CONSTANT-SIZED ROBUST SELF-TESTS FOR STATES AND MEASUREMENTS OF

UNBOUNDED DIMENSION
LAURA MANCINSKA, JITENDRA PRAKASH, AND CHRISTOPHER SCHAFHAUSER

ABsTRACT. We consider correlations, p,,_y, arising from measuring a maximally entangled state using
n measurements with two outcomes each, constructed from n projections that add up to xI. We show
that the correlations p,, . robustly self-test the underlying states and measurements. To achieve this,
we lift the group-theoretic Gowers-Hatami based approach for proving robust self-tests to a more
natural algebraic framework. A key step is to obtain an analogue of the Gowers-Hatami theorem
allowing to perturb an “approximate” representation of the relevant algebra to an exact one.

For n = 4, the correlations p,, . self-test the maximally entangled state of every odd dimension
as well as 2-outcome projective measurements of arbitrarily high rank. The only other family
of constant-sized self-tests for strategies of unbounded dimension is due to Fu (QIP 2020) who

presents such self-tests for an infinite family of maximally entangled states with even local dimension.

Therefore, we are the first to exhibit a constant-sized self-test for measurements of unbounded

dimension as well as all maximally entangled states with odd local dimension.
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1. INTRODUCTION

One of the key tasks in the development of reliable quantum technologies is the certification of
quantum devices. This ensures that the devices are performing according to their specification. One of
the ways such certification may be carried out is by using self-testing methods which enable us to infer
the quantum-mechanical description of a device merely from classical observations (measurement
statistics). We can then treat these devices as black boxes as we need not trust the inner workings
of the system, a scenario which one refers to as device-independence. Beginning with [MY04],
in which the term was first coined, self-testing has found many applications, such as device-
independent quantum cryptography [MY98, MY04], delegated quantum computation [CGJV19],
entanglement detection [BvCA18a, BvCA18b], investigating the structure of the quantum correlation
set [CS17, GKW*18], and quantum complexity theory [FJVY 19, NV18, NW19]. Self-testing is also
one of the ingredients behind the recent breakthrough result establishing that MIP* = RE [JNV*20];
which further implies a negative answer to the celebrated Connes’ embedding problem [Con76]
from the theory of von Neumann algebras.

In this work, we prove that certain quantum strategies constructed from projections which sum up
to some particular scalar times identity can be robustly self-tested from the quantum correlations
that they induce. Specifically, we begin with d X d projections Pi,...,P, (n > 3) such that
151 +- ﬁn = xI, for some specific scalar x € R. The scalar x and the projections }71, R ﬁn
have the property that whenever Py, ..., P, are any other projections such that Py + - -- + P, = xI,
then P; = I ® P; for all 1 < i < n in some basis. We then define a quantum strategy & and its
induced quantum correlation p corresponding to these projections. We show that if one observes
the quantum correlation p induced from an arbitrary quantum strategy &, then & is related to S via
a local isometry. For the robust case, we prove that if we observe a quantum correlation p such that
llp — pll < €, then its inducing strategy & is “approximately” related to S via a local isometry.

Often times self-testing results are proven using ad-hoc techniques, which means that to obtain
new results one essentially has to start from scratch. One notable exception is an approach that uses
perturbative representation theory of groups to establish robust self-testing [Vid18, CS17, CMMN20].
The basic idea is that in the ideal case one deduces algebraic relations which the measurement
operators must satisfy on the quantum state. One then associates a suitable finite group such that
one gets a representation of the group. This transfers to the well-studied field of the representation
theory of finite groups and the problem reduces to identifying suitable irreducible representations
of the group. In the robust case, one gets approximate versions of the algebraic relations which
yield “approximate” representations of the group (with respect to state-dependent distance). A key

tool used in the approximate case is the Gowers—Hatami theorem [GK17, Gow17, Vid18] which
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relates an “approximate” representation of a group to a representation of that group in some suitable
sense. A caveat to this approach is that, in general, it is not clear what group should be associated to
the algebraic relations identified and if this is at all possible. In fact, it would be more natural to
associate an algebra rather than a group to these algebraic relations. Moreover, there are known
families of non-local games whose optimal strategies do not have an apparent underlying group
yet an underlying algebra can easily be identified (e.g. binary constraint system games [CM14]
beyond linear ones, synchronous games [PSS*16, HMPS19], graph homomorphism [MR16] and
isomorphism games [AMR*19]).

One of our main contributions is that we showcase how the above general method for self-testing
from this group framework can be lifted to an algebraic framework. Instead of seeking an appropriate
group to associate with the algebraic relations, we simply work with the algebra generated by those
relations. To accomplish this, a major step is to obtain some sort of analogue of Gowers—Hatami
theorem for algebras. We show how this can be done for a particular algebras, but the approach can
be easily generalized to algebras arising from other synchronous correlations whenever a version of
Gowers-Hatami Theorem holds; we expect this to be the case for algebras with well-understood
representation theory such as finite dimensional algebras. The analogue we prove in this paper has
a non-constructive (€,0)-dependence which is the most pressing question left open by the current
work.

In comparison to measurements, self-testing of quantum states is relatively well understood. For
example, we know that any (pure) bipartite entangled state in C¢ ® C¢ can be self-tested from a
correlation with 3 inputs and d outputs [CGS17]. For applications, it would be efficient to have
small-sized correlations that robustly self-test states with large dimensions. The only family of
constant-sized correlations that self-test states of arbitrarily large dimension [Ful9] are constructed
by building upon Slofstra’s group embedding procedure [Slo19] for linear binary constraint system
games. Specifically [Ful9] shows that for each d € &, where 9 is an infinite subset of the primes
given by

2 ={d : d is an odd prime, and the smallest generator of the group Z; is 2, 3 or 5},

the maximally entangled state ¢4(4-1) can be robustly self-tested from correlations with over 100
questions per party. We obtain the following corollary which complements the result in [Ful9], but
with correlations of considerably smaller size:

Corollary. For each odd dimension d > 3, the maximally entangled state ¢4 can be robustly

self-tested by quantum correlations with four inputs and two outputs.

When compared to [Ful9], the strength of our proof is the simplicity and the small correlation

size while the weakness is the non-constructive (€, ¢) dependence in the robustness proof.
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In their work [Ful9], the author establishes certain algebraic relationships between the measure-
ments needed to induce the considered constant-sized correlations but they do not present! a self-test
of measurements according to the standard definition [SB20]. Therefore, our work is the first one
to show that measurements of arbitrarily large dimension can be self-tested from constant-sized
correlations. In addition, to the best of our knowledge, we are the first to establish self-testing of
measurements with operators of rank higher than one:

Corollary. Given any natural number k there exist four projections of rank k which can be robustly

self-tested by quantum correlations with four inputs and two outputs.

Most of the known self-tests for infinite families of measurements are for tensor-products of
Pauli matrices (for example, [NV17, Coll17]) or Clifford unitaries [CGIJV19]. There are a few
results which are different from these, for instance, [SSKA19, CMMN20]. Our main theorem yields
another example of an infinite family of measurements that goes beyond a tensor-product of Pauli or
Clifford unitaries.

The following example illustrates the concept of robust self-testing and also outlines the method
that we use to obtain our results. Consider the CHSH game [CHSH69, CHTWO04], where two
non-communicating players, Alice and Bob, want to win the game against a referee. The referee
picks a pair of bits (v, w) € {0, 1}? uniformly and sends v to Alice and w to Bob. Alice replies with
a bit i and Bob replies with a bit j. Alice and Bob win the game if vw =i+ j (mod 2). Classical
strategies can only help them win the game with probability 3/4. On the other hand, quantum
strategies provide a better winning probability of w,(CHSH) = 0.85. Indeed, the following quantum
strategy (which we term canonical)

S ~ ~ ~ Z+X =~ Z-X
V2 V2
where ¢» 1s the maximally entangled state and X, Z are the Pauli matrices, achieves the maximum

quantum winning probability.
Suppose that Alice and Bob use an unknown quantum strategy (in terms of observables) given by

(1.2) S = (¢ € Ci @ T8 (Ao, Ay}, {Bo,Bl})

which also yields the maximum winning probability w,(CHSH). What can then be said about the
strategy &'? It has been shown that in such a case, there exist isometries V4 : C% — C? ® K4 and
Vg: C8 — C2 @ K for some Hilbert spaces Ky, Kp, and a quantum state junx € Ka ® Kp such
that

(1.3) (Va ® V)Y = @2 ® Yjunk, and
(1.4) (Va® V) (A ® B))Y = ((A; ® B,)92) ® Yiunk, forall i, j € {0, 1}.

INevertheless, we believe that a continuation of the arguments presented in [Ful9] should lead to constant-sized

self-tests of measurements.
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That is, all quantum strategies which yield the maximum quantum winning probability for the
CHSH game are related to the canonical one via local isometries, which can be viewed as a rigidity
property of S,

This rigidity result can be extended to the approximate case (which we term robust self-testing):
say the winning probability w, (&) obtained by the strategy & in (1.2) above satisfies |wy(8) —
wy(CHSH)| < €, for some € > 0. Then, in this case, there exist isometries V4 : Cia — C2 @ K4
and Vg: C¥8 — C? @ K for some Hilbert spaces K4, Kp, and a quantum state ¢k € Ka ® Kp
which satisfy approximate versions of Equations (1.3) and (1.4):

(1.5) (VA ® V)Y — 92 ® Yjunkll < f(€), and
(1.6) (V4 ® VB)(A; ® By — ((A; ® B,)92) ® Wjunkl| < f(€), foralli, j € {0,1},

for some f(€) > 0 such that f(e) —» 0ase — 0.

There are many proofs for these results [MY04, MYS12, Kan17]. We describe the approach
taken in [Vid18] as this illustrates the connection between self-testing and representation theory of
groups. One starts by noting that the canonical observables Ao, A, for Alice in (1.1) generate a finite
group P (called the Pauli group which is isomorphic to the dihedral group of order eight). In the
case when w,(8) = Wy (CHSH), the function f : P — %4, (Where %, is the group of d4 X da
unitaries) defined by Ao — Ag and Aj — A, defines a group representation with respect to the state
pa = Trg(yyy™). On the other hand, in the approximate case |w,($) — w,(CHSH)| < €, one gets
an “approximate’” group representation with respect to the state p4. In the second step, to get the
existence of isometries one invokes the Gowers—Hatami Theorem [GK17, Vid18].

Theorem 1.1 (Gowers—Hatami). Let G be a finite group, d € N, € > 0, 0 € My be a density
matrix, and f : G — U4 be an (€, o)-representation of G. Then, there exists D > d, an isometry
V:C¢ — CP, and a representation g: G — Up such that || f(a) — V*g(a)V|, < |G|Ve for all
ae€aq.

Finally, these two steps are stitched together to get the robust self-testing statements for the CHSH
game.

