
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024 2405

VisionAGILE: A Versatile Domain-Specific
Accelerator for Computer Vision Tasks

Bingyi Zhang , Rajgopal Kannan, Carl Busart, and Viktor K. Prasanna , Life Fellow, IEEE

Abstract—The emergence of diverse machine learning (ML)
models has led to groundbreaking revolutions in computer vision
(CV). These ML models include convolutional neural networks
(CNNs), graph neural networks (GNNs), and vision transformers
(ViTs). However, existing hardware accelerators designed for CV
lack the versatility to support various ML models, potentially
limiting their applicability to real-world scenarios. To address this
limitation, we introduce VisionAGILE, a domain-specific accelera-
tor designed to be versatile and capable of accommodating a range
of ML models, including CNNs, GNNs, and ViTs. VisionAGILE
comprises a compiler, a runtime system, and a hardware accel-
erator. For the hardware accelerator, we develop a novel unified
architecture with a flexible data path and memory organization to
support the computation primitives in various ML models. Regard-
ing the compiler design, we develop a unified compilation workflow
that maps various ML models to the proposed hardware accelera-
tor. The runtime system executes dynamic sparsity exploitation to
reduce inference latency and dynamic task scheduling for workload
balance. The compiler, the runtime system, and the hardware
accelerator work synergistically to support a variety of ML models
in CV, enabling low-latency inference. We deploy the hardware
accelerator on a state-of-the-art data center FPGA (Xilinx Alveo
U250). We evaluate VisionAGILE on diverse ML models for CV,
including CNNs, GNNs, hybrid models (comprising both CNN and
GNN), and ViTs. The experimental results indicate that, compared
with state-of-the-art CPU (GPU) implementations, VisionAGILE
achieves a speedup of 81.7× (4.8×) in terms of latency. Evaluated
on standalone CNNs, GNNs, and ViTs, VisionAGILE demonstrates
comparable or higher performance with state-of-the-art CNN ac-
celerators, GNN accelerators, and ViT accelerators, respectively.

Index Terms—Compiler, computer architecture, computer
vision, domain-specific accelerator, runtime system.

I. INTRODUCTION

THE emergence of diverse machine learning (ML) models
has brought about a significant revolution in computer vi-

sion (CV), facilitating various novel CV applications. These ML

Received 23 April 2024; revised 8 September 2024; accepted 12 September
2024. Date of publication 24 September 2024; date of current version 17 October
2024. This work was supported in part by DEVCOM Army Research Lab (ARL)
under Grant W911NF2220159 and in part by the National Science Foundation
(NSF) under Grant CCF-1919289 and Grant OAC-2209563. Equipment and
support by AMD AECG are greatly appreciated. Recommended for acceptance
by J. Becker. (Corresponding author: Bingyi Zhang.)

Bingyi Zhang and Viktor K. Prasanna are with the Department of Electrical
and Computer Engineering, University of Southern California, Los Angeles, CA
90089 USA (e-mail: bingyizh@usc.edu; prasanna@usc.edu).

Rajgopal Kannan and Carl Busart are with DEVCOM Army Research Of-
fice, Los Angeles, CA 90089 USA (e-mail: rajgopal.kannan.civ@army.mil;
carl.e.busart.civ@army.mil).

Digital Object Identifier 10.1109/TPDS.2024.3466891

models include convolutional neural networks (CNNs) [1], [2],
[3], graph neural networks (GNNs) [4], [5], [6], and vision trans-
formers (ViTs) [7], [8]. While various ML models are available
for CV tasks, there is no one-size-fits-all solution, as different
models have different strengths. Convolutional Neural Networks
(CNNs): CNNs excel in tasks like image classification [1], object
detection [3], and image segmentation [9]. They are good at
capturing local patterns and hierarchical features through their
convolutional layers. CNNs are well-suited for handling large
image datasets, offering computational efficiency. However,
they are less effective when dealing with graph-structured data
or sequences and struggle to model long-range dependencies.
Graph Neural Networks (GNNs): GNNs are designed to capture
relationships and propagate information in graph data. They are
an ideal choice for CV tasks where the data structure is defined
by nodes and edges, as seen in point clouds [10] and 3-D meshes.
However, GNNs are less suitable for directly handling regular
grid-like data, such as images. Vision Transformers (ViTs): ViTs
are tailored for image analysis tasks similar to CNNs. However,
they adopt a different approach by leveraging self-attention
mechanisms to model image content. Unlike CNNs, ViTs are
scalable and good at capturing long-range dependencies in im-
ages. Nevertheless, ViTs require a substantial amount of labeled
data for training, which can be resource-intensive. They can
be computationally expensive when compared to specific CNN
architectures. Additionally, ViTs depend on positional encoding
in regular data and cannot directly deal with graph-structured
data.

Different ML models have different strengths, necessitating
the selection between CNNs, GNNs, or ViTs for real-world
applications based on specific problem requirements and data
structures. Furthermore, many CV tasks leverage the combined
strengths of different models. For example, GNN-based CV
tasks utilize the capabilities of both CNNs and GNNs to enable
a wide array of innovative CV applications [11], [12]. Several
studies [13], [14] integrate CNNs and ViTs to enhance model
robustness in CV tasks. Extrapolating the current research trend,
we anticipate that computer vision systems, such as autonomous
driving cars, will leverage a diverse range of ML models and
various combinations of models. Moreover, in cloud computing
platforms provided by service providers [15], [16], [17], the
capability to support a diverse range of machine learning models
is crucial to meet the demands of their customers. Consequently,
developing a versatile domain-specific accelerator (DSA) that
supports diverse ML models, including CNNs, GNNs, and ViTs,
becomes essential.

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8115-0814
https://orcid.org/0000-0002-1609-8589
mailto:bingyizh@usc.edu
mailto:prasanna@usc.edu
mailto:rajgopal.kannan.civ@army.mil
mailto:carl.e.busart.civ@army.mil


2406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Several domain-specific accelerators [18], [19], [20], [21],
[22], [23] have been developed to enhance the performance of
computer vision (CV) tasks, such as Xilinx DPU [18], DLA [19],
OPU [20], Google TPU [21] and TPUv4 [24], and GraphAG-
ILE [22]. However, prior DSAs are primarily designed to accel-
erate only one or two specific types of ML models, lacking the
versatility to accommodate a broad range of ML models in CV,
including CNNs, GNNs, and ViTs. General-purpose processors
like CPUs and GPGPUs can support various ML models, but
they often deliver suboptimal performance for these models due
to several reasons: (1) General-purpose processors have complex
cache hierarchies, leading to large data access latency for ML
models. (2) The data path of CPUs is designed to handle complex
control flow, making it inefficient for computation-intensive
workloads. (3) The design of computation parallelism in general-
purpose processors is not well-suited for handling irregular
computation patterns in the models for graph structured data,
such as GNNs. In summary, while general-purpose processors
offer flexibility, they meet performance challenges when dealing
with various ML models.

This paper proposes VisionAGILE, a novel versatile domain-
specific accelerator to support a variety of ML models for
computer vision (CV) tasks, including CNNs, GNNs, and ViTs.
Our main contributions are summarized as follows:! We propose VisionAGILE, a domain-specific accelerator

on FPGA, to support a variety of ML models for CV tasks,
including CNNs, GNNs, and ViTs.! We develop a novel unified hardware architecture with
a flexible data path and memory organization to support
various computation primitives in CNNs, GNNs, and ViTs.
The proposed hardware architecture is designed with a
customized instruction set to enable software-like pro-
grammability.! We develop a novel compiler design for the proposed
hardware architecture, including:
– a generic intermediate representation (IR) to represent
various ML models.
– a unified compilation workflow to map various ML
models to the proposed hardware architecture.
– the bytecode mechanism that enables the dynamic spar-
sity exploitation at runtime.! We develop a novel runtime system that comprehensively
leverages the proposed architecture design which supports
both sparse and dense computation primitives. The pro-
posed runtime system utilizes a comprehensive dynamic
sparsity exploitation strategy that is capable of exploiting
the data sparsity in the inference process to reduce the
inference latency.! We deploy the proposed accelerator on a state-of-the-art
FPGA board – Xilinx Alveo U250. We evaluate Vision-
AGILE on diverse CV tasks that involve CNNs, GNNs,
and ViTs. Compared with state-of-the-art CPU (GPU)
implementations, VisionAGILE achieves a speedup of
81.7× (4.8× ), respectively. When evaluated on standalone
CNNs, GNNs, and ViTs, VisionAGILE demonstrates com-
parable performance with state-of-the-art CNN accelera-
tors, GNN accelerators, and ViT accelerators.

The rest of this paper is structured as follows: Section II
introduces the related work; Section III provides an overview
of VisionAGILE; Section VI elaborates on the hardware de-
sign; Section V delves into the details of the compiler design;
Section VII describes the proposed runtime system; Section VIII
introduces the implementation details; Section VIII demon-
strates the evaluation results;

II. RELATED WORK

Many hardware accelerators have been proposed to accelerate
convolutional neural networks (CNNs), graph neural networks
(GNNs), or vision transformers (ViTs). However, no generic
domain-specific accelerator supports all of these models. We
introduce the related work as follows:

Domain-specific accelerators (DSAs) for CNNs: While many
DSAs [18], [19], [20], [21], [25], [26], [27] exist for CNNs,
such as AMD DPU [18], Google TPU [21], Dadiannao [26],
and OPU [20], none are designed to support various ML mod-
els, including GNNs, and ViTs. The compiler design and the
hardware architecture of CNN-based DSAs only support CNNs.
For example, in CNNs, the primary computation kernel is 2D
convolution, and Google TPU [21] utilizes the 2-D systolic array
to execute the 2-D convolution operation. However, the 2-D
systolic array cannot efficiently support graph message passing
in GNNs.

Hardware accelerators for GNNs: Many hardware acceler-
ators [22], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37] are proposed for GNNs. Some studies design hardware
accelerators [28], [30], [31], [35] for specific GNN models, such
as graph convolutional network [4]. However, these works focus
on designing hardware architecture optimized for sparse matrix
multiplication in GNNs, and their architectures are not efficient
for convolution operations in CNNs or multi-head self-attention
in ViTs. Several works developed automatic frameworks to gen-
erate accelerators per input graph [32] or per GNN model [37].
However, these studies require regenerating the optimized ac-
celerator if the input graph or GNN model changes. Moreover,
their frameworks do not support CNNs or ViTs.

