FINITE DIMENSIONAL APPROXIMATIONS OF CERTAIN
AMALGAMATED FREE PRODUCTS OF GROUPS

CHRISTOPHER SCHAFHAUSER

ABSTRACT. A group is called matricial field (MF) if it admits finite dimen-
sional approximate unitary representations which are approximately faithful
and approximately contained in the left regular representation. This paper
provides a new class of MF groups by showing that given two amenable groups
with a common normal subgroup, the amalgamated free product is MF.

1. INTRODUCTION

Some of the most prominent classes of operator algebras arise from groups and
group representations. As far back as the introductory paper on operator alge-
bras ([16]), Murray and von Neumann discuss the possibility of developing a rep-
resentation theory for infinite groups as one of their motivations for investigating
rings of operators. The left regular representation of a (discrete) group G, given by

(1.1) A\ G- UWRG): g (On—6gn), g heG,

is of particular interest. In fact, the reduced group C*-algebra C¥(G) and the
group von Neumann algebra L(G), which are, respectively, the norm and weak
closed span of the image of A\, are some of the most studied operator algebras.

In both group theory and operator algebras, approximation properties are ubiqg-
uitous. For example, amenability, which can be viewed as an internal approximation
of the dynamics by finite (or finite dimensional) objects, has a fundamental role in
both subjects. A much weaker approximation property is given by the notion of
hyperlinearity for groups or the corresponding condition for von Neumann algebras:
embeddability into R, the tracial ultrapower of the hyperfinite II;-factor (see [17]
for a survey). In fact, a countable group G is hyperlinear if and only if L(G) embeds
into R“ in a trace-preserving way; see [19, Theorem 8.5], for example. The Connes
embedding problem, asking if every (separably acting) tracial von Neumann alge-
bra embeds into R¥, has been a central problem in operator algebras since shortly
after its inception in [8]. A negative solution was recently announced in [13]; it is
still an open question if all groups are hyperlinear.

The present paper is concerned with an approximation property for groups moti-
vated by work in C*-algebras—particularly, the MF C*-algebras from [3]. The MF
property is variation of hyperlinearity obtained by equipping the matrix unitary
groups with a more rigid metric. Roughly, a group is MF if the group admits finite
dimensional approximate unitary representations which are approximately faithful
and approximately contained in the left regular representation.
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For all d € N, let U(d) denote the group of d x d unitary matrices, let | - | denote
the operator norm on My, the algebra of d x d matrices over C, and let try denote
the trace on My with the normalization try(1) = 1.

Definition 1.1 (cf. [3]). A group G is matricial field (MF) if for all finite sets
G € G and € > 0, there are d € N and a function u: G — U(d) with
(i) [lugn —ugup| < € for all g,h € G,
(i) |trg(ug)| < € for all g € G\{1}, and
(iii) || X cqug| — | X cg)\gam < e for all (¢g)geg < C with max |¢g| < 1.
geG geG 9€g

Note that the definition here is (a priori) quite a bit stronger than the definition
of MF group in [6]. The above definition is more closely related to approximation
properties of the C*-algebra. In fact, with the present terminology, a group G is
MF if and only if the canonical trace on C}(G) is MF (see Proposition 2.2).

Every MF group is hyperlinear. As with hyperlinearity, there are no known
examples of groups which are not MF. The only known examples of non-MF traces
on C*-algebras are those not factoring through R“, arising from [13].

The class of known examples of MF groups is rather small. The easiest class
of non-trivial examples is that of residually finite amenable groups. Using residual
finiteness, one can construct finite dimensional unitary representations of G satis-
fying (ii) (and obviously (i)) from the left regular representations of finite quotient
groups, and amenability forces (iii). As far as permanence properties, it is easy to
see that MF is a local property which passes to subgroups and finite index super-
groups. With slightly more work, one can show that products of MF groups are
MF provided that one factor is exact (see [12, Proposition 3.11(iii)]).

