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Abstract

Genetic modification of microbes is central to many biotechnology fields, such as industrial
microbiology, bioproduction, and drug discovery. Understanding how specific genetic modifi-
cations influence observable bacterial behaviors is crucial for advancing these fields. In this
study, we propose a supervised model to classify bacteria harboring single gene modifications
to draw connections between phenotype and genotype. In particular, we demonstrate that the
spatiotemporal patterns of Vibrio cholerae growth, recorded in terms of low-resolution bright-
field microscopy videos, are highly predictive of the genotype class. Additionally, we introduce
a weakly supervised approach to identify key moments in culture growth that significantly con-
tribute to prediction accuracy. By focusing on the temporal expressions of bacterial behavior,
our findings offer valuable insights into the underlying mechanisms and developmental stages
by which specific genes control observable phenotypes. This research opens new avenues for
automating the analysis of phenotypes, with potential applications for drug discovery, disease
management, etc. Furthermore, this work highlights the potential of using machine learning
techniques to explore the functional roles of specific genes using a low-resolution light micro-
scope.

1 Introduction

The presence of bacteria, among other microorganisms, is vital for Earth’s ecosystem and life
support systems. They contribute to essential ecological processes, such as nutrient cycling, aid-
ing plant growth, and the decomposition of organic materials, ultimately ensuring the health of
ecosystems. In the case of human health, bacteria have a large impact, both positive and negative.
Beneficial bacteria in the human body aid in digestion, produce essential vitamins, and contribute
to a well-functioning immune system. On the other hand, in many cases, bacteria are notorious
for causing infectious diseases and dysbiosis [1, 2]. Many bacteria exhibit rapid growth rates and
undergo rapid mutagenesis and horizontal gene transfer enabling them to overcome challenges such
as antibiotic treatment. For instance, pathogens such as Vibrio cholerae and Escherichia coli can
double approximately every 20 minutes under rich growth conditions, and through time have de-
veloped increasing resistance to commonly used antibiotics. Controlling bacterial growth, and the
behaviors that bacteria exhibit in the infection process, are key topics of research that can contribute
to drug design [3]. Leblanc and Charles [4] highlight the challenges of working with bacterial cells
due to their metabolism, genetic stability, and the toxicity of the products being developed. The
study of how particular genes influence bacterial growth and behaviors is crucial for defining new
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targets for drug discovery [5-7]. Controlling bacterial lifestyles is a fundamental challenge in micro-
biology that can be aided by modern computational approaches, and have applications in various
fields. Understanding and manipulating the timing of bacterial behaviors is crucial in processes such
as fermentation for the production of biofuels and pharmaceuticals [8]. The ability to design new
strategies for controlling bacterial behavior via computational approaches helps understand possible
optimizations to larger biological problems.

Defining genes that are responsible for particular bacterial behaviors involves generating spe-
cific gene modifications by experimental scientists to influence the way bacteria grow, interact, and
respond to their environment. This process often includes the deletion or disruption of particular
genes, and the subsequent impact on bacterial behavior is analyzed. For example, disrupting genes
associated with antibiotic resistance can enhance the effectiveness of antibacterial drugs. Under-
standing how gene modifications influence bacterial behavior is essential for advancing applications
such as drug development and environmental remediation. However, challenges lie in the nature of
these genetic modifications. The complexity of each modified gene’s effect on bacterial behavior is
a significant hurdle. Furthermore, when multiple genes are altered simultaneously, predicting the
outcome becomes complex [9], as the cumulative impact may not be in line with the outcome of
modifying each individual gene.

In this work, we aimed to develop a model for analyzing and classifying the behavior of the
global pathogen, Vibrio cholerae, harboring single-gene deletions. To this end, we performed low-
magnification brightfield timelapse microscopy of culture growth for the wildtype parent strain and
9 additional strains harboring single-gene modifications known to impact bacterial behavior. Our
goal was to draw connections between phenotype and genotype. To this end, we implement a video
analysis approach to predict the disrupted gene based on the culture growth videos.

In addition to classifying mutant phenotypes, we present a novel weakly supervised approach
that identifies the saliency (contribution) of video frames in predicting the gene classes given the
weak supervision of the video class during the training. The integration of saliency scores offers
a novel perspective on video data analysis. By assigning significance scores to specific frames in a
bacteria’s lifecycle, we analyze and understand patterns in the modified bacteria’s behavior.

