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Abstract. We prove that for any countable directed graph E with Condi-
tion (K), the associated graph C∗-algebra C∗(E) has nuclear dimension at
most 2. Furthermore, we provide a sufficient condition producing an upper
bound of 1.

Introduction

The notion of nuclear dimension, introduced by Winter and Zacharias in [46],
is a generalization of topological covering dimension to C∗-algebras. A C∗-algebra
has nuclear dimension at most n g 0 if there are “(n+1)-colored” finite rank ap-
proximations of the identity map, in the sense that there are a finite dimensional
C∗-algebra F , a completely positive, contractive map È : A→ F , and a completely
positive map ϕ : F → A such that ϕ ◦ È approximates the identity map pointwise
in norm and ϕ decomposes as a sum as n+ 1 orthogonality preserving completely
positive, contractive maps with mutually orthogonal supports (see Definition 1.1).

Nuclear dimension has proved invaluable in the classification of simple, nuclear
C∗-algebras; see [21, 22, 13, 39], for example. In particular, the exotic examples
of simple, nuclear C∗-algebras constructed in [43, 44, 35, 41] have infinite nuclear
dimension. This led to the finiteness of the nuclear dimension becoming a key
regularity hypothesis in Elliott’s classification program.

For separable, unital, simple, nuclear, infinite dimensional C∗-algebras, the Toms–
Winter conjecture ([46, Conjecture 9.3]; cf. [15, 45]) states that finite nuclear di-
mension is equivalent to tensorial absorption of the Jiang–Su algebra Z, defined in
[24]. The remarkable results of Castillejos, Evington, Tikuisis, White, and Winter
in [9, 8], building on a long line of work going back to Matui and Sato in [31, 32],
have completely determined the possible values of nuclear dimension for separa-
ble, simple C∗-algebras. These two papers state that the nuclear dimension of a
separable, simple C∗-algebra A is given as follows:

dimnuc(A) =











0 if A is AF;

1 if A is nuclear, Z-stable, and not AF;

∞ otherwise.

The nuclear dimension of non-simple C∗-algebras is less understood. For a com-
pact metric space X, the nuclear dimension of C(X) is precisely dim(X). However,
outside the type I setting, there is growing evidence that the nuclear dimension of a
C∗-algebra is either infinite or very small. For example, using Gabe’s generalization
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of the Kirchberg–Phillips theorem [19, 18], it was shown by Bosa, Gabe, Sims, and
White in [5] that a separable, nuclear, O∞-stable C∗-algebra has nuclear dimension
1, improving Szabó’s earlier upper bound of 3 obtained in [38]. In the stably finite
setting, Tikuisis and Winter showed C(X) ¹ Z has nuclear dimension 1 or 2 ([40,
Theorem 4.1]).

Finding the precise values of nuclear dimension has proven to be a difficult
problem. In Winter and Zacharias’s original paper on nuclear dimension ([46]),
they proved the nuclear dimension of the Toeplitz algebra T to be either 1 or 2.
The lower bound follows since T is not AF. The upper bound arises from realizing
T as an extension C(T) by K, the C∗-algebra compact operators on a separable,
infinite dimensional Hilbert space, and combining a 2-colored approximation of
C(T) with a 1-colored approximation of K to obtain a 3-colored approximation of
T . The nuclear dimension of T was eventually shown to be 1 by Brake and Winter
in [6] by introducing a method of reusing one of the colors in the approximation of
C(T) to approximate K. The Brake–Winter technique was refined in [20] to show
that for a compact metric space X, a unital, essential extension of C(X) by K
has nuclear dimension dim(X). Further, combining the Brake–Winter technique
with Gabe’s generalization of the Kirchberg–Phillips theorem, the Cuntz–Toeplitz
algebras Tn were shown to have nuclear dimension 1 in [12]. This was further
improved by Evington in [17], producing an improved bound on nuclear dimension
of certain extensions. In particular, any full extension of an O∞-stable C∗-algebra
by a stable AF-algebra has nuclear dimension 1.

The present work is concerned with the problem of computing the precise value
of nuclear dimension for graph C∗-algebras. Given a directed graph E, Kumjian,
Pask, and Raeburn constructed an associated C∗-algebra C∗(E) in [29], defined by
associating each edge to a partial isometry with restrictions on the range and source
projections determined by the structure of the graph (see Definition 1.2). Graph C∗-
algebras and related objects have become a natural test case for obtaining optimal
bounds for nuclear dimension. For example, the results of [36], which builds on [16],
proving all UCT Kirchberg algebras have nuclear dimension 1 via examining the
nuclear dimension of certain graph C∗-algebras (or rather, 2-graph C∗-algebras)
motivated the push to show that all Kirchberg algebras have nuclear dimension 1
in [4] (improving the previous upper bound of 3 in [32]).

