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Abstract

In medical studies, time-to-event outcomes such as time to death or relapse
of a disease are routinely recorded along with longitudinal data that are
observed intermittently during the follow-up period. For various reasons,
marginal approaches to model the event time, corresponding to separate
approaches for survival data/longitudinal data, tend to induce bias and lose
efficiency. Instead, a joint modeling approach that brings the two types of
data together can reduce or eliminate the bias and yield a more efficient es-
timation procedure. A well-established avenue for joint modeling is the joint
likelihood approach that often produces semiparametric efficient estima-
tors for the finite-dimensional parameter vectors in both models. Through a
transformation survival model with an unspecified baseline hazard function,
this review introduces joint modeling that accommodates both baseline co-
variates and time-varying covariates. The focus is on the major challenges
faced by joint modeling and how they can be overcome. A review of available
software implementations and a brief discussion of future directions of the
field are also included.
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1. INTRODUCTION

In clinical trials, it is common to collect baseline variables from individuals at the onset of the study
along with longitudinal measurements and an event time of interest. In contrast to time-varying
longitudinal measurements, the baseline variables are time-independent, meaning that their values
do not change during the study.

For instance, in follow-up studies of HIV clinical trials (Abrams et al. 1994, Goldman et al.
1996), researchers recorded treatment assignments and demographic information when a partic-
ipant enrolled in the study, and then measured the CD4 cell counts of participants at subsequent
clinic visits. The timing and the number of these clinical visits usually vary across subjects. Hence,
the CD4 counts are longitudinal data, while the remaining variables are baseline covariates. The
study also records the time to death for some participants, or the duration until the participant is
lost to follow-up, as well as the time at which the study concludes if the participants do not expe-
rience the event during the study. For such a study, statistical analysis has two goals: (#) modeling
the event time using the longitudinal data as time-dependent covariates, in addition to baseline
covariates, and (b)) modeling the CD4 counts as longitudinal data using baseline covariates and
addressing the informative dropout of the longitudinal data caused by death, the occurrence of
the event. Both of these are important problems that call for the joint modeling of the survival
and longitudinal processes because marginal modeling of either process will induce bias and may
be less efficient if the two components are correlated. There are already several review articles
on the joint modeling of longitudinal and survival data (Tsiatis & Davidian 2004, Wu et al. 2012,
Furgal et al. 2019, Papageorgiou et al. 2019). Our intention is to offer an up-to-date overview
of the field, highlighting the critical issues in joint modeling and exploring future directions. We
note that our reference list is not exhaustive.

Event-time data are often referred to as survival data in the biostatistics community. Hereafter,
we use the terminology “survival data” liberally and define survival analysis as the statistical analysis
and inference for survival data. There are two distinct features of survival data: () They are positive
random variables, and (b) they are often incomplete data, meaning that the actual values of some
of the events may not be observed, due to the design of the study and the reality that patients may
drop out before the event is observed. There are many forms of incomplete data, such as right
censoring, left censoring, double censoring, interval censoring, left truncation, right truncation,
and a combination of several incomplete mechanisms; we refer to Klein et al. (2014) for details
and focus here on the most prevalent type, random right censoring. In Section 5.2, we give a very
brief discussion of the joint modeling approaches for other types of incomplete data.

The feature of positivity of survival data is easy to address, but the incomplete nature of survival
data requires special attention that deviates from a modeling approach for data that can be ob-
served completely without bias or errors. For a complete outcome variable, the standard approach
is to adopt a mean regression model to describe the influence of covariates on the outcome. This
approach is not ideal for incomplete survival outcomes because the upper tail probability of right-
censored data is either inaccessible or difficult to estimate due to the scarcity of data in the upper
(right) tail of the survival distribution. For instance, it is infeasible to estimate the upper tail if the
largest observations are censored, and this happens routinely in studies that end before all events
have been recorded.

Consequently, mainstream approaches in survival analysis are anchored instead on modeling
the hazard function of the survival data. An added benefit of the hazard-based approach is that it
automatically takes care of the nonnegative feature of survival data. This paradigm shift in survival
analysis is attributed to the pioneering work of Sir D.R. Cox, who proposed the elegant propor-
tional hazards model (Cox 1972, 1975), which then inspired alternative survival models evolving
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around the hazard function. Half a century later, Cox’s 1972 paper remains one of the highest cited
papers in statistics, and the proportional hazards model is still the prevailing approach to model
survival data due to the success of the partial likelihood approach (Cox 1975), which produces a
consistent and efficient parametric estimator without involving the nonparametric baseline haz-
ard function. To be more specific, the Cox model is a semiparametric model, where the hazard
function A(¢ | W), for an individual with covariate vector W e R, is specified by

A | V) = Ao(t) expl0T W}, 1.

Here, 6 is a finite-dimensional parameter and the baseline hazard function ¢ is unspecified,
hence nonparametric. It is called the proportional hazards model because the ratio of the hazard
functions for any two individuals does not change over time.

When the baseline hazard function 1y in Equation 1 belongs to a parametric family, e.g., a
Weibull distribution, this becomes a parametric model, where the joint likelihood approach is
preferred (Pawitan & Self 1993) to model both components. However, the likelihood approach
fails when A, is unspecified, because then the likelihood is unbounded. Luckily, one can resort to
the nonparametric likelihood proposed by Kiefer & Wolfowitz (1956). Later, it was discovered
that Cox’s partial likelihood is equivalent to the nonparametric likelihood; therefore, the max-
imum partial likelihood estimator of 6 is also the nonparametric maximum likelihood estimator
(NPMLE). This explains the semiparametric efficiency of the maximum partial likelihood estima-
tor in the Cox model as shown in the monograph by Tsiatis (2006, Section 5.2). For the definition
and theory of semiparametric efficiency, readers are directed to Begun et al. (1983) and the mono-
graphs of Bickel et al. (1998), Van der Vaart (2000), Tsiatis (2006), and Kosorok (2008). We next
explain the concept of nonparametric likelihood and NPMLE, as it is the pillar of joint modeling.

Conventional likelihood approaches are applicable to a family of distributions with a dominat-
ing measure, so the Radon-Nikodym derivative, with respect to (w.r.t.) the dominating measure,
exists for each member of the family and serves as a surrogate of the likelihood. For instance, for a
family of absolute continuous cumulative distribution functions (CDFs), a dominating measure is
the Lebesque measure, and the Radon-Nikodym derivative of an absolute continuous CDF is its
probability density function, which is used as a measure of the likelihood for such a family. Like-
wise, a dominating measure for a family of discrete probability measures is the counting measure,
and the Radon-Nikodym derivative of a discrete CDF is the probability mass function, which is
used as a measure of the likelihood for this discrete family. Therefore, the maximum likelihood
approach is well suited for these two families. However, there are many other CDFs that are nei-
ther absolute continuous nor discrete and do not have a dominating measure. For such families,
Kiefer & Wolfowitz (1956) proposed a pairwise comparison method for any two CDFs F and G
using their sum F + G as the dominating measure. If the Radon—-Nikodym derivative of F w.r.t.
F + G is larger than the Radon-Nikodym derivative of G w.r.t. F + G, we declare that F is more
likely than G. With this nonparametric likelihood, the NPMLE is the CDF F that is more likely
than any other competitor G. It is not hard to see that any F(x) that is continuous at x will be
dominated by any G that s discrete at x, because the Radon-Nikodym derivative of Fw.r.t. F + G
is zero. By this token, the NPMLE is always a discrete probability measure that assigns nonzero
mass only to the observed data. For instance, the empirical CDF is the NPMLE of all CDFs, and
the Kaplan-Meier estimate (Kaplan & Meier 1958) is the NPMLE for the CDFs of all randomly
right-censored data. Intriguingly, the maximum partial likelihood estimator in the Cox model is
also its NPMLE.

Another key advantage of the hazard-based approach is that it leads directly to a likeli-
hood function or a nonparametric likelihood. Both likelihood approaches produce efficient or
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semiparametric efficient estimators under some regularity conditions. This is the case for the
aforementioned Cox proportional hazards model as well as for many other survival models.

