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Abstract—We fully determine the communication complexity
of approximating matrix rank, over any finite field . We study
the most general version of this problem, where 0 <r < R < n
are given integers and Alice and Bob need to determine whether
their respective matrices A, B € F"*" satisfy rtk(A + B) = r
versus rk(A + B) = R. We show that this problem has commu-
nication cost Q(r?log |F|), which is optimal. Our lower bound
holds even for quantum protocols and even for error probability
la- |F|~"/3), which too is optimal because this problem has a
two-bit classical protocol with error ;(1— |F|~®). Prior to our
work, lower bounds were known only for constant-error protocols
and only for consecutive integers r and R, with no implication for
the approximation of matrix rank. We also settle an analogous
question for subspaces, where Alice has a subspace .S, Bob has
a subspace 7', and they need to approximate the dimension
of the subspace S + T generated by S and T (equivalently,
approximate the dimension of S N 7). As an application, we
obtain an Q(n? log |F|)/k memory lower bound for any streaming
algorithm with %k passes that approximates the rank of an input
matrix M € F"*" within a factor of /2 — §, for any 6 > 0. Our
result is an exponential improvement in k over previous work.

Index Terms—Approximation of matrix rank, communication
complexity, quantum computation, subspace intersection prob-
lem, subspace sum problem

I. INTRODUCTION

The exact and approximate computation of matrix rank is a
fundamental problem in theoretical computer science, studied
for its intrinsic importance as well as its connections to other
algorithmic and complexity-theoretic questions. In particular,
a large body of research has focused on the communication
complexity of the matrix rank problem in Yao’s two-party
model [1], [2], with both classical and quantum communi-
cation. In this problem, the two parties Alice and Bob receive
matrices A, B € F"*"  respectively, over a finite field F
and are tasked with determining the rank of A + B using
minimal communication. The first result in this line of research
was obtained three decades ago by Chu and Schnitger [3],
who proved a lower bound of 2(kn?) for the deterministic
communication complexity of computing the rank of A + B
when the matrix entries are k-bit integers. Several years later,
Chu and Schnitger [4] further showed that this communication
problem has deterministic complexity €(n?logp) when the
matrix entries are in I, the finite field with p elements. The
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first result on the randomized communication complexity of
the matrix rank problem was obtained by Sun and Wang [5],
who proved that determining whether A + B is singular
requires 2(n?log p) bits of communication for matrices A, B
over the finite field F,, for prime p. In a follow-up paper, Li,
Sun, Wang, and Woodruff [6] showed that this Q(n?logp)
lower bound holds even for a promise version of the matrix
rank problem, where the matrix A + B is guaranteed to have
rank either n — 1 or n. The lower bounds of [5], [6] further
apply to quantum communication.

Despite these exciting developments, no progress has been
made on lower bounds for approximating matrix rank. Our
main contribution is the complete resolution of the approxi-
mate matrix rank problem. In what follows, we state our results
for matrix rank and several other approximation problems, and
present applications of our work to streaming complexity.

A. Matrix rank problem

We study the problem of approximating matrix rank in its
most general form. Specifically, let F be any finite field. For
integer parameters n,m, R,r such that min{n,m} > R >
r > 0, we consider the promise communication problem
defined on pairs of matrices A, B € F"*™ by

-1 if rk(A+ B)
RANK]™(A,B) =41 if tk(A+ B)
* otherwise,

T,

R,

where the asterisk indicates that the communication protocol
may exhibit arbitrary behavior when rk(A + B) ¢ {r, R}.
In words, the problem amounts to distinguishing input pairs
with rk(A + B) = r from those with rk(A + B) = R. The
corresponding fotal communication problem is given by

-1 if rk(A+B) <,

RANKE™™(A B) = { ,
1 otherwise.
Clearly, the total problem RANKS™™ is more challenging
than the promise problem RANK. 7", Prior to our work, the
strongest known result was the Q(n?logp) lower bound of
[6] on the bounded-error quantum communication complexity
of RANK. """ for fields F, of prime order. Unfortunately,
this lower bound has no implications for the approximation of



matrix rank because the ratio (n — 1)/n rapidly tends to 1.
We resolve this question in full in the following theorem.