Hardware accelerators for ViTs: Many hardware accelera-
tors [38], [39], [40], [41], [42] are proposed for ViTs. How-
ever, prior works either focus on designing algorithm-hardware
codesigns [38], [40] for ViTs or developing design automa-
tion frameworks or generated quantized ViTs models and the
corresponding hardware accelerators [42]. Their algorithmic
optimizations and hardware design are exclusively for ViTs and
lack the support for CNNs or GNNs.

Prior researches have focused primarily on developing DSAs
or hardware accelerators for specific models. However, a notable
gap remains in the availability of a versatile DSA capable of
supporting various models, including CNNs, GNNs, and ViTs.
In many real-world scenarios, there is a growing demand for
versatile DSAs that can effectively accommodate a variety of
models. Take, for instance, the field of autonomous driving,
where a wide range of input data modalities, such as images [43],
videos [44], and point clouds [10], require the deployment of
various models to ensure efficient data processing. Given the

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2407

Fig. 1. Overview of VisionAGILE. VisionAGILE consists of the compiler (Section V), runtime system (Section VII), and the accelerator (Section VII). The
overview of the accelerator is demonstrated in Fig. 2.

Fig. 2. Overview of accelerator.

Fig. 3. Diagram of convolutional (Conv) layer.

ever-expanding applications of diverse machine learning models
across various computer vision tasks, it becomes clear that there
is an urgent need for a DSA capable of accommodating this rich
diversity.

III. OVERVIEW

Fig. 1 depicts the key components of VisionAGILE, which
consists of a compiler, a runtime system, and a hardware ac-
celerator. Fig. 2 depicts the hardware platform to execute
VisionAGILE, which consists of a host processor to execute the
compiler, a soft processor to execute the runtime system, and
a hardware accelerator. The runtime system and the accelerator
are tightly coupled through a low-latency interconnection for
efficient data communication.

1) Compiler: The compiler is executed on the host processor.
It takes as input both the model configuration and the data
configuration, translating them into intermediate representation
(IR) (Section V-A). This intermediate representation functions
as a high-level abstraction for the input model. Subsequently,
the compiler performs a series of steps to produce bytecode for

the runtime system. This bytecode is not directly executable by
the hardware accelerator; instead, it acts as a bridge between
the high-level intermediate representation and the low-level
hardware instructions (computation primitives). The rationale
behind employing bytecode is rooted in the runtime system’s
ability to exploit dynamic sparsity for mapping matrix opera-
tions to low-level computation primitives based on data sparsity.
Since the level of data sparsity in intermediate results remains
unknown during the compilation phase, the compiler generates
bytecodes that does not depend on data sparsity information.

2) Runtime System: The runtime system is executed on the
soft processor. It takes the sparsity-independent bytecode (See
Section V-E) as input. The data sparsity annotator obtains the
data sparsity information of intermediate results from the ac-
celerator (through a Sparsity Profiler, See Section VI-C1) and
annotates the data sparsity information in the bytecode. Then,
the runtime system performs just-in-time (JIT) compilation to
translate the bytecode into low-level instructions for hardware
execution. During runtime, the runtime system performs two
optimizations to reduce the inference latency: (1) sparsity-aware
matrix operation to primitive mapping (Section VII-A) to exploit
the data sparsity for reducing computation complexity and (2)
dynamic task scheduling for workload balance (Section VII-B).

3) Accelerator: The hardware accelerator is equipped with
a flexible data path and memory organization to support various
computation primitives in CNNs, GNNs, and ViTs. Given that
different computation primitives require varying data layouts
and formats, the accelerator incorporates efficient hardware
mechanisms for the transformation of both the data layout and
the format. Furthermore, in light of the runtime system’s need
for intermediate result data sparsity, the accelerator is equipped
with a data sparsity profiler (Section VI-C1) to quickly profile
the data sparsity information of these intermediate results.

IV. COMPILER DESIGN

This Section introduces the compiler design in detail, includ-
ing (1) the intermediate representation to represent the com-
putation graph of the input model, (2) the unified compilation
workflow to map various models to the hardware accelerator,

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2408 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

TABLE I
INTERMEDIATE REPRESENTATION (IR) OF THE COMPUTATION LAYERS IN

CNNS, GNNS, AND VITS

Fig. 4. Examples of using the IR to represent the computation graphs (task
dependency graphs) of CNN, GNN, and ViT.

and (3) the proposed bytecode that connects the compiler and
the runtime system.

A. Intermediate Representation

We identify the essential computation layers in CNNs, GNNs,
and ViTs, as summarized in Table I. These layers are divided
into several categories. These computation layers can represent
a broad range of models, and several examples are shown in
Fig. 4. The intermediate representation (IR) of a computation
layer stores the key parameters of this layer. For an input model,
the compiler first translates it into an intermediate representation
that represents the computation graph (i.e., task dependency
graph) of the inference process. We use TQ to denote the task
dependency graph represented by the IR for the input model. In
TQ, each node represents a computation layer, and the edges
indicate the data dependencies between nodes (layers). See the
examples in Fig. 4. We introduce these computation layers as
follows:

Convolutional (Conv) Layer: Conv Layer is a CNN-specific
layer and is essential in CNNs. As shown in Fig. 3, the input
to a Conv layer is indicated as Fin that has cin feature maps,
each having a size of hin × win. The output of a Conv layer is

denoted as Fout which has cout feature maps with each having
the size of hout × wout. The convolution kernel W has the size
of cout × cin × k1 × k2. A Conv Layer can be expressed as:
Fout[j] =

∑cin−1
g=0 W[j, g] ⋆ Fin[g], where F[g] denotes the gth

feature map of F, W[j, g] ∈ Rk1×k2 denotes the kernel matrix
corresponding to Fout[j] and Fin[k], and ⋆ is the 2D convolution
operator.

Message Passing (MP) Layer: A message passing layer is
used in GNNs for message passing within graph G(V, E). The
input are vertex feature vectors{hin[v] ∈ Rf : v ∈ V} and edges
{evu : evu ∈ E}. The output vertex feature vectors {hout[v] ∈
Rf : v ∈ V} are obtained through message passing:

hout[v] = ρ({euv · hin[u] : u ∈ N (v)}) (1)

where N (v) denotes the set of neighbors of v, and ρ() is the
element-wise reduction function, such as Max() and Sum().

Vector Inner Product (VIP) Layer: In many GNNs (e.g.,
GAT [6]), the inner product of two vertex feature vectors is used
to calculate the edge weight. The inputs are the vertex feature
vectors {hin[v] ∈ Rf : v ∈ V}, and predefined edge connectiv-
ity {evu : evu ∈ E} with the value of evu to be calculated. The
calculation of evu can be expressed as: euv = ⟨hin[u],hin[v]⟩
where ⟨, ⟩ denotes vector inner product.

Multi-head Self-attention (MSA) Layer: Multi-head self-
attention (MSA) layer is the basic building block in ViTs. The
input to the MSA layer is a feature matrix Hin ∈ RN×D with
each row being a vector token. N is the number of input tokens
andD is the length of each token. MSA introduces the concept of
query, key, and value, abbreviated as Q, K, and V, respectively.
The computation process of an MSA layer can be represented
as:

Qi = Hin ×WQ
i ;Ki = Hin ×WK

i ;Vi = Hin ×WV
i ;

Pi = softmax(Qi ×K⊤i /
√
h);

Gi = Pi ×Vi;

Hout = [G1;G2; . . .;Gk]×Wmsa;

whereWQ
i ,WK

i ,WK
i ∈ RD×h, and Wmsa ∈ Rk·h×D (2)

where k (1 ! i ! k) is the number of attention head.
Qi, Ki, and Vi are the query matrix, key matrix, and value

matrix of ith head, respectively. h is the hidden dimension, Pi

is the attention score matrix of ith head, Gi is the aggregated
values calculated through applying the attention score, and
Hout ∈ RN×D is the output of the MSA layer. {WQ

i , WK
i ,

WV
i : (1 ! i ! k)}, and Wmsa are the weight matrices.
Common Layers: There is a set of commonly used layers in

CNNs, GNNs, and ViTs, such as softmax layer, element-wise
activation layer, linear layer, and normalization layer (e.g., layer
normalization, batch normalization).

Data Manipulation (DM) Layers: A data manipulation layer
defines the necessary data manipulation operations required to
be performed between two computation layers, such as matrix
transpose.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2409

TABLE II
SET OF MATRIX OPERATIONS

B. Step 1: Layer Fusion

Several types of layers can be combined with adjacent layers
to facilitate task-level parallelism, reduce external memory traf-
fic, and reduce overall computational complexity. This leads to
the proposed layer fusion optimization. (1) Activation Fusion:
An activation layer can be merged with its preceding layer (e.g.,
the Convolutional layer). The element-wise activation operation
can be executed immediately after its preceding layer without
reloading the preceding layer’s output. (2) Norm Fusion: The
coefficients are fixed during inference in the element-wise nor-
malization operation. Hence, the coefficients of a Norm layer
can be merged with the weights and biases of its adjacent con-
volutional or linear transformation layer. This reduces external
memory traffic and overall computational complexity. (3) Data
Manipulation Fusion: A Data Manipulation (DM) layer can be
combined with its subsequent computation layer. Consequently,
the data manipulation operations and the computations of the
following layer can be pipelined, enabling task-level parallelism.

C. Step 2: Mapping Computation Layers to Matrix Operations

Step 2 maps each computation layer to matrix operations
(Table II) that are associated with basic computation primitives
supported by the accelerator.

Mapping Conv Layer: We employ the kn2row algorithm [46]
to map a Conv Layer into matrix operations (See Fig. 5). The
convolution kernel matrix W is rearranged into k1 × k2 sub-
matrices, denoted as {MKE(i) : 0 ! i ! k1k2 − 1}, where each
MKE(i) has dimensions cin × cout. The input feature mapsFin are
organized into a matrix denoted MIF of size cin × hinwin, with
each input feature map represented as a row in this matrix. Each
MKE(i) is multiplied by MIF to obtain k1k2 output matrices, de-
noted as {MOF(i) : 0 ! i ! k1k2 − 1}, each having dimensions
cout × houtwout. Through shift and add (shift-add) operations, the
k1k2 output matrices are merged into a single output matrixMOF

of size cout × houtwout. MOF can be further reorganized back to
cout output feature maps. Consequently, a Conv Layer is mapped
to matrix multiplication and matrix addition operations.