Despite its success, the proportional hazards assumption in the Cox model is restrictive, and
hence it may not be suitable for some applications and may lead to biased estimators. Beyond
the proportional hazards model, there are several alternative semiparametric models: the pro-
portional odds model (Bennett 1983), the accelerated failure time (AFT) model (Wei 1992), the
transformation survival models (Dabrowska & Doksum 1988), and the extended hazard model
(Etezadi-Amoli & Ciampi 1987, Tseng & Shu 2011). Both the proportional hazards and pro-
portional odds models belong to the broader class of transformation survival models, where
the nonparametric maximum likelihood approach offers semiparametric efficiency in estimation
(Zeng & Lin 2007b) in many cases. The Cox proportional hazards model, along with the AFT
model, is also a special case of the extended hazard model. Generally, the NPMLE is intractable,
except for the Cox model, but a pseudolikelihood approach, proposed by Zeng & Lin (2007a), can
be used to obtain semiparametric efficient estimators.

All the above survival models can accommodate time-dependent covariates, in addition to
baseline covariates, and the same estimation principle for baseline covariates also works for time-
dependent covariates as long as the entire longitudinal trajectory can be observed without error
for all subjects and variables. For instance, the Cox model with time-dependent covariates takes
the form

A | W) = ro(2) exp(0T W (2)}, 2.

where W could include baseline covariates, if we regard a baseline covariate as a constant value
time-dependent covariate. Equation 2 is a concurrent model as it is assumed that only the cur-
rent value W (¢) of the longitudinal process, and not its past values {W# (s) : s < ¢}, is predictive for
the survival time. The partial likelihood principle still works if all the W trajectories can be ob-
served fully without error. In practice, especially in longitudinal studies involving human subjects,
this is typically infeasible as measurements are mostly recorded at discrete and intermittent time
points. In addition, the measurements may contain random noise, aka measurement errors. Such
discretely observed time-dependent covariates are referred to as longitudinal data in the literature.
A naive approach to incorporate such data in the Cox model is to impute the longitudinal process
using the most recent observation of a subject as the value of that subject at a current time. This is
called the last-value carry forward method. Not surprisingly, this method will induce bias (Raboud
et al. 1993) in the subsequent survival analysis and this bias can be substantial if the longitudinal
data are measured infrequently.

A more sophisticated approach to impute the longitudinal process is to adopt a prespecified
model, such as a linear mixed-effects model (Laird & Ware 1982), for the longitudinal process, and
then use the subject-specific random effects to represent the longitudinal process for each subject
(De Gruttola & Tu 1994, Tsiatis et al. 1995). This two-stage method can reduce the bias if the
adopted model fits the longitudinal processes. However, there will still be an intrinsic bias caused
by the presence of measurement errors in the observed longitudinal data. Additionally, the two-
stage method does not take advantage of the information contained in the survival data, which is
correlated with the longitudinal data. This leads to a loss of efficiency for the estimation of both the
longitudinal and survival models. This motivated the search for alternative approaches to jointly
model the two components with the aims of eliminating the bias (asymptotically) and increasing
the efficiency as compared with the above two-stage method that imputes the longitudinal data
first before estimating components of the survival model.

In a landmark paper, Wulfsohn & Tsiatis (1997) proposed to model the survival and lon-
gitudinal data simultaneously through their joint nonparametric likelihood. They modeled the
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longitudinal data with a Gaussian linear mixed-effects model and regarded them as the covariates
of the survival data in a Cox model. This approach accomplished a major goal of joint model-
ing, as Zeng & Cai (2005) and Dupuy et al. (2006) later showed that the estimated parameters
achieve semiparametric efficiency when the baseline hazard is unspecified. It turns out that the
same nonparametric likelihood approach also works for the larger transformation survival models
(see Equation 5 below) and leads to semiparametric efficiency of the parametric estimators (Zeng
& Lin 2007b). Due to this generality, we illustrate the joint likelihood approach through the more
general transformation survival model.

We now provide an outline of the joint modeling approach. Further details are in Section 2.
It is straightforward to determine the nonparametric joint likelihood function based on the joint
distribution of longitudinal data and survival data (see Section 2.2). However, the likelihood in
Equation 8 below involves a complicated integral due to the presence of random effects, and di-
rect maximization of the likelihood function is challenging. Hence, the expectation—maximization
(EM) algorithm (Dempster et al. 1977) has been employed, where one treats the random effects
in the longitudinal covariates as missing data. The expectation step (E-step) is often implemented
by Monte Carlo or other integral approximation methods, and the Newton—Raphson method is
applied in the maximization step (M-step). The numerical integration in the E-step is computa-
tionally costly, especially for higher dimensional random effects. Nevertheless, the EM algorithm
is computationally stable and in general produces reliable results. Section 3.1 contains further
details.

Another challenge of the EM algorithm is that it is unable to provide direct estimates of the
standard error (SE) of the parameters. Some solutions are discussed in Section 3.1.3, which is
devoted to this topic.

"To mitigate the computational complexity of the EM algorithm, an alternative method known
as the conditional score method was proposed by Tsiatis & Davidian (2001) and further studied
by Tsiatis & Davidian (2004). This approach can yield unbiased estimates from estimating equa-
tions and is computationally fast, albeit at the cost of lower estimation efficiency. Details are in
Section 3.2. Section 3.4 briefly reviews Bayesian approaches for joint modeling.

Section 4 contains an illustration of the joint modeling approach for the aforementioned AIDS
data. Section 5 showcases the joint modeling approach for other survival models and incomplete
data. Available software to perform joint modeling methods is the topic of Section 6.

The aforementioned computational bottleneck has been a key obstacle for the progress and
further advancement of the field of joint modeling, especially for nonparametric survival and lon-
gitudinal settings. Keep in mind that this was in the pre-artificial intelligence era, where gradient
decent- and machine learning—based numerical integration methods were not widely known to
statisticians, so EM was the main computational tool to solve the optimization problem in the joint
likelihood. Today, we have many more tools to tackle the numerical challenges posed by the joint
likelihood approach. The recent advances in deep learning, and more broadly artificial intelligence
(AI), provide an opportunity to revitalize the field by deploying machine learning techniques to
accelerate computation and to increase the accuracy of the estimates. Further discussion of this
and other future directions are in Section 7.

2.JOINT MODELING
2.1. External and Internal Covariates

We first introduce internal and external covariates, which are two major types of covariates in the
survival model. Their definitions are given below. For more detailed information, please refer to
Kalbfleisch & Prentice (2002, Section 6.3.1).
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Definition 1 (External and internal covariates). A time-dependent covariate W with
history W(t) = {W (5),0 < s < t} up to t is called external if, for all #, v such that 0 < u < v,
it satisfies the property

Pu<T<u+du | W), T>u)=Pu<T <u+du| W), T > u),
where T'is the event time. A covariate that is not external is called internal.

Whereas an external covariate W may influence the probability function over time, its future
path will not influence the current value of the probability function. By this measure, all baseline
covariates that do not change values over time are external covariates. Any interaction between
a baseline covariate and time since entering the study is also external. More generally, any exter-
nal risk factor, such as temperature and particles less than 2.5 micrometers in diameter (also called
PM2.5) from air pollution, is also an external covariate. One virtue of external time-dependent co-
variates is that they can often be observed completely, and hence can be incorporated in a survival
model directly without any model assumptions. In contrast, internal covariates are always time-
dependent and are measured directly from the subject, and hence they are unlikely to be observed
completely. In this review, we call such internal covariates longitudinal data (see Section 2.2) to
distinguish them from time-dependent external covariates that can be observed fully. In order to
incorporate longitudinal data in a survival model, the longitudinal data require specification of
a dedicated model, which is estimated jointly with the survival model by maximizing their joint
(nonparametric) likelihood.

Both (internal) longitudinal and (external) time-dependent covariates account for a survival
model and the joint likelihood, yet their influence on the joint likelihood approach differs sub-
stantially. An external time-dependent covariate, which is fully observed, does not pose the
computational challenges that an internal longitudinal covariate does. This is due to the internal
longitudinal covariate requiring a model assumption, while the external time-dependent covariate
does not necessitate a model assumption since its entire trajectory can be observed without errors.
In other words, internal longitudinal covariates are the root cause of why a more complex joint
modeling approach is necessary—specifically, to correct the bias in a marginal approach.

2.2. Longitudinal Data

Longitudinal studies are characterized by the repeated collection of measurements from the same
individuals over time and can lead to an understanding of how responses change over time. Longi-
tudinal data can be viewed as a series of repeated records of a random curve at different observation
times, where each recording is contaminated by noise (measurement errors). In this context, the
observed longitudinal data for the ith subject can be described by

Vi=UT)+e, i=1,..nj=1,.,m). 3.