Additionally, we introduce GeneMod, the dataset used for training and evaluating our model,
consisting of 849x25 CLIP [10]feature embeddings of Vibrio cholerae culture growth.

2 Related Works

2.1 Gene Modification

Genetic modification has revolutionized various fields and provided findings to various challenges
such as vaccine development, environmental remediation, and food production [11-13]. In particu-
lar, it has played a key role in the development of vaccines [14-16] and has enabled the sustainable
production of genetically modified crops on a large scale helping food production [13, 17-19]. Addi-
tionally, genetic modification finds numerous applications in environmental remediation [20-22]. For
instance, it has been used in the development of bioengineered microorganisms for oil spill cleanups
[23]. Furthermore, genetic modification increases the efficiency of wastewater treatment processes
[24, 25], reducing the environmental impact of industrial and municipal wastewater. Genetic mod-
ification has emerged as a powerful tool across various fields and promising a more sustainable
future.

2.2 Sequential Data Analysis

The analysis of sequential data is essential in numerous domains, including natural language pro-
cessing, time series forecasting, and biological data analysis. Traditional methods such as Hidden
Markov Models (HMM) [26] and simple Recurrent Neural Networks (RNN) [27] were adopted for
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sequence classification and prediction. Although these techniques showed promise, they struggled
to capture long-range dependencies in sequences effectively. Long Short-Term Memory (LSTM)
networks were introduced by Hochreiter & Schmidhuber [28], offering improved memory capabilities
and the ability to alleviate vanishing gradient problem [29]. LSTM became generally accepted for
tasks involving sequential data owing to their ability to retain information over longer sequences.
Following LSTM, Gated Recurrent Unit (GRU) [30] networks emerged as a simpler alternative, of-
fering comparable performance with fewer parameters [31]. GRU achieved this by combining the
forget and input gates of LSTM into a single update gate, reducing computational complexity while
retaining the ability to capture temporal dependencies effectively. However, the most significant leap
in sequential data analysis came with the development of Transformer architectures [32]. Transform-
ers introduced a self-attention mechanism, allowing the model to weigh the significance of different
elements in the input sequence dynamically.

Sequential modelling techniques have proven to be invaluable in biology [33-35]. HMM [36-
38] and RNN [39] have been instrumental in the interpretation of proteomics and genomics. LSTM
networks [40-42] and GRU [41, 43] have shown promising results in drug discovery and metabolomics.
Transformers have revolutionized the exploration of longer sequences [44, 45|, providing essential
insights in evolutionary biology. Furthermore, the usage of these sequential models is not restricted
to those mentioned and they have been used across the entire spectrum of biological research [46-48].

2.3 Saliency Detection

Targeting the identification of pivotal features within input samples, saliency detection emerges
as a crucial technique with broad applications across across interdisciplinary fields [49, 50]. It has
been used in the medical domain in the space of medical imaging [51-53]. It has also proven to
be crucial in designing autonomous vehicles controlling their ability to safely perceive and navigate
complex environments [54-56]. This has subsequently aided remote sensing applications [57, 58], by
enabling the identification of features and patterns in satellite or aerial imagery for environmental
monitoring and disaster relief. In addition, saliency recognition in robotics [59-61] has aided in object
recognition, obstacle avoidance, and scene understanding, contributing to the further development
of autonomous robotic systems.

In our work, we utilize saliency prediction to pinpoint salient frames, particularly to capture sig-
nificant moments in the bacteria’s life cycle, using a weakly supervised approach. ‘Weakly supervised
methods’ do not imply direct monitoring of saliency scores; We predict saliency indirectly using the
monitoring provided as class labels. This approach involves identifying frames in input videos that
have the greatest influence on the prediction outcome. Although this is extensively researched in
the field of computer vision [62-65], the application of it in the context of bacteria growth is not
explored.

