attributes in V
Ny The set of neighbors of node v € V

X The node attribute matrix

A Topological structure

H Node embedding based on the graph topology
Z The final node embedding

B. Graph Neural Networks

Formally, given a graph G = (V, ), the forward propaga-
tion of a GNN is formulated as

W) (Z amhgfgw;@>

1EN,

()]

for the node v € V at training iteration ¢. Here hl(-_et) € R? is

the hidden embedding of node 7 at the layer £, hg(? = x; is
the node feature, and o(-) is the activation function. a,; > 0
is the edge weight between node v and . Wt(z) € R4 is
the GNN weight matrix, learned by minimizing the stochastic
loss £ with SGD. Finally, we denote zl(-zt) = am-hgf) as the
weighted embedding, [D,] = {i |1 <4 < D,}. For a vector
x € R we refer to its 2-norm as ||z||; for a matrix W, we
refer to its spectral norm as |W].

Sampling in the training of graph neural network can be
formulated as follows:

SN®)(v) = Sampling™ (N, @
o) = Aggregate® ({5 ue SNG)Y) O
hfjk) = Combine® (hi’“‘”,a,@’“)) ) )

where SN (v) is the sampled neighbors from N,, a' is the
aggregation feature vector of node v in the k-th layer, A is
the representation feature of node v in the k-th layer.

C. Bandit Sampling

Design suitable sampling strategies that take into consid-
eration the intrinsic properties of the graph is crucial for
the efficiency and effectiveness of graph neural networks.
Given that the contributions of nodes to the learning process
can vary over time, it is intuitive to consider the adversarial
setting in the multi-armed bandit problem. To adaptively
choose the most informative nodes, we consider an importance
weighted estimator called Exp4 [12], short for Exploration and
Exploitation using Expert advice.
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In a general contextual bandit setting, the learner selects an
action a; and observes ¢;(a;) for some loss vector ¢;, then the
main idea of the Exp4 algorithm is to construct the following
importance weighting:

ly(a) =

{a = at},

gt (CL) (5)
t

pi(a)

where p; is a distribution over actions at time ¢, and I{a = a;}
is the indicator function that is 1 if a = a; and 0 otherwise.

Algorithm 1: EXp4.P
1 Input: Learning rate 1 > 0, pyin € [0,1/K]
2 fort=1,2,...,7 do
3 Compute P; such that

Py(m) o (1= Kpmin) exp (=115, 2, (n(2,)) )
Sample a; from p; where

pt(a) = Z‘I\'EHZW(I):G pt(ﬂ.) R
5 Observe ¢;(a;) and construct ¢; such that

ly(a) = —ﬁiiz))ﬂ{a =as}

In our work, we incorporate a modified version of Exp4.
This algorithm with high probability gives a regret at most
O(vVKTlog N) (where there are T steps, the learner must
choose one of K actions and have access to a class of N
policies) in the adversarial contextual bandit setting. We will
discuss this further in details in Section V-C.

[II. PROBLEM DEFINITION

In this section, we define the problem of heterogeneous
graph representation learning as well as attribute completion.
We start with the definition of both heterogeneous graphs
and missing attribute in heterogeneous graphs. The notations
are summarized in Table I, where capital calligraphic letters
denote sets, and capital bold letters represent matrices.

Heterogeneous graphs. A heterogeneous graph G
(V,E,0y,Re) is composed of a set of nodes V, a set of
edges £, a node type mapping function ¢ : V — Oy, where
Oy represents the set of node types, and an edge type mapping
function ¢ : £ — Rg, where Rg represents edge types that
correspond to edges in £. Each node v € V is assigned a type
via p(v), and each edge e € & is assigned a type via ¢(e).
For example, in the DBLP dataset, the heterogeneous graph
to model DBLP. It consists of four types of nodes (author,
paper, venue, and term) and three types of edges (author-paper
(write), paper-venue (publish), and paper-term (contain), as
illustrated in Figure 1.

Attribute-missing. Given a heterogeneous graph G
(V, €, 0y, Re) with a node attribute X', if there exists a subset
of node types S C Oy and S # @, such that for each node
v € V with ¢(v) € S has no attributes, then node types
p(v) € S are called attribute-missing. As shown in Figure 1,
in the DBLP dataset, only paper nodes have attributes, while
authors, venues and terms are attribute-missing.
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Heterogeneous graph representation learning. Given a
heterogeneous graph G = (V, &, Oy, Re), the problem is to
learn a d-dimensional node representation h,, € R¢ for all v €
V with d < |V|, which can capture rich structural information
in G.