For a finite graph E, it follows from the permanence properties of finite nuclear
dimension established by Winter and Zacharias in [46] and the general theory of
graph C∗-algebras that C∗(E) has finite nuclear dimension. Indeed, the structure
of gauge-invariant ideals in graph C∗-algebras (see [2, Theorem 4.1]) implies that
all such graph C∗-algebras are defined by recursively taking extensions of AF-
algebras, UCT Kirchberg algebras, and C∗-algebras stably isomorphic to C(T), all
of which have finite nuclear dimension. These naive upper bounds are typically
not sharp; this is already seen in the cases of the Toeplitz and Cuntz–Toeplitz
algebras discussed above. In fact, we do not know of any graph E where the
nuclear dimension of C∗(E) is known to be bigger than 1.

We restrict our attention to graphs with Condition (K), as introduced in [29, 11],
which can be regarded as a kind of freeness condition on the dynamics of the
graph—the definition is recalled in Definition 1.3 below. At the C∗-algebraic level,
a graph E has Condition (K) if and only if all ideals of C∗(E) are invariant under
the gauge action, or equivalently, no subquotient of C∗(E) is stably isomorphic to
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C(T). In this case, Ruiz, Sims, and Tomforde showed in [37, Theorem 5.1] that,
under the additional restriction that every vertex in E receives a path from a cycle
in E, the nuclear dimension of C∗(E) is at most 2. The first of our main results
removes this combinatorial restriction, obtaining the same bound for all graphs
with Condition (K). This is the first finite bound which covers all graphs with
Condition (K).

Theorem A. If E is a countable directed graph with Condition (K), then C∗(E)
has nuclear dimension at most 2.

Using an inductive limit argument motivated by [34] and [23] and the lower
semicontinuity of nuclear dimension under inductive limits, Theorem A reduces to
the case of finite graphs. In this setting, under a further combinatorial restriction
on the graph, we obtain the following improvement. For a vertex v and a cycle µ
in a graph E, we say v connects to µ if there is a path in E with source v whose
range is a vertex on µ.

Theorem B. Let E be a finite graph with Condition (K) such that each source v
in E satisfies one of the following conditions:

(i) v connects to every cycle in E;

(ii) v connects to no cycles in E.

Then C∗(E) has nuclear dimension at most 1.

The bound in Theorem B is optimal. In the setting of this theorem, the nuclear
dimension of C∗(E) is characterized as follows:

dimnuc(C
∗(E)) =

{

0 if E has no cycles;

1 if E has a cycle.

Our techniques are combinatorial in nature, relying upon the structure of the
graphs themselves. In the case of a finite graph E with Condition (K), let I denote
the ideal of C∗(E) generated by the projections corresponding to sources in the
graph, and consider the extension

0 −→ I −→ C∗(E) −→ C∗(E)/I −→ 0.

We show that I is AF and C∗(E)/I is O∞-stable, which yields the upper of 2 in
Theorem A. Further, in the setting of Theorem B, after removing a finite dimen-
sional direct summand of C∗(E), we reduce to the case in which all sources in E are
as in Theorem B(i). In this case, the extension above is full and I is stable. Then
Evington’s result from [17] lowers the bound on the nuclear dimension of C∗(E)
from 2 to 1, proving Theorem B. The inductive limit argument of Section 2 involves
adding sources to finite subgraphs of an infinite graph E, and we don’t know of a
natural condition to place on a graph that allows an inductive limit construction
using graphs satisfying the hypotheses of Theorem B.

After recalling some preliminary material on graph C∗-algebras and nuclear di-
mension in Section 1, we establish the reduction to finite graphs in Section 2.
Sections 3 and 4 are devoted to the proofs of Theorems A and B, respectively.

Acknowledgments. The authors would like to thank Stuart White for an enlight-
ening discussion on nuclear dimension and the contents of [5] and [12].
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1. Preliminaries

A completely positive, contractive (cpc) map ϕ : A → B is order zero if for all
a, b ∈ A with ab = 0, we have ϕ(a)ϕ(b) = 0 (see [26]). Winter and Zacharias gave
the following definition of nuclear dimension in [46].

Definition 1.1. A C∗-algebra A the nuclear dimension of A, denoted dimnuc(A),
is at most n if given a finite set F ¢ A and ϵ > 0, there exist finite dimensional
C∗-algebras F0, . . . , Fn and maps

A
ψ

−→
n

⊕

i=0

Fi
φ

−→ A,

so that

(i) ∥a− ϕ(È(a))∥ < ϵ for all a ∈ F ,
(ii) È is cpc, and
(iii) ϕ|Fi

is cpc and order zero for all i.

It is easy to see that finite dimensional C∗-algebras have nuclear dimension 0.
By [46, Proposition 2.3], it follows that all AF-algebras have nuclear dimension 0.
The converse holds by [26, Example 6.1(i)]; that is, any separable C∗-algebra with
nuclear dimension 0 is AF.