Much more surprising examples come from the celebrated results of Haagerup
and Thorbjgrnsen ([11]) stating that free groups are MF and Tikuisis, White, and
Winter ([23]) stating that amenable groups are MF. The Haagerup—Thorbjgrnsen
theorem was generalized by Hayes in [12] (using [7]) to show that free products of
MF groups are MF. Utilizing deep results from the classification theory of amenable
C*-algebras, Rainone and I showed in [21] that if G is an amenable group and F is a
free group acting on G, then G x F' is MF ([21, Theorem 1.3(i)]). Very recent results
of Louder and Magee ([14]) and Magee and Thomas ([15]) show, respectively, that
all limit groups and all right-angled Artin groups are MF.

At a 2018 BIRS workshop, Hayes posed the following problem, motivated by
the results in the previous paragraph and the analogous theorems for hyperlinear
and sofic groups—see [5, Corollary 4.5] for hyperlinearity (stated in terms of von
Neumann algebras) and [10, 20] for soficity.

Conjecture 1.2 (Hayes). If G and H are MF groups and A is a common amenable
subgroup, then G =4 H is MF.

The present paper proves the following special case of Conjecture 1.2.

Theorem 1.3. If G and H are amenable groups with a common normal (necessarily
amenable) subgroup N, then G xn H is MF.

The main tool is a classification result which follows from [22]. Roughly, if G is
an amenable group, then up to unitary equivalence, matrix amplification, and norm
perturbation, there is a unique function u: G — U(d) satisfying the conditions of
Definition 1.1 (see Theorem 2.5). This will be used to construct finite dimensional
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approximate unitary representations of G * H, which is then combined with MF
approximations for the quotient to produce MF approximations in Theorem 1.3.
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Grant DMS-2000129. T am grateful to Ben Hayes for helpful conversations related
to the results of this paper. I also thank the referee for helpful feedback on this
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2. NOTATION AND PRELIMINARIES

A trace on a C*-algebra will always mean a tracial state. The C*-algebra of
d x d matrices over C is denoted My, and the unique trace on this algebra is
written try. For a C*-algebra A, write U(A) for the unitary group of A. If G is
a discrete group, denote the full and reduced group C*-algebras of G by C*(G)
and C5(G), respectively. The canonical unitary representations of G on C*(G)
and C¥(G) will be denoted by u® and A, respectively, and the quotient map from
the full to the reduced group C*-algebra will be denoted by mg: C*(G) — C¥(G),
SO Fg(u?) = )\g for all g € G. Let trg denote trace on C§(G) determined by
trg()\g) =0 for all g € G\{1}.

The notion of an MF trace was introduced in [21] following the approximation
property characterization of MF C*-algebras from [3] and the approximation prop-
erties of traces (especially quasidiagonality) introduced in [4].

Definition 2.1. A trace try on a C*-algebra A is called matrial field (MF') if for
all finite sets F < A and € > 0, there are d € N and a self-adjoint linear map
¢: A — My such that for all a,b e F,

(2.1) [¢(ab) — ¢(a)¢(b)| <€ and  [tra(d(a)) —tra(a)| <e.

It will often be convenient (both notationally and technically) to replace the
matrix algebras My in the above definition with the UHF algebra Q = ®ZO=1 M.
Note that Q has a unique trace trg, which is induced by the traces trg. The
technical advantages of working with @ come from the extra divisibility which isn’t
present in finite dimensional matrix algebras My. This is particularly important in
the classification result from [22] (Theorem 2.5 below).

In Definition 2.1, replacing My and trg with Q and trg does not change the
definition. Indeed, in one direction, one may compose a map into My with a unital
embedding My «— @, and in the other direction, one may compose a map into
Q with a conditional expectation onto a sufficiently large matrix subalgebra of Q.
In a similar fashion, the groups U(d) in Definition 1.1 can be replaced with the
group U(Q) using that unitaries in Q can be approximated by unitaries in matrix
subalgebras of Q.