For the proof of our results, we follow the blueprint mentioned above for the CHSH game with
certain necessary modifications. As noted above, optimal strategies for the CHSH game may be
described in terms of unitary representations of the Pauli group #. Further, unitary representations
of P are in bijection with Hilbert space representations of the group C*-algebra C*(P) = C* @ M.
In our situation, the strategies we consider do not arise from unitary representations of a group
but will still arise from Hilbert space representations of a certain C*-algebra &, , (which is not
isomorphic to a group C*-algebra). The C*-algebra &, , is the universal C*-algebra generated by
projections ry, . . ., r, satisfying the algebraic relation r{ + - - - +r, = x1. Studying the (approximate)
representation theory of this C*-algebra will provide an analogue of Theorem 1.1 for &, ., which

leads to the desired self-testing results in Section 6. Analogues of Theorem 1.1 are ubiquitous in
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C*-algebra theory, but usually approximations are considered in operator norm (c.f. [Lor97]) or in
the 2-norm arising from a tracial state (c.f. [HS18]). In our case, we will need to work with the
2-norm arising from an “approximately tracial” state which presents new difficulties (see Theorem
6.5).

1.1. Organisation of the paper. We fix some notations and conventions, and some introductory
material in Section 2. In Section 3, we define quantum strategies, their induced quantum correlations,
and the special subset of synchronous quantum correlations. We prove some of its properties that
we will be using later. We give a formal definition of robust self-testing in Section 4. In Section 35,
we collect some of the basic properties of projections adding up to scalar times identity, and we
define (Definition 5.2) the families of quantum strategies obtained by such projections and the
correlations that they induce. Finally, in Section 6, we show that the quantum correlations in
Definition 5.2 robustly self-test their canonical quantum strategies, and in Section 7 we discuss some
of its implications. We include two short appendices: Appendix A on some key definitions from
C*-algebras that we’ll be using in the article, and Appendix B to outline a method to construct four
projections adding to a scalar.

2. PRELIMINARIES

Let N denote the set of natural numbers {1,2,3,...}. Givenn € N, define [n] :={1,...,n}. A
fraction % (b,d € N) is said to be in lowest terms if gcd(b, d) = 1. The cardinality of a set X is
denoted | X|.

For each d € N we let R¢ and C¢ represent the d-dimensional real and complex Euclidean spaces,
respectively. For d4, dp € N we let My, 4, denote the space of all d4 X dp complex matrices. In
particular, for d € N, we let M, := M, 4 denote the algebra of all d X d complex matrices. The d X d
identity matrix is denoted by /4. For X € My, 4, we let X T denote the transpose of X. For X € My
we let Tr(X) denote its trace, whereas we shall use try(X) = 5 Tr(X) to denote its normalized trace.

Let H be a (complex) Hilbert space. We assume that the inner product on H is linear in the first
argument and conjugate-linear in the second. We denote the algebra of all bounded operators on H
by B(H). The identity operator on H will be denoted by I4,. Given vectors &,7 € H and an € > 0,
we write & ~, 5 if ||€ — n|| < e. We will usually identify a d-dimensional Hilbert space H with C¢.
The algebra of all operators on C¢ is identified with My with respect to the standard orthonormal
basis {ei}lflzl of C¢. Given X € My, a subspace K C C is called an invariant subspace of X if
X(K) c K.

A matrix X € My is called positive if (X&,&) > 0 for all £ € C¢. For two Hermitian matrices
X,Y € My we say that X < Y if Y — X is positive. A matrix P € My is called a projection if
P = P* = P%2, where P* is the adjoint of P. A finite set of positive matrices X, ..., Xy € My is
called a positive operator-valued measure (POVM) if X + - - - + X = I;. In particular, a finite set of

projections Py, ..., Py € My is called a projection-valued measure (PVM) if Py +--- + Py = 1.
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We recall the Schmidt decomposition [Per93, Section 5.3].

Lemma 2.1 (Schmidt decomposition). Let y € C% @ C. There exist orthonormal sets {&})_, in
Cda, {mi}_, in C48, and strictly positive real numbers {ar}]_, such that y = 3, a;é; ® ;. The
numbers {a,}]_,, called the Schmidt coeflicients of ¥, are unique up to permutation.

Lety = };_, @& ®n; be a Schmidt decomposition of a vector y € C91 @ C¥8. Any orthonormal
basis of C% (resp., CY2) containing {&1})_, (resp., {mi}]_,) is called a Schmidt basis for C94 (resp.,
C“8). The number r is called the Schmidt rank of v, and we say that  is of full Schmidt rank if
r = da = dp. Finally, define the subspaces supp, (¢) := span{;};_, and suppg(¢) = span{n;};_;.

A matrix p € My is called a density matrix if p > 0 and Tr(p) = 1. If p € My, ® My, is a density
matrix, then the density matrices

pa =Trg(p) = (ida ®Tr)(p), and pp =Tra(p) = (Tr®idg)(p),

where id4 and idp are identity maps on M, and My, respectively, are called its reduced density
matrices.

A density matrix p € My induces a semi-inner product on M, by

(X,Y), =Tr,(Y'X) = Tr(Y" X p), for all X,Y € My.

1/2
)
product (resp., semi-norm) is an inner product (resp., a norm) if and only if p is invertible.

Usually we will be in the following situation. Let € C94 ® C?8 be a unit vector. Let p = Y
be the corresponding density matrix and let p4, pp be its reduced density matrices. Then, ., .),,

This semi-inner product induces a semi-norm || X||, := (X, X) '~ for all X € M. This semi-inner

and (., .),, are semi-inner products on My, and My,, respectively, and they are inner products if
and only if  is of full Schmidt rank. Observe that for any X € My, and Y € My,,

(2.1) X172, =Tr(X*Xpa) = ((X*X @ Ls,)¢.¥) = (X ® Ig,)¥ )%, and
(2.2) Y112, = Te(Y*Ypp) = (e, ® YY), yp) = |1, @ V)|

The operator-vector correspondence is the linear map vec: My, 4, — C% ® C? given on the
canonical matrix units {E; ; : (i,j) € [da] X [dg]} for My, 4, by vec(E; ;) = e; ® e; for all
(i,7) € [da] X [dg]. In particular, for &£ € C? and n € C?8, we have vec(£n*) = ¢ ® 77. The map
vec is an isometry: (vec(X),vec(Y)) = (X,Y), = Tr(Y*X), for X,Y € My, 4,. We shall use the
following identity: for X € Md;,dm Y e Md}g,dBa D € My, dg,

(2.3) (X ® Y)vec(D) = vec(XDYT).

For each d € N, the unit vector ¢, = % Zfl: | € ® e; is called the (canonical) maximally entangled

state on C? ® C“. Then the diagonal matrix D = %Id satisfies vec(D) = ¢q4. For X, Y € My, using
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Identity (2.3) and the isometry property, we have

(2.4) (X®Y)ps = %vec(xﬂ), and
1
(2.5) (X ®Y)ga pa) = < Tr(XY").

3. SYNCHRONOUS QUANTUM CORRELATIONS

Let us briefly describe the framework of non-local games [CHTWO04] in which the discussion
of correlations and strategies takes a natural form. A non-local game & is played by two spatially
separated players, Alice and Bob, against a referee. There are (non-empty) finite sets /4 and I3,
called the question sets, and O 4 and O g, called the answer sets, and a rule function

/IZIAXIBXOAXOB—){O,l},

all of which are known to the players. However, once the game begins, the players cannot
communicate with each other. The game begins with the referee randomly picking a pair of questions
(v,w) € I4 X Ip according to some probability distribution? and sending v to Alice and w to Bob.
Alice returns an answer i € O 4 to the referee, and so does Bob with j € Opg. Alice and Bob win
the round of the game if A(v,w,i, j) = 1, otherwise they lose. The goal of Alice and Bob is to
maximize their winning probability, and for this, they can take the help of either classical resources or
quantum resources. It is well-known that for many games, quantum resources exhibit larger winning
probabilities as compared to classical resources [CHTWO04]. A classic example is the CHSH game
as described in the Introduction; here Iy = Ip = 04 = Op = {0, 1}, and A(v,w, i, j) = 1 if and only
ifvw =i+, (mod 2).

As the game is played for many rounds, an outside observer will see a probability distribution
which encodes the strategies employed by the players. Let p(i, j|v, w) be the probability of Alice
responding with i and Bob responding with j given that they received v and w, respectively. Classical
strategies are either deterministic (given by a function 14 X I — O 4 X Op) or use local/shared
randomness. On the other hand, quantum strategies are given by a quantum state (usually entangled)
shared by Alice and Bob and sets of quantum measurements. Specifically, we have the following
definition.

Definition 3.1 (Quantum strategies and quantum correlations). Given (non-empty) finite sets
Ig, 15, 04,0p with 14| = ny, |Ig| = np,|04| = k4 and |Op| = kp, a quantum strategy & is given
by a triple:

3.1) S=(pechoch (B, icOnveli){Fu:je0nwels)

2The probability distribution on 4 X I should be given as part of the game, but as we are only interested in winning
(or perfect) strategies, the probability distribution will not be relevant for us. For our purposes, it suffices to view 14 X Ip

with the uniform distribution, so each pair of questions is chosen with equal probability.
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where i is a unit vector (also referred to as a quantum state), for each v € I4 the set {E,; : i € O4}
is a POVM on C9 and for each w € I, the set {Fy,j 1 j € O} isaPOVM on Cds,

Each quantum strategy & induces a collection of probability distributions called a quantum
correlation as follows: for each (v, w) € I4 X I, define

(3.2) p(i, jlv,w) = {(Ey; ® Fy )¢, 4), forall (i, j) € 04 X Op.

Fixing na,np, ka, kp € N, the set of quantum correlations arising from all choices of quantum
strategies is denoted by C,(na,np, ka, k). In particular, we define C,(n, k) := Cy(n,n, k, k) for
all n, k € N.

If p=(p(@,Jjlv,w)) € Cy(na,np, ks, kp) is a quantum correlation, then the POVM assumptions
imply that p(i, j|v,w) > O for all i, j, v and w, and

Z p(i,jlv,w) =1, forall (v,w) e ls X Ip.
(i,/)€0AX0p

Moreover, quantum correlations satisfy non-signaling conditions; that is, they have well-defined
marginals p (i|v) and pp(j|w) in the sense that

(3.3) palilv) = > p(i.j'v,w)= > p(i,j'Iv,w), and
J'€0B J'€08

(3:4) pe(ilw) = ) p(Asjlv,w) = > p(, jIV,w),
i’€04 i'€04

forall v,v' € I4,w,w’ € Ip,i € O4,j € Op. Indeed, using the definition of a POVM, Equations
(3.3) and (3.4) yield

(3.5) pailv) = {(Ev; ® Iay)y, ) and pg(jlw) = ((ls, ® Fu ;). ¥).

Thus p 4 (i|v) is independent of w, and pp(j|w) is independent of v. (In the context of non-local
games, the non-signaling condition is imposed due to the assumption that the players may not
communicate.)

Remark 3.2. The set Cy(n4,np, ka, kp) of quantum correlations is convex for all natural numbers
na,np, ks and kg. However, in general, it is not closed. This was first shown by Slofstra who
proved that C, (184,235, 8, 2) is not closed [Slo19]. Thereafter, non-closure of quantum correlations
sets with smaller values of n4, np, k4, kp have been proved [DPP19, MR20, Col20]—in particular,
C,4(5,2) is not closed as was first shown in [DPP19].

Remark 3.3. For notational simplicity, we shall simply take
Ip = [nal, Ip = [np], 04 = [ka], and Op = [kj]

in the definition of a quantum correlation.