Discussion on the mapping of Conv Layer: The proposed
mapping strategy brings several benefits: (1) The computation
of a Conv Layer can be easily mapped to the matrix operations
associated with the computation primitives. (2) The reorganiza-
tion of data layout for the kernel matrix (W) occurs at compile
time, incurring a one-time cost. This eliminates the need for

Fig. 5. Mapping a convolutional layer to matrix operations.

data layout transformations at runtime. (3) The data layout for
both the input feature maps and the output feature maps remains
consistent without the need for data layout transformations
between consecutive Conv Layers. (4) Most importantly, the
data layout of the input/output feature maps can accommodate
the data layout of GNNs and ViTs in computer vision tasks. For
example, in GNN-based image segmentation [47], each input
feature map is treated as a vertex, which corresponds to a row
in matrix MIF/MOF (Fig. 5). Moreover, in many GNNs or ViTs,
a single pixel or a patch of pixels in the feature maps forms a
feature vector, corresponding to single or multiple columns in
matrixMIF/MOF. As a result, the computation layers of GNNs or
ViTs can directly fetch the vertex feature vectors fromMIF/MOF

or transposed version ofMIF/MOF, without complex data layout
transformation. For example, the well-known im2col [48] map-
ping algorithm needs to duplicate the features and reorganize
the feature maps based on the kernel matrix W, which may lead
to a large overhead.

Mapping Messaging Passing Layer: A messaging passing
layer operates on an input graph G(V, E), and is assigned to
matrix multiplication A×H, where A ∈ R|V|×|V| denotes the
graph adjacency matrix, and H ∈ R|V|×f represents the feature
matrix which is the concatenation of vertex feature vectors.

Mapping Vector Inner Product (VIP) Layer: A vector inner
product (VIP) layer can be mapped to the sampled dense-dense
matrix multiplication. For a VIP layer, suppose the adjacency
matrix of the input graph is A and the concatenation of the
input vertex feature vectors {hin[v] ∈ Rf : v ∈ V} is Hin. The
output feature matrix is calculated byHout = A⊙ (Hin ×H⊤in),
where ⊙ is the element-wise multiplication.

Mapping Multi-head Self-attention Layer: The computation
process of a multi-head self-attention layer is demonstrated in
(2). The processing of calculating queries Qi(1 ! i ! k), keys
Ki(1 ! i ! k), and values Vi(1 ! i ! k) are mapped to ma-
trix multiplications. The process of calculating attention scores
Pi(1 ! i ! k) is mapped to matrix multiplication, scalar-matrix

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2410 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Algorithm 1: Mapping Computation Layers to Matrix Op-
erations.
Input: Task dependency graph TQ of the input model with

each node represents a computation layer;
Output: Task dependency graph TQ of the input model

with each node represents a set of matrix operations
associated with a computation layer.

1: for each computation layer l in TQ do
2: Map layer l to matrix operations

multiplication, matrix reduction, and matrix-vector multiplica-
tion. Moreover, the process of calculating Gi(1 ! i ! k) and
Hout is mapped to matrix multiplication.

Mapping Common Layers: Similarly, the common layers can
be mapped to the matrix operations in Table II.

D. Step 3: Data Tiling and Sparsity Preprocessing

Through step 2, in the computation graph (task dependency
graph), each computation layer is mapped to a set of matrix
operations. A matrix operation generated in step 2 is denoted
as M(Z = q(X,Y)), where X and Y are the input matrices,
Z is the output matrices, and q(·) denotes the operator (e.g.,
matrix multiplication, matrix addition). Due to the limited size of
on-chip buffers, data tiling is required. Since each computation
layer is mapped to matrix operations (Table II), the compiler
performs two-dimensional (2-D) block data partitioning for
each matrix operation. Therefore, each large matrix operation
is decomposed into a set of matrix operations of smaller size.
Suppose the on-chip memory size is N ×N . For example, for
a matrix multiplication Z = X×Y, we perform 2-D block
partitioning for X, Y, and Z such that each output partition
Zij ∈ RN×N is calculated by Zij =

∑
Xik ×Ykj . We define

the workload for calculating an output partition T (Zij) as a
computation task. Therefore, a matrix operation is partitioned
into a set of independent computation tasks. As these output
partitions have no data dependence between each other, these
computation tasks can executed in parallel. For the data that
are already known at compile time (e.g., weight matrices, input
graph adjacency matrix), the compiler profiles their data spar-
sity. For the intermediate results that are unknown at compile
time, the compiler puts placeholders for its data sparsity. The
accelerator will profile their data sparsity at runtime and send the
sparsity information to the runtime system. The runtime system
uses the data sparsity information to perform dynamic sparsity
exploitation.

E. Step 4: Bytecode Generation

Unlike the existing compilers (e.g., GraphAGILE [22] and
OPU [20]) for ML accelerators which directly generate hardware
instructions, VisionAGILE’s compiler produces a sequence of
bytecodes. Table III shows the bytecodes that represent matrix
operations. Note that the hardware accelerator does not directly
execute these bytecodes; instead, the runtime system performs
just-in-time (JIT) compilation to generate hardware instructions
from the bytecodes dynamically. A bytecode defines a matrix

Algorithm 2: Data Tiling and Sparsity Preprocessing.
Input: Task dependency graph TQ of the input model with

each matrix operation unpartitioned;
Output: Task dependency graph TQ of the input model

with each matrix operation partitioned.
1: for each matrix operation M(Z = q(X,Y)) in TQ do
2: Z has the dimension of d1 × d2
3: Perform 2-D block data partitioning for Z,X,Y
4: Obtain a set of computation tasks {T (Zij) : 1 ! i !

d1
N , 1 ! j ! d2

N } for calculating M(Z = q(X,Y)),
where T (Zij) denotes the computation task for
calculating Zij

5: Profile the data sparsity of the data blocks that are
known at compile time

operation, including the metadata of the matrix operation and
input matrices. These metadata consists of data sparsity, data
layout, and data format of input matrices. These properties can
be determined at compile time or runtime, depending on their
availability. This flexibility in the bytecode enables the imple-
mentation of our proposed runtime optimizations: (1) Dynamic
sparsity exploitation: First, bytecode generation does not rely
on data sparsity, layout, or format information. This enables
the runtime system to perform dynamic sparsity exploitation
that maps matrix operations to hardware primitives dynamically.
Since the data sparsity of intermediate results is unknown during
compilation, the compiler does not need to deal with the data
sparsity information for the intermediate results. The hardware
accelerator will profile the data sparsity for intermediates results
and annotate it to the bytecode at runtime. (2) Determining
data layout and data sparsity dynamically at runtime: As data
sparsity information for intermediate results remains unknown
at compile time, the corresponding data layout and data format
are also unknown. Using bytecode allows the runtime system to
dynamically determine the data layout and format for the input
matrices. (3) Dynamic task scheduling: Utilizing bytecode also
facilitates dynamic task scheduling by the runtime system for
load balance.

V. HARDWARE DESIGN

This Section introduces the hardware architecture design, in-
cluding the key computation primitives supported by accelerator
(Section V-A), and the microarchitecture design.

A. Computation Primitives

The overview of the hardware platform is shown in Fig.
2. The hardware accelerator of VisionAGILE consists of a
controller and multiple parallel processing elements (PEs). A
PE can execute a set of computation primitives associated
with the matrix operations. Note that a matrix multiplica-
tion operation can be mapped to various hardware primitives
based on the data sparsity. For other matrix operations, each
of them corresponds to one hardware primitive. The mapping

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2411

TABLE III
BYTECODE OF VISIONAGILE

TABLE IV
MAPPING BETWEEN MATRIX OPERATIONS AND COMPUTATION PRIMITIVES

between matrix operations and hardware primitives is elab-
orated in Table IV. Note that a matrix multiplication opera-
tion can be mapped to three hardware primitives: Dense-dense
matrix multiplication (DDMM), Sparse-dense matrix multi-
plication (SpDMM), and Sparse-sparse matrix multiplication
(SPMM).

The proposed mapping strategy for matrix multiplication en-
ables the runtime system to perform dynamic sparsity exploita-
tion that dynamically maps the matrix multiplication operation
to DDMM, SpDMM, or SPMM based on the data sparsity. This
can potentially reduce the computational complexity, leading to
reduced inference latency.

B. Data Format and Data Layout

We define the data format and data layout that are used by
various computation primitives. Data format: We store the input
matrices for a primitive using sparse format or dense format. We
use the coordinate (COO) format to represent a sparse matrix
where a nonzero element is represented using a three-tuple (col,
row, val) denoting the column index, row index, and value,
respectively. The COO format is the standard data format used in
state-of-the-art GNN libraries [49]. Data layout: Data layout de-
fines the order of storing the matrix elements. For a sparse matrix
in row-major order, elements within the same row are stored in
contiguous memory locations. Otherwise, it is in column-major
order. Similarly, the row-major and column-major order for a
dense matrix can be derived.

Notations: For a matrix X, we use X[i] to denote the ith row
of X and use X[i : j] to denote the submatrix of X from ith row

to (j − 1)th row. We use X[i][j] to denote the element of X at
the ith row and the jth column. An element (j, i, val) in sparse
matrix X is also denoted as X[i][j] = val.

C. Microarchitecture

The microarchitecture of the processing element (PE) is de-
picted in Fig. 6. The PE has a flexible data path and memory or-
ganization designed to execute various computation primitives.
The PE offers multiple execution modes, each corresponding to
a specific hardware primitive. The PE is equipped with hard-
ware multiplexers to select its execution mode, and switching
between these modes incurs a one-clock-cycle overhead. The
PE includes a two-dimensional Arithmetic Logic Unit (ALU)
array with the dimension of paa × paa. Each ALU can perform
basic arithmetic and logic operations, such as multiplication
and addition. Additionally, there are several data buffers for
storing input and output data, including Scalar Buffer (SB),
Vector Buffer 1 (VB1), Vector Buffer 2 (VB2), and Result
Buffer (RB). Each data buffer has paa memory banks to en-
able parallel on-chip memory access. There are all-to-all data
communication networks – a Buffer-to-Buffer (B2B) routing
network and a Buffer-to-pipeline routing network. Furthermore,
each PE incorporates an Instruction Queue (IQ) that receives
incoming instructions generated by the runtime system and an
Instruction Decoder (ID) responsible for decoding the instruc-
tions for hardware execution. Moreover, for dynamic sparsity
exploitation, the PE incorporates a Data Layout Management
Unit (DLM) and a Data Format Management Unit (DFM) for
Data Layout and format transformation during runtime. The
Sparsity Profiler profiles the data sparsity during runtime and
sends the data sparsity information to the soft processor. We
introduce the various execution modes of the PE as follows:

DDMM mode: It executes matrix multiplication Z = X×Y
and takes both two input matrices as dense matrices. To this
end, the ALU array is organized as a two-dimensional systolic
array (See Fig. 6). The ALU array executes matrix multiplication
using output stationary dataflow and can execute p2aa multiply
accumulation (MAC) operations per clock cycle.