Here, the pairs (V;, Tj) represent the observed longitudinal data for the /th subject at time Tj,
where Uj(-), for i = 1,..., n, denote independent identically distributed realizations of a ran-
dom curve U(-), and ¢; represents the independent measurement errors, across i and j, with
mean zero and finite but unknown variance. In the following, we denote T; = (T, ..., T;»,)" and
Vi=i,...,Vi,)". A key feature of longitudinal data is that the ith subject has #; observations
over time, where #; varies across subjects and may be small for some subjects.

An appealing approach to model the trend of continuous longitudinal data is through the lin-
ear mixed-effects model (Laird & Ware 1982), which assumes that the random curves follow the
model

Ut) = B"X,(t) + b Z:(1). 4.
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Here X,(-) and Z;(-) are vectors of covariates for the fixed and random effects, respectively. The
vectors X;(-) and Z;(-) can be user-specified covariates with overlapping components. Often, part
or all of the components of the fixed effects are chosen as the random effects in the biostatis-
tics community. In this context, the unknown regression coefficients f represent the fixed effects,
which capture the overall mean effect or the population-level effect of the variable X(-) on the
outcome variable. On the other hand, the random vector b; represents the between-subject varia-
tion around the fixed effects. Under the Gaussian assumption on 4; and measurement errors e;;, the
parameters of this model, including 8 and the variance components (covariance of ; and variance
of the measurement errors) can be efficiently estimated using likelihood-based methods through
the EM algorithm. In addition, the variance of the noise ¢; can also be efficiently estimated if it
has a simple parametric form, such as constant variance in a homoscedastic setting.

For discrete or categorical longitudinal data, the linear mixed effects can be replaced by a
generalized mixed-effects model (Faucett et al. 1998, Yao 2008, Li et al. 2010, Pan & Yi 2011),
where the joint likelihood approach can be established similarly as for the linear mixed-effects
model through an EM algorithm, by adjusting the joint likelihood accordingly.

2.3. Survival Data

Survival data, also known as time-to-event data, are commonly encountered in fields ranging
from biomedical science to sociology, industry, engineering, and economics. The primary out-
come of interest is the time 7 until an event occurs. This event could be anything from the failure
of a mechanical component to the occurrence of a disease, or the death of a patient. The focus of
survival analysis is to model the hazard function of an event occurring at a certain time ¢, identi-
fying factors associated with the risk for the event of interest to happen, and making predictions
about future events based on the characteristics of individuals or groups.

The unique characteristic of survival data that sets it apart from other types of outcome data
is that many event times are unobserved due to censoring or other forms of incomplete data. In
this article, we focus on random right censoring, which is the most common type of censoring in
survival data. References for joint modeling involving other types of incomplete data are included
in Section 5.2.

Right-censored event times are encountered when the event of interest has not occurred for
some individuals by the end of the study period or during the follow-up period if a patient drops
out of the study before the event occurs. Let 7" and C be the event and right-censoring time,
respectively. We do not observe the event time for some individuals but do know that the event
has not occurred at the censoring time C. Thus, we can only observe ¥ = min(7, C) and the
censoring indicator A = I(T < C), where A = 1 indicates that the observed time is the event time
T and A = 0 signifies that the event time is censored by C.

We assume that the event time 7; for the ith subject is associated with the latent processes U(-)
plus some other time-varying processes W;(-) that can be observed completely without errors. Ex-
amples of W;(-) include baseline covariates that have constant values over time and some external
time-varying covariates (see Section 2.1 for the definition of external covariates).

For an individual with covariate (U, W), its survival function or hazard function can be used
to characterize the event time 7. Let U(¢) = {U(s) : 0 <s <t} be the history of U up to time
t. Given (U, W), the survival function St | U, W) represents the probability that the individual
survives beyond time # and is defined as

S| UW)=P(T >t |UE),W).

Additionally, the hazard function for a continuous event time 7 is defined as

P <T <t+At|T >t,Uk),W)
At

U = i,
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which describes the instantaneous risk of an event occurring at a given time #, given that the
individual (U, W) has survived up to that time.

We emphasize here that both the survival and hazard functions evaluated at time ¢ should only
depend on the values of the longitudinal process up to time ¢ and not on the entire longitudinal
trajectory. This is to avoid the influence of future values of the longitudinal process to affect the
risk at a current point. However, this restriction is not necessary for an external covariate as its
future has no influence on the past, according to the definition in Section 2.1.

Once we have the hazard functions, the associated probability density (or mass) function can
further be represented as f(¢ | U W) =1 | U W)S@ | U, W), and the corresponding cumula-
tive hazard functionis A(z | U, W) = fot A(s | U, W)ds. Any of the four functions, A(t | U, W), A(t |
UW), f@ | UW),and S@¢ | U, W), uniquely determines the others.

There are many different types of survival models beyond the Cox model. In this review article,
we adopt transformation survival models as the platform to model survival data, because this class
includes the Cox model and the joint modeling approach for such models shares many similarities
with the joint modeling approach for the Cox model.

The cumulative hazard function for a transformation model is

AG | b UW) = H ( [ o) explali() + ¢Tm<s>}ds) , 5.
0

where the transformation function H is a prespecified strictly increasing and continuously
differentiable function, and A is an unknown baseline hazard function.

When H(z) = ¢ is the identity function, the model in Equation 5 becomes the Cox proportional
hazards model (Cox 1972,1975). When H(z) = log (1 + ), it becomes the proportional odds model
(Bennett 1983). Standard choices for H include Box—Cox transformations and the logarithmic
transformation:

Hp (t) = > 0. 6.

log(1 + pt
g( p)’p
P

When p =0 and p = 1, this gives the Cox proportional hazards model and the proportional odds
model, respectively. The logarithmic transformation has computational advantages as it can be
converted to a Cox model with a multiplicative frailty variable (more on this will be elaborated in
Section 3.1.2).

We note that the hazard function in Equation 5 is associated with the latent process U; but not
with V. This is a main reason why the marginal approach to model the survival component alone
will not lead to consistent estimators. However, even if we replace U; with V; as a risk factor, joint
modeling would still be needed as we only have observations of V; at a few time points. For this
reason, we opt for the common practice that chooses U, as the covariate rather than V.

2.4. Joint Modeling of Longitudinal and Survival Data

In practice, researchers often gather baseline covariates at the start of a study and subsequently
track longitudinal variables up to an event time or censoring time. For example, Figure 1 displays
20 randomly selected CD4 cell count trajectories (in square-root scale) among 467 HIV infected
patients in a clinical study (Goldman et al. 1996), in which each trajectory was discretely recorded
at the study’s inception and during subsequent follow-ups until death, dropout from the study,
or the study’s conclusion. Thus, such longitudinal data are only available intermittently and may
be further contaminated by measurement errors. More importantly, data missing after the event
for each individual may lead to informative dropout of the longitudinal process. In addition to
the CD4 counts, at the study onset each patient was randomly assigned to receive either the ddI
(didanosine) or ddC (zalcitabine) treatment (drug), and two baseline covariates, sex (sex) and
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Figure 1

Trajectories of the square root of CD4 cell count for 20 randomly selected subjects.

previous infection at study entry (prevDiag), were also recorded. For such studies, we denote T
as the recorded time points, ¥ as the CD4 counts, and W as the baseline covariates drug, sex,
and prevDiag.

Formally, the observations are D, = {O; = (T;,V;,W,,Y;, A;) : i = 1,...,n}, the definition of
(T;,V;) aligns with that in Section 2.2, and W; are the completely observed covariates that may
include time-independent baseline and time-dependent covariates, such as the interaction term
between a baseline covariate and the time since entering the study. The observed survival data are
Y; = min(7;, C;) and the censoring indicator A; = I(T; < C;), where T; and C; are the event and
censoring time, respectively. Depending on the target of interest, there are three major approaches
to jointly model longitudinal and survival data:

1. The most popular approach is to estimate the regression parameter in a time-dependent
hazard model, providing a way to account for measurement error and infrequently measured
values of the longitudinal variable (Tsiatis & Davidian 2004).