3 Materials and Methods

Here, we present our approach for classifying bacterial growth videos to identify specific genetic
modifications. The organization of the subsections are as follows: We start with subsection Video
acquisition, where we discuss the process of acquisition of the modified video samples, this is followed
by subsection Preprocessing , preprocessing is described that covers a series of essential steps to en-
hance the video data for subsequent analysis. Moving forward to the subsection Feature Extraction,
we describe the importance of feature extraction, highlighting the critical role of data preparation
and feature extraction. In the subsection Temporal Analysis, we discuss temporal analysis using a
Transformer-based model to process the bacteria growth video. In the subsection Weakly-supervised
Saliency Detection, we introduce a weakly supervised saliency detection module that allows us to
identify salient time stamps of the bacteria’s life cycle, and in the subsection Classification, we
present the final module that performs the classification to estimate the gene modification class.
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Figure 1: Illustration of the proposed model architecture for bacteria growth classification. The
schematic diagram integrates a weakly supervised saliency detection model, estimating the contri-
bution of each frame in the input video to the final prediction.
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Figure 2: Visualization of frames before (bottom row) and after (top row) preprocessing.

3.1 Video acquisition

Brightfield timelapse microscopy of V. cholerae growth (parent strain WT O1 El Tor biotype
C6706str2) was performed as described previously [66].Selected mutant strains were chosen due to
their known role in regulating particular bacterial behaviors such as biofilm formation and motil-
ity. Briefly, cultures of the indicated strains were pre-grown overnight in 96-well microtiter dishes
(Corning) in 200 uL of LB media. Overnight cultures were subsequently diluted 200,000-fold into
M9 media containing 0.5% dextrose and 0.5% casamino acids in new microtiter dishes. Subcultured
strains were grown statically at 30 degrees Celsius in a BioSpa incubator and were robotically trans-
ferred for imaging at one-hour intervals for 24 hours total. Brightfield microscopy was performed
with fixed imaging conditions, a Biotek Cytation 1 instrument equipped with a 10x objective lens.

3.2 Preprocessing

Initially, a local contrast normalization [67-69] operation is applied with a block radius of 100 in
both the x and y directions and a standard deviation of 3. Local Contrast Normalization is a type
of normalization that works by enhancing an image’s features while reducing variability between
different parts of the image, making it easier to distinguish different features when analyzing them
later. This step aims to improve the visibility of structures in the video, contributing to better
feature extraction. The data is converted to an 8-bit format for standardization. With that, a
Gaussian blur with a sigma value of 2 is employed to reduce noise and smooth the image stack. A
few examples of certain video frames before and after preprocessing can be seen in figure 2.
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3.3 Feature Extraction

Data preparation and feature engineering are important processes that greatly affect video anal-
ysis performance. The primary purpose of these processes is to include noise reduction, feature se-
lection, selecting important representation features, and transforming high-dimension features into
the subspace domain without losing valuable information. For this, we use the feature represen-
tation learned via Contrastive Language-Image Pre-training (CLIP) [10]. CLIP is a foundational
neural network trained on millions of images, which is used to understand visual concepts with the
supervision of textual descriptions. CLIP’s unique fusion of vision and language understanding has
proven to be highly versatile and adaptable to multiple domains [70, 71]. Moreover, the versatility
and adaptability of CLIP provide meaningful embeddings for the frames by effectively using vision
understanding. We use CLIP with ViT-b/32, ViT-b/16, ResNet101, and ResNet50 as the base mod-
els, to extract those high-dimension features to be used for training our model. Formally, we denote
the CLIP feature extractor as CLIP : R"*®x¢ s R4 where h, w, and c are the height, width, and
the number of channels in the input frames, and d is the cardinality of the output space.

Let {V;}X¥, denote the set N bacteria growth videos, preprocessed using the criteria mentioned
in Section Preprocessing. For the j** frame of the i** video, v;; € Vi, we extract features as
x;j = CLIP(v; ;). Then, we concatenate the computed CLIP features to come up with the set of
features for each video that, {X;}2¥ | denote the set of CLIP embeddings for all the extracted frames.

3.4 Temporal Analysis

The video data recorded from bacterial growth is a sequence of ny frames capturing the specific
timestamp in the bacteria’s life cycle. In the previous section, we extracted features from the frames
of the video using the CLIP backbone. The CLIP captures spatial information in each of the frames.
Processing these data requires a second model to capture the temporal dependency of the features
extracted from the frames. Recurrent Neural Networks capable of analyzing sequential data are the
best choice for this aim since they can draw connections between different time samples in the data
and combine them to compute the final prediction. This is a very important step in the processing
since different bacteria with different gene modifications may express similar behavior at different
timestamps of their lifecycle. Hence, the temporal analysis enables us to differentiate between these
cases.