SpDMM Mode: It executes matrix multiplication Z = X×
Y, and takes X as sparse matrix and Y as dense matrix. To this
end, the ALU array is divided intopaa/2Scatter Units (SCU) and
paa/2Gather Units (GAU). Each Scatter Unit or Gather Unit has
an ALU array of size paa/2× 2. SpDMM is executed using the
Scatter-Gather Paradigm as shown in Algorithm 3. The sparse
matrix X (in Scalar Buffer) is stored in row-major order using

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2412 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 6. Architecture of the processing element and the supported execution modes each corresponds to a computation primitive.

COO format. The dense matrix Y is stored in row-major order
using the dense format, andY[i] is stored in the bank (imod paa)
of Vector Buffer 1. Each non-zero element e(i, j, val) in X is
fetched from the Scalar Buffer (paa/2 elements can be fetched
from Scalar Buffer per clock cycle) and sent to the B2B network.
Then, e is routed to bank (imod paa) for fetching Y[i], which
forms the input data pair (Y[i], e). The input pair is routed to
the (j mod paa/2)th SCU and GAU. The Scatter Unit (SCU)
performs the multiplication of e.val and Y[i] to produce the
intermediate result u. Then, the corresponding Gather Unit adds
u to Z[j]. Unlike the DDMM mode, SpDMM mode can skip the
computation for the zero elements in matrix X. It can reduce
the computation complexity when there are zero elements in X.
SpDMM mode can execute p2aa MAC operations per clock cycle.

SPMM mode: It executes matrix multiplication Z = X×Y
and takes both X and Y as sparse matrices. The ALU array is
organized as paa parallel Sparse Computation pipelines (SCP).
Each SCP has two ALUs to perform the multiplication of two
non-zero elements and the merging of intermediate results. Each
SCP has a Data Queue (DQ) to store the intermediate results in
sparse format. The multiplication of two input sparse matrices is

Algorithm 3: SpDMM using Scatter-Gather Paradigm.
Input: Sparse matrix (Scalar Buffer): X; Dense matrix

(Vector Buffer 1): Y ;
Output: Output matrix (Result Buffer): Z = X × Y ;

1: while not done do
2: for each e(i, j, value) in X Parallel do ◃Scatter

Phase
3: B2B routes e to VB1
4: Fetch Y [i] from VB1
5: Form input pair (Y [i], e)
6: B2P routes input pair to (j mod paa)th SCU and

GAU
7: for each input pair Parallel do ◃ Gather Phase
8: u←Scatter(Y [i], e.value) ◃ Scatter Unit (SCU)
9: Fetch Z[j] from Result Buffer

10: Z[j]← Gather(u) ◃Gather Unit (GAU)

executed using Row-wise Product with Scatter-Gather paradigm
as shown in Algorithm 4. For Row-wise Product, a row Z[j] of

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2413

Algorithm 4: SPMM Using Row-Wise Product With
Scatter-Gather Paradigm.
Input: Sparse matrix (Scalar Buffer): X; Sparse matrix

(Vector Buffer 1): Y;
Output: Output matrix (Result Buffer): Z = X×Y;

1: for each row Z[j] in Z Parallel do
2: Assign the workload of Z[j] to (j mod paa)th SCP
3: load Z[j] to the Data Queue from Results Buffer
4: for each e(i, j, value) in X[j] do ◃ Scatter Phase
5: B2B routes e to VB1
6: Fetch Y[i] from VB1
7: Form input pair (Y[i], e)
8: B2P routes input pair to (j mod paa)th SCP
9: for each input pair (Y[i], e) do ◃ Gather Phase

10: for each non-zero Y[i][k] in Y[i] do ◃ SCP
11: Produce u← e.value×Y[i][k]
12: Accumulate Z[j][k]← u
13: Store Z[j] to the Result Buffer ◃ Obtain Z[j]

output matrix Z is calculated through:

Z[j] =
∑

i

X[j][i] ∗ Y [i] (3)

For calculating the output matrix Z, an SCP is assigned the
workload of a row of output matrix. paa SCPs can calculate
paa output rows in parallel until all the rows of output matri-
ces are calculated. To efficiently execute a Row-wise Product,
all input sparse matrices (X, Y) and output matrices Y are
stored using COO format in row-major order. Compared with
the DDMM mode, the SPMM mode can skip the computa-
tion for the zero-elements in X and Y. SPMM mode can
execute paa multiply-accumulate (MAC) operations per clock
cycle.

MatAdd mode: It executes matrix addition Z = X×Y. The
two input matrices are stored in Vector Buffer 1, where X is
stored in banks i (0 ! i ! paa, (imod 2) == 0) andY is stored
in banks j (0 ! j ! paa, (j mod 2) == 1). Half of the ALU
array is organized as paa/2 vector adders (VA) with each having
paa ALUs to perform addition. The paa/2 vector adders can
execute p2aa/2 addition operations per clock cycle.

SDDMM mode: It executes sampled dense-dense matrix mul-
tiplication Z = S⊙ (H×H⊤). S is the sampling matrix stored
in Scalar Buffer using sparse format. H is a dense matrix stored
in Vector Buffer 1 using dense format and row-major order.
The ALU array is organized as paa/2 adder trees (ADT). Each
adder tree performs the vector inner product of two vectors.
The execution of SDDMM follows the Scatter-Gather Paradigm
as shown in Algorithm 5. For a non-zero element e(i, j) of S
from bank k (0 ! k ! paa − 1) of Scalar Buffer, the indices i
and j are routed to Vector Buffer 1 separately through the B2B
network for fetching H[i] and Hj . Then, H[i] and H[j] are
routed to the kth adder tree through the B2P network for vector
inner product. The partial result ⟨H[i],H[j]⟩ is accumulated to

Algorithm 5: SDDMM Using Scatter-Gather Paradigm.
Input: Sampling matrix (Scalar Buffer): S; Dense matrix

(Vector Buffer 1): H;
Output: Output matrix (Result Buffer): Z = S⊙

(H×H⊤);
1: for each non-zero e(i, j) in S Parallel do ◃ Scatter

Phase
2: Suppose e(i, j) is from bank k of Scalar Buffer
3: B2B routes indices i and j to VB1
4: Fetch H[i] and H[j] from VB1
5: B2P routes H[i] and H[j] to (k mod paa)th ADT
6: for each input pair (H[i], H[j]) do ◃ Gather Phase
7: Produce u← ⟨H[i],H[j]⟩
8: Accumulate Z[i][j]← u

Z[i][j]. SDDMM mode can execute p2aa/2 MAC operations per
clock cycle.

MVMat mode and SMMat mode: MVMat mode executes
matrix-vector multiplication Z = X×V and SMMat mode
executes scalar-matrix multiplication Z = αX. Both matrix-
vector multiplication and scalar-matrix multiplication can be
decomposed into a set of scalar-vector multiplication. Therefore,
these two execution modes share the same data path as shown
in Fig. 6. The input scalars are stored in the Scalar Buffer and
the input vectors are stored in Vector Buffer 1. The ALU array
is organized into multiple Vector Multipliers (VM) and multiple
Vector Accumulators (VACC), with each having paa ALUs.
MVMat or SMMat can execute p2aa/2MAC operations per clock
cycle.

MatRedu mode: For an input matrix X, MatRedu performs
reduction/accumulation in one dimension of X, which can be
used to execute the softmax activation function.

MatEF mode: It utilizes the Activation Unit (AU) and per-
forms the element-wise activation for the input X.

1) Sparsity Profiler: The sparsity profiler is composed of an
array of hardware comparators that compare each output element
to zero, counting the total number of zeros in the output matrices.
After the entire output matrix is processed, the profiler then uses
a hardware divider to calculate the sparsity of the output matrix
by dividing the total number of zeros by the total number of
elements. The sparsity of the matrix X is denoted as β(X) (see
Section VII-A).

D. Data Layout and Data Format Management

As summarized in Table V, different computation primitives
require different data layouts and formats for input and output
data.

To this end, we develop the hardware mechanisms for trans-
forming data layout and format, which are implemented in
the Data Layout Management (DLM) Unit and Data Format
Management (DFM) Unit.

Data Layout Management (DLM) Unit: DLM Unit transforms
the data layout between row-major order and column-major
order for the data stored in dense format, equivalent to matrix
transpose. The process of matrix transpose and the proposed

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2414 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

TABLE V
DATA BUFFER, DATA LAYOUT AND DATA FORMAT REQUIRED BY VARIOUS

HARDWARE PRIMITIVES

Fig. 7. Data layout transformation process and the proposed Data Layout
Management Unit.

DLM Unit are illustrated in Fig. 7. In the DLM Unit, there is a
Vector Shift Unit, which performs the circular shift for the rows
of the input matrices. Then, the Vector Shift Unit writes the input
rows to the Memory Bank Array (MBA). The stored vectors
are read diagonally from the Memory Bank Array. Through the
write-and-read process, the input matrix is written in row-major
order to the MBA and read in column-major order from the
MBA.

Fig. 8. Dense-to-sparse Module.

Data Format Management (DFM) Unit: DFM Unit trans-
forms the data format between sparse format and dense for-
mat. It has two modules – Dense-to-sparse (D2S) Module and
Sparse-to-dense (S2D) Module. Suppose the D2S Module can
read n elements per clock cycle. Then, the D2S Module has
log(n) pipeline stages. For an n-element array, we use the
value of Prefix-Sum to indicate the number of zeros before an
element in this array. An example is shown in Fig. 8. In Stage
i (1 ! i ! log(n)), an array element will be shifted left by 2i−1

positions if the (i− 1)th bit of Prefix Sum value is equal to 1.
The throughput of D2S Module is n elements per cycle. For
example, a DDR4 channel of the FPGA board can output 16
32-bit data per cycle. A D2S Module of n = 16 is sufficient to
match the data rate of a DDR4 channel. The architecture of S2D
is similar to D2S, but in the reverse direction.

1) Analysis of Overhead: Data reorganization, including
both data layout and format transformations, is performed during
data loading from DDR memory, hiding the reorganization
cost within the data loading process. Specifically, the Data
Layout Management Unit (DLM) reads and outputs n data per
cycle, while the Dense-to-sparse or Sparse-to-dense modules
also process n data per cycle. By selecting n to match the
DDR memory channel data rate (for example, a DDR4 memory
channel outputs 16 32-bit data per clock cycle, so we setn = 16),
data reorganization is executed in a streaming fashion as data is
loaded. Therefore, the overhead of data reorganization is hidden
by the data loading.