Introduced in [PSS*16], the subset of synchronous correlations arises naturally in the context of
many non-local games, for example, the graph coloring games [CHTWO04] and graph homomorphism
games [MR14]. In this article, we shall be self-testing some quantum strategies yielding synchronous
quantum correlations, and therefore here is a formal definition.

Definition 3.4. A correlation (p(i, j|v,w)) € Cy(n, k) is called synchronous if k = ks = kg,
n:=nug=np,and p(i, jlv,v) =0foralli,j € [k] and v € [n] withi # j. We let C}(n, k) denote
the subset of all synchronous correlations of C,(n, k), and call it the set of synchronous quantum

correlations.

A quantum strategy which induces a synchronous quantum correlation has several nice properties.
For instance, when restricted to supp4 () (resp., suppg(¢)), the measurement operators for Alice
(resp., Bob) are projections, Bob’s measurement operators can be expressed in terms of Alice’s,
and X — ((X ® Iy, ¢) defines a tracial state (see Appendix A) on the C*-algebra generated by
Alice’s measurements [PSS*16, Theorem 5.5]. The next two lemmas show that if a correlation is
“approximately” synchronous, then these properties “approximately” hold for its inducing strategy.
These lemmas are not new and appear in various places in the literature in different guises, but for
the sake of completeness, we provide proofs.

Since correlations are collections of probability distributions, it makes sense to work with the
1-norm. That is, given two correlations pi, po € C,(na, np, ka, k), we define

(3.6) lpr = pally = " 1p1Ga jlv,w) = pai, jlv, w)l.

i,j,v,w

Lemma 3.5. Let p € Cy(n, k) be induced by a strategy
S = (¢, eCUeC {E,;:ie[kl,venl} {Fy:jelklwe [n]}).

Let pa, pp be the reduced density matrices of the density matrix p = Y. If ||p — plli < 6 for some
synchronous p € Cy(n, k) and for some 6 > 0, then for alli € [k] and v € [n],

@) [I(Ev; ® Igp)y — (1, ® Fo i)yl < V5,

(b) I[(Ey; ® Lap) — (Evi ® Fy )yl < V6,

©) (1g, ® Fo ) — (Ey; ® Fy )|l < V6,

() |Ev; = E2llp, = I(Evi ® Lap)¥ — (E2; ® Lgp 0|l < 2V5,

© IFvi = F2llps = 1(a, ® Fy i) = (Ia, ® F2 0| < 2.
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Proof. Using the fact that 0 < E}, < E,;and 0 < F,, < F,; forall v € [n],

1(Evi ® L) = (Lay ® Fy)l* = ((Ey; @ Lap)po ) + ((La, ® FL)W. ) = 2{(Evi ® Fui)o )
< ((Evi ® Lap)p, ) + (L, ® Fo) ) = 2((Evi ® Foi) )
= pa(ilv) + pp(ilv) = 2p(i,ilv,v)
k
= > (PG, jlv,v) + p(j,ilv,v)
j=1
Jj#i
k
= > G, jlv,v) = B, v, ) + p (il v) = B v, v)
=1
<llp-rlhi <6,
where the penultimate line is due to the fact that p is synchronous. Thus (a) follows.
Similarly, to see (b), note that

I(Evi ® Igp ) = (Evi ® F)WN* = ||(Eyi ® (Lay — Foi)WII?
= ((E}; ® (Lay — Fu ). )
<{(Ev; ® (I, = F, )W, ¥)
= ((Evi ® Lap), ) = ((Evi ® F, ), )
= palilv) = p(@,ilv,v)

k k

=3 pljlvv) = 3 IpGie jlvov) = 5. jlv.v)|
j=1 j=1
J#l J#

<llp- 7l <.

Part (c) is similar.
The equalities in parts (d) and (e) follow from Equations (2.1) and (2.2). Since ||E, ;|| < 1 and
|Fyi]| < 1, we deduce from (a) that for all v € [n],

”(Evz,i ® Ig,)¥ — (Ey; ® F,))¥| < V6 and
I(Ta, ® F2)¥ = (Ev; ® Fy )| < V6.

Using these two inequalities with (b) and (c) and applying triangle inequality, we get the inequalities
in part (d) and (e). O

We record the special case of 6 = 0 in Lemma 3.5.
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Corollary 3.6. Let p € C(n, k) be a synchronous correlation induced by a strategy
S = (¢ eCheC {E,;ie[kl,veln)}.{Fu :jelkl.we [n]}).

Then, foralli € [k] and v € [n],

@) (Ev; ®lag)y = (L, ® Fy )Y,

(b) (Ey; ® L)y = (E}; ® Lay)Y,

(©) (I, ® Fo )y = (Ia, ® F2 ).
Moreover, if Y is of full Schmidt rank r = dy = dp, then for all v € [n], the matrices E, ;, F, ; are
projections, and F, ; = DTEVTJ.(D_I)T, where D € M, is such that vec(D) = .

Proof. Statements (a), (b), and (c) follow immediately from the corresponding statements in Lemma
3.5. When ¢ has full Schmidt rank, the seminorms || - ||,, and || - ||, are norms, and so E, ; and
F, ; are projections by statements (d) and (e) in Lemma 3.5. Finally, (a) and Equation (2.3) imply
E,,D = DFVT7 -~ Since ¢ has full Schmidt rank, D is invertible, and the last equation follows. O

Lemma 3.7 (Approximately tracial state). Let p € C,(n, k) be induced by a strategy
S=(pechech (E,:ielklvelnl} {Fn:jelklweln]}).

Let pa, pp be the reduced density matrices of the density matrix p = yy*. Let A C My, (resp.,
B C My, ) be the C*-algebra generated by {E, ;},; (resp., {Fy,j}w.j). If llp — plli < 6 for some
synchronous p € Cy(n, k) and for some 6 > 0, then the states Trp,: X + Tr(Xpa) on A and
Try,: Y = Tr(Ypp) on B satisfy

(3.7) | Tr,,, (WX — XW)| < 2¢V6 and

(3.8) | Tr,, (UY — YU)| < 28,

respectively, where W (resp., U) is any word in {E, ;}, ; (resp., {Fy,;}w ;) of length €, X € A with
IX|| <1, andY € Bwith ||Y] < 1.

Proof. Let W = E, ;W where W’ is of length ¢ — 1,7 € [k] and v € [n]. Then making use of
Lemma 3.5(a) a couple of times and that ||E, ;|| < 1 and || X|| < 1, we have
Trp,(WX) = ((EvaW'X ® La,)¥. ¥)

= (WX ®lay)¥. (Ev; ® L))

~ 5 (WX ® Lap)y, (La, ® Fy.))

= (WX ® F,)¢,¢)

= (WX ®lay)(Lay ® Fo i)y, ¥)

25 (WX @ Lay) (Evi ® Lug), )

= ((WXE,; ® Liy)y, ¥).
12



Thus, continuing in this fashion for the whole length of W/, we will obtain Expression (3.7).
Similarly, Expression (3.8) holds. O

Remark 3.8. In Lemma 3.5 and Lemma 3.7, it is enough to assume that p € C, (n, k) satisfies
|p(i, jlv,v)| < ¢ foralli # j and for all v € [n].

4. ROBUST SELF-TESTING: DEFINITION AND BASIC PROPERTIES

In many cases, given a quantum correlation p, there is a “unique” quantum strategy § which
induces the correlation p, in the sense that, any other strategy & which also induces the correlation
p is related to S by a local isometry. The way these two strategies & and S are related is what
we term as a local dilation. For our purpose, we work with a more general definition of a local
e-dilation which relates strategy & to S in the case when the correlation p induced by & is e-close
to p (in the 1-norm as in Equation 3.6). This general definition is useful in practical scenarios where
it is inevitable that errors creep in while conducting experiments.

Definition 4.1 (Local e-dilation). Given € > 0 and two finite-dimensional strategies
S = (0 € Ha ® Hg,{Ey; 1 v € [nal,i € [kal} {F,j s w € [n], ) € [kgl}),
S = eHs®Hp,{Ev;:v € [nal,i € [kal},{Fu,:w € [ngl,j € [kg]}).

we say that S is a local e-dilation of & if there exist isometries Va: Hy — 7?{/4 ® K4 and
Ve: Hp — Hp ® Kp for some finite-dimensional Hilbert spaces K4 and Kp, and a quantum state
Yiunk € Ka ® Kp such that

4.1) (Va ® VB)Y % ¥ ® Yjunk and
(4~2) (VA ® VB)(Ev,i ® Fw,j)‘/’ e ((Ev,i ® ij)'Z;) ® wjunk

forall 7, j, v, and w.
When € = 0, we say that S is a local dilation of & (instead of a local O-dilation). In this case, the
approximations in Expressions (4.1) and (4.2) are replaced by equalities.

Remark 4.2. We are abusing notation slightly in the above definition. In Estimates (4.1) and (4.2),
the vectors on the left belong to the Hilbert space (77A QKy) ® (7:?3 ® Kp) and the vectors on the
right belong to the Hilbert space (‘7~{ A ® ‘773) ® (K4 ® Kp). We are identifying these two Hilbert
spaces via the unitary which flips the second and third tensor factors.

Remark 4.3. A note on the terminology that we have chosen: In the literature (for instance [SB20]),
the phrase “equivalent up to a local isometry” is often used instead of “local dilation”. However,
we feel that using the word “equivalence” is somewhat misleading, and that “local dilation” would
be an appropriate replacement, since the term “local dilation” has a directional connotation (for
instance, we can write & <% & to mean that & is a local e-dilation of & ) which is not present if we

use the term ‘““equivalence up to local isometry”.
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Remark 4.4. Observe that if a strategy S induces a correlation p, and if S is a local dilation of any
other strategy &, then & also induces the same correlation.

We now recall the definition of self-testing and robust self-testing.

Definition 4.5 (Self-testing). A correlation p € C,(na, np, ka, kp) self-tests a strategy S if for any
strategy & which also induces p, S is a local dilation of &.

Definition 4.6 (Robust self-testing). A correlation p € Cy(na,np, ka, kp) self-tests a strategy S
robustly if p self-tests S and the following condition is satisfied. For each € > 0, there exists 6 > 0,
such that if there is some p € Cy(na,np, ka, kp) with ||p — p]l; < 6, and p is induced by a strategy
&, then S is a local e-dilation of .

For local e-dilations, we establish a transitivity statement which is helpful in reducing certain
results to the case when the quantum state is of full Schmidt rank. In terms of the notation in Remark
4.3, we establish

(093 2> 092 i) 091) = (0573 L*'Ez) 091).

Lemma 4.7 (Transitivity of local e-dilations). Let &1, $» and 83 be finite-dimensional quantum
strategies. Let €1,€, > 0. If & is a local €-dilation of $», and &, is a local e€;-dilation of §3, then
S is a local (€ + €)-dilation of §s.

Proof. Let the quantum strategies be given by
S1= (W1 € Hay @ Hp 1 {ELY 1 v € [nal.i € [kal}. {F)) - w € [ng]. j € [ks]}),
$2= (W2 € Hap ® Hpo {E) 1 v € [nalsi € [kal}. {FS) - w € [np]. ] € [kg]}).