Throughout this paper, E = (E0, E1, r, s) will be a directed graph with vertex
set E0, edge set E1, and range and source maps r, s : E1 → E0. A graph E is
row-finite if

∣

∣r−1(v)
∣

∣ <∞ for all v ∈ E0. The following definition is due to [29, 11],
although we are using the convention of Raeburn’s book [33].

Definition 1.2. A Cuntz–Krieger E-family is a family (s, p) of mutually orthogonal
projections {pv : v ∈ E0} and partial isometries {se : e ∈ E1} with pairwise
orthogonal ranges subject to the following conditions:

(i) s∗ese = ps(e);

(ii) pr(e)se = se for all e ∈ E1;

(iii) pv =
∑

{e∈E1:r(e)=v} ses
∗
e for every v ∈ E0 such that 0 <

∣

∣r−1(v)
∣

∣ <∞.

The graph C∗-algebra C∗(E) is the universal C∗-algebra generated by a universal
Cuntz–Krieger E-family (s, p). We now describe Condition (K) of Kumjian, Pask,
Raeburn, and Renault ([30]) and their characterization of ideals of C∗(E) when
E is row-finite and satisfies Condition (K). A return path for a vertex v is a path
µ = µ1µ2 . . . µm with s(µ) = r(µ) = v and r(µi) ̸= v for 1 < i f m.

Definition 1.3. A directed graph E is said to have Condition (K) if for each vertex
v ∈ E0, one of the following conditions holds:

(i) v does not lie on a cycle in E;
(ii) there are at least two return paths for v.

For a row-finite graph E with Condition (K), the ideals of C∗(E) are in bijection
with certain subsets of E0, which we now describe.

Definition 1.4. A subset H ¢ E0 is said to be hereditary if whenever v ∈ H,
w ∈ E0, and there exists a path from w to v, we have w ∈ H. A saturated subset H
contains all vertices v satisfying r−1(v) ̸= ∅ and s(r−1(v)) ¢ H. Given a hereditary,
saturated subset H ¢ E0, define the graphs EH := (H, r−1(H), r|H , s|H) and
E \H := (E0 \H, s−1(E0 \H), r|E0\H , s|E0\H). Note that the restrictions of the
range and source maps are well-defined since H is saturated and hereditary.



NUCLEAR DIMENSION OF GRAPH C∗-ALGEBRAS WITH CONDITION (K) 5

The following reformulation of [30, Theorem 6.6], found as [33, Theorem 4.9],
gives a bijection between saturated, hereditary subsets of E0 and ideals of C∗(E)
in the case when E is a row-finite graph with Condition (K).

Theorem 1.5. Let E be a row-finite graph satisfying Condition (K). For each

saturated, hereditary subset H ¢ E0, define IH to be the ideal of C∗(E) generated

by {pv : v ∈ H}. Then

IH = span{sµs
∗
ν : s(µ) = s(¿) ∈ H}.

Further, H 7→ IH is an isomorphism between the lattice of saturated, hereditary

subsets of E0 and the lattice of ideals of C∗(E). The quotient C∗(E)/IH is naturally

isomorphic to C∗(E \ H), and the graph algebra C∗(EH) is isomorphic to a full

corner of IH .

Finally, we will require some extension theory to prove Theorem B. For a thor-
ough treatment of extensions, we refer the reader to [3, Chapter VII]. Given a C∗-
algebra A, let M(A) denote the multiplier algebra of A, and let Q(A) := M(A)/A
be the corona algebra of A. For C∗-algebras I and B, an extension of B by I is a
C∗-algebra A with a short exact sequence of the form

0 −→ I −→ A
π

−→ B −→ 0.

For any such extension, the inclusion I ↪→ M(I) can be canonically extended
to a ∗-homomorphism ¼ : A → M(I). This produces an associated Busby map

´ : B → Q(I). An extension is full if the Busby map of the extension is full in the
sense that ´(b) generates Q(I) as an ideal for all non-zero b ∈ B. If a ∈ A \ I is
such that ¼(a) is full in M(I), then ´(Ã(a)) is full in Q(I) since ´ ◦ Ã = ÃI ◦ ¼,
where ÃI : M(I) → Q(I) is the quotient map. Therefore, to show an extension is
full, it suffices to show that ¼ is full.

2. A Reduction to Finite Graphs

In this section, we will prove that Theorem A can be reduced to the case of
finite graphs. In the following section, it will be proven that dimnuc(C

∗(E)) f 2
whenever E is a finite graph with Condition (K). For countably infinite graphs
with Condition (K), an inductive limit approximation lim

−→
C∗(Ei) = C∗(E), for a

suitable sequence of finite subgraphs Ei ¢ E, produces an upper bound on the
nuclear dimension as

dimnuc(C
∗(E)) f lim inf dimnuc(C

∗(Ei)) f 2

by [46, Proposition 2.3]. Throughout this section E will be a row-finite graph with
Condition (K); although we do not explicitly assume E is infinite, this will be the
case of interest.

We first construct arbitrarily large finite subgraphs of E with Condition (K).