E. Instruction Set

We develop a customized instruction set, including computa-
tion instructions, memory read/write instructions. (1) Computa-
tion Instructions includes the instruction for each computation
primitives (e.g., DDMM instruction). Each instruction contains
the meta data (e.g., matrix size) of the corresponding compu-
tation primitive. The Instruction Decoder decodes the instruc-
tion and generates a control signal for the PE to execute the
hardware primitives in pipelined manner. Memory Read/Write
Instructions launch the data transactions between the on-chip
buffer and the external memory.

VI. RUNTIME SYSTEM

The compiler generates a sequence of bytecode from the
configuration of the input model and input data. At runtime, the
runtime system loads the bytecode and performs just-in-time
(JIT) compilation to generate instructions for hardware exe-
cution. During this JIT process, the runtime system performs

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2415

TABLE VI
PERFORMANCE MODEL OF EXECUTING A MATRIX MULTIPLICATION

OPERATION Z = X×Y USING THREE EXECUTION MODES

two optimizations (1) dynamic sparsity exploitation: It exploits
the data sparsity in matrix multiplication operation to reduce
the total computation complexity, thus reducing the inference
latency; (2) dynamic task scheduling: it automatically balances
the workload between multiple processing elements to improve
the runtime resource utilization.

A. Dynamic Sparsity Exploitation

In the matrix multiplication (MM) operations Z = X×Y
defined in the bytecode (See Table III), there can be data sparsity
in the two input matrices X and Y. Based on the sparsity of X
and Y, the runtime system can dynamically map the MM oper-
ation to the computation primitives, including dense-dense ma-
trix multiplication (DDMM), sparse-dense matrix multiplication
(SpDMM), and sparse-sparse matrix multiplication (SPMM).
By exploiting the data sparsity, we can skip the zero elements
and reduce the total computation complexity. Several design
considerations enable our proposed dynamic sparsity exploita-
tion strategy: (1) As the data sparsity of the intermediate results
is unknown at compile time, the compiler generates the bytecode
that does not depend on the data sparsity. (2) Our proposed
accelerator incorporates the hardware sparsity profiler that can
quickly profile the data sparsity of the intermediate results. (3)
Our proposed accelerator design has a flexible data path and
memory organization to support the three primitives (DDMM,
SpDMM, and SPMM) that can execute matrix multiplication of
various data sparsity.

For dynamic sparsity exploitation, we develop the perfor-
mance model to decide how to map the matrix multiplication op-
eration (Z = X×Y, X ∈ Rd1×d2 , Y ∈ Rd2×d3 , X ∈ Rd1×d3 )
to the computation primitives (DDMM, SpDMM, and SPMM).
We define the data sparsity of a matrix X as β(X) which is
calculated through:

β(X) =
# of non-zero elements in X

total # of elements in X
(4)

The performance model for three execution modes (GEMM
mode, SpDMM mode, and SPMM mode) is demonstrated in
Table VI. To execute the matrix multiplication (Z = X×Y,
X ∈ Rd1×d2 , Y ∈ Rd2×d3 , X ∈ Rd1×d3 ), GEMM mode can
execute p2aa MAC operations per cycle (See Section VI-C).
Therefore, GEMM mode takes d1×d2×d3

p2
aa

clock cycles to ex-
ecute Z = X×Y. SpDMM mode can execute p2aa/2 MACs

Algorithm 6: Dynamic Sparsity Exploitation Strategy.
Input: Input matrix X and input matrix Y;
Output: Computation primitive (TargetPrimitive(X, Y)) to

execute Z = X×Y;
1: TargetPrimitive(X, Y)← NULL
2: The buffers to store X and Y: bufX, bufY
3: βmin = Min(β(X),β(Y))
4: βmax = Max(β(X),β(Y))
5: if βmin = 0 then ◃ Skip empty input matrix
6: Skip the multiplication of X and Y
7: if βmin # 1

2 then ◃ Case 1
8: TargetPrimitive(X, Y)← GEMM
9: bufX ← VB1 and bufY ← VB2

10: else
11: if βmax # 2

paa
then ◃ Case 2

12: TargetPrimitive(X, Y)← SpDMM
13: bufargmin(β(M))← SB, (M ∈ {X,Y})
14: bufargmax(β(M))← VB1, (M ∈ {X,Y})
15: else ◃ Case 3
16: TargetPrimitive(X, Y)← SPMM
17: bufX ← SB and bufY ← VB1

per clock cycle and can skip the zero elements in one in-
put matrix (either X or Y). Therefore, SpDMM mode takes
βmin × 2×d1×d2×d3

p2
aa

clock cycles to execute Z = X×Y, where
βmin = Min(β(X),β(Y)). SPMM mode can execute paa MACs
per clock cycle and skip the zero elements in both input matrices.
Therefore, SPMM mode takes at most β(X)×β(Y)×d1×d2×d3

paa

clock cycles to execute Z = X×Y. Based on the performance
model, we propose the dynamic mapping algorithm (Algorithm
6) that maps matrix multiplication operation to computation
primitive based on data sparsity.

Note that the two thresholds (in line 7 (βmin # 1
2 ), and in

line 11 (βmax # 2
paa

)) in Algorithm 6 are determined based on
the performance model of tgemm, tspdmm, and tspmm (Table VI).
This leads to three cases in Algorithm 6: (1) Case 1: βmin # 1

2 ,
(2) Case 2: βmin < 1

2 and βmax # 2
paa

, (3) Case 3: βmin < 1
2 and

βmax < 2
paa

. The above three cases are non-overlapping and cover
the entire domain of βmin and βmax: 0 ! βmin ! βmax ! 1. For
instance, when βmin # 1

2 (Case 1), we can obtain that tgemm !
tspdmm and tgemm ! tspmm. Therefore, GEMM mode leads to the
smallest execution time for Case 1. Similarly, we derive that
SpDMM mode and SPMM mode lead to the lowest execution
time for Case 2 and Case 3, respectively.

B. Dynamic Task Scheduling

The runtime system is executed on the soft processor. At
runtime, it takes the bytecode sequence as input and performs dy-
namic task scheduling for workload balance among the parallel
PEs, as demonstrated in Algorithm 7. The runtime system sched-
ules the workload for each matrix operation M(Z = q(X,Y))
in TQ one-by-one. For all the computation tasks {T (Zij) : 1 !
i ! d1

N , 1 ! j ! d2
N } in M(Z = q(X,Y)), the runtime system

exploits a centralized load balancing scheme [50] to allocate the

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2416 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 9. Device map on Xilinx Alveo U250 FPGA board.

TABLE VII
HARDWARE RESOURCE UTILIZATION

computation tasks to the parallel PEs. For each small matrix
operation M in T (Zij), the runtime system performs dynamic
sparsity exploitation that maps this matrix operation to com-
putation primitive based on the data sparsity. Based on the
selected computation primitive, the runtime system generates
the instruction sequence for hardware execution.

VII. IMPLEMENTATION DETAILS

Implementation of hardware accelerator: We conduct com-
prehensive experiments to evaluate the performance of Vision-
AGILE. We implement the hardware design on a state-of-the-art
FPGA platform, Xilinx Alveo U250, consisting of four Super
Logic Regions (SLRs). The FPGA off-chip memory has four
DDR4 memory banks with total 77 GB/s bandwidth. We im-
plement the accelerator using Verilog to estimate the hardware
resource. We implement 7 processing elements (PEs) with each
SLR having 2 PEs except SLR1. Because half of SLR1 is occu-
pied by the soft processor, FPGA shell, and memory subsystem.
The size of ALU Array in each PE is paa × paa = 16× 16 . The
soft processor is implemented using Xilinx Microblaze [51] IP
core. We perform FPGA synthesis and place-route using Xilinx
Vivado v2022.2. The generated device map is shown in Fig. 9.
The hardware resources are obtained from Xilinx Vivado v2022
and are reported in Table VII. For performance evaluation,
we build a cycle-accurate simulator to get the cycle count.
In our design, we achieve a post-place-and-route frequency of
600 MHz for the DSPs and a frequency of 300 MHz for other
components, following the methodology in AMD DPU [18]. The
achieved post-place-and-route frequencies are used for simula-
tion. We simulate the performance of external DDR memory
using Ramulator [52].

Impact of Resource sharing: As discussed in Section VI-C,
through resource sharing, different computation primitives share
the same set of computation units (ALU Array, Activation
Units), on-chip buffers (Scalar/Vector/Result Buffers), and rout-
ing networks (B2B network and B2P network). The wires of
different primitives and multiplexers for selecting data paths

Algorithm 7: Dynamic Task Scheduling.
Input: Input bytecode sequence that defines the task

dependency graph TQ of the input model with each
matrix operation partitioned;
1: for each matrix operation M(Z = q(X,Y)) in TQ do
2: for each computation task T (Zij) in M(Z =

q(X,Y)) do
3: if there is an idle PEp then
4: Assign the workload of T (Zij) to PEp

5: for each small matrix operation M in T (Zij) do
6: Map M to primitive using Algorithm 6
7: Generate instructions for executing the

computation primitive
8: Execute the computation primitive on PEp

9: Wait until all T (Zij) in M(Z = q(X,Y)) is finished

incur extra area costs. In each PE, these wires and multiplexers
consume 37K LUTs (Table VII), taking 31% LUTs consumption
of a PE (A PE consumes 118K LUTs). Through resource sharing,
our design only costs extra 31% LUTs for supporting various
computation primitives.

Implementation of compiler: We develop the compiler us-
ing Python. The compiler takes as the input the user-defined
ML models which are developed using PyTorch [53], PyTorch
Geometric [49], and Hugging Face [54]. The compiler then
generates an intermediate representation from the user-defined
ML models. Each compilation step is wrapped as a function to
apply to the intermediate representation. Finally, the compiler
generates the bytecode for the runtime system.

Implementation of Runtime system: The runtime system is
executed on the soft processor and developed using C++.

VIII. EVALUATION RESULTS

A. Benchmark, Datasets, Baselines, and Metrics

1) Benchmark: We conduct experiments on various ML
models in computer vision tasks as shown in Table IX including
CNNs, GNNs, GNN-based CV tasks (CNN+GNN), and ViTs.
Note that we carefully select the benchmarks from diverse
computer vision tasks (Table IX), which have various model
sizes (Table XI), and the input data of various data modality and
dimensions (Table XII). Evaluating the selected benchmarks, we
expect the VisionAGILE will work similarly on a broad range
of computer vision tasks.