Attribute completion. Given a heterogeneous graph G =
(V,€,0y,Re) with some node types that are attribute-
missing, we can partition the set of nodes into two categories:
YV = VY UV, where V™ denotes the set of nodes without
attributes (i.e., p(v) € 8) and VT denotes the set of nodes with
attributes. The attribute completion problem is to complete
attributes of nodes v € V™.

IV. RELATED WORK

In this section, we discuss some literature related to het-
erogeneous graph neural networks and sampling methods for
graph neural networks.

Heterogeneous graph neural networks. In recent years,
numerous studies have focused on investigating heterogeneous
graphs for various applications, such as personalized recom-
mendation [13], [14]. For example, Zhang et al. [4] proposed
a heterogeneous graph neural network model to handle the
issue of the structural information in heterogeneous graphs
and attributes or contents correlated to each node. Hu et
al. [5] designed a heterogeneous mini-batch graph sampling
method to train web-scale heterogeneous graph efficiently. R-
GCN [15] projects node embeddings into several relational
spaces using multiple weight matrices, capturing the hetero-
geneity of the graph. Several approaches have been devel-
oped to enhance the representation learning of heterogeneous
graphs. HAN [10] model learns the importance between meta-
path based nodes and that of different meta-path on node-level
and semantic-level aggregation, respectively. It aggregates
attributes from meta-path based neighbors in a hierarchical
manner. MAGNN [7] determines aggregation weights for
different neighbors based on the attributes of all nodes along
the meta-path and an attention mechanism, exploring the se-
mantic importance of various meta-paths. GTN [16] generates
new graph structure by identifying potentially useful edges
in a heterogeneous graph to generate a new graph, learning
effective node embeddings on the new graphs to obtain final
embeddings. R-HGNN [17] uses relation encoding and designs
a relation-aware representation learning framework based on
a hierarchical attention mechanism.

However, these methods do not address the problem of miss-
ing attributes in heterogeneous graphs. They either complete
attributes by an average imputation strategy or customized
metapaths, where missing attributes are completed by aver-
aging the attributes of neighboring nodes. In the process of
node embedding, the phenomenon of node information loss
could occur, which leads to suboptimal results.

Bandit Sampling Methods. Bandit sampling methods [18],
[19] have explored the application of bandit algorithms to
sample neighboring nodes during the aggregation, which takes
the sum of the neighbor embeddings. Liu et al. [18] propose a
novel formulation of neighbor sampling as multi-armed bandit
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problem (MAB) and apply EXP3 [12] and its variants to
update sampler and reduce variance. They provide an asymp-
totic regret analysis on sampling variance, which show that
the regret of their estimator, BanditSampler, approximates the
optimal sampler within a factor of 3. Zhang et al. [19] propose
a numerically-stable reward function that trades bias with vari-
ance, which enables the connection to sampling approximation
error. ANS-GT [20] adaptively samples informative nodes and
captures dependencies through graph coarsening algorithms.
Specifically, they formulate the optimization strategy of node
sampling as an adversary bandit problem, and then apply
the modified Exp4.P algorithm to adaptively assign weights
to several sampling heuristics. By combing these strategies
together, informative nodes can be sampled.

V. METHODOLOGY

In this section, we describe our proposed methodology
for attribute completion. Our methodology contains three key
components: topological embedding, adaptive node sampling,
and representation learning, designed to collaboratively ad-
dress the problem of attribute completion and obtain the final
node embeddings.

A. Overview

The overall methodology is shown in Figure 2. It consists
of the following three key modules:

1) Topological embedding. The first step involves com-
puting the embeddings of nodes based on the graph’s
topology. This is achieved using a heterogeneous graph
neural network that captures the topological relation-
ships among different node types. Formally, given the
heterogeneous graph G and initial node features X, the
model first learns the topological information of node
topological embedding H.

Adaptive node sampling. Once the topological em-
beddings H are obtained, the next step is to evaluate
the topological relationships to identify the most in-
formative nodes. Adaptive node sampling is employed
to sample relevant nodes v € VT to the target nodes
with no attributes v € V. The model then aggregates
the attributes of these informative nodes to complete
the missing attributes in V=~ and obtain the completed
attribute H™.

Representation learning. In the final step, the het-
erogeneous graph neural network model integrates the
initial node attribute X with the completed attribute
HT to learn the final node embeddings Z. They are
then applied to various downstream tasks such as node
classification and node clustering.