Lemma 2.1. Let E be a row-finite directed graph with Condition (K) and let F ¢ E
be a finite subgraph. Then there is a finite subgraph F ′ ¢ E containing F which

satisfies Condition (K) and the additional property that every vertex of F ′ lying on

a cycle in E has at least two distinct return paths in F ′.

Proof. If a vertex v ∈ F 0 lies on a cycle in E, find distinct return paths µv and
¿v, and let Fv be the subgraph of E consisting of the return paths µv and ¿v. If a
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vertex v ∈ F 0 does not lie on a cycle, let Fv be the empty graph. We claim

F ′ := F ∪
(

⋃

v∈F0

Fv

)

satisfies Condition (K). If u ∈ F 0, Condition (K) for the graph F ′ is satisfied at u
by construction. For a vertex u on one of the return paths added to F , we have
some vertex w ∈ F 0 so that u lies on at least one of the return paths µw or ¿w. We
consider the following cases:

(i) u lies on exactly one of µw or ¿w and is only the range of a single edge in
that return path;

(ii) u is the range of multiple edges on one of the return paths µw or ¿w;
(iii) u lies on both µw and ¿w, and is the range of exactly one edge on each

path.

We will construct two distinct return paths for u in each case. Let µw = µ1µ2 . . . µm
and ¿w = ¿1¿2 . . . ¿n.

Case (i): Without loss of generality, suppose that u lies on µw. Let µi be
the edge with r(µi) = u. Consider the paths µ = µi . . . µm−1µmµ1 . . . µi−1 and
¿ = µi . . . µm−1µm¿

wµ1 . . . µi−1. Note that these are both return paths for u and
are distinct as w occurs once on µ but occurs twice on ¿.

Case (ii): Suppose that u is the range of multiple edges on µw. Let µi1 , . . . , µik
be the edges whose range is u, with i1 < i2 < · · · < ik. Let µ = µi1µi1+1 . . . µi2−1

and ¿ = µikµik+1 . . . µmµ1 . . . µi1−1. Observe that both µ and ¿ are return paths
for u, and are distinct as w lies on ¿ but does not lie on µ.

Case (iii): Suppose that µi and ¿j are the edges whose range is u. We claim that
µ = µiµi+1 . . . µmµ1 . . . µi−1 and ¿ = ¿j¿j+1 . . . ¿n¿1 . . . ¿j−1 are distinct return
paths for u. By way of contradiction, suppose that µ = ¿. Then the paths must
be the same length, so m = n. Furthermore, w occurs exactly once on both µ and
¿. There are i − 1 edges before w on µ, and j − 1 edges before w on µ, so i = j.
Therefore, we have that µk = ¿k for 1 f k f m, and so µw = ¿w, which contradicts
that they are distinct return paths for w. Thus Condition (K) is satisfied at u. □

The next step provides a construction to enlarge a finite subgraph F ¢ E to
a finite subgraph F̃ ¢ E so that C∗(F̃ ) embeds into C∗(E). By enumerating the
edges of E, this will produce a direct limit decomposition of C∗(E). This technique
is similar to [34, Definition 1.1 and Lemma 1.2], but as we are in the row-finite,
Condition (K) setting, we provide an alternative and somewhat simpler construc-
tion avoiding the use of dual graphs and relying on the Cuntz–Krieger uniqueness
theorem ([10, Theorem 2.13]) instead of the gauge-invariant uniqueness theorem
([1, Theorem 2.3]). The following definition is similar to the “exit completion” of
Jeong and Park in [23, Definition 3.2], reformulated for this paper’s convention and
ensuring Condition (K) is preserved.

Definition 2.2. Given a row-finite graph E with Condition (K) and a finite sub-

graph F ¢ E, define a (K)-entrance completion of F , denoted F̃ , as follows. First,
add distinct pairs of return paths to all possible vertices as in Lemma 2.1 to produce
a subgraph F ′ ¢ E. Then, add to F ′ all edges e ∈ E1 so that there is an edge f
in F ′ with r(f) = r(e), along with the source vertices s(e) not already in F ′. Let

F̃ ¢ E be the resulting subgraph and note that F̃ is row-finite as E is row-finite.
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The following result in an improvement of Lemma 2.1, producing arbitrarily large
finite subgraphs of E with Condition (K) such that the inclusion of the subgraph
canonically induces an inclusion of the graph C∗-algebras.

Proposition 2.3. Given a row-finite graph E with Condition (K) and a finite sub-

graph F ¢ E, any (K)-entrance completion F̃ ¢ E of F has Condition (K). Fur-

thermore, we have that C∗(F̃ ) is isomorphic to a C∗-subalgebra of C∗(E) containing

{se : e ∈ F 1} and {pv : v ∈ F 0}. Explicitly, there is an embedding C∗(F̃ ) ↪→ C∗(E)

given by qv 7→ pv and te 7→ se for v ∈ F̃ 0 and e ∈ F̃ 1, where (t, q) and (s, e) are

the universal Cuntz–Krieger F̃ -family and E-family, respectively.