When there are no longitudinal covariates V; and the covariate W is time-independent,
the cumulative hazard function is usually modeled as a Cox proportional hazards model
(Cox 1972):

A1) = | ho(e)ds explé T,
0

where o(-) is the baseline hazard function. This implies that the hazard ratio of two sub-
jects remains constant over time and is determined by their respective covariate values.
This elegant model has been widely adopted in practice to analyze time-to-event data using
the partial likelihood approach (Cox 1972). When time-dependent covariates are available
and fully observable, e.g., W contains fully observed time-dependent covariates, the partial
likelihood approach still works and the Cox model becomes

AG 1 b, ) = /O ho(s) expldT W (s))ds.

However, some time-dependent covariates may only be observed at discrete time points and
may contain measurement errors (denoted as V7). This leads to the following joint model
for longitudinal data and survival data:

Vij = U(T;)) + €,
A(t | bi, (Jis VV:) = j;)t )\()(X) exp{an(s) + ¢TVVz(S)}d~V,
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where Ui(t) = B"X,(t) + b} Zi(t) is defined in Equation 4 of Section 2.2. This joint
model, where the longitudinal data and survival data are linked through the unobserved
time-varying covariate Uj(-), rather than the observed longitudinal data Vj;, has attracted
increasing attention over the past three decades. The rationale is that U;(") is the appropri-
ate latent biological process that determines the risk and it is only intermittently available
for each subject with potential measurement errors. Moreover, if instead one would prefer
to tie the observed V; instead of Uj(-) to the risk, joint modeling cannot be avoided, because
a complete trajectory V() that generates the observed longitudinal data Vj; is not available.
Therefore, the convention is to tie the latent process U;(:) to the risk for survival, and this
is the approach we adopt here.

2. When the primary focus is on the longitudinal data, the event time (or longitudinal
endpoint) is used to address the sampling bias caused by the informative dropout, i.e., un-
availability of further longitudinal measurements following the dropout (death, in this case).
A common strategy is to model the observed time using survival models that are connected
to the longitudinal endpoint through latent variables (see Little 1995, Sun & Song 2001,
Roy & Lin 2002, Huang & Wang 2004, Sun et al. 2012, Han et al. 2014, Kim et al. 2017,
and the references therein).

3. Another goal is to study the joint evolution of longitudinal measurements and event times,
with equal interest in both components. This approach dictates that the survival and lon-
gitudinal models share some common random effects, and hence it is often referred to as
the shared random effects or shared frailty model (Henderson et al. 2000). For example, the
cumulative hazard function can take the form

A1z = [ " ols) explad! Z(s) + T ()},
0

where b; and Z;(¢) are given in Equation 4 and W; is given in Equation 5. The work by
Henderson et al. (2000) and Ratcliffe et al. (2004), and the references therein, provides
further insights. An R package JSM (Xu et al. 2020) can be used to fit this model. The
JM package (Rizopoulos 2010) also considered a shared random-effects approach using a
different method.

Hereinafter, we primarily focus on the first approach above and consider the joint model with a
transformation survival model for generality:

Vi =U(T;) + €ijy
At | b, U, W) = H(fy 1o(s) exp{aUi(s) + ¢ Wi(s)}ds),

where Ui(t) = B"X,(t) + b} Z;(t) is defined in Equation 4 of Section 2.2.

3. ESTIMATION

The key step of a joint modeling approach is to select a meaningful joint likelihood that can correct
the bias in the marginal approach. A standard approach is to adopt a parametric model for all the
random quantities in the joint model. Specifically, a Gaussian model offers computational advan-
tages, and this type of model has been prevalent in the literature. Thus, the standard assumptions
are as follows:

m ¢; and &; are independent for all 7 and j, and they follow identical normal distributions
N(0,0?%) and NV(0, %), respectively, where o, and ¥, are unspecified parameters.
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m Conditional on b and covariate W, the censoring time and longitudinal measurement times
are both noninformative in the sense that they do not contribute information to the event
time 7 or the latent process U, once we have adjusted for the covariates effects.

m The longitudinal and survival outcomes are conditionally independent given &;.

While it is common to postulate Gaussian errors, it is not clear why the random effects should
have a Gaussian distribution. There are two advantages in adopting Gaussian models: () The
joint likelihood can be expressed easily and one has a close-form expression for the estimated ran-
dom effect b;, and () the numerical integral involved in the joint likelihood in Equation 8 below
can be evaluated through the (adaptive) Gauss—Hermite quadrature method (Pinheiro & Bates
1995) instead of other numerical integration methods, e.g., Monte Carlo integration or Laplace
approximation, which are time consuming and may have less numerical precision. These are com-
putational advantages, not a justification for the Gaussian random-effect assumption. However, a
pleasant surprise is that the Gaussian assumption appears to be robust against model misspeci-
fication in numerical studies (Song et al. 2002). That is, the joint likelihood using the Gaussian
assumption for the random effects often leads to similar fixed-effects estimates and survival esti-
mates when the true random effect is non-Gaussian. An explanation was provided by Hsieh et al.
(2006), namely that in the E-step the mode of the posterior distribution with Gaussian random
effects approaches quickly the mode of the true posterior distribution, even when the true random
effects are not Gaussian, as long as the number of repeated measurements is not too small. This
discovery provides strong justification for the Gaussian assumption for the random effects in the
linear mixed-effects model, as the estimates obtained through the maximum likelihood function
are remarkably robust against violations of Gaussianity.

3.1. Estimation of Parameters

This section reviews the maximum likelihood approach for the joint model presented in
Equation 7. The EM algorithm is introduced to obtain parameter estimates, followed by the
calculation of SEs for these estimates to facilitate statistical inference.

3.1.1. Jointlikelihood approach. The joint model in Equation 7 involves an unknown parame-
ter 0 = («, B, @, 0, ¥;) and an unknown function Ag. Here, the elegant partial likelihood approach
of the Cox model, which provided an efficient parametric estimate of B without involving the
nonparametric baseline hazard function Ay, is no longer applicable because of the presence of the
longitudinal components. Luckily, a nonparametric likelihood approach, as proposed by Kiefer
& Wolfowitz (1956), can be employed to replace the partial likelihood, and it will lead to effi-
cient estimation of . Here, the efficiency means semiparametric efficiency as defined by Bickel
et al. (1998), Van der Vaart (2000), Tsiatis (2006), and Kosorok (2008). This is perhaps not sur-
prising since the partial likelihood is also the nonparametric likelihood and the partial likelihood
is known to lead to semiparametric efficient estimators in the Cox model. The more striking fact
is that Zeng & Lin (2007b) showed that the semiparametric efficiency of the NPMLE extends to
the transformation survival model, Equation 5, even under the joint modeling framework.
However, a main advantage of the partial likelihood is lost in the joint modeling approach.
Unlike the partial likelihood approach, where the parametric components ¢ and « in the survival
component (Equation 5) can be estimated without involving the nonparametric baseline hazard
function A, the parametric component @ in the joint models (Equation 7) cannot be separated
from the estimation of the nonparametric components Ao. This seems daunting at first, as Ao is
a function and hence infinite dimensional. Luckily, the NPMLE for 1 corresponds to a discrete
distribution. Accordingly, Ao can be reparametrized as a vector and easily estimated in the M-step
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through the Breslow formula for the hazard function based on the current estimate of 8 (explained
in Section 3.1.2).

To derive the likelihood function, we need additional assumptions: The censoring time of the
event and the time schedule of the longitudinal data are noninformative, and the event time 7;
and the longitudinal data V; are independent, conditional on the random effects b;. With these
assumptions and by integrating out the unobservable random effects ,, the likelihood function of
¥ = (0, Ay) takes the form

L, 10)=]] fp:p(Ka Ai [ b)pe(U; | bi)po(bi)db;, 8.
=1
where

Y A
Dy (T A | B = [xom)exp{«fmm)+au<x>}H’ ( /0 M(s)exp{wm(x)+aU,-<x>}ds>]

Y
X exp {—H (/o Ao(s) exp{¢TVV,-(5) + aU,-(x)}dx)} s

R 1 Vi; — B'XA(T})) — b Z(T;))’
peU; 1 b)) —Jl] @ronyir P {‘ 202 ’

1 1
b)= ——expl—=~b 5.b,
p9( ) |277217|1/2 eXp= 2 b }:

and H'(-) is the derivative of H() and |-| represents the determinant of a matrix.