The following result justifies the claim made in the introduction on the relation-
ship between the two notions of MF in Definitions 1.1 and 2.1. The proof comes
down to standard manipulation of approximate morphisms.

Proposition 2.2. A group G is MF if and only if the trace trg is MF.

Proof. As both notions of MF are local properties, it suffices to prove the result
when G is countable. Let w be a free ultrafilter of N, let Q. be the corresponding
norm ultrapower of Q, and let trg  be the trace on Q,, induced by trg.

If tre is MF, then there is a unital *-homomorphism ¢: C}(G) — Q, with
trg, o ¢ = trg. Its worth noting that there is a subtlety here arising from the
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fact that the maps in Definition 2.1 are not assumed to be bounded or unital.
However, it’s possible to arrange the maps ¢ in the definition to be “approxi-
mately bounded” in a suitable sense, which is sufficient to produce a (possibly non-
unital) *-homomorphism ¢ with trg_ ¢ = trg; see [21, Proposition 2.3] for details.
Since any non-zero corner of Q,, is isomorphic to Q,, (see [23, Proposition 1.3(i)],
for example), the desired map ¢ is given by composing ¢y with an isomorphism
d0(1)Qudo(l) =~ Q,, which is necessarily trace-preserving by the uniqueness of the
trace on Q,, (see [18, Theorem 8], for example).

Define u: G — U(Q,,) by uy = (;5()\?). As every unitary in Q,, is represented by
a sequence of unitaries in Q, there is a sequence of functions (u*: G — U(Q))%_,
such that (uf)® , represents ug, for all g € G. Then

(2:2) Jim Jug, —uguy| =0, g,heG,
and
(2.3) Jim tro(uy) =0,  geG\{1}.

Further, as trg is faithful and trg,, o ¢ = trg, we have that ¢ is faithful. Thus ¢
is isometric, being a faithful *-homomorphism, and hence for all finite sets G € G
and (cg)geg < C,
24 i | 3 cong] = | 2 e

9eg 9eg
It follows that given a finite set G € G and € > 0, there is k € N such that u*

satisfies the conditions of Definition 1.1 (with U(Q) in place of U(d)), using (2.4)
and the compactness of {(cg)geg : max leg|l < 1} to realize (ii).
ge

The converse has a similar flavor. Let (Gi)j5., be an increasing sequence of finite
subsets of G with union G, and for each k € N, fix a function u*: G — U(Q) as in
Definition 1.1 with Gi and 1/k in place of G and €. Let u: G — U(Q,,) denote the
group homomorphism induced by the sequence (u*)$¥_; and note that trg, (uy) = 0
for all g € G\{1}.

There is a unital *-homomorphism ¢: C*(G) — Q,, with qg(u?) = ug. The norm
bounds arising from Definition 1.1(iii) imply |¢(a)|| < |7c(a)| for all a € C*(Q),
and therefore, ¢ = ¢ o 7 for some unital *-homomorphism ¢: C3(G) — Q.. The
trace condition on v implies trg,, o ¢ = trg.

If (¢r: CF(G) — Q)L is a sequence of self-adjoint linear maps lifting ¢, then
for all a,b e C¥(G),

(2.5) Him [[px(ab) — dr(a)gr(b)| =0 and  lim tro(¢k(a)) = tra(a).
It follows that given a finite set 7 < C§(G) and € > 0, there is k € N such that ¢,
satisfies the conditions of Definition 2.1 (with Q in place of My). O

The following three deep results form the core of the proof of Theorem 1.3. The
first is a essentially a restatement of the positive solution of Rosenberg’s conjecture
in [23] stating that amenable group C*-algebras are quasidiagonal.

Theorem 2.3 (cf. [23, Corollary C]). Amenable groups are MF.