Proof. We first show that F̃ has Condition (K). The subgraph F ′ ¢ E from
Lemma 2.1 contains F and satisfies Condition (K). Importantly, recall that in the
construction of F ′, every vertex of F lying on a cycle in E has distinct return paths
in F ′. Suppose v is a vertex in F̃ which lies on a cycle in F̃ . Then v belong to F ′;
indeed, if v is not in F ′, then v is a source in F̃ . By the construction of F ′, v has
at least two return paths in F ′, and hence also in F̃ , so Condition (K) holds.

The projections {pv : v ∈ F̃ 0} and partial isometries {se : e ∈ F̃ 1} in C∗(E)

form a Cuntz–Krieger F̃ -family. Indeed, Definition 1.2(i) and (ii) clearly holds, and

because any receiver in F̃ receives the same edges in F̃ and E, Definition 1.2(iii)

is satisfied as well. Hence there is a ∗-homomorphism C∗(F̃ ) → C∗(E) given on

generators by qv 7→ pv and te 7→ se for v ∈ F̃ 0 and e ∈ F̃ 1. As each pv is
non-zero and F̃ has Condition (K), the Cuntz–Krieger uniqueness theorem ([10,
Theorem 2.13]) implies that this ∗-homomorphism is faithful. □

We now have all of the necessary ingredients to construct the promised inductive
limit decompositions of graph C∗-algebras associated to graphs with Condition (K).

Theorem 2.4. Let E be a countable, row-finite graph with Condition (K). Then
there exists a sequence of finite graphs Ei with Condition (K) and an inductive limit

decomposition C∗(E) ∼= lim
−→

C∗(Ei).

Proof. Let e1, e2, . . . be an enumeration of the edges of E and v1, v2, . . . be an
enumeration of the vertices. Let F1 be a subgraph of E containing e1 and v1.
Construct a (K)-entrance completion F̃1 of F1. Let F2 be a subgraph containing F̃1,

e2, and v2, and construct a (K)-entrance completion F̃2. Continue in this manner to

construct an increasing sequence of finite graphs F̃i with Condition (K). Consider

the C∗-algebras C∗(F̃i) as subalgebras of C
∗(E) using the ∗-homomorphisms from

Proposition 2.3. As {se : e ∈ E1} and {pv : v ∈ E0} are contained in
⋃∞
i=1 C

∗(F̃i),

we have C∗(E) =
⋃∞
i=1 C

∗(F̃i). Setting Ei := F̃i produces the required direct limit
decomposition. □

3. Proof of Theorem A

Having justified a reduction to the case of finite graphs, we now endeavor to show
that dimnuc(C

∗(E)) f 2 for all directed graphs E with Condition (K). We begin by
showing that for finite graphs with Condition (K) and no sources, the associated
graph C∗-algebra is O∞-stable. This will be done by induction using that the C∗-
algebra associated to a finite graph with Condition (K) has finitely many ideals.
To facilitate the induction, we need to know the graphs corresponding to ideals and
quotients of graph C∗-algebras (as in Theorem 1.5) have Condition (K) whenever
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the original graph has Condition (K). This is well-known, but we have been unable
to find a precise reference in the literature.

Lemma 3.1. Let E be a finite graph with Condition (K) and let H ¢ E0 be

saturated, hereditary subset. Then the graphs EH and E \H have Condition (K).

Proof. Suppose that v ∈ E0
H lies on a cycle in EH . As v also lies in a cycle in E,

there are distinct return paths µ and ¿ for v in E. Because H is hereditary, we
have that the vertices of these paths belong H, and so the return paths µ and ¿ in
E are actually return paths in EH . Therefore EH has Condition (K).

Suppose that w ∈ (E \H)0 lies on a cycle in E \H. As before, then w lies on a
cycle in E, and so w has distinct return paths µ and ¿ in E. If any vertex in either
return path belongs to H, then w ∈ H as H is hereditary. Thus µ, ¿ ∈ (E \H)∗.
We conclude that E \H has Condition (K). □

The following simple lemma is important for verifying O∞-stability when E is a
finite graph with no sources.

Lemma 3.2. Suppose E is a row-finite graph with no sources and H ¢ E0 is a

saturated, hereditary subset. Then EH and E \H have no sources.

Proof. Let v be a vertex in EH . Since v is not a source of E, it must receive an
edge e from another vertex u ∈ E0. Because H is hereditary, u ∈ H, and so e and
u belong to EH . Therefore, EH has no sources.

Suppose w is a vertex in E \ H. As w is not a source of E, r−1(w) ̸= ∅. Let
s(r−1(w)) = {w1, . . . , wn}. Because H is saturated, there is some wj /∈ H. Thus,
wj and the edges from wj to w belong to E \H, and so E \H has no sources. □

We are now ready to show that finite graphs with no sources produce O∞-stable
C∗-algebras. Note that by [5, Theorem A], it follows that dimnuc(C

∗(E)) = 1 in
this case.