Transformers [32] are the most capable recurrent networks and have revolutionized many fields
including NLP, time series analysis, computer vision, etc. The Transformer architecture is known for
capturing long-range information in sequential data [72]. The core of our model is the transformer
layer, which is based on the Transformer architecture. It employs multi-head self-attention mecha-
nisms to analyze the input data’s contextual relationships. Additionally, it uses a feedforward neural
network with a hidden dimension. We use the transformer model with n; encoder layers to process
temporal information and predict the class associated with each of the video inputs. Formally, the
transformer encoder in our model is denoted as Enc(X;) : R x4 — R %4 where ny is the number
of frames in each video and d is the dimension of CLIP model’s embedding.

3.5 Weakly-supervised Saliency Detection

Our analysis shows that we can achieve notable performance in predicting the classes of gene
modifications from observing the bacteria growth videos. However, it is unclear which frames or
moments in the bacteria’s life cycle are more informative about their modified gene. Hence, in
this section, We have explored the development of a crucial component, Temporal Saliency aimed
at assessing the significance of individual frames within bacteria growth videos. This temporal
component is designed to give us extra insights into the life cycle of bacteria. It contributes to
the decision-making process, by enhancing our understanding through analyzing multiple frames
captured during their life cycle.
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Specifically, the Saliency is used to focus on the relevant frames of the input data [73]. It produces
a saliency map that highlights the most important or salient region in a specific frame. The main
purpose of a saliency map is to identify areas that are considered significant by a computational
model. In Figure 5 we can see the comparison of the average saliency map for each class computed
with the help of ViT-b/32 and ResNet50 backbone of CLIP. From the figure, we can see how
the graph dynamically responds to changing frames, this representation signifies the importance of
specific frames across multiple frames for a given class.

This is integrated into the architecture to handle Temporal attention. It takes the same input
as the Transformer and generates a saliency map of the same dimensions using a linear network.
Formally, the Weakly-supervised Saliency Detection in our model is denoted as Saliency(X;) :
R xd 5 R? %1 where n ¢ is the number of frames in each video and d is the dimension of CLIP
model’s embedding. Notably, we adjust the size of the saliency map to align with the dimensions
of the output from our transformer model. The resulting saliency map is then utilized to regulate
the output of the transformer encoder. The outcome represents the aggregate representation that
emphasizes the important frames of a bacteria’s lifecycle at distinct timestamps. Before passing
this aggregate representation to the Classifier Classification, a mean operation is applied, ensuring
a refined input for further stages of the model. This whole approach allows us to prioritize relevant
frames, thereby enhancing the model’s ability to recognize bacterial behavior throughout its life
cycle.

3.6 Classification

The Classifier is a custom neural network that takes input as the mean aggregation of the
output from the transformer encoder multiplied by the saliency map which we discussed in Weakly-
supervised Saliency Detection. The central objective of our custom neural network is to classify
between a set of 10 classes, within the target frame. It consists of a fully connected layer (FC)
with an output dimension of 10, for 10 distinct classes. Fig 1 provides an overview of our approach
where an aggregate sequence representation is passed through a fully connected layer, followed by a
softmax layer, to output probabilities for each of the 10 respective classes.

This structure starts with a linear layer that maps input features from 512 (ViT) or 1024
(ResNet50) to 256, followed by a rectified linear unit (ReLU) activation. To add regularization,
a dropout layer with a probability of 0.5 is introduced. The subsequent linear layer transforms
the output to the desired dimension, and finally, a softmax activation is applied along the second
dimension (dim=1) for the final classification.