2) Datasets: The datasets for evaluating various models are
elaborated in Table X. The evaluated datasets are obtained from
the original papers of these models.

3) Baselines: We compare the performance of VisionAGILE
with various baseline platforms. First, we compare VisionAG-
ILE with CPU and GPU since they are flexible and can support
all models. Additionally, we compare VisionAGILE with state-
of-the-art DSAs in their respective domains. For example, we
compare VisionAGILE with state-of-the-art CNN DSAs, such
as OPU [20] and DPU [18], on c1-c5.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2417

TABLE VIII
SPECIFICATIONS OF PLATFORMS

TABLE IX
EVALUATED MODELS IN THE EXPERIMENTS

TABLE X
DATASETS AND BASELINE PLATFORMS

4) Metrics: We consider two performance metrics (1) hard-
ware execution latency: this measures the accelerator’s latency
when batch size is 1. In applications like autonomous driv-
ing [65], the data captured by the sensors come frame-by-frame
and each frame needs real-time processing for behavior plan-
ning. Low latency processing using batch size 1 is crucial for
quick responses to changing conditions and ensuring safety.
The measured latency is the time elapsed from when the input
data, model weights, and bytecode are stored in the FPGA DDR
memory until the inference results are written back to the FPGA

TABLE XI
SIZE OF THE MODELS

TABLE XII
SIZE OF INPUT DATA IN VARIOUS DATASETS

DDR memory. The latency measurement excludes both the com-
pilation time and the data (input model, input data, and bytecode)
transfer time from the host CPU to the FPGA DDR memory. The
same metric is used in measuring the performance of the baseline
CPU and GPU platforms. (2) throughput: when comparing
with state-of-the-art CNN accelerators for standalone CNNs,
we use throughput as the performance metric. CNN accelerator
performance is typically reported in terms of throughput [18],
[20].

B. Comparison With CPU and GPU Implementation

We compare the performance of VisionAGILE with state-
of-the-art CPU and GPU implementations: (1) The CPU and
GPU implementations of c1-c5 are from PyTorch library [53];
(2) The CPU and GPU implementations of g1-g3 are from
PyTorch Geometric library [49]; (3) The CPU and GPU imple-
mentations of b1-b5 are from the open-soured implementation

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2418 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

Fig. 10. Speedup over the state-of-the-art CPU and GPU implementations. Each bar shows the comparison on a specific model and datasets. For example,
c1-IN means that execute c1 on ImageNet (IN) dataset. Note that in g1-RE, g1-YE, g1-AP, g2-RE, g2-YE, g2-AP, g3-RE, g3-YE and g3-AP, the GPU
implementations run out of memory (OoM).We do not show these results in this figure.

TABLE XIII
AVERAGE SPEEDUP (BATCH SIZE 1 LATENCY) OVER CPU AND GPU

TABLE XIV
IMPACT OF DYNAMIC SPARSITY EXPLOITATION

of the original papers [66], [67], [68], [69], [70]; (4) The CPU and
GPU implementations of v1-v6 are from Hugging Face [54].
The comparison results are demonstrated in Fig. 10, which
shows the speed of inference when the batch size equals 1. On
average, VisionAGILE achieves 81.7× and 4.8× speedup over
state-of-the-art CPU and GPU implementations. The average
speedup is summarized in Table XIII . The achieved speedup of
VisionAGILE is due to several reasons: (1) VisionAGILE has
a streaming architecture with fine-grained data parallelism. It
leads to high computational efficiency when the model or input
data size is small, such as c1-IN (see Tables XII and XI for
data size and model size, respectively). In contrast, CPU and
GPU utilize coarse-grained thread-level parallelism, which is
more suitable for large models or input data, such as c5-IN and
v3-IN. However, when it comes to the small model or input data,
the CPU and GPU have large overhead for thread launch and

synchronization overhead for enabling thread-level parallelism,
which leads to high inference latency. (2) VisionAGILE has
a customized on-chip memory organization, leading to low-
latency on-chip memory access. On the contrary, the CPU and
GPU have a complex cache hierarchy, leading to large on-chip
memory access latency. Moreover, CPU or GPU have limited
cache sizes (e.g., 32KB L1 cache and 512KB L2 cache). The data
exchange among L1, L2, and L3 caches has significant overhead
and results in reduced sustained performance. (3) VisionAGILE
utilizes dynamic sparsity exploitation to reduce computational
complexity at runtime, which further reduces inference latency.
Dynamic sparsity exploitation requires collaboration between
hardware design (e.g., data layout and data format management,
sparsity profiler) and runtime system (e.g., performance model),
which are hard to achieve on CPU and GPU.

Note that when the model or the input data is extremely
large (For example, g2-FL, v2-IN, and v3-IN, See Fig. 10),
GPU outperforms VisionAGILE because the large model and
input data can enable massive thread-level parallelism for GPU
execution. Moreover, GPU has much higher peak performance
(27× higher) and external memory bandwidth (10× higher)
than VisionAGILE. Therefore, GPU can efficiently deal with
the massive computation parallelism of the large model.

1) Discussion on the Throughput of GPU: While Vision-
AGILE achieves lower latency when batch size is 1, GPU can
achieve higher throughput by increasing the batch size (e.g.,
8/16/32) as GPU has higher peak performance and memory
bandwidth. The comparison results are shown in Fig. 11. GPU
achieves 1.6×, 2.3×, and 2.8× higher throughput compared
with VisionAGILE (with data sparsity exploitation) using batch
size 4, 8, and 16, respectively. Nevertheless, this work targets
latency-sensitive applications (e.g., autonomous driving). For
higher throughput, it requires FPGA vendors to develop more
powerful FPGA boards with more hardware resources.

C. Impact of Dynamic Sparsity Exploitation

1) Impact on the Performance: We evaluate the impact of dy-
namic sparsity exploitation by comparing the performance of Vi-
sionAGILE with dynamic sparsity exploitation (With-DSE) and

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2419

Fig. 11. Comparison of throughput (images/second) with baseline CPU and GPU. The y-axis is on a logarithmic scale. Note that CPU/GPU (x) indicates that
the CPU/GPU executes the inference when the batch size is x. The throughput is divided by the throughput of GPU (1) for each dataset to show the normalized
speedup. VisionAGILE uses the batch size of 1. Note the baseline GPU cannot execute the inference for ViT-huge when batch size is 16 due to the limited size of
global memory.

Fig. 12. Distribution of inference latency of c1 (AlexNet), c2 (ResNet50), c3 (ResNet101), c4 (VGG16), and c5 (VGG19) on ImageNet dataset. X axis is the
inference latency (ms).

TABLE XV
INFERENCE LATENCY (c1, c2, c3, c4, c5) WITHOUT DYNAMIC SPARSITY

EXPLOITATION ON IMAGENET DATASET

VisionAGILE without dynamic sparsity exploitation (Without-
DSE). In the case of VisionAGILE without dynamic sparsity ex-
ploitation, the runtime system directly maps the matrix multipli-
cation operation to the hardware primitives (DDMM, SpDMM,
SPMM) without taking into account data sparsity. Specifically,
the runtime system assigns the matrix multiplication operations
of the message passing layer to SpDMM, while mapping the
matrix multiplication operations of other layers to DDMM.

The evaluation results are shown in Table XIV. On aver-
age, dynamic sparsity exploitation results in an average 1.44×
speedup across various models and datasets. Note that the evalu-
ated models are unpruned, indicating no data sparsity in weight
matrices. The effectiveness of dynamic sparsity exploitation is
particularly pronounced on specific datasets, such as CO, PU,
and CI, which exhibit substantial data sparsity in their feature
matrices. On some datasets and models (e.g., g1-RE), where
there is limited data sparsity in the input data or intermediate
results, no speedup is observed. We expect VisionAGILE to
achieve higher speedup on the pruned models which have large
sparsity in the model weights.

2) Fluctuation of Inference Latency: Due to the dynamic
sparsity exploitation, the inference latency is related to the data
sparsity of the intermediate results. For example, for CNNs or
ViTs, different input images have different intermediate results
in the intermediate layers, therefore leading to fluctuation of
inference latency. Fig. 12 shows the distribution of inference
latency of five CNNs (c1,c2,c3,c4,c5) on ImageNet dataset.
Table XV summarizes the inference latency without dynamic
sparsity exploitation. The experimental results demonstrate that

TABLE XVI
COMPARISON OF THROUGHPUT (IMAGES/SECOND) WITH CNN ACCELERATORS

ON VARIOUS CNN MODELS

TABLE XVII
COMPARISON OF HARDWARE EXECUTION LATENCY (MS) WITH

STATE-OF-THE-ART GNN ACCELERATORS

(1) the inference latency fluctuates with the input data, (2) While
the inference latency fluctuates, dynamic sparsity exploitation
does not degrade the inference latency as indicated in Table XV,
where Table XV shows the inference latency without dynamic
sparsity exploitation.

D. Comparison With State-of-the-Art Accelerators

We compare the performance of VisionAGILE with CNN
accelerators [18], [20], GNN accelerators [22], [31], and ViT ac-
celerators within their respective domains. Different accelerators
are implemented on different hardware platforms and use differ-
ent amount of hardware resources. For a fair comparison, we nor-
malize the performance (latency or throughput) by their respec-
tive peak performance (FLOPs), following the state-of-the-art

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



2420 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

TABLE XVIII
COMPARISON ON VARIOUS VIT MODELS (LATENCY / THROUGHPUT)

works [71], [72]. For example, normalized throughput is calcu-
lated by: Normalized Throughput of [X] = Throughput of [X]

Peak performance of [X]
where [X] can be AMD DPU [18], OPU [20], BoostGCN [31],
and GraphAGILE [22]. We define the normalized through-
put/latency as computation efficiency.

1) Comparison With CNN Accelerators: We compare the
performance of VisionAGILE with CNN accelerators [18], [20]
on the CNN models c1-c5. The reported performance of [18],
[20] is in throughput. The throughput of VisionAGILE is calcu-
lated by 1

latency . As shown in Table XVI, VisionAGILE achieves
the computation efficiency of0.98×,0.9×, and1.15× compared
to DPU, OPU and GCV-Turbo, respectively. The results indicate
that VisionAGILE achieves comparable computation efficiency
in various CNN models. Compared with DPU and OPU, Vi-
sionAGILE achieves slightly lower computation efficiency due
to two design trade-offs: (1) VisionAGILE’s versatility, which
supports various models, including CNNs, GNNs, and ViTs,
sacrificing some CNN-specific architectural optimizations. For
example, OPU’s multi-level parallelism is fine-tuned for CNN
convolution operations, whereas VisionAGILE’s architecture
is more generalized. (2) VisionAGILE’s compilation flow is
generalized for various models but cannot support specific
convolution-specific optimizations. DPU selects dataflow for
convolutional layers based on kernel size, which cannot be
directly applied to GNN layers.