Theorem 3.3. If E is a finite graph with Condition (K) and no sources, then

C∗(E) is O∞-stable.

Proof. Let ∅ = H0 ¢ H1 ¢ · · · ¢ Hn = E0 be a maximal chain of saturated,
hereditary subsets. Note that the graphs EHi

and EHi
\ Hi−1 for 1 < i f n

have Condition (K) and no sources by Lemmas 3.1 and 3.2. Further, each graph
EHi

\Hi−1 has no non-trivial saturated, hereditary subsets, and hence the C∗-
algebra C∗(EHi

\Hi−1) is simple by Theorem 1.5. Furthermore, because EH1
is a

finite graph with no sources, it must contain a cycle. Thus, by [29, Corollary 3.10]
and [28, Proposition 2.6], C∗(EH1

) is a separable, nuclear, unital, purely infinite,
simple C∗-algebra, and so is O∞-stable by [25, Theorem 3.15]. By Theorem 1.5, the
corresponding ideal IH1

of C∗(EH2
), generated by {pv : v ∈ H1}, contains a copy of

C∗(EH1
) as a full corner, and C∗(EH2

\H1) ∼= C∗(EH2
)/IH1

. By [7, Theorem 2.8]
and [42, Corollary 3.2], we have that IH1

is O∞-stable. Using the same argument,
C∗(EH2

)/IH1

∼= C∗(EH2
\ H1) is O∞-stable. By [42, Theorem 4.3], C∗(EH2

) is
O∞-stable, as it is an extension of O∞-stable algebras. Proceeding in this manner
proves that C∗(EHn

) = C∗(E) is O∞-stable. □

We now prove that a specific choice of H ¢ E0 is saturated and hereditary
and its complement contains no sources. Let Ef∞ denote the set of infinite paths
e1e2e3 . . . in E together with the set of all finite paths in E whose source is a source
in E.
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Lemma 3.4. Let E be a finite graph with Condition (K). Let H ¢ E0 be the set

of vertices v ∈ E0 such that every path in Ef∞ with range v is finite. Then H is

saturated and hereditary. Furthermore, EH contains no cycles, and E \H contains

no sources.

Proof. First, we show that H is hereditary. Suppose u ∈ H and there is a path µ
from v ∈ E0 to u. Then any path with range v can be extended to a path with
range u using µ. Thus there cannot be an infinite path in Ef∞ with range v, so
v ∈ H.

To show that H is saturated, suppose w ∈ E0 is not a source and satisfies
s(r−1(w)) ¢ H. Any path ¿ ∈ Ef∞ with range w must pass through a vertex in
s(r−1(w)). Removing the first edge from ¿ creates a path in Ef∞ whose range
is one of the vertices in s(r−1(w)), and by assumption, this path must be finite.
Thus, when s(r−1(w)) ¢ H, it follows that w ∈ H.

By way of contradiction, suppose that µ is a cycle in EH . Then µµ . . . ∈ Ef∞ is
an infinite path, so r(µ) /∈ H. This is a contradiction, so EH must have no cycles.
To show that E \H has no sources, suppose u is a vertex in E \H. Because u /∈ H,
we can find an infinite path µ ∈ Ef∞ with range u. Each vertex along µ does not
belong to H, and so u is not a source in E \H. □

We are now ready to prove that all graphs with Condition (K) have C∗-algebras
whose nuclear dimension is at most 2. In the case of a finite graph, Theorem 3.3
provides a bound on the nuclear dimension of the quotient, while the ideal is easily
verified to have nuclear dimension zero. The Drinen–Tomforde desingularization
process ([11, Definition 2.2]) and Theorem 2.4 are used to prove the result in the
case of an infinite graph.

Proof of Theorem A. We begin with E being a finite graph with Condition (K).
As in Lemma 3.4, let H ¢ E0 be the set of vertices v ∈ E0 such that every path
in Ef∞ with range v is finite. Theorem 1.5 implies that C∗(EH) is isomorphic
to a full corner of the ideal IH generated by {pv : v ∈ H} and C∗(E \ H) ∼=
C∗(E)/IH . Furthermore, as EH is a finite graph with no cycles, C∗(EH) is a finite
dimensional C∗-algebra by [29, Corollary 2.3], and hence dimnuc(C

∗(EH)) = 0. By
[46, Corollary 2.8],

dimnuc(IH) = dimnuc(C
∗(EH)) = 0.