4 Dataset

The dataset used in our research is comprised of 849 videos made up of 10 distinct classes,
one class being the parent wildtype (WT) V.cholerae strain, and nine others representing single
gene modifications that are known to modify V.cholerae behavior. Briefly, AlapG, ApotD1, AhapR,
ArbmA, vpvC(w240R), ArbmB, AvpsL all exhibit unique biofilm characteristics, whereas AflgA and
ApomA have defects in swimming motility [74, 75]. Each video in the dataset consists of 25 frames,
each frame being an image captured hourly for 24 hours, with the first frame being taken at the
start. This gives us a longer period of observation. Classes AlapG, ApotD1, AhapR, ArbmA are
equally represented, each comprising 96 videos, thereby ensuring a balanced data distribution within
these categories. In contrast, the classes AvpsL, AfligA, and WT are more densely represented with
126 videos each, offering a substantial dataset for specific analysis in these areas. Conversely, the
vpvC(w240R), ApomA, ArbmB classes encompass 28, 29, and 30 videos, respectively, ensuring that
the dataset includes more specialized subsets. This provides a broad spectrum of data for rigorous
analysis and holds potential for significant insights in the field.
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Table 1: List of classes in the dataset and the number of samples in each class. Three classes have
lower samples compared to the others.
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Note: Three classes have lower samples compared to the others.
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Figure 3: Visualization of the t-SNE graph of halfway life frame features of each class computed
for CLIP with ViT-b/32 and ResNet50 backbones, we observe distinct cluster structures for certain
classes.

5 Experiments

5.1 Visual Inferences

Given the dataset’s substantial volume of high-dimensional video data, we employ dimensionality
reduction for ease of analysis. A t-SNE plot visualization of each class’s mid-life point can be observed
in Figure 3. We prefer t-SNE as it preserves the local structure of the data, points that are close in
the high-dimensional space are likely to be close in the t-SNE plot as well.

The plot is computed by stacking the mid-life feature frame of each class’s samples and performing
dimensionality on this new structure using the TSNE function in sklearn with a perplexity of 20.

We observe that the class ApomA and ArbmB form distinct clusters in both ViT-b/32 and
ResNet50 backbones of CLIP. Similarly, class vpvC(w240R) features are considerably distinct; it
is present in the region of AwvpsL, AlapG, and WT in the case of ResNet50 and is very distinctly
clustered in ViT-b/32. We also observe that across both backbones, AvpsL and ApotDI have a
significantly higher spread across the plot.

5.2 Implementation Details

We partition the dataset into a train/test split ratio of 75:25 for all conducted experiments. The
results are summarized in Table 2.

We employ CLIP backbone with different architectures to extract features for individual frames
of each video using pre-trained ViT-B/32, ViT-B/16, ResNet50, and ResNet101 backbones.

The classification of bacteria videos is done using a custom neural network the input dimension
is fixed at 512 for ViT-b/32, ViT-b/16, and ResNet101, and 1024 for the ResNet50 backbone which
is the dimension of the CLIP embeddings. The Transformer encoder consists of 4 hidden layers, each
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with a hidden dimension of 512 and 8 attention heads. We train the model with the SGD optimizer
set with a momentum of 0.8 and a weight decay of 1e™*, and cross-entropy loss for 1000 epochs with
a learning rate of 1e~% and batch size of 64. Weight initialization using Xavier with a bias of 0.1 is
implemented. A learning rate scheduler is also implemented to reduce the learning rate on plateau
by a factor of 0.75, and a patience of 50 epochs.

ViT-b/32 ViT-b/16 RN50 RN101
Raw 59.53% 47.44% 40.00%  50.23%
Preprocessed 98.60% 96.74% 98.14%  86.98%

Table 2: Comparison of the performance of different backbones on raw and preprocessed videos. We
observe that preprocessing has a notable impact on the prediction performance.
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Figure 4: Visualization of Confusion Matrices of the model with features extracted by CLIP using
ViT-b/32 and ResNet backbones before (top row) and after preprocessing (bottom row)

5.3 Ablation Study Results

Table 2 presents the classification accuracy of the proposed model using two different backbones
on the test set of the bacteria growth dataset. It is noted that although the ViT-b/16 and ResNet101
variants perform well, the best performance is seen with ResNet50 and ViT-b/32.
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We observe a notable difference in the performance of predictions between raw data and pre-
processed data. Across various backbones, the performance on raw data is comparatively low but
increases significantly after preprocessing. This is observed with the ViT-b/32 backbone, the per-
formance jumps from 59.53% on raw data to 98.1% post-preprocessing. Likewise, the ViT-b/16
backbone demonstrates a significant increase from 47.44% on raw data to 96.74% post preprocess-
ing. Moreover, the ResNet50 backbone demonstrates a marked improvement, increasing from 40% on
raw data to 98.14% post-preprocessing, and ResNet101 shows an increase from 50.23% on raw data
to 86.98% after preprocessing. This shows the effectiveness of preprocessing videos in significantly
improving model performance.