The first step to numerically find the NPMLE is to determine the form of the NPMLE of
Ao. This would be intractable unless we could represent Ay by a vector parameter with growing
dimension. This turns out to be feasible and has been explored by Cai & Cheng (2004) and Zeng
& Lin (2007b). It is now well known that the NPMLE of A, is a discrete hazard function whose
cumulative hazard function is a step function with jumps at all uncensored observations. Thus, we
can reparametrize Ao by a long vector whose values represent these jump sizes at the uncensored
observations. The dimension of this vector would be the number of uncensored observations 7z =
> A, which is of the same order as the sample size #. Thus, we have converted an infinite-
dimensional optimization problem to a high-dimensional nonconvex optimization problem, which
is still a challenge.

3.1.2. Expectation-maximization algorithm. Direct optimization of the logarithm of the
likelihood function in Equation 8 is challenging due to the high dimension of the functional pa-
rameters for ¢ and the involvement of the integral of the unobserved random effects ;. Instead,
the EM algorithm (Dempster et al. 1977) has been deployed to solve this optimization problem
by treating the random effects 4; as missing data.

The EM algorithm is known for its stability and generality, especially in finding the maximum
likelihood estimators (MLEs) for statistical models that incorporate unobserved latent variables.
Thus, it is widely used in the joint modeling literature. The EM algorithm for joint modeling in-
cludes recursive updates of the E-step and the M-step. In the E-step, one calculates the conditional
expectation of the complete data log-likelihood function in terms of the posterior distribution of
the latent random effects given the observed data and the current estimates of the parameters.
In the M-step, one maximizes the function obtained in the E-step with respect to the parameters
to obtain updated parameter estimates. This involves finding the parameter values that maximize
the conditional expectation of the complete data log-likelihood function calculated in the E-step.
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By iteratively alternating between the E-step and M-step, the EM algorithm converges to the
maximum likelihood estimates of the joint model of longitudinal and survival data. However, it
is computationally intensive due to the calculation of the expectation, which requires evaluating
a potentially high-dimensional integral in the E-steps. In addition, there is no explicit form for
the estimates in the M-step, so an optimization algorithm, such as the Newton-Raphson method,
needs to be deployed.

While the E-step is computationally intensive and incurs approximation errors of the inte-
gral in the likelihood function, the M-step becomes a high-dimensional nonconvex maximization
problem. To address this challenge, Xu et al. (2020) utilized Laplace transformations for a den-
sity function of the form exp{—H(s)}, initially proposed by Tsodikov (2003) and subsequently also
adopted by Zeng & Lin (2007b). This transformation helps mitigate computational complexities
and is applicable to the logarithmic family in Equation 6. Xu et al. (2020) introduced a new like-
lihood function for the parameters ¥ = (8, Ag) by creating an artificial latent variable &, whose
probability density function is 7 (s) and satisfies exp{—H (s)} = [, exp(—st)m (¢)dt. Subsequently,
they utilized the EM algorithm to optimize this new likelihood function by incorporating the new
latent variables & and b. This approach leads to a closed form of the NPMLE of A¢(-) in the M-
step, resembling a Breslow-type estimate. By substituting this Breslow-type estimate back into the
log-likelihood function, it becomes a function of @, making it computationally feasible to obtain
the NPMLE of 6 using the Newton—Raphson method. The trick to exploit the Laplace transfor-
mation not only simplifies the estimation of the baseline hazard function but also enhances the
computational efficiency of obtaining the NPMLE of the parameters. Details of the EM algorithm
for the transformation hazard model (Equation 5) are provided by Xu et al. (2020, Section 2.3).
For theoretical support of this approach, readers are directed to the elegant discussion paper of
Zeng & Lin (2007b), who established the semiparametric efficiency of the NPMLE of 6.

To recap, the nonparametric maximum likelihood approach produces efficient parametric es-
timates if the survival model is a transformation model taking the form in Equation 5. The
derivation of the NPMLE is performed through the EM algorithm, which is no small feat in
the joint modeling setting, as there are challenges in both the E- and M-steps of the algorithm.
While one can resolve the challenges in the M-steps by reparametrization and by leveraging the
Breslow formula, the E-steps are computationally intensive due to the presence of random effects
in the joint model, which lead to a likelihood function that involves multivariate integrals. Our
experience has been that an adaptive approach for the Gauss—-Hermite quadrature rule (Pinheiro
& Bates 1995) implemented in the package JSM (Xu & Zeger 2001) works quite well. This adap-
tive approach first centers and scales the quadrature points in each EM iteration according to
the conditional distribution of the random effects based on the current estimate of the parameter
6. Although it seems to demand more computational effort, this adaptive rule is actually more
efficient since it requires fewer quadrature points to reach the same level of precision.

3.1.3. Standard error estimation. To perform statistical inference for the parameter 0, it is
necessary to estimate the SE of the estimates. Although the consistency and asymptotic normality
of MLEs in Section 3.1.1 from the EM algorithm under the proportional hazards assumption or
transformation survival model is well established by Zeng & Cai (2005) and Zeng & Lin (2007a),
the asymptotic covariance matrix for the estimates of the parameter 6 has no explicit form. This
leads to a challenge for the direct estimation of the SE of the parameter estimates as elucidated
by Hsieh et al. (2006), who recommend using the bootstrap method to estimate the SE. The
SE estimates from the bootstrap method work well in practice, even though they tend to slightly
underestimate the actual SE due to the repeated use of the same observations in a bootstrap sample.
The major downside of this approach is the high computational cost.
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An alternative method by Louis (1982) for the SE estimation for a generic EM algorithm can
be adapted to the joint model setting. However, its success hinges on a parametric model with a
small number of parameters, which requires the baseline hazard function to follow a parametric
structure, which substantially limits the applicability of this method.

An effective approach to mitigate the above issues emerged in the past decade. Xu et al. (2014)
adopted the ideas of a forward difference method, Richardson extrapolation method, forward dif-
ference score (FDS), and Richardson extrapolation score (RES) (Jamshidian & Jennrich 2000)
to estimate the derivatives of a profile Fisher score. Since the methods of Jamshidian & Jennrich
(2000) cannot handle semiparametric models directly, Xu et al. (2014) first profile out the nuisance
parameter, i.e., the cumulative baseline hazard function, and then use either forward difference or
Richardson extrapolation to differentiate the profile Fisher score vector. The main procedures are
outlined below.

Write C; = (0;,b;) and L5(¥ | C) = [, py @ Ai | B)pe(U; | b;)pe(b;), to describe the com-
plete data and complete-data likelihood function. In the E-step of the EM algorithm with the
current parameter ¥ = (0, Ay), define

Q. ¥) = Ellog(£,(¥ | €)) | 0, ¥]and M(¥) = argmax Q(¥, ¥),
with ¥ = (0, Ag). Then calculate the profile Fisher score
00, ¥)
a0
with A(f) = arg max, , QWY ¥) given 0. Then the ith row of the information matrix Z is
o) — 8Sy@Y) + 8Sy(¥) — Sy(¥)
128 ’
So) = Se¥")
6 b
where 9 = 00, A*(0)) for k = 1, 2, 3, 4 07 =0"+05e,0) =0"—Se; 67 =0"+
28e;; 0<1’) = 0" — 25¢;; and ¥ = (6", Aj) is the NPMLE of ¢, ¢; is the ith coordinate vector,

and A*(9) := argmax,, log £,(8, Ao | O) for a given 6. Finally, the asymptotic covariance matrix
of 0is 1.