Compared with GCV-Turbo, VisionAGILE achieves higher
computation efficiency because VisionAGILE utilizes the dy-
namic sparsity exploitation strategy to reduce the computation
complexity at runtime. When there is a large data sparsity in
the intermediate results (e.g., c1, c4, and c5), VisionAGILE
achieves significant performance improvement. Note that the
evaluated CNN models are unpruned with no data sparsity in the
weight matrices. We expect that VisionAGILE achieves higher
speedup on the pruned CNN models.

2) Comparison With GNN Accelerators: We compare Vi-
sionAGILE with the state-of-the-art GNN accelerators, Boost-
GCN [31], GraphAGILE [22], and GCV-Turbo. Latency mea-
surements follow the methodology from [22], [31], focusing on
a two-layer GCN model and graph datasets shown in Table XII.
Table XVII presents the results, where latency is normalized by
the peak performance of the accelerator to obtain the speedup.
VisionAGILE achieves 1.99×, 18.4×, and 17.8× computation
efficiency of BoostGCN, GraphAGILE, and GCV-Turbo. The
superior performance compared with BoostGCN can be at-
tributed to BoostGCN’s separate hardware modules for sparse
and dense computation in GNNs, leading to the underutilization
of runtime resources. In contrast, VisionAGILE optimizes re-
source utilization by employing a unified architecture for sparse

and dense computations in GNNs. The higher performance
over GraphAGILE and GCV-Turbo is due to VisionAGILE’s
utilization of dynamic sparsity exploitation that exploits the data
sparsity in the intermediate results and input feature matrices,
leading to significant performance improvement on the graph
dataset with high data sparsity.

3) Comparison With ViT Accelerators: We compare the per-
formance of VisionAGILE with CPU and GPU on various ViT
models v1-v5. The experimental results are demonstrated in
Table XVIII. Compared with the baseline GPU platform, Vision-
AGILE achieves lower latency (0.27×) but lower throughput
(0.43×). Because GPU has higher peak performance (25.6×)
and massive thread-level parallelism, GPU can perform multiple
input images in parallel.

Note that the evaluated ViT models are unpruned, so there is
limited data sparsity in weight matrices or intermediate results.
Since VisionAGILE exploits the dynamic data sparsity, we
expect VisionAGILE to achieve higher throughput on pruned
ViT models than CPU and GPU. While AMD DPU [18] can
also execute ViT, there is no reported performance in [73] for
ViT on DPU. Therefore, we leave the comparison with AMD
DPU as the future work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we proposed VisionAGILE, a versatile domain-
specific accelerator for computer vision tasks. VisionAGILE
has a flexible hardware architecture design to support various
machine learning models in computer vision, including CNNs,
GNNs, and ViTs. VisionAGILE has a unified compilation work-
flow to map various ML models on the proposed hardware
accelerator. The runtime system of VisionAGILE performs dy-
namic sparsity exploitation to reduce the complexity that reduces
the inference latency. The experimental results showed that
VisionAGILE achieved81.7× and 4.8× speedup compared with
state-of-the-art CPU and GPU implementation on various ML
models in computer vision, respectively. Moreover, VisionAG-
ILE achieved a comparable or higher performance than the
state-of-the-art CNN, GNN, or ViT accelerators. In the future,
we plan to extend the VisionAGILE to AMD versal ACAP
platform, which integrates AI engines with high peak perfor-
mance for matrix operations. By exploiting AI engines for matrix
operations, we expect to achieve higher peak performance.

Distribution Statement A: Approved for public release. Dis-
tribution is unlimited.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: VISIONAGILE: A VERSATILE DOMAIN-SPECIFIC ACCELERATOR FOR COMPUTER VISION TASKS 2421

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 779–788.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations,
2016. [Online]. Available: https://openreview.net/forum?id=SJU4ayYgl

[5] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learn-
ing on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1025–1035.

[6] P. Veličković et al., “Graph attention networks,” in Proc. Int. Conf. on
Learn. Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=rJXMpikCZ

[7] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2020. [Online]. Available: https://openreview.net/forum?id=YicbFdNTTy

[8] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 9992–10 002.

[9] B. Kayalibay, G. Jensen, and P. van der Smagt, “CNN-based segmentation
of medical imaging data,” 2017, arXiv: 1701.03056.

[10] C. R. Qi, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep learning
on point sets for 3D classification and segmentation,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 652–660.

[11] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
in Proc. 6th Int. Conf. Learn. Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=BJj6qGbRW

[12] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-label image recog-
nition with graph convolutional networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 5177–5186.

[13] T. Xiao et al., “Early convolutions help transformers see better,” in Proc.
Adv. Neural Inf. Process. Syst., 2021, pp. 30 392–30 400.

[14] S. Li, C. Wu, and N. Xiong, “Hybrid architecture based on CNN and trans-
former for strip steel surface defect classification,” Electronics, vol. 11,
no. 8, 2022, Art. no. 1200.

[15] Google cloud. 2011. [Online]. Available: https://cloud.google.com/
bigquery/docs/inference-overview

[16] Gaws inferentia: High performance at the lowest cost in Amazon EC2 for
deep learning inference. 2019. [Online]. Available: https://aws.amazon.
com/machine-learning/inferentia/

[17] Habana. 2022. [Online]. Available: https://habana.ai/
[18] DPU. 2018. [Online]. Available: https://docs.amd.com/r/en-US/pg338-

dpu/Reference-Clock-Generation
[19] M. S. Abdelfattah et al., “DLA: Compiler and FPGA overlay for neural

network inference acceleration,” in Proc. IEEE 28th Int. Conf. Field
Programmable Log. Appl., 2018, pp. 411–4117.

[20] Y. Yu, C. Wu, T. Zhao, K. Wang, and L. He, “OPU: An FPGA-
based overlay processor for convolutional neural networks,” IEEE
Trans. Very Large Scale Integration Syst., vol. 28, no. 1, pp. 35–47,
2019.

[21] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, May/Jun. 2018.

[22] B. Zhang, H. Zeng, and V. Prasanna, “GraphAGILE: An FPGA-based
overlay accelerator for low-latency GNN inference,” IEEE Trans. Parallel
Distrib. Syst., vol. 34, no. 9, pp. 2580–2597, Sep. 2023.

[23] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware acceler-
ators,” Commun. ACM, vol. 63, no. 7, pp. 48–57, 2020.

[24] N. Jouppi et al., “TPU v4: An optically reconfigurable supercomputer for
machine learning with hardware support for embeddings,” in Proc. 50th
Annu. Int. Symp. Comput. Archit., New York, NY, USA, 2023, pp. 1–14.

[25] E. Qin et al., “SIGMA: A sparse and irregular GEMM accelerator with
flexible interconnects for DNN training,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., 2020, pp. 58–70.

[26] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in Proc.
IEEE 47th Annu. IEEE/ACM Int. Symp. Microarchit., 2014, pp. 609–622.

[27] T. Luo et al., “DaDianNao: A neural network supercomputer,” IEEE Trans.
Comput., vol. 66, no. 1, pp. 73–88, Jan. 2017.

[28] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large scale
GCN inference,” in Proc. IEEE 31st Int. Conf. Appl.-Specific Syst. Archit.
Process., 2020, pp. 61–68.

[29] M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit., 2020, pp. 15–29.

[30] T. Geng et al., “AWB-GCN: A graph convolutional network accelerator
with runtime workload rebalancing,” in Proc. 53rd Annu. IEEE/ACM Int.
Symp. Microarchit., 2020, pp. 922–936.

[31] B. Zhang, R. Kannan, and V. Prasanna, “BoostGCN: A framework for
optimizing GCN inference on FPGA,” in Proc. IEEE 29th Annu. Int. Symp.
Field-Programmable Custom Comput. Mach., 2021, pp. 29–39.

[32] S. Liang, C. Liu, Y. Wang, H. Li, and X. Li, “DeepBurning-GL: An
automated framework for generating graph neural network accelerators,”
in Proc. IEEE/ACM Int. Conf. Comput. Aided Des., 2020, pp. 1–9.

[33] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN training on
CPU-FPGA heterogeneous platforms,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2020, pp. 255–265.

[34] Y.-C. Lin, B. Zhang, and V. Prasanna, “HP-GNN: Generating high through-
put GNN training implementation on CPU-FPGA heterogeneous plat-
form,” 2021, arXiv:2112.11684.

[35] T. Geng et al., “I-GCN: A graph convolutional network accelerator with
runtime locality enhancement through islandization,” in Proc. 54th Annu.
IEEE/ACM Int. Symp. Microarchit., 2021, pp. 1051–1063.

[36] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph
neural networks,” in Proc. 57th ACM/IEEE Des. Automat. Conf., 2020,
pp. 1–6.

[37] R. Sarkar, S. Abi-Karam, Y. He, L. Sathidevi, and C. Hao, “FlowGNN:
A dataflow architecture for real-time workload-agnostic graph neural
network inference,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., 2023, pp. 1099–1112.

[38] M. Sun et al., “VAQF: Fully automatic software-hardware co-design
framework for low-bit vision transformer,” 2022, arXiv:2201.06618.

[39] T. Wang et al., “ViA: A novel vision-transformer accelerator based on
FPGA,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41,
no. 11, pp. 4088–4099, Nov. 2022.

[40] H. You et al., “ViTCoD: Vision transformer acceleration via dedicated
algorithm and accelerator co-design,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit., 2023, pp. 273–286.

[41] S. Nag et al., “ViTA: A vision transformer inference accelerator for edge
applications,” 2023, arXiv:2302.09108.

[42] Z. Lit et al., “Auto-viT-Acc: An FPGA-aware automatic acceleration
framework for vision transformer with mixed-scheme quantization,” in
Proc. 32nd Int. Conf. Field-Programmable Log. Appl., 2022, pp. 109–116.

[43] H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based im-
age recognition for autonomous driving,” IATSS Res., vol. 43, no. 4,
pp. 244–252, 2019.

[44] X. Huang et al., “The apolloscape dataset for autonomous driving,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2018, pp. 954–960.

[45] C. Chen et al., “A survey on graph neural networks and graph transformers
in computer vision: A task-oriented perspective,” 2022, arXiv:2209.13232.