S3= (3 € Has ® Hps {ES) v € [nal.i € [kal}. {FS) - w € [np]. ) € [kp]}).

Since &) is a local ¢;-dilation of &, there are isometries Va: Hap — Hay ® Ka and
Vp: Hpo — Hp1 ® Kp, for some finite-dimensional Hilbert spaces K41, Kp,1, and there exist a
quantum state Yjunk,1 € Ka,1 ® Kp,1 such that for all v, w, 1, j,

2 2 1 1
(4.3) (Va® VB)(EZ ® F ) =g (ELY © F)u1 ® Yjunr-

Similarly, since & is a local e;-dilation of &3, there are isometries Wy : Haz — Hao ® Ka o and
Wg: Hps — Hpo ® Kp o for some finite-dimensional Hilbert spaces K4 2, Kp 2, and there exist a
quantum state Yjunk,2 € Ka2 ® Kp such that for all v, w, i, j,

3 3 2 2
(4.4) (Wa® WB)(EL-) ® Fv(v,})% Xe, (Ei,i) ® Fv(v,j-)lllz ® Yjunk.2-
14



Define Uy = (Va®Ix,,) oWa,and Up = (Vp® Iy, ,) © Wi, and Yjunk = Yjunk,1 ® Yjunk,2- Clearly
U4 and Up are isometries and that for all v, w, i, j

(Ua® UB)(ES') ® FS;—)%
= (Va ®Ix,, ® V5 ® Iy, ,) (Wa @ Wp)(EL) ® F.))us3
e, (Va® Vs ® I, , ® I, ,) (ELY @ F\2)W2 ® Yjunkc2)
N (Ei,li) ® FVEB')‘//I ® Yjunk,1 ® Yjunk,2>
where we used (4.4) in the second approximation, and (4.3) in the third approximation. O
While working with synchronous quantum correlations one usually takes the quantum state to be

full Schmidt rank. We show that this reduction step can also be captured with local dilation. We
first need a lemma which is folklore.

Lemma 4.8. Let X € My,,Y € My, and ¢ € C44 ® C be such that (X ® Iy,)¥ = (1, ® V).
Then, supp 4 (¥) is an invariant subspace of X, and suppg(y) is an invariant subspace of Y.

Proof. If ¢ = }/_, @;&; ® i7; is a Schmidt decomposition, then the matrix D = ', oz,fml.T satisfies
vec(D) = . Note that supp,(¢) is the column space of D. To show that supp, () is invariant
under X, it suffices to show that X&; € supp,(¢) for all i € [r]. Using Identity (2.3), we see that
(X ® Iy = (Iz, ® Y)Y is equivalent to XD = DYT. Thus, fori € [r],

X¢ = X (a7 ' D) = a7 (XD) () = o7 (DYT)(7) € supp (¥),
as required. The invariance of suppg (i) under Y follows similarly. m|

Lemma 4.9. Let p = (p(i, j|v,w)) € Cy(n, k) be a synchronous quantum correlation. Let
S = (¢ € Cl®C' {E,;}, {Fw,;}) be a strategy inducing p. Then, there exists a strategy
§'= eC C {E }, {Fv/w}) where ' is of full Schmidt rank and 8" is a local dilation of §.

Proof. Consider a Schmidt decomposition ¢ = 3;_, @;&; ® 7, (where r is the Schmidt rank of )
and let 14: C" — C% and 15: C" — C98 be isometries given by t4 = Y)/_, &ejand g = 3 nye;.
Then, the operators

4.5) E, ;= (,E,ta, F’

wj b, jis,
are themselves positive, and moreover, for each v and w, the sets {E} ; : i € [k]} and {F], FRWAS [k]}
form POVMs. With ¢ = (¢}, ® (), these above operators constitute the strategy §”, and clearly ¢’
is of full Schmidt rank.

To see that &’ is a local dilation of &, set K4 = C% and Kz = C%¢ and define isometries

Vj: Cd4 — C" @ C% and Vp: C% — C" ® C¥s, by

Va(€) = (&) ® €1+ e1 ® (Ig, — taty)(€),

Ve(n) = tz(n) @ mi +e1 ® (1g, — taty) (),
15



where ¢ € C%4 and n € C¥2, By Corollary 3.6(a), we have (E,; ® Ig,)¥ = (I, ® F, )y for all v, i.
Then using Lemma 4.8, supp 4 () is invariant under each E, ;, and suppz(¥) is invariant under each
Fy,j, and since 14l is the projection onto supp, (¢) and ¢ty is the projection onto suppy (), we
have

(VAR VB)NE,;® Fy i)Y = (ta®tg) ((E,; ® F\y j)¥) ® (e1 ® ey).

But then, using the invariance property,

(ta ®g)" ((Evi ® Fyp j)¥) = (1 ® () (taty ® tpip)(Ev; ® Fyy j)Y
= (0 ®1p)(taly ® tpip)(Ey; ® Fy j)(taty ® tplg)yy
= ((E;l ® Fy,v,j)l//),

as desired. O

5. CORRELATIONS FROM PROJECTIONS ADDING UP TO SCALAR TIMES IDENTITY

We are interested in self-testing projections which sum up to (some specific) scalar times the
identity. Such kind of projections have been studied in detail in [KRS02], and we collect some of
the material from there as needed.

For n € N, let Z,, be the set of all scalars x such that there exist n projections Ry, ..., R, € B(H),
for some Hilbert space H (possibly infinite dimensional), such that Ry + - - - + R, = xI¢;. Forn < 3,
it can be shown that

3
¥ ={0,1}, ¥, ={0, 1,2}, X3 = {O, 1, 5,2,3}.

For n > 4, the set X, is described in [KRSO02]. In particular, they show that the set X4 is countably
infinite; whereas for all n > 5, the set X, is uncountable with a nondegenerate interval subset.
For our purpose, we do not require the full description of the set X,,. The following theorem is a
distillation of Proposition 2, Theorem 3, and Theorem 4 from the aforementioned work.

For a definition of a universal C*-algebra we refer the reader to Appendix A.

Theorem 5.1. Forn = 3, set Az = { %}, and for n > 4, set A, = {x;};2,, with the sequence defined
recursively as follows: xy =0, and for all | > 1,

(5.1) x1=1+

Then A, C X, for all n > 3. Moreover, if P,  is the universal C*-algebra with generatorsri, ..., ry
and relations given as follows (here 1 is the unit of the algebra)
n
(5.2) Py =C" r1,...,rn|rv =r, = r%, Vve [n],er =xl1),
v=1
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then for x € A, (n > 3), there is a unique irreducible representation (up to unitary equivalence)
of the C*-algebra &, x. Furthermore, this representation is of dimension d, where x = % is in its

lowest terms.

The C*-algebra &, , has the universal property that whenever there exist projections Ry, ..., R, €
B(H) with 3.7_| R, = xI4, then there exists a representation : P, , — B(H) with n(r,) = R,
forall v € [n].

If x € {x;};2, with x = % in its lowest terms, the uniqueness property of &, implies that
if Py,..., P, are projections in My satisfying Py +---+ P, = xIz, and Ry, ..., R, € B(H) are
projections such that Ry + --- + R, = xlg, then there exists a Hilbert space K and a unitary
U: H — C4 @K such that UR,U* = P, ® Iy for all v € [n].

We are now ready to define the synchronous quantum correlations that we will be self-testing.

Definition 5.2. Fixn > 3and x € A, withx = % in its lowest terms. Let 131, R ﬁn be projections
in My (by Theorem 5.1) such that Py +---+ P, = xI;. Consider the synchronous correlation
Pnx = (Pnx(i, jlv,w)) € Cy(n,2) induced by the strategy

~ —_~ ~ N n
(5.3) = (paectoc! Pot-Pf APl 1 -PIf" ),

V= v=

where ¢, is the maximally entangled state. We shall refer to this strategy as the canonical strategy
for py, x.

We shall use the uniqueness result from Theorem 5.1 to show that the strategy S given in
Definition 5.2 is essentially the unique strategy which induces the correlation p, ,—more precisely,
Dn.x self-tests the strategy . This result, together with robustness, will be the focus of next section.
First we show how the uniqueness result provides an explicit description of the C*-algebra &, ;.

Lemma 5.3. Letn > 3 and x € A,, with x = % in lowest terms. Then 9P, ~ My. In particular,
if Ri,...,R, € My are projections such that 3_| R, = xly, then {Rv}’V’=1 generate My as a
C*-algebra.

Proof. By Theorem 5.1, there is an irreducible representation 7 : %, , — B(CY). As risirreducible,
7 must be surjective (using that C? is finite-dimensional) [EGH*11, Theorem 3.2.2]. We will
show that 7 is injective and hence is an isomorphism. If this is not the case, then ker(7x) is a
non-zero C*-algebra and hence admits an irreducible representation ¢q: ker(r) — B(H) on a
(possibly infinite-dimensional) Hilbert space H [Mur90, Theorem 5.1.12]. Then ¢ extends to an
irreducible representation ¢: %, , — B(H) [Mur90, Theorem 5.1.13] which is necessarily not
unitarily equivalent to 7 since ker(x) # ker(¢). This contradicts the uniqueness of the irreducible
representation of %, , and hence shows that r is injective. O

We now collect some further consequences of the uniqueness property in Theorem 5.1. The
following lemma tells us that the projections {R,}’_, obtained through a representation of &, ,

have the same trace and are “symmetrically distributed”.
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Lemma 5.4. Let n > 3 and x € A, with x = % in its lowest terms. Let Ry,...,R, € My be
projections such that 37 _| R, = xI4. Then,

ifv=w,

X
(5.4) try(R,R,) = 3"
S vz

More generally, if Ry, ..., R, € My (for some k € N) are projections such that 3.\_, R, = xI, then
Tr(R,) is constant for all v € [n], and Tr(R,R,,) is constant for all v # w.

Proof. Since 3 | R, = xl;, by the universal property of %, ., there exists a representation
w: Pyx — My such that n(r,) = R, for all v € [n]. By Theorem 5.1 this representation is unique
(up to unitary equivalence) and irreducible.

Now, choose a pair (v, w) with v # w and define a new representation o, ,, : %, — My by

R, ifk#vandk #w,
O-v,w(rk): R, ifk=v,
R, ifk=w.

By the uniqueness of the irreducible representation 7 (Theorem 5.1), there exists a unitary U € My
such that o, ,,(r¢) = Un(r;)U* for all k. But then,

Tr(Ry) = Tr(o,0(rw)) = Tr(Un(ry,)U") = Tr(z(ry)) = Tr(Ry).

Additionally, since Ry + - - - + R, = x4, it follows that tr;(R,) = ’E‘ forall v € [n].