S =

AO:[\(G)] ‘o:é

PRES: 7, =

PFDS: 7. =

3.2. Conditional Score Approach

The conditional score method (Tsiatis & Davidian 2001, 2004) is an alternative approach to tackle
the bias in the marginal modeling of a survival model in the presence of longitudinal data or
measurement errors in covariates, as shown in Section 3.3 below. It was proposed to counter
the computational complexities associated with the EM algorithm. In the joint model under the
proportional hazards assumption, Tsiatis & Davidian (2001) considered the random effects b; as
nuisance parameters without imposing distributional assumptions. Tsiatis & Davidian (2001) ini-
tially obtained the ordinary least squares estimator for U;(z) using the data from the ith trajectory
up to time ¢ and then identified a sufficient statistic for b; by analyzing the joint conditional dis-
tribution of a counting process and the estimator for U;(z). This sufficient statistic is designed to
eliminate the dependence of the conditional distribution on 4;, indicating that it contains ade-
quate information to estimate the coefficients o and ¢, since the survival model in the joint model
(Equation 7) is mainly connected to the longitudinal model through the random effects ;. This
leads to the formulation of a conditional score estimating equation for « and ¢, analogous to the
derivation of classical partial likelihood score equations or generalized estimating equations. The
estimates for these parameters are then derived by solving this estimating equation.
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While this approach can provide computationally effective unbiased estimators for & and ¢, and
leads to consistency and asymptotically normality of the resulting estimators, itis less efficient than
the joint likelihood approach. According to Tsiatis & Davidian (2001), the efficiency loss is partly
attributed to the way the conditional score method handles the estimation of Uj(z), which does not
utilize data beyond time #. In contrast, the EM algorithm takes account of information contained
in the entire trajectories. Nevertheless, the estimates from the conditional score method can be
useful to accelerate the EM algorithm by serving as initial estimates.

3.3. Two-Stage Method

A simple approach is to impute (or interpolate) the longitudinal covariates and then fit a sur-
vival model based on the imputed data. There are several ways to impute the longitudinal data.
A preferred approach is to do this through a longitudinal model. A general approach is given as
follows:

m Stage 1: The longitudinal data are analyzed using a longitudinal statistical model, such as a
linear mixed model or functional principal component analysis (FPCA). The random effects
for each subject are then used to impute the individual longitudinal trajectories for that
subject.

m Stage 2: The usual survival model fitting is performed, using the imputed longitudinal
trajectories in stage 1 instead of the original observed longitudinal covariate.

Stage 1 aims to recover the trajectories of longitudinal covariates over time, which mitigates
issues with both missing data and measurement errors to some extent. It also facilitates the survival
modeling with longitudinal covariates in stage 2. While such a two-stage approach facilitates the
modeling of survival outcome with longitudinal covariates, it induces bias in the final analysis in
two ways: (#) The informative dropout caused by death in the longitudinal covariates would trigger
bias in the analysis in stage 1, and (b)) imputing longitudinal trajectories for sparsely observed
longitudinal data would induce bias in the analysis of stage 2.

In contrast, a joint modeling approach does notinduce any bias in the analysis and increases effi-
ciency as it utilizes both the survival and longitudinal data simultaneously, rather than sequentially
in the two-stage approach.

3.4. Bayesian Method

So far, we have only covered frequentist approaches for joint modeling, but various Bayesian
approaches have also been proposed.

The starting point is to specify prior distributions for the parameters of interest based on ex-
isting knowledge, expert opinion, or previous studies. Let the prior probability density function
of the parameters ¥ be p(¥). Denote b = (b/,...,b))", D, is the observed data, and the posterior
distribution of (¢, b) is calculated combining the prior distribution and the likelihood function,

P, b1 D) o [ 1oy @i, Ai 1 B)pe(U | B)pa(B)]p(h).
i=1

Markov chain Monte Carlo methods, such as the Gibbs sampler or the Metropolis—Hastings
algorithm, are then used to draw samples from the posterior distribution p(y¢,b | D,). For a
more comprehensive description of this approach, we refer readers to Faucett & Thomas (1996);
Faucett et al. (1998), Wang & Taylor (2001), Xu & Zeger (2001), Law et al. (2002), Brown &
Ibrahim (2003), Ibrahim et al. (2004), Chi & Ibrahim (2006), Rizopoulos & Ghosh (2011), and
Andrinopoulou & Rizopoulos (2016), among others.
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4. APPLICATION TO REAL DATA

Revisiting the AIDS data (Goldman et al. 1996), we illustrate joint modeling by investigating the
clinical efficacy of two drugs, ddI and ddC, on the lifetime of HIV-infected patients while adjusting
for the CD4 cell count. The dataset comprises 467 patients, with 188 subjects deceased during the
18-month follow-up period, resulting in a 59.7% censoring rate. At the study onset, each patient
was randomly assigned to receive either the ddI or ddC treatment (ddI = 1, ddC = 0), and two
baseline covariates, sex (male=1, female=0) and previous infection at study entry (prevDiag)
(AIDS diagnosis = 1, no AIDS diagnosis = 0), were also recorded. The CD4 counts were assessed
at the study entry and subsequently at 2, 6, 12, and 18 months until death, loss to follow-up, or
study completion.
For this analysis, we employed the model

Vij = U(T;;) + €i; = Bo + Prdrug; + B,sex; + psprevDiag; + B4 T;; + ,357;]2
+ boi + b1 T;; + 172i7:'; + €ij,
At | b, U, W) = H, (fy 2o(s) exp{aUi(s) + ¢1drug; + ¢rsex; + ¢psprevDiag,}ds),

where V; is the observed CD4 counts, W; = (drug;, sex;, prevDiag,) ", and H,(t) = log (1 + pt)/p
represents the logarithmic transformation, with p being a tuning parameter. Using the R pack-
age JSM (Xu et al. 2020), we fitted several models for various values of p in a candidate grid
{0, 0.1,0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5} and chose the optimal one using the Akaike information
criterion (AIC). Figure 2 displays the AICs from different p values and suggests that the model
with p = 0 (i.e., the Cox model) provides the smallest AIC. The resulting coefficient estimates
under the Cox model are shown in Table 1.

The results in Table 1 show that there is a significant linear time trend for the longitudi-
nal CD#4 counts and prior diagnosis with AIDS is a significant covariate. For the risk of death
due to AIDS, ddC is a more effective treatment than ddlI, subjects with prior diagnosis with
AIDS have significantly higher risk, and lower CD4 counts are significantly associated with higher
risk.

4,930 .

4,920 i

AIC

4910 i

4,900 —1 L

Figure 2

AIC curve for model fitting as a function of the logarithmic transformation parameter p for the AIDS data.
Abbreviation: AIC, Akaike information criterion.
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Table 1 Coefficient estimates for the AIDS data

Coefficient Estimate Standard error p-Value
Bo 3.098 0.134 <22 x 10710
B1 0.070 0.074 0.342
B2 —0.012 0.127 0.925
B3 —-0.916 0.078 <22 x 10710
Ba —0.045 0.007 5.6 x 10710
Bs 0.0006 0.0005 0.265
o1 0.333 0.151 0.026
2 —0.298 0.253 0.241
®3 0.774 0.219 42 x 107*
o —-0.934 0.125 6.7 x 10714

5. EXTENSIONS TO OTHER MODELS AND DATA TYPES
5.1. Extensions to Other Survival Models

In the previous sections, our emphasis is primarily on the transformation survival model within
the joint model (Equation 7). Alternative survival models, such as the AFT (Wei 1992) and the
extended hazard (Ciampi & Etezadi-Amoli 1985) models could also be used and have their own
appealing properties.

Given the latent process U and covariates W as outlined in Section 2.4, the hazard function of
an AFT model is

At | b, UW)=x (/t exp{aU(s) + ¢TW(X)}ds> explaU(t) + ¢ W ()}, 9.
0

where A¢(-) represents an unspecified baseline hazard function. In contrast with the Cox model,
where the baseline hazard function is solely a function of time, the AFT model incorporates co-
variate effects on the baseline hazard function as well. This provides the interpretation of the
accelerated failure schedule, hence the name AFT. The AFT model in Equation 9 is equivalent to
€ = fOT exp{aU(s) + ¢ W (5)}ds, where Ay is the hazard function of ¢‘. Moreover, it is quite easy
to derive the equivalence of the AFT model to the following log-linear model, when there are
only baseline covariates involved:

logT = —¢'W +¢,

where the hazard function of ¢ is A¢. This intriguing alternative expression of the AFT model
sets it apart from other survival models, as it resembles a conventional regression model and can
predict the event time directly without going through the hazard function. This is an attractive
feature of the AFT model, but it poses computational challenges as T is not observed for a por-
tion of the data, so the estimation of ¢ still needs to be routed through the hazard function in
Equation 9. Moreover, the fact that ¢ depicts both the risk factor and an accelerated failure
schedule within the baseline component complicates the estimation of ¢, as the NPMLE is
intractable.

