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ABSTRACT: Direct dehydrogenation of carboxylic acids to their unsaturated counterparts represents a valuable transformation for
complex molecule synthesis, which, however, has been challenging to achieve. In addition, the current carbonyl desaturation
methods are almost all based on oxidative conditions. Here we report an Ir-catalyzed redox-neutral transfer dehydrogenation
approach to directly convert carboxylic acids to either a,f- or f,y-unsaturated counterparts. These reactions avoid using oxidants or
strong bases, thus, tolerating various functional groups. The combined experimental and computational mechanistic studies suggest
that this transfer hydrogenation reaction involves directed C—H oxidative addition, f-H elimination, and dihydride transfer to an
alkene acceptor with C(sp*)—H reductive elimination as the turnover-limiting step.

U nsaturated carbonyl moieties are often found in bioactive
compounds that exhibit a broad range of functions, such
as antioxidants, radical scavengers, or covalent inhibitors." In
addition, they also serve as valuable intermediates or
precursors to access 3 or remote functionalized products.”
Among various synthetic strategies, those that directly convert
saturated carbonyl compounds to their unsaturated counter-
parts via dehydrogenation are highly attractive and have been
widely utilized in the complex molecule synthesis.” However,
compared to the diverse ways of desaturating aldehydes,”
ketones,” amides,® and esters,” direct dehydrogenation of free
carboxylic acids remains largely underdeveloped (Scheme 1A).
The seminal work of Newhouse employed zinc enediolates as
the key intermediate and achieved the Pd-catalyzed dehydro-
genation of carboxylic acids with allyl acetate as the oxidant.®
Later, the Yu group realized an elegant ligand-promoted Pd-
catalyzed direct desaturation of carboxylic acids, which
employed Ag,CO;, tert-butyl hydroperoxide, or 1,4-benzoqui-
none/O, as the oxidants.” In 2018, Huang and co-workers
reported a Cp*Ir-catalyzed desaturation of y,0-unsaturated
carbonyl compounds to 1,3-dienes using air as the oxidant,"’
and the y,0-olefin is critical for forming the key s-allyl
intermediate.

On the other hand, the transition-metal-catalyzed dehydro-
genation of aliphatic hydrocarbons, particularly promoted by
pincer-ligated complexes,'' represents an oxidant-free ap-
proach to transfer two hydrogens from the substrate to an
acceptor alkene (Scheme 1B). While this type of catalysis
typically does not tolerate polar functional groups, such as
carboxylates, due to catalyst inhibition,"”"® the unique
nonoxidative feature of this H,-transfer approach motivated
us to explore an alternative strategy for dehydrogenation of
free carboxylic acids.

Based on our continued interest in carbonyl desaturation
and its related transformations, particularly the recent
development of an Ir-catalyzed byproduct-free f-alkenylation
of ketones with alkynes,'* here we describe our preliminary
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development of an Ir-catalyzed transfer-dehydrogenation of
carboxylic acids (Scheme 1C). It was hypothesized that the
carboxylate moiety first directs oxidative addition of Ir(I) into
the # or y C—H bond, and followed by f-H elimination, the
resulting Ir(III) dihydride species then undergoes a hydride-
transfer process with an acceptor alkene to deliver the desired
unsaturated product and to regenerate the Ir(I) catalyst. It is
anticipated that this transfer dehydrogenation approach would
avoid strong bases to form enolates and avoid stoichiometric
oxidants to turnover the catalyst.