Proof. The proof of [23, Corollary C] shows that trg is quasidiagonal, which (by
definition) means the conditions of Definition 2.1 hold with completely positive
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contractive maps ¢. Indeed, we may assume G is countable as MF is a local
property. In this case, G is a-T-menable by the main result of [2], and hence satisfies
the UCT by [24, Proposition 10.7]. The claim follows from [23, Theorem A]. O

The second result, taken from [12], is a consequence of a large body of work in
free probability, including [25, 11, 7]

Theorem 2.4 ([12, Proposition 3.11(v)]). Free products of MF groups are MF.

The following is a simple consequence of the classification results from [22] after
specializing to the case of unital embeddings C}(G) — Q.

Theorem 2.5 (cf. [22, Thoerem B]). If G is a countable amenable group, then there
is a group homomorphism u: G — U(Q) such that trg(uy) = 0 for all g € G\{1},
and this u is unique up to approxrimate unitary equivalence.

Proof. By [22, Theorem B], there is a unital embedding ¢: C3(G) — Q such that
trg o ¢ = trg. Define u, = ¢(/\g) for ¢ € G. To see uniqueness, suppose that
v: G — U(Q) is another group homomorphism with trg(vg) = 0 for all g € G\{1}.
Since G is amenable, there is a *-homomorphism ¢: C5(G) — Q with g[}()\g) = vy
for all g € G. Note that trg o9 = trg.

It suffices to show that ¢ and ¥ are approximately unitarily equivalent. The
conditions of [22, Corollary 5.4(2)] apply (the UCT for the group algebra follows
from [2, 24], as in the proof of Theorem 2.3) and trgo¢ = trg o, so it is enough to
show that Ko(¢) = Ko(¢). Since the map K¢(Q) — R induced by trg is injective,
the agreement on trace implies agreement on Kj. (I

3. THE PROOF OF THEOREM 1.3

The following lemma, motivated by [21, Theorem 3.9], gives a sufficient condition
for a group to be MF.

Lemma 3.1. Suppose G is a group with a normal amenable subgroup N such that
G/N s exact and MF. Then G is MF' if and only if there are a unital C*-algebra
A with an MF trace tra and a group homomorphism u: G — U(A) such that
tra(uy) =0 for all n e N\{1}.

Proof. For the forward direction, take A = C§(G) and try = trg (which is MF by
Proposition 2.2) and define u, = )\?. To see the converse, let ¢: G — G/N denote

the quotient map and let ¢o: C*(N) — A and ¢: C*(G) — A® C¥(G/N) be the
*-homomorphisms given by

(3.1) do(u) =u, and ds(ug) = Uy ®)\f(/$’, neN, geG,

where the tensor product is the spatial one. Since try and trg,y are MF and
CY(G/N) is exact, the trace try ®trg,n is MF by [21, Proposition 3.6], so it suffices
to show that ¢ factors through a *-homomorphism ¢: C¥(G) - A®RCF(G/N) with
(tra®trg/n) o = trg. Indeed, composing MF approximations of tr4 ®@trg,/y with
¢ will produce MF approximations for trg.
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As N is amenable, 7y is an isomorphism, and hence (;30 factors as ¢g o mn for a
*-homomorphism ¢g: C5¥(N) — A. Consider the commuting diagram

o CE(G) s
CH(G) ————— ABCH(G/N)
(3.2) .
E :E;aC§UV)\<@\\% ida®tra)n
C*(N) = A

where F and E) are the canonical conditional expectations. As id4 and trg,n are
faithful, so is ida ® trg/ny (see the appendix of [1], for example). It follows that if
a € ker(mg) is positive, then ¢(a) = 0. Hence there is a *-homomorphism ¢ making
the upper face of (3.2) commute. The back right face also commutes by a diagram
chase using the surjectivity of mg and the commutativity of the other four faces.
The commutativity of this face implies ¢ is trace preserving as Fy and ¢y are. [

The following is a consequence of the classification result in Theorem 2.5. In
the context of Theorem 1.3, this lemma provides MF approximations of G and H
which approximately coincide on N. Note that N need not be normal.