To tackle this challenge, Tseng et al. (2005) proposed a pseudolikelihood approach by approx-
imating the baseline hazard function through a step function that remains constant between two
consecutive observed failure times. This reparameterization scheme substantially simplifies the
EM algorithm and produces reliable estimates in numerical studies. Later, Zeng & Lin (2007a)
proposed another type of pseudolikelihood that produces a smooth baseline hazard estimate and
semiparametric efficient estimators for the regression parameter in an AFT model with only base-
line covariates. Their approach was generalized by Tseng et al. (2015) to the joint modeling setting
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with longitudinal covariates and a scenario where the survival data belongs to an extended hazard
model.
The hazard function for the extended hazard model takes the following form:

AE | B, U, W) =1 (/f exp{o1 U (s) + (blTW(x)}dx) exp{e, U (r) + ¢2TW(3)}, 10.
0

where o, a;, ¢, and ¢, are unknown parameters, and Ay(-) represents an unspecified baseline
hazard function. This extended hazard model offers a more flexible and broader range of models
compared with the Cox and AFT models, and it includes both of these models as a special case.
Specifically, the extended hazard model reduces to the Cox model when oy = 0 and ¢, = 0, and it
becomes the AFT model when «; = «; and ¢; = ¢,. Inspired by the work of Zeng & Lin (2007a)
on the AFT survival model, Tseng et al. (2015) systematically examined the joint modeling of the
extended hazard model and its longitudinal covariates in terms of theory and implementation,
establishing asymptotic normality and semiparametric efficiency of parametric estimators.

5.2. Other Types of Incomplete Survival Data

In addition to right-censored event times, there is a diverse array of incomplete survival data,
including left-censored, double-censored, interval-censored, left-truncated, and right-truncated
data, as well as cure data and data resulting from competing risks. The extension to other forms
of incomplete data follows the same path: establishing the joint likelihood of the survival and
longitudinal data, then finding a suitable likelihood approach that can facilitate the corresponding
EM algorithm. Below, we briefly summarize these types of survival data along with the respective
joint modeling approaches.

m Double-censored data arise when individuals experience left censoring or right censoring;
the former occurs when the event of interest for an individual has already occurred before
the study begins, leading to incomplete information on the exact event time. With L and C
being the left- and right-censored times, respectively, the observed data include the observed
time ¥ = max (L, min(7, C)) and the right- and left-censoring indicators A = I(T' < C) and
n = I(T > L), respectively. The PhD thesis of Xu (2014) contains a thorough analysis of
the joint likelihood approach for doubly censored survival data and associated longitudinal
covariates, based on a general class of transformation survival models. Additional work for
doubly censored data in joint modeling settings includes that of Su & Wang (2016) and Li
etal. (2020).

m Interval-censored data in survival analysis are present in a situation where the exact event
time is not known, but it is known to have occurred within a specific time interval (see, e.g.,
Sun 2006, Sun & Chen 2022, Yi et al. 2022).

m In addition to the usual right censoring, left truncation is common in studies with delayed
entry. For instance, individuals whose events occurred before the study entry point may have
been excluded from the analysis, resulting in a biased sample. In this regard, left truncation
is very different from left censoring, which produces incomplete, but not biased, data (see,
e.g., Su & Wang 2012).

m Cure survival data occur in a situation where a subset of individuals in a study population is
considered cured or immune to the event of interest, meaning that they will never experience
the event. Thus, their event time takes the value co. This often occurs in studies where a
portion of individuals either are not susceptible to the risk under investigation or are cured
of the disease after some time. As a result, the population is a mixture of individuals who are
susceptible to the event and those who are cured or immune to it (for details, see Law et al.

Wang o Zhong



2002; Brown & Ibrahim 2003; Chen et al. 2004; Yu et al. 2004, 2008; Kim et al. 2013; Amico
& Van Keilegom 2018).

m Competing risks or multiple failure types in survival analysis are encountered when individ-
uals in a study may be at risk for more than one type of event, but the occurrence of one
event, such as death due to this event, precludes the occurrence of all other events. In other
words, all the other potential event times serve as right-censoring times, because individuals
who experience a competing event are no longer at risk of the primary event and are there-
fore censored at the time of the competing event. The complication here is that the usual
independence assumption between the event time and censoring time no longer holds as
these competing risks are inherently correlated within a subject. Consequently, the analysis
of survival data subject to competing risks requires careful handling of the censoring scheme.
Ignoring competing risks or treating them as independent censored observations will lead
to biased estimates of the event of interest (for further details, see Elashoff et al. 2007, 2008,
2016; Hu et al. 2009; Li et al. 2010, 2012; Xu 2014).

5.3. Multivariate Longitudinal Processes

So far, for simplicity of presentation, we have implicitly assumed that there is only one latent
longitudinal covariate U. In many clinical studies, it is common to repeatedly record multiple
longitudinal outcomes along with an event time for the same individual. Suppose that there are p
longitudinal covariates. For individual 7, denote as ¥, a column vector of length 7; of repeated
observations for the kth component of the latent process Uy (+). That is, Vi = Vi, - - -, V,-n,.kk)T,
with
Vijk = (]j/e(ﬁjk)+65j}(,i= L...,mj=1,...,np;k=1,...,p,

where the ¢ are measurement errors. Under the transformation survival model with user-
specified covariate (X;(r),Z;(t)) and external covariate W, the joint model of multivariate
longitudinal and survival data is

[]ik(t) = ﬁ;Xl(t) + b;z,(t),k = 1’ IRy 2
At | BUi W) = H(fg ho(s) expt X4, axUn(s) + ¢TWi(s)}ds),

where B, and b, represent fixed and random effects, B; = (&), ... ,bi;)T, andU,; = (Uy,...,U;p)".
The random effects B; capture the correlations among different longitudinal trajectories and are
often assumed to follow a multivariate normal distribution. However, increasing the number of
random effects poses a significant computational burden, primarily as one needs to compute mul-
tidimensional integrals over the random effects. For more details, readers are directed to Elashoff
etal. (2016, chapter 6) and the review article by Hickey et al. (2016).

5.4. Nonparametric Approaches for Longitudinal or Survival Data

Although the predominant approach for the linear mixed-effects models in Equation 4 has been
parametric, it can be extended to a nonparametric model via a basis expansion approach for the
time effects. For instance, if we choose X (¢) and Z(z) by B-splines (De Boor 1978), a nonparametric
model emerges when the number of spline basis functions grows with the sample size, where both
the fixed and random effects can be modeled nonparametrically. Specifically,

q1 92
Uit) =D BBe(®) + Y _ biB(r),
k=1 k=1
where {B.(-)}I", and {l:?k(»)}?: , are B-spline functions, and g; and &; are fixed and random

coefficients, respectively (for further details, see Rice & Wu 2001).
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5.4.1. Functional principal component analysis approaches. One drawback with the B-
splines is the involvement of a large number of random effects and the associated difficulty of
the required computation of a high-dimensional integral in the E-step of the EM algorithm. This
can be rectified with an alternative nonparametric approach developed independently in another
community, where one treats longitudinal data as sparsely observed functional data. The latent
processes U; in Equation 7 can be regarded as functional data, which in this case are random curves
defined on an interval. A brief overview of functional data analysis (FDA) is provided in the review
article by Wang et al. (2016). It is well known in the FDA community that the FPCA approach
is the most parsimonious way to accommodate the random effects in functional data. The FPCA
approach initially did not gain traction in the longitudinal community in its original version as it
could not handle sparsely measured functional data, which correspond to longitudinal data. A turn-
ing point was when Yao et al. (2005) proposed a nonparametric smoothing approach to estimate
the mean and covariance functions for sparsely measured functional data and further leveraged
the Karhunen-Loéve expansion to produce random effects and implement the PACE (Principal
Analysis by Conditional Estimation) method (Zhou et al. 2024) to estimate these random effects.

Under the Cox proportional hazards assumption, Yao (2007) applied the FPCA approach to
model the random trajectory jointly with survival data. The latent process is modeled as

Uit) = u@) + B'X:) + ) _ &,
pa

where u(2) = E[U;(#)], X,(-) is a vector of covariates, and (§,, ¢;) are paired scores and eigenfunc-
tions. This formulation assumes that E[Uj(z) — u(¢) | X;(¢)] is a linear predictor 87 X;(z) of X;(z).
Yao (2007) employed the EM algorithm to estimate wu(t), represented by B-splines, and treated
the number of eigenfunctions in the model as a tuning parameter chosen by the AIC. Specifically,
w(t) = DIt BeBi(t), where {Bi(-)} are B-spline functions, and B; are fixed coefficients that expand
the mean function wu(z).