Since E \H has no sources (Lemma 3.4), C∗(E \H) is O∞-stable by Theorem 3.3.
It follows that dimnuc(C

∗(E \H)) = 1 by [5, Theorem A]. Therefore C∗(E) is the
extension of a C∗-algebra with nuclear dimension 1 by a C∗-algebra with nuclear
dimension 0, and so dimnuc(C

∗(E)) f 2 by [46, Proposition 2.9].
Now, suppose E is an infinite graph with Condition (K). Let F be a Drinen–

Tomforde desingularization of E as in [11, Definition 2.2]. As E has Condition (K),
[11, Lemma 2.7] implies that F has Condition (K) and is row-finite. By [11, The-
orem 2.11], C∗(E) is isomorphic to a full corner of C∗(F ), and [46, Corollary 2.8]
yields dimnuc(C

∗(E)) = dimnuc(C
∗(F )). Using Theorem 2.4, construct a sequence

of finite graphs Fi with Condition (K) so that C∗(F ) = lim
−→

C∗(Fi). Then, by [46,

Proposition 2.3] and the first half of this proof, we have

dimnuc(C
∗(E)) = dimnuc(C

∗(F )) f lim inf dimnuc(C
∗(Fi)) f 2. □
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4. Proof of Theorem B

For certain extensions, the following result of Evington improves the bound on
the nuclear dimension of an extension given in [46, Proposition 2.9] by 1. We will use
this to prove Theorem B by showing that under certain combinatorial restrictions
on the graph, we can drop the upper bound on nuclear dimension from 2 to 1.

Theorem 4.1 ([17, Theorem 1.1]). If 0 → J → A → B → 0 is a full extension of

a stable, separable C∗-algebra J by a separable, nuclear, O∞-stable C∗-algebra B,

then

1 f dimnuc(A) f dimnuc(J) + 1.

In particular, if J is a stable AF-algebra, then dimnuc(A) = 1.

Consider a finite graph E with Condition (K) and, as in Lemma 3.4, let H ¢ E0

denote the set of vertices v ∈ E0 such that every path µ ∈ Ef∞ with range v is
finite. Then consider the extension

0 −→ IH −→ C∗(E) −→ C∗(E \H) −→ 0.

In the proof of Theorem A, we showed C∗(E \H) is O∞-stable and IH is an AF-
algebra. If IH is stable and the extension is full, then Theorem 4.1 implies C∗(E)
has nuclear dimension at most 1. Our goal is to characterize when these properties
hold in terms of the structure of the graph E.

The following lemma provides a characterization of stability.

Lemma 4.2. Let E be a finite graph and let H ¢ E0 be as in Lemma 3.4. Then

IH is stable if and only if every source in E connects to a cycle in E. Furthermore,

in this case, IH ∼= K·m, where m g 0 is the number of sources in E.

Proof. By Theorem 1.5, IH = span{sµs
∗
ν : s(µ) = s(¿) ∈ H}, where µ and ¿ are

finite paths in E. Given v ∈ H, define E∗
v to be the set of finite paths from a source

of E to v. Because there is no path from a cycle to v, using Definition 1.2(iii)
inductively, we may write

pv =
∑

µ∈E∗

v

sµs
∗
µ.

In particular, IH = span{sµs
∗
ν : s(µ) = s(¿) is a source}. Note that the elements

sµs
∗
ν form a system a matrix units and hence give an isomorphism

IH ∼=
⊕

u

K(l2(µ ∈ E∗ : s(µ) = u)),

where the direct sum is taken over all sources u ∈ E0.
If u ∈ E0 is a source which does not connect to a cycle, then as E is finite, there

are only finitely many paths originating from u. Hence IH has a finite dimensional
direct summand, and IH is not stable. Conversely, if each source u connects to a
cycle, there are infinitely many paths in E originating from u, thus IH ∼= K·m,
where m is the number of sources in E. In particular, IH is stable. □

Having determined when IH is stable, it remains to characterize fullness of the
relevant extension. The following condition provides a complete characterization in
the presence of Condition (K). The conditions that E has at least one source and
at least one cycle rule out the trivial cases where IH = 0 or C∗(E \H) = 0.
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Lemma 4.3. Let E be a finite graph with Condition (K) which contains at least

one source and at least one cycle and let H ¢ E0 be as in Lemma 3.4. Then the

extension

0 → IH → C∗(E) → C∗(E \H) → 0

is full if and only every source of E connects to every cycle in E.

Proof. We begin by showing the converse. By way of contradiction, suppose that
the extension is full, but there is a source u and a cycle µ with no path from u to
µ. Fix a vertex v on µ. By Lemma 4.2, we may apply [17, Proposition 3.7] (which
follows from the results of [27]) to conclude that the extension is purely large in
the sense of [14, Paragraphs 1 and 2]. Furthermore, by [14, Lemma 7], we have
that every positive element in C∗(E) \ IH Cuntz dominates every positive element

of IH . In particular, we have pu ¯ pv, implying that pu ∈ C∗(E)pvC∗(E).
By Theorem 1.5, the ideal generated by pv corresponds to the smallest saturated,

hereditary subset S ¢ E0 containing v. The set S can be defined explicitly as
follows. Let S0 ¢ E denote all vertices which admit a path to v and note that S0 is
the smallest hereditary subset of E containing v and u /∈ S0. By [33, Remark 4.11],
the smallest saturated subset of E0 containing S0 is hereditary and hence equals S.
Since u is a source and u /∈ S0, E

0 \ {u} is a saturated set containing S0, so u /∈ S.
We conclude that pv ∈ IS and pu /∈ IS . Thus pu is not in the ideal generated by
pv, which is a contradiction.