2)

3)

B. Topological Embedding

The initial phase of our methodology is to obtain the topo-
logical embedding. In heterogeneous graphs, although some
types of nodes are attribute missing, all nodes have topological
information. The relationships among different node types,
such as authors, papers, and venues in academic networks, are
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Fig. 2. Overview of the proposed methodology.

crucial for attribute completion, as these nodes share similar
topological structures due to their role in the heterogeneous
graph. For instance, nodes within the same field of study in
the citation network will have similar attributes, hence, the
relation among nodes’ topological information can reflect the
relations among their attribute information. In this paper, we
adopt the proximity encoding method in Gophormer [21] to
get node embeddings H based on network topology.

C. Adaptive Node Sampling

Adaptive Node Sampling plays a crucial role in our method-
ology by adaptively sampling and aggregating informative
node attributes to help attribute completion. This process is
essential for completing missing attributes in target nodes
v € V7 based on attributes from informative nodes with
attributes v € V7. Instead of simply averaging aggregate
attributes of the directly connected neighbors, we consider
graph transformer [20] which modifies a multi-armed ban-
dit algorithm adaptively sample informative nodes, and then
automatically learn the importance and aggregates attribute
information for nodes in V= from V7.

Traditional methods often use fixed strategies, which may
overlook the importance of nodes in a heterogeneous graph.
It is intuitive that the contribution of nodes to the learning
performance can be time-sensitive. Therefore, to choose the
most informative nodes with designed sampling strategies, we
consider the ALBL method [22] as in the graph transformer.

Formally, let w’ = (w})X_, be the adaptive weight vector
in iteration ¢, where the k-th non-negative element w!, is the
weight corresponding to the k-th node sampling strategy. The
weight vector w! is then scaled to a probability vector p* =
(pL)K_, where pL € [pmin, 1] With pmin > 0. It adaptively
sample nodes based on the probability vector and then obtain
the reward of the action.

For each center node, the sampling probability matrix
Q! € REX" where K is the number of sampling heuristic
and n is the number of nodes in the graph. Q}fw- denotes
the k-th sampling strategy’s preference on selecting node j in
iteration ¢ and Q" is normalized to satisfy 7, Q} ; = 1. The
representative sampling heuristics include m-hop neighbors:
we adopt the normalized adjacency matrix A = DYV/2AD~1/2
for 1-hop neighbors and A™ for m-hop neighbors. Given the
probability vector p* and the node sampling matrices Q?, the
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final node sampling probability is

K
oE = Qb O]
k=1

Given an attention matrix Softmax(QK ")/v/d, we use the
first row of the attention matrix multiplying the magnitude of
corresponding value V; to represent the significance of each
node to the center node s;. We average the significance scores
in multiple attention matrices. The reward to the k-th sampling
strategy is

)

where N is the number of sampled nodes for each center
node. 7, can be viewed as the dot product between the signif-
icance score vector and the normalized sampling probability
vector. Intuitively, the reward to a certain sampling heuristic
is higher if the sampling probability distribution and the node
significance score distribution is closer. Finally, we update w?
with the reward. The pseudo-code is listed in Algorithm 2.
We then proceed to aggregate the attributes of the informative
nodes for each v € V= to complete the missing attributes,
eventually obtain the completed attribute H ™.

D. Representation Learning

The final stage integrates the completed node attributes H ™
with the initial node attributes X to obtain final node em-
bedding using the heterogeneous graph neural network model.
Define the new attributes of all nodes as: X = {X;, H ;‘ | Vi e
V*,Vj € V~}. We then send the initial topological structure
A as long as the new attributes X to the heterogeneous graph
neural network model: ¥ = @(A,X )5 Lprediction = f(f/,Y),
where ® denotes an arbitrary heterogeneous neural network, f
is the loss function, Y and Y are model’s prediction and label,
respectively. Specifically, in the semi-supervised node classi-
fication task, we compute the prediction loss of the heteroge-
neous graph neural network model for all labeled nodes using
the cross-entropy: Lprediction = — 2 _icy, Zle Y log Yik,
where Vp, is the set of nodes that have labels. K is the set
of classes for labeled nodes, Y;; and sz are the indicator of
the label and of the prediction result of node ¢ on class k,
respectively.