[46] A. Anderson, A. Vasudevan, C. Keane, and D. Gregg, “High-performance
low-memory lowering: GEMM-based algorithms for DNN convolution,”
in 2020 IEEE 32nd Int. Symp. Comput. Archit. High Perform. Comput.,
2020, pp. 99–106.

[47] L. Zhang et al., “Dual graph convolutional network for semantic segmen-
tation,” in Proc. Brit. Mach. Vis. Conf., 2019. [Online]. Available: https:
//ora.ox.ac.uk/objects/uuid:405e987d-9ff1-44ee-a4ac-290b35ed36a2

[48] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional
neural networks for document processing,” in Proc. 10th Int. Workshop
Front. Handwriting Recognit., 2006. [Online]. Available: https://inria.hal.
science/inria-00112631/

[49] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in Proc. ICLR Workshop Representation Learn.
Graphs Manifolds, 2019. [Online]. Available: https://scholar.google.com/
scholar?cluster=8974784740086755370&hl=en&as_sdt=0,5

[50] V. Kumar et al., Introduction to Parallel Computing, vol. 110. Redwood
City, CA, USA: Benjamin/Cummings, 1994.

[51] Microblaze. 2021. [Online]. Available: https://docs.xilinx.com/v/u/2021.
1-English/ug984-vivado-microblaze-ref

[52] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–49,
Jan./Jun. 2016.

[53] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 

https://openreview.net/forum%7B?%7Did$=$SJU4ayYgl
https://openreview.net/forum%7B?%7Did$=$rJXMpikCZ
https://openreview.net/forum%7B?%7Did$=$rJXMpikCZ
https://openreview.net/forum%7B?%7Did$=$YicbFdNTTy
https://openreview.net/forum%7B?%7Did$=$BJj6qGbRW
https://cloud.google.com/bigquery/docs/inference-overview
https://cloud.google.com/bigquery/docs/inference-overview
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://habana.ai/
https://docs.amd.com/r/en-US/pg338-dpu/Reference-Clock-Generation
https://docs.amd.com/r/en-US/pg338-dpu/Reference-Clock-Generation
https://ora.ox.ac.uk/objects/uuid:405e987d-9ff1-44ee-a4ac-290b35ed36a2
https://ora.ox.ac.uk/objects/uuid:405e987d-9ff1-44ee-a4ac-290b35ed36a2
https://inria.hal.science/inria-00112631/
https://inria.hal.science/inria-00112631/
https://scholar.google.com/scholar%7B?%7Dcluster$=$8974784740086755370&hl$=$en&as_sdt$=$0,5
https://scholar.google.com/scholar%7B?%7Dcluster$=$8974784740086755370&hl$=$en&as_sdt$=$0,5
https://docs.xilinx.com/v/u/2021.1-English/ug984-vivado-microblaze-ref
https://docs.xilinx.com/v/u/2021.1-English/ug984-vivado-microblaze-ref


2422 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 12, DECEMBER 2024

[54] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural lan-
guage processing,” 2019, arXiv: 1910.03771.

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proc. 3rd Int. Conf. Learn.
Representations, 2015. [Online]. Available: https://scholar.google.
com/scholar?hl=en&as_sdt=0%2C5&q=Very+deep+convolutional+
networks+for+1240+large-scale+image+recognition&btnG=

[56] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 7444–7452.

[57] B. Zhang et al., “Graph neural network based SAR automatic target
recognition with human-in-the-loop,” in Algorithms for Synthetic Aperture
Radar Imagery XXX, vol. 12520. Bellingham, WA, USA: SPIE, 2023,
pp. 196–198.

[58] J. Deng, W. Dong, R. Socher, L. -J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248–255.

[59] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Proc.
Int. Conf. Learn. Representations, 2020. [Online]. Available: https://
openreview.net/forum?id=BJe8pkHFwS

[60] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “The omniglot
challenge: A 3-year progress report,” Curr. Opin. Behav. Sci., vol. 29,
pp. 97–104, 2019.

[61] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. 13th Eur. Conf. Comput. Vis., Zurich, Switzerland, Springer, 2014,
pp. 740–755.

[62] M. Cordts et al., “The cityscapes dataset for semantic urban scene un-
derstanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 3213–3223.

[63] J. Liu, A. Shahroudy, M. Perez, G. Wang, L. -Y. Duan, and A. C. Kot,
“NTU RGB+D 120: A large-scale benchmark for 3D human activity
understanding,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 10,
pp. 2684–2701, Oct. 2020.

[64] MStar. 1995. [Online]. Available: https://www.sdms.afrl.af.mil/index.
php?collection=mstar

[65] K. Roszyk, M. R. Nowicki, and P. Skrzypczyński, “Adopting the YOLOv4
architecture for low-latency multispectral pedestrian detection in au-
tonomous driving,” Sensors, vol. 22, no. 3, 2022, Art. no. 1082.

[66] CPU and GPU implementation of few-shot image classification. 2017.
[Online]. Available: https://github.com/vgsatorras/few-shot-gnn

[67] CPU and GPU implementation of multi-label image classification. 2019.
[Online]. Available: https://github.com/megvii-research/ML-GCN

[68] CPU and GPU implementation of image segmentation. 2019. [Online].
Available: https://github.com/lxtGH/GALD-DGCNet

[69] CPU and GPU implementation of skeleton-based action recognition. 2018.
[Online]. Available: https://github.com/yysijie/st-gcn

[70] CPU and GPU implementation of point cloud classification. 2020. [On-
line]. Available: https://github.com/WeijingShi/Point-GNN

[71] X. Chen et al., “ThunderGP: HLS-based graph processing framework
on FPGAs,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate
Arrays, 2021, pp. 69–80.

[72] S. Zeng et al., “FlightLLM: Efficient large language model inference with
a complete mapping flow on FPGA,” 2024, arXiv:2401.03868.

[73] AMD DPU performance. 2023. [Online]. Available: https://xilinx.github.
io/Vitis-AI/3.5/html/docs/reference/ModelZoo_Github_web.htm

Bingyi Zhang received the BS degree in microelec-
tronics from Fudan University in 2017 and the MS
degree in integrated circuit engineering from Fudan
University in 2019 and the PhD degree in computer
engineering from the University of Southern Califor-
nia (USC) in 2024. He is currently working as a de-
veloper technology engineer - AI with Nvidia. His re-
search interests include high performance computing,
parallel programming, and computer architecture.

Rajgopal Kannan received the BTech degree in
computer science and engineering from IITBombay,
in 1991 and the PhD degree in computer science
from the University of Denver, in 1996. He is cur-
rently the branch chief and external competency co
lead of Military Information Sciences with the Army
Research Office (ARO) and a research adjunct pro-
fessor in electrical engineering with the University
of Southern California. He was formerly a professor
with the Department of Computer Science, Louisiana
State University (2000-2015). His academic research

was funded by DARPA, NSF and DOE and he has published more than 150
research papers in international journals and conferences with two patents
awarded in the area of network optimization. His research interests are at the
intersection of graph analytics, machine learning and edge computing - enabling
application acceleration at the edge on low power devices, for example using
Software-Defined Memory for memory bound applications. He is also interested
in cyber-physical systems, especially data-driven models and analytics driving
Smartgrid optimization and control.

Carl Busart received the BS and MS degrees from
Johns Hopkins University, the MBA degree from the
University of Maryland, College Park, and the DEng
degree from George Washington University. He is a
branch chief with the U.S. Army Research Labora-
tory and a member of the Institute of Electrical and
Electronics Engineers (IEEE) and the Association for
Computing Machinery (ACM). His research inter-
ests include artificial intelligence / machine learning
(AI/ML) and secure design.

Viktor K. Prasanna (Life Fellow, IEEE) received
the BS degree in electronics engineering from Ban-
galore University, the MS degree from the School of
Automation, Indian Institute of Science, and the PhD
degree in computer science from the Pennsylvania
State University. He is Charles Lee Powell chair
in engineering with the Ming Hsieh Department of
Electrical and Computer Engineering and Professor
of computer science at the University of Southern
California (USC). His research interests include high
performance computing, parallel and distributed sys-

tems, reconfigurable computing, and embedded systems. He serves as the
director of the Center for Energy Informatics with USC. He served as the editor-
in-chief of the IEEE TRANSACTIONS ON COMPUTERS during 2003–06. Currently,
he is the editor-in-chief of the Journal of Parallel and Distributed Computing.
He was the founding chair of the IEEE Computer Society Technical Committee
on Parallel Processing. He is the steering chair of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS) and is the steering chair of the
IEEE International Conference on High Performance Computing (HiPC). He
received the 2009 Outstanding Engineering Alumnus Award from the Pennsyl-
vania State University, the 2019 Distinguished Alumnus Award from the Indian
Institute of Science (IISc) and the 2016 Distinguished Alumnus Award from the
University Visvesvaraya College of Engineering (UVCE), Bangalore University.
He received the W. Wallace McDowell Award from the IEEE Computer Society,
in 2015 for his contributions to reconfigurable computing. He is a fellow of the
ACM, and the American Association for Advancement of Science (AAAS). He
is an elected member of Academia Europaea.

Authorized licensed use limited to: University of Southern California. Downloaded on July 03,2025 at 02:41:22 UTC from IEEE Xplore.  Restrictions apply. 

https://scholar.google.com/scholar%7B?%7Dhl$=$en&as_sdt$=$0%252C5&q$=$Very+deep+convolutional+networks+for+1240+large-scale+image+recognition&btnG$=$
https://scholar.google.com/scholar%7B?%7Dhl$=$en&as_sdt$=$0%252C5&q$=$Very+deep+convolutional+networks+for+1240+large-scale+image+recognition&btnG$=$
https://scholar.google.com/scholar%7B?%7Dhl$=$en&as_sdt$=$0%252C5&q$=$Very+deep+convolutional+networks+for+1240+large-scale+image+recognition&btnG$=$
https://openreview.net/forum%7B?%7Did$=$BJe8pkHFwS
https://openreview.net/forum%7B?%7Did$=$BJe8pkHFwS
https://www.sdms.afrl.af.mil/index.php%7B?%7Dcollection=mstar
https://www.sdms.afrl.af.mil/index.php%7B?%7Dcollection=mstar
https://github.com/vgsatorras/few-shot-gnn
https://github.com/megvii-research/ML-GCN
https://github.com/lxtGH/GALD-DGCNet
https://github.com/yysijie/st-gcn
https://github.com/WeijingShi/Point-GNN
https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/ModelZoo_Github_web.htm
https://xilinx.github.io/Vitis-AI/3.5/html/docs/reference/ModelZoo_Github_web.htm