We now show the forward direction. To this end, we wish to show that ´(b) is
full in Q(IH) for all non-zero b ∈ C∗(E \ H), where ´ is the Busby map for the
extension and Q(IH) is the corona algebra of IH . Let ¼ : C∗(E) → M(IH) denote
the canonical extension of the inclusion IH ↪→M(IH). By Lemma 4.2, IH ∼= K·m,
where m g 1 denotes the number of sources in E, and so there is an isomorphism
¹ : M(IH) → B(H)·m, where H is a separable, infinite dimensional Hilbert space.
Let ¹i denote the ith coordinate of ¹ for 1 f i f m. To show that ´(b) is full for
all nonzero b ∈ C∗(E \H), it suffices to show that the ¹i(¼(a)) is full in B(H) for
all a ∈ C∗(E) \ IH and 1 f i f m.

The ideal generated by some a ∈ C∗(E) \ IH will contain a vertex projection pv,
where v /∈ H. Indeed, by Theorem 1.5, the ideal generated by a is generated by the
vertex projection which it contains. As a /∈ IH , there is a vertex v /∈ H with pv in
the ideal generated by a. Further, for any w ∈ E0 \H, since w receives an infinite
path in Ef∞(by the definition of H) and E is finite, there is a vertex w′ on a cycle
and a path from w′ to w. Hence pw′ ¯ pw, and pw′ is in the ideal generated by pw.
So it suffices to show that ¹i(¼(pw)) is full in B(H) for all w ∈ E0 contained on a
cycle and 1 f i f m.

Fix w ∈ E0 such that there is a cycle µ ∈ E∗ based at w and let 1 f i f m. The
isomorphism ¹ comes from the isomorphism

K ∼= span{sµs
∗
ν : s(µ) = s(¿) = v}

for each source v. Let vi be the source corresponding to ¹i. Then ¹i(¼(pvi)) is a
rank one projection in B(H), and in particular, is non-zero. By assumption, there
is a path ¿ ∈ E∗ with s(¿) = v and r(¿) = w. Then sνs

∗
ν + sµs

∗
µ f pw, and hence

¹i(¼(sν))¹i(¼(sν))
∗ + ¹i(¼(sµ))¹i(¼(sµ))

∗ f ¹i(¼(pw)).

Since ¹i(¼(sν))
∗¹i(¼(sν)) = ¹i(¼(pvi)) ̸= 0 and

¹i(¼(sµ))¹i(¼(sµ))
∗ ∼ ¹i(¼(sµ))

∗¹i(¼(sµ)) = ¹i(¼(pw)),
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we have that ¹i(¼(pw)) is a projection of infinite rank in B(H), and hence is full,
which proves ¹ ◦ ¼ is full, as required. □

We conclude with the proof of Theorem B. In the setting where each source
satisfies Theorem B(i) (i.e., every source connects to every cycle), the bound on the
nuclear dimension follows from the work above. We reduce to this case by showing
that the sources which do not connect to any cycles can be split off as a finite
dimensional direct summand of the graph C∗-algebra.

Proof of Theorem B. If E does not contain a cycle, then by [29, Corollary 2.3]
C∗(E) is finite dimensional and so has nuclear dimension zero. Thus we may assume
that E contains a cycle. Let S denote the set of sources that do not connect to any
cycle. Let H ′ ¢ E0 be the set of vertices that only receive paths from S and no
other sources. This set is clearly saturated and hereditary, and by Theorem 1.5,

IH′ = span{sµs
∗
ν : s(µ) = s(¿) ∈ H ′},

where µ and ¿ are finite paths in E. However, because no vertex in H ′ connects to a
cycle, there are only finitely many paths µ with s(µ) ∈ H ′. Applying the argument
of [29, Corollary 2.3], it follows that IH′ is a finite dimensional C∗-algebra and, in
particular, contains a unit. We then have C∗(E) ∼= IH′ · C∗(E \H ′). Since IH′ is
finite dimensional, its nuclear dimension is 0, so by [46, Proposition 2.3], it suffices
to show C∗(E \H ′) has nuclear dimension 1.

Set F := E \ H ′, and note that F has at least one cycle and every source of
F connects to every cycle of F . If F has no sources, then C∗(F ) is O∞-stable by
Theorem 3.3, and hence has nuclear dimension 1 by [5, Theorem A]. If F has at
least one source, then by Lemma 4.3, the extension

0 −→ IH −→ C∗(F ) −→ C∗(F \H) −→ 0

is full. Additionally, by Lemma 4.2, IH is stable (and separable), and C∗(F \H)
is separable, nuclear, and O∞-stable by Theorem 3.3. Therefore, by Theorem 4.1
C∗(F ) has nuclear dimension 1. □
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