Finally, by combining the loss of attribute completion
Lecompletion and the loss of the heterogeneous graph neural
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Algorithm 2: ADAPTIVE NODE SAMPLING

1 Input: Training epochs E; pnin; update period 77
number of sampled nodes N

2 Output: Trained model, optimized w?

3Setw)=1fork=1,....K

4 Calculate the sampling probability matrix @Q°.

sfort=1,2,...,FE do

6 Train model with the sampled node sequences
7 if t%T = 0 then
8 Obtain the attention matrices
9 Calculate the significance score
si = A X ||[Vil|
10 Set Wt =35 wh and p, fork=1,...,K
11 Calculate ¢! in equation (6) and sample N
nodes
12 Set 1, = Zfil 5iQhi/ Ut
13 Update the weight vector w,tjl using
wit! = wt exp(25 (), +1/pt)\/log N/KT)

network model Lpregiciion, the total loss of our proposed
methodology is: £ = vLcompletion + Lpredictions Where v is
a hyperparameter that control the trade-off between the two
losses.

The overall process of our proposed methodology is shown
in Algorithm 3.

Algorithm 3: THE OVERALL PROCESS OF OUR
METHODOLOGY

1 Input: A heterogeneous graph G = (V, ), the initial
node attribute X, a heterogeneous graph neural
network model ®

2 Output: The node embedding Z

3 Compute the topological embeddings H

4 Identify informative nodes using Alg 2 and obtain
importance score for each node pair

5 for v; € V™ do

6 Complete the node feature H;™ based on the
L important score (v;,v;) for all v; € VT

7 Obtain the new attribute X = {X, H*}

8 return Z

VI. EXPERIMENTS

In this section, we evaluate the proposed methodology in
Section V.

A. Datasets

To evaluate the effectiveness of attribute completion by the
proposed methodology, we use the following three common
datasets: We summarize the statistics in Table II.

1) DBLP [10]. We use a subset of DBLP with 14,328
papers (P), 4057 authors (A), 8789 terms (T), and 20
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venues (V). The attributes of papers are bag-of-words
representation of their keywords. Only papers’ attributes
are directly derived from the dataset.

IMDB ? [8]. We obtain a subset of IMDB with 4780
movies (M), 5841 actors (A), and 2269 directors (D).
Attributes of movies are bag-of-words representations
of their keywords. Only movies’ attributes are directly
derived from the dataset.

ACM 3 [10]. We construct a heterogeneous graph that
consists of 4019 papers (P), 7167 authors (A), and 60
subjects (S). Attributes of papers are bag-of-words rep-
resentations of their keywords. Only papers’ attributes
are directly derived from the dataset.

2)

3)

B. Baselines

We compare our methodology proposed in Section V with
several state-of-the-art heterogeneous graph neural network
models, including R-GCN [15], HetGNN [4], HAN [5], and
HGNN-AC [8].

1) R-GCN [15]: It extends GCN to graphs with multiple
edge types. R-GCN assigns distinct weights to different
edge types, and then performs weighted summation to
update the node information.

HetGNN [4]: It jointly considers node heterogeneous
contents encoding, type-based neighbors aggregation,
and heterogeneous types combination.

HAN [10]: It leverages meta-relations of the given
heterogeneous graph to parameterize weight matrices
for several critical steps: heterogeneous mutual atten-
tion, heterogeneous message passing, and target specific
aggregation.

HGNN-AC [8]: It first learns topological embeddings
of nodes through a pre-trained model, then completes
attributes using topological embeddings. Finally, the het-
erogeneous graph with completed attributes is sent into
metapath aggregated GNN to learn node representations.

2)

3)

4)

C. Node Classification

We perform node classification task on the evaluation
datasets to compare the performance of our proposed method-
ology with the baselines. We first complete the missing at-
tributes for target nodes by performing the model, and then
obtain embeddings of nodes. Finally, we feed the embeddings
to a linear support vector machine (SVM) classifier with
training ratio ranging from 10% to 80% to get the classification
results. We repeat the process several times and report the
average Macro-F1 and Micro-F1.

As shown in Table III, Our methodology generally out-
performs the baseline models. It demonstrates that attribute
completion is helpful in heterogeneous graph representation
learning. Notably, when compared with HGNN-AC, our pro-
posed methodology has 0.36% and 1.28% higher value in
terms of Micro-F1 metrics for DBLP, IMDB and ACM, which

2https://www.imdb.com/
3http://dl.acm.org/
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TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS

| Datasets | Nodes | Edges | Attributes |

author (A): 4,057 #A-P: 19,645 A: missing

DBLP paper (P): 14,328 #P-T: 85,810 | P: or.igi.nal
term (T): 7,723 #P-V: 14,328 T: missing

venue (V): 20 V: missing

movie (M): 4,278 #M-D: 4278 M: original

IMDB director (D): 2,081 M-A: 12,828 D: missing
actor (A): 5,257 A: missing

author (A): 7,167 #A-P: 13,407 | A: missing

ACM paper (P): 4,019 #P-P: 9,615 P: original
subject (S): 60 #P-S: 4,019 S: missing