To examine the feasibility of the proposed strategy, N-Me-3-
indolepropionic acid (1a) was employed as the model
substrate. After systematic evaluation of various reaction
parameters, the desired o,f-unsaturated carboxylic acid 2a
was formed in 78% yield with >50:1 E/Z diastereoselectivity
(Table 1, entry 1), with NBE as the hydrogen acceptor, 10 mol
% [Ir(COD),]BArF as the catalyst, 24 mol % tri(3,5-
dimethylphenyl)phosphine L1 as the ligand, Cs,CO; as the
base, and NaOAc as the additive. A series of control
experiments was then performed to understand the role of
each component. In the absence of the iridium catalyst, NBE
or the ligand, the reaction gave almost no conversion (entries
2, S and 7), suggesting their critical roles in this reaction.
Substitution of [Ir(COD),]|BArF with [Ir(COD),]OTf or
[Ir(COD),]NTH, led to a decreased yield (entries 3 and 4). In
addition, a good yield was still obtained when reducing the
NBE loading to 4 equiv (entry 6); but other alkenes or
substituted NBEs gave almost no desired product (see
Supporting Information). A much lower yield was observed
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Scheme 1. Transition-Metal-Catalyzed Dehydrogenation
Reactions
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when reducing the ligand loading to 12 mol %, suggesting that
a 1:2 metal-to-ligand ratio is likely important for high catalyst
efficiency. While the exact reason for the ligand effect remains
to be uncovered, compared to the optimal ligand (L1), other
monodentate phosphines without the 3,5-dimethyl groups
(L2—L4) were significantly less efficient (see Supporting
Information); in contrast, L5 with the additional 4-methoxy
group gave comparable yield. Moreover, bidentate ligands
(L6—L8), except dppf, exhibited almost no reactivity (entry 9
and Table S1), likely due to the sensitivity to the electronic
and steric properties of the ligand. A survey of different bases
suggested that Cs,CO; was much better than the others
(entries 10 and 11). NaOAc is an effective additive, though it is
not essential to the reactivity (entry 12).'> PhF proved to be a
better solvent, and slightly lower yields were observed with
toluene and PhCF, (entries 13 and 14). Finally, lowering the
reaction temperature led to a lower conversion (entry 15).
The scope of the Ir-catalyzed a,f-dehydrogenation was
subsequently explored (Table 2A). It should be mentioned
that some products were converted to the corresponding
methyl esters for convenience of purification. For the indole-
derived substrates, first we found the substituent on the
nitrogen does not significantly influence the reactivity (2a—

Table 1. Selected Reaction Optimization with Substrate 1a”

[I(COD),]BArF (10 mol%)
Q]/\/C%H LT (24 mol%) Q]/\/C%H
N NBE, Cs,CO3, NaOAc N

/ PhF (0.2 M), Ny, 160°C /

Me Me
1a "standard conditions” 2a
entry variation from the "standard conditions" yield (%)b u:;e(aozt)id
1 none 78 21
2 w/o [Ir(COD),]BArF <1 99
3 [Ir(COD),]OTf instead of [I(COD),]BArF 48 51
4 [Ir(COD),]NTf, instead of [Ir(COD),]BArF 65 35
5 w/o NBE <1 95
6 NBE (4 equiv) instead of NBE (8 equiv) 68 31
7 w/o L1 <1 97
8 L1 (12 mol %) instead of L1 (24 mol %) 29 62
9 other ligands instead of L1 -- see below --
10 CsOAc instead of Cs,CO3 7 40
1 K,COyj instead of Cs,CO3 26 73
12 w/o NaOAc 52 45
13 PhMe instead of PhF 64 35
14 PhCF3 instead of PhF 75 24
15 150 °C instead of 160 °C 67 33
Me
( Qtp PPh, (Me4©-}gP
Me

L1 L2: 16%, 84% 1a L3:52%, 47% 1a

Bu Me,
O oD
Bu Mé

L4: 45%, 55% 1a

L6 (BINAP): <1%, 85% 1a
L7 (bpy): <1%, 92% 1a
L8 (dppf): 26%, 61% 1a

L5: 70%, 30% 1a

“Standard condition: 1a (0.1 mmol), [Ir(COD),]BArF (0.01 mmol),
L1 (0.024 mmol), NBE (0.8 mmol), Cs,CO, (01 mmol), NaOAc
(0.1 mmol) in 0.5 mL PhF at 160 °C for 24 h. “Determined by 'H
NMR with 1,1,2,2-tetrachloroethane as the internal standard. NBE,
norbornene; BAIF, tetrakis(3,5-bis(trifluoromethyl)phenyl)borate;
COD, 1,5-cyclooctadiene.