Similarly, one can show that Tr(R, R,,) is constant forall v # w. Moreover, squaring 3./_, R, = x1,
x(x-1)

n(n—1)°
For the final statement, let 7: 9, , — My be the representation given by 7(r,) = R, for all

and taking normalized trace yields that try;(R,R,,) = forall v # w.

v e [n]. If my: P, — My is the unique irreducible representation, then d divides k and « is
unitarily equivalent to ﬂ?(k/d). So, Tr(R,R,,) = ktry(mo(r,ry)) for all v,w € [n]. The result
follows from the first part of the lemma. O

Remark 5.5 (The correlation table for p, ). Letn > 3 and x € A, withx = % in lowest terms. Let
Dn.x be the quantum correlation as in Definition 5.2. Then,

X

— ~ ~ ~ = ifv=w,
(55 Pl o) = ((Py ® PL)oa ¢a) = tra(P,Py) = {

ERI
ﬁ&_l) ifv#w,

where the second equality follows from Identity (2.5) and the third equality follows from Lemma 5.4.
Note that with these values of p, (1, 1|v,w), all other values of p, (i, j|v,w) can be deduced
using the synchronous condition. Indeed, for all v # w,

— _ X —
pn,x(1,2|va W) = pn,x(27 1|V, W) = ; _pn,x(la 1|V, W) and

- 2 —
Dnx(2,2|lv,w) =1- id + pax(1, 1y, w),
n

18



and forv = w,

Pnx(1,2[v,v) = ppx(2, 1|v,v) =0 and
ﬁn,x(252|va V) = 1 _ﬁn,x(la 1|V, V)-
Forn >3 and x = ﬁ € A,, Lemma 5.4 implies that Tr(R,) = 1 for projections Ry,...,R, €

M, satisfying 37, R, = -“;I,-1. Thus, each R, is the projection onto the span of some unit
vector &, € C"~!. The following corollary is then straightforward to verify.

Corollary 5.6. Let n > 3. Projections {R,}_, € M,,—1 which sum up to "I, give rise to n unit
vectors {&,}_, C C" 1 such that |{&,, €,)| = ﬁ forall v # w, and conversely.

Together with unitary equivalence, the property that |(&,, )| = n+] for all v # w implies that
the vectors can be taken as the vertices of a regular (n — 1)-simplex in R”~! centered at the origin.
For instance, in dimension 2, (i.e., n = 3 in Corollary 5.6), the vertices of a regular 2-simplex (a
triangle) centered at origin are

1 £ = 1{ 1 £ = 11 -1
0 ’ 2 = 7 _ \/g ) 3= 7| _ \/g .
Then the projections Ry, Ry, R3 are onto the span of &1, &2, €3, respectively, and are given by

1[1 V3 1[1 @]_

& =

10

5.6 Ry =
(5.6) =1y 0

’R:_ ’R:_
2743 3 3T 4|VE 3

For other x € A, (n > 4), the projections adding up to x/ can be constructed using a recursive

method described in [KRSO02], but it is not clear what natural geometric picture we may associate
to such projections. For the sake of completeness, we describe this construction for n = 4 in
Appendix B.

Finally, we require a result on the maximum eigenvalue of a certain matrix obtained from
projections adding up to a scalar times identity.

Lemma 5.7. Letn > 3 and x € A, with x = g in lowest terms. Let Ry, ..., R, € My be projections
suchthat 30 | R, =xIy. IfN=3"_ | R, ® RY, then x is the largest eigenvalue of N, and further, the
eigenspace corresponding to x is the one-dimensional space spanned by the maximally entangled
state ¢g.
Proof. With D = %Id, we have vec(D) = ¢,. Using Identity (2.3),
n
Ngg = Nvec(D) = Z vec(R,DR,) = xvec(D) = x¢pq.

v=1

Thus ¢, is an eigenvector of N with eigenvalue x.
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Since N > 0, the largest eigenvalue of N is ||N||. Since

n n
N=>R&R <> R&I=xlg®l
v=1 v=1
it follows that ||N|| < x. Then [[N|| = supjg=; [{NE,&)| coupled with (Nga, pa) = x, yields
NI =x.
We now show that the eigenspace corresponding to the eigenvalue x is one-dimensional. Let
¢ € C¢ ® C? be a unit vector such that No = x¢. Let B € My be such that vec(B) = ¢. Then
N¢ = xg is equivalent to Nvec(B) = xvec(B), which in turn, using Identity (2.3), is equivalent to

(5.7) Z R,BR, = xB.

v=1

Now consider the unital quantum channel ®: M, — M, defined by
1 n

(5.8) X — Z R,XR,, X eM,.
X v=1

Then Equation (5.7) implies that B is a fixed point of the quantum channel. By [Wat18, Theorem
4.25], it follows that R,B = BR, for all v € [n]. By Lemma 5.3, the projections {R,}}_, generate
the whole of M;. Hence, B commutes with every element of M, and we must have B = A1, for
some A € C. In other words, ¢ = vec(B) = (1Vd) g, as required. O

6. ROBUST SELF-TESTING OF PROJECTIONS ADDING UP TO SCALAR TIMES IDENTITY

We now set out to prove that the correlation p,, . of Definition 5.2 robustly self-tests the canonical
strategy S therein.

We first show in Theorem 6.1 that if a strategy & induces the correlation p,, , then & must be a
local dilation of &. For this, we prove that the measurement operators of & form a representation of
the algebra &, .. Then invoking the irreducibility assumption we get isometries relating the strategy
& in hand with the canonical one.

To handle the robust case, we first formally define a suitable notion of an ‘“‘approximate”
representation. Then we show that if we have a strategy which induces a correlation within
e-distance of p, ., then we get an “approximate” representation of the relation r; + - - - + 7, = x1.
Finally, to relate the approximate strategy with the canonical one, we establish an analogue of
Gowers—Hatami Theorem for the C*-algebra &, ;.

Theorem 6.1. Let n > 3 and x € A,. The synchronous correlation p, € C, (1, 2) induced by the

strategy S in Definition 5.2 self-tests S.
Proof. LetS = (y € C4@CI8 {P,, 14, — P,}"_,{Qw, la, —Qw}" _,) be a strategy which induces
correlation p, .. Using the transitivity of local dilations (Lemma 4.7) and Lemma 4.9 we may

assume that ¢ is of full Schmidt rank r, i.e., d4 = dp = r. The “moreover” part of Corollary 3.6 then
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implies that P, and Q, are projections for all v € [n]. (Note that both Lemma 4.9 and Corollary 3.6
require synchronicity.)

Set p = Yy and let p4 and pp be its reduced density matrices. Clearly, (I, 1;),, = 1, and
if P := 37_, P,, then using the property (P, ® I,)¥ = (I, ® Q,)y of Corollary 3.6 (again using
synchronicity), we compute

(P 1), = D ((Py@ L), gy = ) (Py@ QW) = D pax(l, 1v,v) = x,
v=1 v=1 v=1

and

(P.P), = D (PP I p) = Y ((Pu® L)Y, (Py ® L))

v,w=1 v,w=1

D AP LY, (1,8 Q) = D (P ® QWY ¥)
v,w=1 v,w=1
x(x—=1) )

( 1) =X

Therefore, (P, I;),, = [|Pllpll1+]lp, = x. Thatis, equality holds in a Cauchy—Schwarz inequality,
and since  is of full Schmidt rank, this equality implies P = 3, P, = xI,. Similarly, we can show
that 3" _, O, = xI,.

Invoking the uniqueness of the irreducible representation of &, ., it follows that there exist
unitaries Uy : €7 — C¢ @ K4 and U : C" — C? ® K for some Hilbert spaces K4, Kp such that
UaP U, = ﬁv ® I, and UpQ,Uy = Ff ® Iy, forall v € [n]. Set U = Uy ® Up. Then, we have

Z Pnx(1, 1]y, w)—n +n(n-1)

v,w=1

x= (P, ® Q)WY
v=1

- i<(ﬁv ® PT ® Iy, ® Ix,) Uy, Ul//>

v=1
= (N ® Ixc, ® Iy, ) Uy, Uy),

where N = 377, ® P Then using Lemma 5.7, x is also the largest eigenvalue of N ® (Ix, ® Ix,)
with eigenspace {¢g @ ¥’ : ¢’ € K4y ® Kp}. The above computation implies, by means of
Cauchy—Schwarz inequality, that Uy is an eigenvector of N ® (Ix, ® Ix,) corresponding to the
eigenvalue x, and therefore Uy = ¢4 ® Yjunk for some unit vector Yjunk € K ® Kp. Finally, for all
v, W,

U(Pv ® Qw)‘/’ = U(Pv ® QW)U*Ul//
= ((Py ® P}) ® (Ix, ® Ix,)) (@a ® Wjunk)

= ((P, ® PT)p4) ® Yiunk
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as required. m|

bkl

With an eye towards the robust self-testing result, we first define what we mean by an “approximate
representation for a relation. This is an analogue of an “approximate” group representation.

Definition 6.2. A polynomial relation in n variables is a relation of the form

(6.1) Flens o xpxy, .o ,xs) =0

where f is a polynomial in 2n non-commuting variables x, . .. ,xn,xT, ...,Xx,. Given ¢ > 0, a
density matrix oo € M, and polynomial relations (fi, ..., fi) as in Expression (6.1), an n-tuple of
matrices (X1, ..., X,) in M, is called a (8, o)-representation of relations (fi,..., fy) if

g&)]cnﬁ(Xl,...,Xn,X]",...,X,’j) <6

Lemma 6.3. Let n > 3 and x € Ay. Let pyx € Cy(n,2) be as in Definition 5.2. Let p € Cy(n, 2)
and suppose it is induced by a strategy

(l,[/ € CdA ® CdB, {Ev, IdA - Ev}:,l:l’ {FW’ IdB - FW}’:V:I)'

Let p4 and pp be the reduced density matrices of p = Y. If ||p — puxll1 < 6 for some 6 > 0, then
the tuple (E1, ..., E,)isa (C(Si, pa)-representation and (Fy, . .., F,) isa (Céi, 0B)-representation
of the relations given in (5.2), where

(6.2) C = /n? + (1 +2x)V6.

Proof. Using triangle inequality in comparing marginals,
n

D (pa1lv) = (Fr)a (1))

v=1

n

D (P v, v) + p(1,219,v) = Po(1, 1], v) = Fc(1,2]v,v)

v=1

n
<

|P(1, l|v,v) _ﬁn,x(l’ 1|V,V)| + |P(1’2|V»V) _ﬁn,X(l’zlv’v)l

v=1

<|lp = Puxllt < 6.

Since 377_; (Pax)a(1]v) = x, we get
n

(6.3) ZpA(Hv) >x—4.
v=1

Similarly, we establish

n

= > p(1L v, w)

v,w=1

(6.4) <.
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On the other hand, using triangle inequality and Lemma 3.5(a),

D AEE @ Ly, w) = Y {(Ev® Lu), (Ev © L, )¥)
v,w=1 v,w=1

%nz\/g Z <(EV ® Idg)w’ (IdA ® FW)¢>

v,w=1
= Z ((Ey ® Fu)g, ) = Z p(L, 1]y, w).
v,w=1 v,w=1
Therefore,
(6.5) ZH“ ((EvEy ® Lip)y,¢) — Zn: p(1,1|v, w)| < n*Vs.
v,w=1 vow=1

Using this inequality together with Inequality (6.4) and an application of triangle inequality, we get

(6.6) X2 - Z ((EvEy ® i)y, 00)| < 6 +n?V6.

v,w=1

Finally, if £ == E| + - - - + E,, then using Inequalities (6.3) and (6.6),

n

IE = x1a, 2, = D" ((EvEw ® La)y ) = 2x )" pa(llv) + 27
v=1

v,w=1

<x>+8+n°V6 = 2x(x = 8) +x% = (1 +2x)6 + n’ V6.
Similarly, one proves the statement about F = F| + - - - + F,. O

We now provide an analogue of the Gowers—Hatami Theorem as promised. Our presentation of
Gowers—Hatami Theorem mimics the one presented in [Vid18, Theorem 12] (which is a slightly
general version of [Gow17, Theorem 15.2] and was originally published in [GK17]). We remark
that the relation between € and ¢ in Theorem 6.5 is non-constructive. We first recall a standard fact
from C*-algebra theory.