Lemma 3.2. If G and H are amenable groups with a common subgroup N, then
there are nets of functions (u': G — U(Q))ier and (vi: H — U(Q))icr such that
forall 1,92 € G, g€ G\{1}, hy1,hs € H, he H\{1}, and n € N,

;15]2 — ugluth =0 and liigl ||11,"11h2 - vfllv,ﬁz | =0,

() tim |
1€
(ii) %ié?trg(u;) =0 and lli;?trQ(UZ) =0, and
(iii) lim |u, — 0% | = 0.
i€l

Proof. Let I be the set of all triples (G, H, €) where G € G and H S H are finite sets
and € > 0 and write (G1,H1,€1) < (G2, Ha,€2) if G1 S Ga, H1 S Ho, and €1 > €.
To construct the nets, it suffices to show that for all i = (G,H,€) € I, there are
functions u: G - U(Q) and v: H — U(Q) such that for all g1,g2 € G, g € G\{1},
hi,he € H, he H\{1}, and ne G n H,

(i) Ugrgs = Ug, Ugy and Vp, hy = Vh, Vhy,

(ii) tro(ug) =0 and trg(vy) = 0, and

(iil) [lun — vn| < e

After replacing G and H with the subgroups generated by G and H, we may

assume G and H are countable. By Theorem 2.5, there are group homomorphisms
u: G — U(Q) and v': H — U(Q) such that tro(ug) = 0 and trg(v;,) = 0 for
g € G\{1} and h € H\{1}. By another application of Theorem 2.5, u|y and v'|y
are approximately unitarily equivalent. Fix w € U(Q) such that for all n e G n H,

(3.3) [un — wol,w*| < e.
Then v and v = ad(w) o v’ satisfy the required properties. O

All that remains in the proof of Theorem 1.3 is to patch together the approx-
imate representations from the previous lemma to obtain MF approximations for
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the amalgamated free product. While it is easy to obtain approximate finite dimen-
sional unitary representations of Gy H from Lemma 3.2, arranging conditions (ii)
and (iii) of Definition 1.1 is harder. This will be done with the aid of Lemma 3.1.

Proof of Theorem 1.3. Note that N is a normal subgroup of G *x H and there is
a canonical isomorphism (G *y H)/N = (G/N) = (H/N). As G/N and H/N are
amenable, they are exact. By the main result of [9], free products of exact groups
are exact, so (G #x H)/N is exact. Also, G/N and H/N are MF by Theorem 2.3,
and hence (G =y H)/N is MF by Theorem 2.4.

Let (u': G — U(Q))ier and (v': H — U(Q))ser be nets as in Lemma 3.2. Fix
an ultrafilter w on I such that for all ig € I, we have {i € I : i > ip} € w. Let Q,
denote the corresponding norm ultrapower of Q and let trg, denote the trace on
Q,, induced by trg. Then trg  is MF.

The nets (u%);e; and (v*);c; define group homomorphisms u: G — U(Q,,) and
v: H—-U(Q,) with trg,, (uy) = 0and trg_ (v,) = O for all g € G\{1} and h € H\{1}
and with u|y = v|y. Then there is a group homomorphism w: G =y H — U(Q,,)
such that w|g = w and w|g = v. In particular, trg, (w,) = 0 for all n € N\{1},
and the result follows from Lemma 3.1. O

Remark 3.3. If (G;),es is a (possibly infinite) collection of amenable groups with
a common normal subgroup IV, then the amalgamated product *y G is MF. The
proof reduces to the case J is finite using that MF is a local property, and then the
proof is essentially same except Lemma 3.2 must be modified to produce several
nets (one for each j € J) with the analogous properties.
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