2¢). In addition, the substrates with substituents at the C2, C4,
CS, C6, and C7 positions, including methyl (2i and 2j), phenyl
(2d), methoxy (2e and 2f), and chloro (2g and 2h) groups,
were all compatible in this transformation. Besides the indole
framework, substrates bearing aryl rings (2k—2t) are also
suitable for this transformation. 3-Arylpropanoic acids
containing electron-donating or -withdrawing groups on the
arene can afford the desired a,f-unsaturated carboxylic acids
(21-2s) in moderate yields. In general, these reactions were
very clean, showing high mass balances. Note that compound
2m is the precursor for the synthesis of vanilloid receptor-1

antagonist RPV-1."° Moreover, a styrenyl group (2p) was
tolerated under the transfer dehydrogenation conditions,
indicating that the hydride transfer process is much faster
with NBE than with other alkenes. In addition to simple
phenyl rings, products 2t and 2u bearing bicyclic moieties
could also be synthesized. Gratifyingly, a-substituted carbox-
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Table 2. Substrate Scope of the Transfer Dehydrogenation of Free Carboxylic Acids”

(A) a,,B-dehydrogenation

o COMe
I
N

Mé
2a', 62%(23%)°
MeO

xCOMe

I

N
/
Et

2f, 57%(27%)"¢

o -COH

2k, 46%

F3C\©/\/COZH

2r, 30%

COM
O/\:/ 2

1

standard conditions

Indole

COH
O/\:/ ?

2 (all £/ >20:1)

Ph
I
/N /N ,N
Et

2b, 66%(18%)

2¢, 51%(33%)"

2d, 46%(18%)>

X COMe CO,M

29, 57%(23%)P°

/@/\/COQH
R

MeO]@/\/COZMe
PMBO

2s, 37%>°

xCO:Me

2x, 59%(34%)" %"

2h, 60%(14%)>°
Arene

21, R = Me, 43%¢

2m, R = By, 54%°

2n, R = OMe, 46%°
20, R =F, 43%¢

2t, 51%°

Heteroarenes

H
(/E/\/co2
o}

2y, 21%

X COH

2i, 65%(18%)2¢

Ph
1@/\/COQH

2p, 54%°

2u, 33%¢

OMe

xCOMe
I
N

et
2e, 43%(27%)"°

xCO;Me
|
N

Et’ Me

2j, 60%(22%)"¢

Meo\©/§/COZH

2q, 50%¢

ph Ny COMe

Ph

2v, 23%>¢

A

Ph CO,H

4a, 50%, E/Z = 20:1

F Cl

4f, 50%, EIZ > 20:1

©/\><COZH

4k, 62%, > 20:1

standard conditions

4b, 58%, E/Z > 20:1

N Nco,H

49, 51%, E/Z > 20:1

/\><E )
P CO,H

41, 49%, EIZ =101

except L5 (24 mol%)
PhF (0.3 M)

CO,H
Ph.

%

I
4c, 56%, E/Z > 20:1

PhO
CO,H

4h, 64%, E/Z > 20:1

4m, 25%, E/IZ > 20:1

EtO

4d, 66%, E/Z = 20:1
4i, 61%, E/Z > 20:1

P Nco,H

4n, 38%, E/IZ = 20:1

BnO'

4e, 44%, EIZ > 20:1

N Nco,H

4j, 30%, E/IZ > 20:1

COH !