Lemma 6.4. If T is a tracial state on a unital C*-algebra W, then N = {a € W : 7(a*a) =0} isa
closed two-sided ideal of U.

Proof. Applying the Cauchy—Schwarz inequality to the sesquilinear form (a, b) — 7(b*a) on A
shows i, is a subspace of A, which is closed as 7 is continuous. For z € W and a € N, using the
inequality 7"z < ||z*z|| 19, we have

7((za)*(za)) = t(a*z"za) < ||Z*z||t(a"a) = 0,

and hence za € N,. This shows N, is a left-ideal. As t(a*a) = 7(aa”) for all a € A, N, is

self-adjoint and hence is also a right ideal. O
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Theorem 6.5 (Analogue of Gowers—Hatami). Let n > 3 and x € A, withx = % in lowest terms. Let
{ﬁv }_ € My be an irreducible representation of Py . Then, given € > 0, there exist 6 > 0 and
m € N such that the following property is satisfied:

forallr € N, density matrix p € M,, and positive contractions E1, . . ., E, € M, satisfying
@) [|ES ~ E\||, < 6 forallv en,
(b) ||x1, -2 Ev”p <6, and
(6.7) (c) |Trp(W1 Wy — W2W1)| < 0 for monomials Wi and W, of degree at most m in the
noncommuting variables Eq, . . ., E,,

there are s € N and an isometry V: C" — C? ® C* such that for all v € [n], we have
|E, -V (P, @ I)V|, <.

Proof. Suppose the result is false and fix a counterexample n > 3, x € A,, and € > 0. For each
natural number k£ > 1, fix 6; > 0 and mj; € N such that lim;_,, 63 = 0 and limy_,, m; = oo. For
each k > 1, fix r; € N, a density matrix px € M, , and positive contractions E1k, ..., E, x € M,,,
such that

(ax) ||EZ, - Ei,k”pk < & foralli € [n],

o) [lely, = 2Ly Eiil,, < 6k, and

(c) |Trpk (Wi W, — W2W1)| < 0y for monomials Wy, W, of degree at most my in the variables
Evk,....Enk,

but such that for all natural numbers s; > 1 and isometries Vi : C'* — C¢ ® C%, there is an i € [n]
with

(6.8) |Eix = Vi (Pi @ L )Vi| > e.

Let A be the universal unital C*-algebra generated by n contractions Ay, ..., A,. For each k € N,
by the universal property of U there exists a representation 7y : WA — M, such that 74 (A;) = E; x
for all i € [n]. Note that (Tr,, omy)(AB — BA) — Oforall A, B € A. If 7 is a weak™-limit point of
the set of states {Tr,, omri};>, on U, then 7 is a tracial state on A. Passing to a subsequence, we
may assume (Tr,, omy)(A) — 7(A) forall A € UA.

Letg: A — /N, be the quotient map where N, = {a € A : 7(a*a) =0}. For1 <i < n, we
have

T((A,.2 — A)*(A2 - A,-)) = lim (Tr,, o) ((Af‘ — A (A2 - A,-))
= kll—l;rc}o Trpk ((E,Zk - Ei,k)*(E[%k - Ei,k))

_ 1 2 2 =
= lim {IE7, = Eixlly, = 0.
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So Al.2 — A; € N+, and hence g (A;) is a projection for all 1 < i < n. Similarly,

(b5

i=1 i=1
and hence !, g(A;) = xIyx,. Therefore, there is a representation 6: %, — /N, such that
0(r;) = q(A;) for 1 <i < nwherery,...,r, are the generators of &, ,.

Since 6: &, — /N, is a x-homomorphism, there is a unital, completely positive map
9: Pnx — W such that qg = 0.3 Define my: Ppx — M,, by mx = 7 o . Then 7, is unital
and completely positive. For each 1 < i < n, we have q(8(r;)) = 6(r;) = q(A;), and hence
5(rl~) — A; € N;. In particular,

Jim [[7 ) = Evall}, = 7( (000 - 41) (80) - 41)) =o.

For each k > 1, as 7y is a unital, completely positive map between finite-dimensional C*-
algebras, Stinespring’s Theorem [Pau(02, Theorem 4.1] produces a finite-dimensional Hilbert
space Hy, a s-homomorphism o : P,y — B(Hy), and an isometry Wy : C* — H such that
Wiow(a)Wy = mi(a) for all a € &P, ;. In particular, for each k > 1 and for all i € [n], we have

(6.9) lim Wi ow(roWi = Eil| , = 0.

Since %, has a unique irreducible representation %, , — M, given by r; — f~’,~, foreach k > 1,
there are a natural number s > 1 and unitary Uy : H; — C¢®C** such that U; (f~’,-®1sk)Uk = o (ry)
for all i € [n]. Define V = UgWy: C'* — C¢ ® C**. Then Vy is an isometry, and for all i € [n], we
can rewrite Equation (6.9) as

lim [[VE(Pi @ I )Vi = Exi|, =0.

In particular, for some large k > 1, we have | V,f(]gi ® I )Vi — Ei’k”/)k < eforalli € [n], whichis a

contradiction to Inequality (6.8). O

Remark 6.6. The key property of the algebra &, , that we exploit in proving the analogue of
Gowers—Hatami Theorem 6.5 is the unique irreducible representation property. While we do not
prove the theorem in full generality, we conjecture that an analogous result will hold for any algebra
with a unique irreducible representation.

The proof of Theorem 6.5 is by contradiction and therefore the relation between € and ¢ is
not known. To find the explicit dependence of ¢ on € is left as an open problem. It is plausible
that a careful analysis of the explicit construction of the irreducible representation for &, , (see
Appendix B) could be used to find the dependence of ¢ on €. Estimating the optimal dependence
between € and 6 will likely require a numerical approach, which is beyond the scope of this paper.

3This is a special case of the Choi-Effros lifting theorem [CE76]. The special case needed here is [Arv77, Lemma

3.3] using that &, , is a full matrix algebra by Theorem 5.3.
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With the analogue of the Gowers—Hatami Theorem in hand, we now proceed to prove the claimed
robustness result. We first need three intermediate lemmas.

Lemma 6.7. Let A € My be a positive matrix having at least two distinct eigenvalues and let
AL > Ay > -+ > A > 0 be the distinct eigenvalues of A. Let & € C? be a unit vector such that
A1 — € < (A&, €) for some € > 0. If Q1 is the projection onto the eigenspace corresponding to Ay,
then

10:1£17 > 1 -

A=Ay
Proof. By the Spectral Theorem, A = Zf‘:l A;Q; where Q; be the projection onto the eigenspace of
A corresponding to the eigenvalue A;. Then, (A&, &) = f.: L AillQié |*, and hence

l l l l
€= A= ) AP =41 Y IO = > Al Qi = Y (i = NI’
i=1 i=1 i=1 i=2

l
> (4 = ) YN0l = (41 = ) (1 - 10:¢11).
i=2

Rearranging this inequality gives our desired inequality. O

Lemma 6.8. Let ¢y € C94 @ C8 be a unit vector and let Xy, X, € My, and Y1,Y>» € My,. Let
04, pB be the reduced density matrices of the density matrix p = y*. Then

(6.10) (X1 @Y1 = Xo @ )y, )| < 1Xi — Xollpul1Y5 s + 111 — Vall ol X7 Nl o5
and
(6.11) (X1 @Y1 = Xo @ )yl < [|X1 = XollpalIY2ll + 11Y1 = Yallpp I X1l

Proof. Using the triangle inequality and Cauchy—Schwarz inequality,

(X1 ® Y1 = X2 @ V), ¥)| < [((Ja, ® (Y1 = Y2))r, (X} ® L))
+{(((X1 = X2) ® Lip), (L, ® Y5 )|
< 1T, ® (Y1 = Y)W (X} ® Ly
+ (X1 = X2) ® Lap) ¥ || (1, ® Y3)yr||
= [1Y1 = Vallps IX  Nlon + X1 = Xallpa1Y5 110

where we used identities (2.1) and (2.2) in the last equation.

The second claimed inequality is derived as follows:
(X1 ®Y1 =X @ D)yl < [[(Xi @ (Y1 = Y2))yll + (X1 — X2) @ o)yl
< 1X1 @ La,llll(1a, ® (Y1 = Y2))¥ ||
+ 2, ® 2l[[((X1 = X2) ® Ly ||

= [ X1[[1Y1 = Yallpp + [1V21[[1 X1 = X2l 045
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where the first inequality follows from the triangle inequality, and the second follows from the
definition of the operator norm. O

Lemma 6.9. Let £, € C? and let P € My be a projection. Suppose |||§||2 - ||77||2| < € and
||€ = Pnl| < e for some €1, € > 0. Then

(6.12) 1€ =7l < &+ Ve + (] + [l e
Proof. Let P+ = I, — P. Then ||n]|> = |Pnl|* + ||P*7||%, and thus
1P4al* = Il = 1Pnll? < e + €17 = 11PN = e + (1] + 1P (IEN = 11P7l)
< e+ (€l + 1PnIDIIE = Prll < e+ (1] + Il e

Thus, [|[P7|| < Ve + (€]l + |Pnl]) €2, using which in || — n]| < [|€ = Pyl + [|P*7]| proves the
lemma. O

Finally, we show that the correlation p,, , € Cg (n,2) as in Definition 5.2 robustly self-tests the

strategy & mentioned therein.

Theorem 6.10 (Main result). Let n > 3 and x € A,. The synchronous correlation p,x € C ;(n, 2)
induced by the strategy S in Definition 5.2 self-tests S robustly.

Proof. Theorem 6.1 states that p,, , self-tests §. We must show that for all € > 0, there isa 6 > 0
such that if p € C,(n,2) is a correlation induced by a strategy & and ||p — p,.|l1 < &, then Sisa
local e-dilation of &. Fix € > 0.

With the notation of Definition 5.2, let

n
N:ZﬁvﬁoﬁfeMd@Md
v=1

and note that N is positive. By Lemma 5.7, x is the largest eigenvalue of N, and the eigenspace
corresponding to x is the one-dimensional space spanned by the maximally entangled state ¢ 4. In
particular, N has more than one eigenvalue—let 4, > 0 be the second largest eigenvalue of N.

Let ¢ > Obe such that ¢’ < (x — 12)/(2n+ 1) and

/22 e’
(6.13) 2e’+ﬁ+\/56'+4«/?+2ﬁge where = (”—J’/l)e
X = A

Apply Theorem 6.5 to produce m € N and 6" > 0 such that Condition (6.7) holds with ¢’ and €’ in
place of ¢ and €. Then define

4 2
. , 6/ 6/
(6.14) 0= m1n{e,(n+1) ’(ﬂ) } > 0.