TABLE III
CLASSIFICATION RESULTS (%) WITH DIFFERENT METHODS ON THE NODE CLASSIFICATION TASK.

| Datasets | Metrics | Training || R-GCN HetGNN HAN HGNN-AC  This paper |

10 % 89.72 92.39 92.01 93.56 93.50

20 % 91.15 92.91 92.67 93.80 94.05

Macro-F1 40 % 91.52 93.37 93.45 93.92 94.51

60 % 92.03 93.61 93.77 94.01 94.53

DBLP 80 % 92.33 93.79 93.92 94.20 94.71
10 % 90.51 92.73 92.53 94.18 94.03

20 % 92.06 93.54 93.48 94.32 94.45

Micro-F1 40 % 92.33 93.73 93.85 94.42 94.78

60 % 92.89 94.05 94.21 94.67 94.94

80 % 93.17 94.37 94.55 94.72 95.01

10 % 43.87 45.58 56.82 57.82 59.12

20 % 45.98 48.82 57.52 58.64 59.77

Macro-F1 40 % 46.12 51.43 57.65 59.23 60.54

60 % 47.74 52.94 57.63 60.12 61.17

IMDB 80 % 47.90 53.08 57.71 60.60 61.45
10 % 47.02 46.55 57.10 57.95 59.15

20 % 47.34 49.70 57.66 58.72 59.91

Micro-F1 40 % 47.58 52.39 57.72 59.31 60.72

60 % 48.27 53.82 57.89 60.58 61.13

80 % 48.69 54.17 57.77 60.84 61.47

10 % 84.53 88.20 89.21 92.29 92.08

20 % 85.19 89.25 90.91 92.95 92.84

Macro-F1 40 % 86.55 90.23 91.39 93.31 93.45

60 % 87.23 90.80 91.77 93.29 93.61

ACM 80 % 87.81 91.10 91.84 93.88 93.97
10 % 84.47 88.18 89.35 92.31 92.11

20 % 85.23 89.33 91.02 92.93 92.78

Micro-F1 40 % 86.75 90.41 91.54 93.45 93.38

60 % 87.30 91.02 91.90 93.47 93.65

80 % 87.99 91.22 92.08 93.92 93.89

shows the effectiveness of attribute completion via bandit
sampling.

D. Node clustering

To demonstrate the effectiveness of our proposed method,
we perform node clustering experiments on DBLP, IMDB, and
ACM. We use the K-means algorithm to cluster the labeled
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node embeddings, where K is the number of node labels.
Table IV reports the results of the node clustering task.
Compared with state-of-the-art baselines, our proposed
methodology improves NMI and ARI scores by 0.91% and
1.61% on DBLP dataset, and 2.29% and 1.57% on ACM
dataset. The results indicate that attribute completion helps
improve the clustering performance. The jointly optimization
of the topological embedding, adaptive node sampling, and
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TABLE IV
CLUSTERING RESULTS WITH DIFFERENT METHODS.

| Datasets | Metrics || HtGNN ~ HAN  HGNN-AC  This paper |
DBLP NMI 0.7867 0.7762 0.7912 0.8003
ARI 0.8402 0.8374 0.8511 0.8672
IMDB NMI 0.1308 0.1289 0.1387 0.1391
ARI 0.1276 0.1339 0.1472 0.1421
ACM NMI 0.7025 0.7145 0.7234 0.7463
ARI 0.7236 0.7488 0.6922 0.7645
representation learning makes full use of the attributes of [5] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-

imformative nodes. Therefore, our proposed methodology can
learn better embeddings for downstream tasks than other
methods.

VII. CONCLUSION

In this paper, we proposed a novel methodology of het-
erogeneous graph neural networks based on bandit sampling
for attribute completion, which fully exploits the information
of neighboring structure to solve the attribute completion
problem in heterogeneous graphs. Our methodology consists
of three key modules: topological embedding, adaptive node
sampling, and representation learning, collectively designed
to address the challenge of missing attributes in heteroge-
neous graphs. By integrating a modified multi-armed bandit
algorithm, our methodology adaptively samples informative
nodes, resulting in more effective attribute completion and
improved performance. We conducted extensive experiments
on the DBLP, IMDB, and ACM datasets to evaluate the
effectiveness of our methodology. Compared with the state-of-
the-art heterogeneous GNN models on the node classification
task and the node clustering task, our approach improves the
performance by up to 2% and 2.2%, respectively.
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