40, 74%, EIZ > 20:1

Unless mentioned otherwise, all reactions were carried out with 0.1 mmol of 1 or 3 for 24 h under the standard conditions. All yields are isolated
yields. bThe subsequent esterification was carried out with Mel (2 equlv) Cs,CO; (2 equiv), acetone, 60 °C, 4 h. “The recovered amount of the

unreacted ester of 1 is given within parentheses. “In PhF (0.33 M). °In 1,4-dioxane (0.33 M). At 150 °C.

ylic acids can also be used as the substrate (1v); although the
yield is low, only the E isomer of the product was observed.
The application of 2,3-dihydro-1H-indene-2-carboxylic acid as
the starting material resulted in forming indene 2w. Finally,
substrates featuring other heteroarenes, such as pyrrole, furan,
and thiophene (2x—2z), were competent for this trans-
formation. Note that attempts to desaturate esters and amides
were not fruitful under the current reaction conditions (see
Supporting Information)."”

When one-carbon elongated carboxylic acids were used as
the substrates, this method can be extended to realize the f,y-
transfer dehydrogenation (Table 2B).”* The a,a-disubstituted

substrates worked notably better; however, the one without
any a-substituent also delivered the desired product (4n),
albeit in a lower conversion. This suggests that the Thorpe—
Ingold effect likely benefits the C—H activation step in this
reaction. The substrates bearing an electron-rich arene gave
higher conversion than electron-deficient ones, although the
exact reason is unclear. In addition, carboxylic acids bearing
diverse functional groups, such as tertiary amine (4c), ethoxy
(4d), benzyl ether (4e), phenyl ether (4h) and naphthalene
(4i and 4j), could give the desired f,y-unsaturated carboxylic
acids in excellent E/Z diastereoselectivity. Moreover, besides
a-dimethyl groups, diethyl- or unsymmetrically a-disubstituted

22901 https://doi.org/10.1021/jacs.4c07115
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substrates (41 and 4m) also worked. Like in the former a,f-
dehydrogenation, the f,y-dehydrogenation reactions typically
do not form side products, and the modest yields were mainly
due to incomplete conversions.'® Furthermore, apart from the
aryl-substituted carboxylic acids, the cyclohexene-derived
substrate 30 is also competent to afford the corresponding
diene product 40 in 74% yield.

To explore the potential utility of this method, first a scale-
up reaction was carried out, and the desired product was
obtained in good yield on a 1 mmol scale (Scheme 2A). In

Scheme 2. Scale-up and Product Transformations

(A) Scale-up synthesis
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addition, simple transformations of the dehydrogenated
products were demonstrated (Scheme 2B). For example, the
a,f-unsaturated carboxylic acid (2a) can be converted to the
corresponding secondary amide 2aa and tertiary amide 2ab
uneventfully. In addition, Michael addition of a thiophenol
followed by esterification furnished S-functionalized ester 2ac.
Furthermore, treatment of a f,y-unsaturated carboxylic acid
(4a) with N-bromosuccinimide (NBS) led to bromolactoniza-
tion in 88% yield with excellent diastereoselectivity.

To gain some insight into the dehydrogenation mechanism,
several control experiments were next conducted. First, to
elucidate the role of NBE, less volatile benzo-fused NBE § was
used as the hydrogen acceptor (Scheme 3A). As expected,
under the standard conditions, the corresponding hydro-
genated product 6 was detected in a comparable yield to that
of the dehydrogenated product (2a), strongly supporting the
idea that NBE serves as the hydrogen acceptor in this reaction.
Next, the kinetic orders of the soluble components of the
reaction were measured (Scheme 3B). The reaction exhibits a
first-order dependence on the concentration of the Ir catalyst
and substrate 1a, and a first-order dependence on NBE at low
NBE concentration (<0.4 M), which dropped to zero when the
concentration of NBE was higher than 0.4 M. These kinetic
data suggest that the iridium catalyst, 1a and NBE should be
involved in the turnover limiting step (TLS). Moreover,