While the FPCA approach can be viewed as a linear mixed-effects model, it is intrinsically a
nonparametric approach as both the fixed and random effects structures are nonparametric. Such
nonparametric models offer greater flexibility to encompass a wider range of function families and
are typically data adaptive, automatically capturing important features of an individual curve.

Aside from this difference, there are fundamental and philosophical distinctions between the
longitudinal and FDA communities. This was elucidated in an overview article (Rice 2004) in a
special 2004 issue of Statistica Sinica titled “Emerging Issues in Longitudinal and Functional Data
Analysis” (Davidian et al. 2004).

5.4.2. Varying coefficient models. Another nonparametric approach involves extending the
varying coefficient model to the joint model, either for the longitudinal data or the survival model,
or for both. This extension can be achieved by modeling the latent process U;(-) in Equation 7 as

Uit) = BT ()X (t) + b Zi(z),

or by modeling the cumulative hazard function as

A1 by U W) = H ( [ o) expla®@Uis) + 6T OW6)) ds) ,
0

where B(-), a(), and @(-) are unknown coefficient functions (for references on varying-coefficient
longitudinal models, see Brumback & Rice 1998; Hoover et al. 1998; Guo 2002; Huang et al. 2002,
2004; Fan et al. 2003; Morris & Carroll 2006; Miiller & Zhang 2005, and for survival models, see
Murphy 1993, Marzec & Marzec 1997, Cai & Sun 2003, Tian et al. 2005).
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5.4.3. Machine learning approaches. With modern advances in technology and AI, new tools
from the machine learning community can now be deployed to ease the computational burden
and orient the field of joint modeling to move toward nonparametric approaches. For instance,
recurrent neural networks, a type of neural network designed for sequence data, can be adopted to
modeling longitudinal data to provide more accurate risk prediction (Lee et al. 2019, Nagpal et al.
2021, Wiegrebe et al. 2024). In addition, deep neural networks (deep learning) can be deployed
to nonparametrically model the survival models. Zhong et al. (2021) demonstrate this for the
extended hazard model in Equation 10, but their approach has yet to be extended to the joint
modeling setting.

6. SOFTWARE

Several software packages are publicly available for the joint analysis of longitudinal and survival
data. For example, SAS (SAS Inst. Inc. 2013) and WinBUGS (Spiegelhalter et al. 2003) assume
that the baseline hazard function follows a Weibull distribution, which may be quite restrictive in
practice. The SAS macro JMFit (Zhang et al. 2016), and the R packages JM (Rizopoulos 2010),
JMbayes (Rizopoulos 2016), JMbayes2 (Rizopoulos et al. 2024), 1cmm (Proust-Lima et al. 2023),
frailtypack (Rondeau et al. 2024), and INLAjoint (Rustand et al. 2024), as well as the Stata
module stjm (Crowther etal. 2013), provide more flexible models by allowing the baseline hazard
function to be represented by piecewise constants or spline functions. However, in these packages
the tuning parameters for the survival component are prefixed and not data adaptive.

Moreover, the R packages joineR (Philipson et al. 2018) and joineRML (Hickey et al. 2018)
model the baseline hazard completely unspecified and obtain SE estimates of the regression
parameters using the bootstrap method (Efron 1994).

A recent R package, JSM (Xu et al. 2020), employs B-spline basis functions to model the latent
process and provides computationally efficient SE estimates for a broad class of semiparametric
models, such as the Cox proportional hazards model and the logarithmic class of transforma-
tion models. It also contains an implementation of the nonparametric multiplicative random
effects model of Ding & Wang (2008) and the shared random-effects model of Henderson et al.
(2000).

7. CONCLUSIONS AND FUTURE DIRECTIONS

It has been nearly 30 years since the pioneering work of Pawitan & Self (1993), De Gruttola &
Tu (1994), and Wulfsohn & Tsiatis (1997) that advocated the importance of modeling the survival
and longitudinal components through a joint likelihood approach. Because of the need for a
likelihood function, the approaches to model the effects of covariates have been predominantly
parametric, except for the baseline hazard function, which can be estimated nonparametrically
thanks to the ingenious idea of nonparametric likelihood from Kiefer & Wolfowitz (1956).
Arguably, this and other nonparametric likelihood approaches and the EM algorithm form the
bedrock of the field. Together, they have facilitated the implementation of the joint likelihood
approach and carried the field into the new millennium. Below we present a few future directions
that reflect our subjective view.

m More complex survival and longitudinal models: A major challenge of the joint modeling
approach is its extension to more flexible models, including a fully nonparametric survival
or longitudinal model. While B-splines could be deployed to fit either the survival or longi-
tudinal component as described in Section 5.4, the EM algorithm may not be stable in the
face of a high-dimensional optimization problem, especially when the baseline function is
estimated nonparametrically. The Breslow formula for estimating the baseline cumulative
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hazard function provides much relief and stability in the M-step of the EM algorithm, but
the joint likelihood is still intrinsically a high-dimensional nonconvex optimization prob-
lem. Therefore, we need more efficient and stable optimization methods that are scalable
for big data.

Scalable nonparametric approaches: Another challenge is the need for numerical integra-
tion in the joint likelihood function, which limits the number of random effects that can
be realistically employed in the E-step of the EM algorithm. The challenges in the E- and
M-steps can be alleviated by deploying modern machine learning methods, such as deep
neural networks.

In this era of Al and big data, there is a pressing need for scalable nonparametric ap-
proaches in the field of joint modeling. For instance, survival distributions in the presence of
a high-dimensional covariate may exhibit a complex yet low-dimensional structure (Bauer &
Kohler 2019, Schmidt-Hieber 2020, Jiao etal. 2023), which cannot be detected by traditional
nonparametric approaches, such as kernel and B-spline smoothing methods. Therefore,
these classical methods are subject to the curse of dimensionality. In this regard, neural
networks can be a promising tool to overcome this curse, as they are capable of automati-
cally detecting the low-dimensional structure of a function embedded in a high-dimensional
space. Recent work on deep learning for survival data (Kvamme et al. 2019; Katzman et al.
2018; Zhong et al. 2021, 2022) underscores the effectiveness of deep learning for survival
data. However, little is known about how this pans out for joint modeling. While some em-
pirical approaches have emerged (Lee et al. 2019, Nagpal et al. 2021, Lin & Luo 2022, Zeng
et al. 2024), theoretical support is still lacking. This presents an opportunity for the field to
progress and evolve in response to the fast development of new Al tools.

Beyond the concurrent model: So far, the approaches are concurrent—only the current lon-
gitudinal values at time # affect the risk at time 7. However, there may be a time lag for the
effect of the longitudinal data to kick in. Moreover, maybe the entire history of the longi-
tudinal data, or part of the history, could be useful to model the survival data. For instance,
we could use the average longitudinal values up to the current time, the entire history of the
longitudinal process, or the values in the most recent period to model and predict the event
time. We could even use the slope of the longitudinal process for survival modeling. Many
of these possibilities require the development of new survival models that allow an entire
stochastic process, e.g., the history process, to link to the risk of a subject. While this will
trigger further challenges in an already challenging framework, addressing these presents
an opportunity to advance the field.

More complex longitudinal data: Although this review primarily focuses on univariate/
multivariate longitudinal data in the Euclidean space, new data types have emerged lately.
These include high-dimensional longitudinal data that allow the dimension to grow with
sample size, such as gene expression profiles (Molyneaux et al. 2017, Sun et al. 2019) and
the human microbiome, where compositional data are repeatedly recorded using high-
throughput sequencing technologies (Livanos et al. 2016, Hu et al. 2022). Lastly, there is
also a rising interest in longitudinal imaging data (Kang & Song 2023, Zeng et al. 2024, Zou
etal. 2023, Zhou & Song 2024). These new data types pose challenges that necessitate new
statistical models, methodologies, and computational methods for joint modeling.
Hypothesis testing: So far, we have only touched upon one branch of statistical inference,
estimation, in the joint modeling framework. This reflects the evolution of the field as
results on hypothesis testing are scarce. Clearly, there is much room to explore hypothesis
testing. Tests that only involve testing a finite-dimensional parameter might be relatively
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straightforward, but testing whether a proposed survival or longitudinal model is suitable for
the data in hand could be complex. More research in this direction would be very welcome.
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