5.4 Results

The proposed model was tested against the dataset, and we observed the saliency map of each
class. Figure 5 presents the saliency maps computed by the ViT-b/32 and the ResNet50 backbones
for each class along with the region of standard deviation. The saliency map values are normalized
according to min-max normalization to maintain uniformity. We observe that the computed scores
are similar, helping us determine what timestamps are of higher interest. Notably for the WT
class, which does not exhibit any genetic modifications, we observe that both backbones are nearly
identical. However, we also observe that the backbones give us different scores for class AflgA and
ArbmB, this may be caused due to ArbmB having lesser training volume.

Average Saliency Map Comparison for Class rbmA Average Saliency Map Comparison for Class flgA

L A 06 e —

Figure 5: Comparison of average saliency map of each class computed by model with ViT-b/32 (red)
and ResNet50 (blue) backbones for CLIP, alongside selected frames at intervals of 1, 5, 10, 15, 20,
and 25. We observe a similarity between the graphs of both backbones

The proposed model demonstrates notable efficiency in predicting genotypes solely through visual
observations of growth patterns captured with low-resolution brightfield microscopy. This highlights
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the model’s capability to leverage visual cues effectively. In Figure 4, the confusion matrix for the
ViT-b/32 and ResNet50 backbones with the proposed model is depicted. We can observe that the
overall performance in most classes appears to be excellent for both backbones. Notably, classes
such as AfigA, AvpsL, and WT have a higher volume of data points, which can be a contributing
factor to the model’s robust performance in these categories.

However, there are visible misclassifications, predominantly assigning samples to the ArbmA
class in both backbones. Specifically, 8.3% of AlapG and 4.2% of ArbmB samples are misclassified
as ArbmA in the ViT-b/32 backbone. Similarly, 4.2% of AvpsL and WT samples are misclassified
as ArbmA in the RN50 backbone. This suggests that these classes lack distinct visual patterns,
leading to confusion for the model. Additionally, we can see very few misclassifications of WT
and AflgA, which can be attributed to the large volume of training data for this class. In the
case of vpvC(w240R), it is falsely classified as AvpsL 14.3% of the time, this falls in line with our
observations seen in Figure 3, where vpvC(w240R) is seen to have a cluster formed near AwvpsL.

We also observe the superior performance of ViT-b/32 over ViT-b/16 on both raw and pre-
processed data. This suggests that the larger vision transformer variant excels in capturing and
understanding complex visual features associated with bacteria gene modifications. This highlights
the importance of selecting an appropriate backbone for optimal performance.

6 Discussion

Our research proposed a supervised deep learning model designed to classify modified bacteria
based on known gene modifications explaining the relationship between bacterial phenotype and
genotype. Through analysis of bacterial growth behavior captured in videos, we observed a strong
correlation between visual patterns and gene modification classes. We introduced a weakly super-
vised method to identify key moments in bacterial life cycles, thereby enhancing the prediction
accuracy. These findings offer valuable insights into how genetic modifications influence bacterial
responses, potentially streamlining gene modification research for applications in drug discovery and
disease management. Moreover, we can see the potential of predicting genotypes from low-resolution
movies that can be acquired with relative ease.

In the goal of refining our model, addressing the observed class imbalance should be a key priority
for future enhancements. Classes like ArbmA have shown instances of misclassification, suggesting
that a more balanced dataset is required. Techniques like focused data collection for classes with
fewer data points and data augmentation can help to address this imbalance and promote better
model generalization. With that in mind, expanding the range of bacterial classes in our dataset
could lead to more thorough and precise predictions. This expansion can be achieved by including
more bacterial classes in future data collection efforts.

Furthermore, including unsupervised machine learning methods is a promising direction for fur-
ther exploration. Leveraging clustering or dimensionality reduction methods can reveal underlying
patterns in the data, providing insights that improve the predictive capabilities of the model. These
approaches collectively can provide a better and more robust model for classifying bacterial gene
modification.
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