Scheme 3. Experimental Mechanistic Studies

(A) Detection of the transfer hydrogenation product
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3

deuterium labeling experiments were conducted. The reaction
of the a-deuterated substrate lo-@-D gave product 20-a-D
with 4% D at the f§ position and 62% D at the a position (eq
1), while the f-deuterated substrate 1o-f-D gave product 2o-
B-D with 31% D at the 8 position and 8% D at the a position
(eq 2). These experiments suggest that C—H activation and f3-
hydrogen elimination are likely reversible processes; otherwise,
deuterium loss and scrambling should have not taken place.
Subsequently, parallel kinetic isotope effect (KIE) was
investigated, which showed a small KIE value (1.6) at the &
position and a slightly higher value (2.2) at the / position (eqs
3 and 4). Altogether, these experiments collectively imply that
cleavage of the a- and B#-C—H bonds may occur before the
TLS.'

Finally, the complete reaction profile was calculated by
density functional theory (DFT) study, and a tentative
mechanism is proposed (Figure 1). The initial ligand exchange
of [Ir(COD),]* with the two phosphine ligands and the
substrate is downhill by 17.3 kcal/mol, leading to a stable
intermediate (Int1).”” It is also possible to have NBE
coordination to the Ir center to give Intl-nbe under high
NBE concentration, which could explain the observed
saturation kinetics of NBE. The subsequent sp> C—H oxidative
addition forms the five-membered iridacycle Int3, followed by

https://doi.org/10.1021/jacs.4c07115
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Figure 1. Computational mechanistic study and a tentative proposed reaction pathway. DFT calculations were performed at the M06-D3/def2-
TZVP/SMD(PhF)//B3LYP-D3(BJ)/6-31G(d)-Lanl2dz level of theory at 433.15 K. Free energy changes are shown in kcal/mol.

the f-H elimination to realize the desaturation process. Both
steps are reversible with relatively low barriers, which is
consistent with the deuterium labeling results. The reversibility
of the dehydrogenation process also suggests the product can
serve as a competing hydrogen acceptor (see the Supporting
Information). The following NBE-hydrogenation process starts
with ligand exchange between the a,f-unsaturated carboxylate
(8) and the substrate (7), which is thermodynamically favored
by 1.4 kcal/mol. The reason is probably because the
unsaturated carboxylic acid is notably more acidic than the
saturated counterpart (pK, in water: 4.44 for 2k versus 4.66 for
1k*"), thus the unsaturated carboxylate is a better leaving
group. This also corroborates the observation that adding an
unsaturated carboxylic acid to this reaction system does not
inhibit the a,f-dehydrogenation process (see the Supporting
Information). The subsequent NBE coordination and
migratory insertion of the Ir—H intermediate from the exo
face of NBE gives Int8. The final sp’ C—H reductive
elimination step requires an overall activation barrier of 28.7
kcal/mol, which is considered as the TLS of the whole
transformation. Hydrogenation with the unsaturated carbox-
ylate as the ligand was also considered, albeit with a ca. 3 kcal/
mol higher barrier in the final reductive elimination step (see
Supporting Information). The fact that the ligand exchange
takes place prior to the hydrogenation step is also supported by
the first-order kinetics of the substrate. The overall trans-
formation is thermodynamically favored by 10.3 kcal/mol.

In summary, we have realized the first transfer dehydrogen-
ation of free carboxylic acids that also provides a new strategy
for carbonyl desaturation. This protocol is redox neutral and
strong base free, thus, complementary to all the previous
desaturation approaches. Such a nonoxidative reaction
condition allows tolerance of diverse functional groups. The
mechanistic insights obtained here suggest the sp’ C—H
reductive elimination as a surprising TLS, which could be
valuable for designing a more eficient catalytic system in the
future. While the current substrate scope is limited, efforts to
expand this strategy to more general carboxylic acid and other
carbonyl substrates are ongoing.
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