Let p € C4(n,2) be a correlation with ||p — p,x|l1 < 6 and let

(615) C‘S) = (lﬁ € CdA ® CdB’ {EV7 IdA - EV}:ZI’ {FWa IdB - FW},:Vzl)
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be a strategy inducing p. We will show S is a local e-dilation of &.
Let p = yy™ € My, ® My, and let py € My, and pp € My, be the reduced density matrices of
p. By Lemma 6.3, (Ey,...,E,)isa (Cézlt, 04 )-representation of the relations given in (5.2), where

C = \/n2 + (1 +2x) V8.

Asx <n,wehave d <€ < (x —A2)/(2n+1) < % Now, since x < nand ¢ < 1, we have

C<Vn2+2n+l=n+1.

Therefore, C6 i < &' by the choice of 6. Hence (E,...,E,) is a (&', ps)-representation of the
relations given in (5.2). Therefore, (a) and (b) of Condition 6.7 hold with (¢’, p4, d4) in place of
(0, p,r). Since 2mVé < &', Lemma 3.7 implies that part (c) of Condition 6.7 also holds.

The conclusion of Condition 6.7 provides 74 € N and an isometry V4 : C% — C? ® C" with

(6.16) |E, = Vi(P,®I,,)Vallp, <€  forallv e [n].
Similarly, there are r € N and an isometry Vz: C4 — C? ® C’8 such that
(6.17) |F, = Vi(PT ® I,,)Vgll,s <€  forallv e [n].
We work towards constructing a quantum state jy,x € C'4 ® C'# such that
(6.18) (Va ® Vp)¥ ~e 0a ® Yjunk-

Note that Inequalities (6.16) and (6.17) together with Lemma 6.8 imply

K(Ev ®F,—(Va® V) (P,®PL @1, ®1,,)(V4 ® VB))¢,¢>(

(6.19) < |Ey = Vi(Py ® I )Vallp, + I1Fw = Vi(PL ® 1) Vgll,p5 < 2€.

LetN =37 | E, ®F, € My, ® Mg,. Taking v = w in Inequality (6.19) and summing over v € [n]
yields

(6.20) )(Nw, vy - <(ﬁ ® 1, ® 1) (Va ® Va)), (V4 ® vB)w>| < ne'.
Note that (Ny, ) = 30, p(1,1]v,v). Since ||p — puxlli £ 6 < € and 37, pux(1,1]v,v) = x,
Inequality 6.20 implies
6.21) <(f\7 &1, ® I,) (V4 ® V), (V4 ® VB)z//> > x— (2n+1)€.
Recall that by Lemma 5.7, x is the largest eigenvalue of N, and hence also of N ® I, L ® 1. Let

Q be the projection on to the eigenspace of N®I, . ® I, corresponding to x. Equation (6.21) and
Lemma 6.7 yield

2n+1)€ 1/2 >0
x—/lz ’

(6.22) a=[0(Va®Vp)yll = (1
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where the last inequality holds by the choice of €’. Then a~'Q(V4 ® V) is a unit vector in the
eigenspace of N®I, , ® I, corresponding to x. As the eigenspace of N is spanned by ¢, there is a
unique quantum state ¥junx € C™ ® C"# such that Q(V4 ® V)Y = @@y ® Yjunk.
To simplify notation, let ' = (V4 ® V)i, and note that
’ - ’0|12 ’ =112 ,
[’ = llew'I7'oy’||” = (1 = @)w'II> + |1 = llgy’II”' | ey II?

= 1= [loy’I* + (loy’II”" = DIy’ |I?

= 1-[lQy/'I> + 1 -2]¥/|| + oy

=2(1-llgyw’ID.

Therefore,

1(Va ® Vi) = ¢ ® Yjunil] < V2(1 = @) < V2(1 - a?).
Combining this inequality with Inequality (6.22),

2(2 e
(6.23) |(Va ® VB)Y — @a ® Yjunkl < \/(xn——tlz)e =B

In particular, Estimate (6.18) holds.
We now work to show

(6.24) (Va ® Vp)(Ey ® F)Y ~e ((Py ® PJ)¢a) ® Yjunk
for all v,w € [n]. Fix v,w € [n] and, to declutter the notation, define
Vi=Vs®Vs and P,, =P, 9P .®l, &I,
By Inequalities (6.11), (6.16), and (6.17), we have
IV*Py Vi = (Ey @ )| < IVi(Py ® 1,)Va = Eyll, + IV5(PL, ® 1)V — Fullps < 2€.
Since V is an isometry, this implies
\VV*P, .,V —V(E, ® F, )y <2€.

Combining this with Inequality (6.23) and the triangle inequality, we have

(6.25) ”V(Ev ® Fw)w - VV*PV,W(()Dd ® wjunk)” <2¢ +p.
Note that
(6.26) 1Pv(pa ® W)l = (P © Ph )¢ ) = Brc(1,11v,0).

Further, since p(1, 1|v,w) = ((E, ® F\,)¥,¥), Inequality (6.10) and parts (d) and (e) of Lemma
3.5 imply

(6.27) I(E, ® F)wl* = p(1, 1y, w)| < |1Ey = E2llp, + | Fo = F2llps < 4V5 < 4Ve'.
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Since V is an isometry and ||p — p,x|l1 < 6 < €, Equation (6.26) and Inequality (6.27) imply
(6.28) IV(Es ® F)I? = 1Py (wa ® Yjun)IP] < € +4Ve'.

As VV* is a projection, Inequalities (6.25) and (6.28) and Lemma 6.9 imply

IV(E,s ® Fu)ts — Pyp(0a ® jan)l| < 26+ B +y/S¢/ + 4V +26 < e,
and this proves Estimate (6.24). Similarly, for each v, w € [n], using the estimates
[(Tay = Ev) = Vi((Tay = P) ® 1,)Val|, < € and
|lag = F) = Va((Lay ~ Py @ 1)V, < e
which follow from Inequalities (6.16) and (6.17), one can show
(Va ® Ve)(Ey ® (Lay = Fu) ~ ((Pv® (s = P)) @) © unk.
(Va ® V) ((La, = En) ® Fu)y ~ (((La = ) ® PL)0a) © Y, and
(Va® Vi) ((Lay = E) @ (ay = P ~c (((La = P) @ (La = P5)) @) @ i

These last three estimates together with Estimates (6.18) and (6.24) show that S is a local e-dilation
of §. |

7. IMPLICATIONS

We discuss some corollaries which result from the specific case of four projections adding up to
scalar times the identity.

Corollary 7.1. Let n = 4. For any k € N, there exists four rank k projections ﬁk,l, ﬁk,z, ﬁk,g, ﬁk,4
in Moy such that ﬁk,l + ﬁk,g + ﬁk’:; + ﬁk,4 = %Izkﬂ- Each of the following quantum strategies

Sk = (@ars1, {Provs boie1 — Py Yo, {f’z,w, Dy = Pz,w}fvzl),

can be robustly self-tested from the correlations pa y that each strategy induces.

o0

Proof. By the recurrence relation given in Theorem 5.1 it is readily computed that A4 = {2 1 k0"

Ak
2k+T

projections Pk 1,Pk 2,Pk 3,Pk41nM2k+1 suchthath1+Pk2+Pk3+Pk4 = 2k+112k+1 By Lemma

Observe that each fraction is already in lowest terms. Hence by Theorem 5.1 there exist four

5.4, we observe that each of these projections is of rank k. Rest of the corollary then follows from
Theorem 6.10. m]

The following two observations immediately follow from Corollary 7.1.

Corollary 7.2. The maximally entangled state ¢, in each odd dimension d > 3 can be robustly

self-tested by quantum correlations with four inputs and two outputs.
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Corollary 7.3. Given any natural number k there exist four projections of rank k which can be
robustly self-tested by quantum correlations with four inputs and two outputs.

In general, a quantum state is represented by a density matrix p € My. This reduces to the usual
vector state formulation if p is rank one. Thus, in general, a description of a quantum strategy is
given by

S =(p € Mg, ® My, {Ey; : v € [nal,i € [kal}, {Fw, :w € [kgl.,j € [kg]}),

and its induced quantum correlation is given by p (i, j|v,w) = Tr((E,; ® F,, j)p). One can show that
this quantum correlation p € C,(na, np, ka, k) induced by § can also be obtained by a quantum
strategy &’ where the quantum state is now given by a unit vector by using the notion of purification
[NCO00, Section 2.5].

One can formulate a definition of self-testing which takes this more general view of quantum
states in to account. Indeed, this is how self-testing is defined in [GKW™ 18, Definition C.1]. It is
then proved there [GKW™18, Proposition C.1] that if a quantum correlation p € C,(na,np, ka, kp)
self-tests a quantum strategy, then p must be an extreme point of C,(na,np, ka, kp).

While in this article we don’t work4 with the definition in [GKW*18], one can show that
all of our results can be suitably generalized. More precisely, let » > 3 and x € A, with
X = % in lowest terms. Let p,, € C,(n,2) and S be as in Definition 5.2. One can show
that p, . self-tests the strategy & in the following sense as well. Consider a quantum strategy
(p € Mg, ® My, {Ey, la, — EvYo_,, {Fw, lay — Fyw}! _,) which also induces p,, . and where p is
a density matrix. Then, there exist isometries V4 : Cis — C? @ K, and Vg : C4 — C? @ K for
some finite-dimensional Hilbert spaces K4, Kp, and a density matrix pjuk € B(Ks ® Kp) such
that for all v, w, we have

(7.1) (Va® V) ((Ey ® F)p)(Va ® V)" = (P, ® PL)P) ® piunks

where p = @47, With this result, it follows that for all n > 3 and x € A,, the quantum correlation
Pnx 1s an extreme point of C,(n, 2).
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APPENDIX A. A SHORT INTRODUCTION TO C*-ALGEBRAS

In this appendix we give some overview of C*-algebras that we have used in this article. Some
general references on this subject are [Mur90, Pau(02].

A C*-algebra U is a subset of the set of bounded linear operators B(H) for some Hilbert space
H satisfying the following properties:

(1) A is a unital (complex) algebra, that is, for S, 7 € W and A € C, we have S + AT € A and AS,
and there is an element 1¢y € W which serves as the unit element for A,

(2) A is =-closed, that is, if S € U, then its adjoint S* € A as well, and,

(3) Wis closed in the operator norm.

Sometimes, such a C*-algebra is also called a concrete C*-algebra or a C*-algebra of operators to
distinguish it from an abstract C*-algebra which we describe next.

Let 2 be a unital Banach algebra, that is, 2 is an algebra equipped with a norm ||.|| satisfying
llab|| < ||a||l|b]|| for all a, b € U, and A is complete (every Cauchy sequence converges). Assume
that 2 has an involution operation * : A — A which satisfies 13 = o and

(a+1Ab)* =a* +Ab*, (ab)* =b*a”, (a*)" =a,

for all a, b € A and A € C. We say that A is an abstract C*-algebra if ||a*a|| = llal|? for all a € A.
A linear map 7 : A — B between two abstract C*-algebras is called a x-homomorphism if it is
unital 7(1g) = 1y, and n(ab) = n(a)n(b) and n(a*) = n(a)* forall a, b € N.
Observe that B(H) with the operator norm is an abstract C*-algebra and hence every concrete
C*-algebra is an abstract C*-algebra. Conversely, every abstract C*-algebra can be identified with a
concrete C*-algebra on some Hilbert space:

Theorem A.1 (Gelfand-Naimark-Segal). Let A be an abstract C*-algebra. Then, there is some
Hilbert space H and an isometric x-homomorphism n : A — B(H).

Thus, one may identify an abstract C*-algebra 2 with the concrete C*-algebra B := 7 (A). A
s-homomorphism from a C*-algebra U into some B(H) is called a representation of .

A state on a C*-algebra 2 is a linear functional ¢ : W — C such that ¢(a*a) > O forall a € A and
¢(lg) = 1. A state ¢ is called tracial if p(ab) = ¢p(ba) for all a, b € W. We let S(A) denote the set
of all states on A. We say that a net of states (¢,)1ca converges to a state ¢ if lim, |¢(a) —d(a)| =0
for all a € U, that is, if ¢, converges pointwise to ¢. This gives rise to a topology on S(2) called
the weak*-topology, with respect to which S() is compact.

Letzy : AW — B(H)) and 5 : W — B(H,) be two representations of a C*-algebra A. We say 7y
and 7y are unitarily equivalent if there is some unitary U : H; — H, such that mp(a) = Uny(a)U*
for all @ € A. A representation 7 : A — B(H) is said to be irreducible if there is no invariant
closed subspace of 7 () apart from {0} and H.

Give a non-empty set A C B(H), we define the C*-algebra generated by A, denoted C*(A), to

be the smallest C*-algebra containing A.
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Let G ={ay,...,a,} be anon-empty set of generators, and let R = {py, ..., pn} be a finite set
of relations where p; is a polynomial in 2n noncommuting variables ay, ..., a,,aj, ..., a,. Let
A be the free =-algebra generated by G. Then an n-tuple (71, ...,T,) in some B(H) satisfying
the relations gives rise to a s-representation of 2. For a € A, define ||a|| = sup{||7(a)| :
7t is a *-representation of (G, R)}. If ||a;|| < oo for all i € [n], then || - || is a C*-seminorm on A,
that is, ||a*a|| = ||a||® for all @ € A. Letting N = {a € A : ||a]| = 0}, the completion of A/N with
respect to the induced norm is called the universal C*-algebra on (G, R), denoted by C*(G, R). The
universal property says that whenever there is an n-tuple (Ay, ..., A,) of operators in B(H) for
some Hilbert space H satisfying the relations R, there is a representation 7 : C*(G, R) — B(H)
with 7(a;) = A; for all i € [n]. For more information on universal C*-algebras we refer the reader
to [Bla06, Section I1.8.3].

APPENDIX B. A RECIPE TO GENERATE FOUR PROJECTIONS ADDING UP TO SCALARS TIMES IDENTITY

We sketch the general construction of the n projections summing to a scalar x € A,, obtained in
[KRSO02]. The key ingredient is their hyperbolic reflection construction, which we give a slightly

different take on here. Let x be a scalar, d € N, and Py, ..., P, € My are projections with sum x/;.
Define

| P 1 P 1
(B.1) V=—|: and P=

Py Py
Note that V € Mgy, 4 is an isometry and P € My, is a projection with PV = V. It follows that

P —-VV* € My, is a projection. Let k € N be the rank of P —VV* and let W € My, x be an isometry
with VV* + WW* = P. Further, let Wy, ..., W, € My be such that

Wi
(B.2) W=1":
W
Using that WW* = P — VV* and comparing the diagonal blocks, we have
(B.3) Wiws = p,—<p,=*"1p,
X x

and hence /-2 W; is a partial isometry. It follows that

X

(B.4) 0 =

P 1Wi*Wi S Mk

is a projection, and we have 3/, Q; = 7 1x.
The hyperbolic reflection functor can be used to produce projections summing to a given scalar
x; € A, for n > 4 as follows. For xg = 0, take P; = 0 € M; = C. Then for [ > 1, given projections

Py, ..., P,, in My summing to x;_1 1,4, applying to hyperbolic reflection functor to the projections
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l;—Py,...,1;— P, produces an integer d’ > 1 and projections Q1,...,Q, € My whose sum is
the scalar x;/1 .

For each k € N, we apply the recipe given above to generate four projections ﬁk,l, cees ka,4 such
that 13;(,1 +---+ ng,4 = % (see Corollary 7.1).

We begin with four unit vectors &1, &, £3, &4 € R? which form the vertices of a regular tetrahedron.
These vectors satisfy (fi, & j> = %1 for alli # j, and are given by

_ -1 -1

S e e [
-2 -\2

a=10, &=, =73 &=|3
2 2
0 0 5 -V3

Set ﬁl,v = &,€ to be the rank-1 projection on the subspace spanned by &,, for v € [4]. Then

100 12
Pi=|0 0 0|, Piy= # % 0l
000 0 0 0
1 V2 -\2 1 V2 V2
9 9 3v3 9 9 33
Pi.=|¥2 2 2| p,=|¥2 2 2
1,3 9 9 33 | 1,4 9 9 3V3
-2 2 2 N2 2 2
3V3 3v3 3 3V3 3V3 3

One readily checks that 131,1 +-o 4+ 131 4= ‘3113. We now illustrate the procedure given above by
constructing projections 132,1, e, ﬁ2,4 in M5 such that 132,1 +--+ 132,4 = §I5.
SetQ1, =13 — ﬁl,v for each v € [4]. Notice that each Q1 , is a rank-2 projection and is given by

8  2V2
N 0 0O N 5 %5 0
011=10 1 0Of, Q2= ZT\/E UL
0 01 0O 0 1
8 V2 V2 8 V2 -\2
9 9 3v3 9 9 3V3
Oi5=|=2 7 2| ¢Qg,,=|=22 1 =
1,3 9 9 V3|’ 1,4 9 9 33|
N2 o2 1 V2 2 1
3V3 3V3 3 3V3 3W3 3
Then, Q1 + Q2 + Q3 + Oay = 8.
Define isometry V € M, 3 and projection P € My, by
3 gl,v él,v
(B.5) I and P=
8 gfi,v Q-
Q4,v v
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Since P — VV™ is a projection, we find an orthonormal basis for the subspace it projects onto, which

when arranged as column vectors yields us the isometry W:

0 0 0 0 0
3 3 -3 [.3 -7 [.5
ez 2lWun TVwes 2y 0
|2 2. [10 —6. ] 4,05 =3
31 341 1793 815 2v10
/3 2 _ 2 -1 /5
2431 V3115 47\ 26895 3\ 163 0
|3 1 —47 -1 /5 0
62 V10230 2V26895 6 Y 326
1 /5
0 0 0 0 33
(B.6) W = 0 0 165 Y o |
326 6V815 2V15
1 (163 -1
0 0 0 e\ 10 75
1 /55 2 -1
0 0 2V 163 1733 2V10
2.2 =2 —71 _41 _1
31 V5115 V53790 6815 2V15
0 62 28 -53 L
165 V26895 61630 V30
[2 2. [J10 1 /5 [ 2 -1
| V3T 341 2\ 1793 2445 10 |
Wi
Letting Wy, W, W3, W4 be 3 X 5 matrix blocks such that W = , we get our desired projections
Wy
as:
28 92 258 2 134 [/ 3 12
155 15555 5 277915 5 25265 54155
92 6892 2022 [ 2 166 |_3 —24
g 155v55 8525 275 \ 5053 5 \35583 54341
p, . -2 x _ | 258 2 2022 [ 2 7254 213 6 36 [ 2
P2 5W1W1 5 V277915 275 \ 5053 44825 SISVIT 5\ 1793
134 [ 3 le6 [_3 213 [6 1993 48 | 3
5 1\ 25265 5 \ 55583 815\ 11 4075 25\ 163
12 —24 36 [ 2 48 | 3 9
| 5V155 54/341 5\ 1793 257V 163 25 |
108 36 —846 2 6.0-3_ 0
155 155v55 5 \ 277915 25265
36 12 282 [ 2 -2 [ 3 0
1 8525 275\ 5053 5 '\ 55583
_ 8 55v/55
Py = —WQW; = | =846 2 282 [ 2 13254 47 [6
5 5 \ 277915 275 \ 5053 44825 15V 11
6.2 =2 [ 3 47 |6 1 0
25265 5 '\ 55583 815\ 11 163
0 0 0 0 1
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00 0 0 0
00 0 0 0
- 8 154 -6 =3 [22
Prs==-W3W; = 00 163 515 VOO = /13
T 5
00 —6V66 3811 —44 [ 3
815 4075 25 \ 163
-3 [220 44 [3 3
_O 0 Vi 25 Vies 25 |
112 -128 588 2 -104 [_3 -12
155 15555 5 277915 5 25265 35155
~128 6736 2304 [ 2 —164 [ _3 24
g 155 \/— 8525 275 \ 5053 5 V35558  3v3a1
p, . =2 * _ | 588 2304 [_2 8862 -194 [6 =3 [ 2
Paa 5W4W4 SV 555 44325 815 VI 5 V1793
—104 —164 -194 [6 691 -4 [ 3
5 25265 55583 815 V11 4075 25\ 163
~12 4 3 [ 2 4 [3 3
54155 54341 5 1793 25\ 163 25
Then, P> 1, ..., Py4 are projections such that Py 1 +-- -+ P4 = §I5.

ApPENDIX C. A BELL INEQUALITY FOR EACH EXTREMAL POINT D4 x

For n = 4, as per Corollary 7.1, for each k € N, there exist a strategy Sk which can be robustly
self-tested from the correlation p4 ; that it induces. In this appendix, we derive a Bell inequality
which is violated by the strategy Sk.

We consider the signed non-local game as given in [DPP19, Section 5]. While in this paper, we
have considered the framework of non-local games (Section 3) where the rule function A takes on
values {0, 1}, in the game which we describe next, we consider rule functions which takes values in
{-1,0,1}.

For each k € N, we consider a game & described as follows. We let the input and output sets to
be Iy =1Ip =[4],and O4 = Op = [2]. The rule function A : [4 X Ig X O4 X Op — {-1,0,1} is
defined by

1 ifv=wandi=j=1,
A, w,i,j)=49-1 ifv+£wandi=j=1,

0 otherwise.

Let ¢, := %. Clearly, 0 < t; < 1. The referee sends questions (v, w) € I4 X Iz according to the

probability distribution 7 given by:

173 .
5 ifv#w.
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The winning probability V(p) for a correlation p = (p(i, j|v,w)) is computed to be

1 — 4
(A V() =23 p( ) = 1 3 (L 11w,
v=1

It can then be shown, a bit tediously and assisted by a mathematical software, that the maximum
winning probability using local strategies is

= if k =1,
(C.2) Wioc(Gx) = k-1 .

On the other hand, using the arguments in [DPP19, Section 5], we find that the maximum winning
probability using synchronous quantum correlations is

2k?
2k + 1)(6k + 1)’

which is attained by the strategy given in Corollary 7.1.

(C.3) wy (%) =

It is then clear that synchronous quantum correlations are advantageous over local correlations,
since

wloc(?k) _ % if k = 1,

wy (%) \1-45 ifk>2.

The maximum winning probability using arbitrary (non-synchronous) quantum correlations could
be even larger than the one given in Equation (C.3), but we don’t pursue that computation here.
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