Theorem 1.1 (Lower bound for rank problem). There is an

absolute constant ¢ > 0 such that for all finite fields F and

all integers n,m, R,r with min{n,m} > R>r >0,
Qi1 (RANK®%™) > e(1 + 12 log F]).
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In particular,
Qi 4(RANK ™) > c(1 + 12 log [F)).

In the statement above, % denotes e-error quantum com-
munication complexity with arbitrary prior entanglement,
which is the most powerful model of probabilistic compu-
tation. Clearly, all our lower bounds apply to the randomized
(classical) model as well. Two other remarks are in order. Even
in the special case of r = n—1 and R = n, our result is a sig-
nificant improvement on previous work because our theorem
is proved in the large-error regime, with the error probability
exponentially close to 1/2. This should be contrasted with the
communication lower bounds of [5], [6], which were proved
for error probability 1/3. Moreover, Theorem 1.1 is the first
result of its kind because it allows for an arbitrary gap between
r and R. In particular, Theorem 1.1 shows for the first time that
approximating the matrix rank to any constant factor requires
Q(n?log |F|) bits of communication, even for protocols that
succeed with exponentially small probability (take R = n and
r = cn for a small constant ¢ > 0).

Theorem 1.1 is optimal in a very strong sense. Specifically,
we have the following matching upper bound, which we prove
by adapting Clarkson and Woodruff’s streaming algorithm
for matrix rank [7]. In the statement below, R. denotes
randomized (classical) communication complexity with error
E.

Theorem 1.2 (Upper bound for rank problem). There is an
absolute constant ¢ > 0 such that for all finite fields F and
all integers n,m,r with min{n,m} >r > 0,

Ry 3(RANK™™) < ¢(1 + r? log [F)),
. (RANKE™™) <2,
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This result shows that the lower bound of Theorem 1.1
is tight not only for quantum protocols solving the partial
problem RANK"72™ but even for classical, bounded-error
protocols solving the fotal problem RANKE™™  Moreover,
Theorem 1.2 shows that the error regime for which we prove
our lower bound in Theorem I.1 is also optimal, in that the
total rank problem has a classical protocol with cost only 2
bits and error probability 3 — [F| ().

B. Streaming complexity

The streaming complexity of matrix rank has received
extensive attention in the literature [5]-[11]. In this model,
an algorithm with limited memory is presented with a matrix
M of order n over a given field, in row-major order. The
objective is to compute or approximate the rank of M, using

either a single pass or multiple passes over M. Via standard
reductions, our Theorem I.1 implies an essentially optimal
lower bound on the streaming complexity of approximating
matrix rank. Unlike previous work, our result remains valid
even for polynomially many passes and even for correctness
probability exponentially close to 1/2. Stated in its most
general form, our result is as follows.

Theorem 1.3. Let n,r, R be nonnegative integers with n/2 <
r < R < n, and let F be a finite field. Define f: F"*" —

{_Lla*} by
-1 ifrkM =,
f(M)y=4q1 if tk M =R,
* otherwise.

Let <f be any randomized streaming algorithm for f with error
probability % — %|F\*(T’[”/2D/3 that uses s bits of memory
and k passes. Then

o= ( (= [3]) el

By way of notation, recall that f in the above statement
is a partial function, and the algorithm is allowed to exhibit
arbitrary behavior on matrices M where f(M) = .

Corollary L4. Fix arbitrary constants € € (0,2] and § €
(1/2,1). Let F be a finite field. Then no randomized o(n®)-
pass streaming algorithm with n*>~¢log |F| bits of memory, on
input a matrix M € F"*™ can distinguish between the cases
tk M = n and tk M = |dn] with probability of correctness
greater than 1 (1 + |F|~®(™).

Proof. Take R = n and r = |0n] in Theorem 1.3, for any n
larger than a certain constant. I

The memory lower bound in Corollary 1.4 is essentially
optimal since the rank of a matrix M € F"*™ can be com-
puted exactly by a trivial, single-pass algorithm with memory
O(n?log |F|). Prior to our work, the strongest streaming lower
bound for approximating matrix rank was due to Chen et
al. [11]. For all constants € > 0 and § > 0, they proved that
no o(y/log n)-pass algorithm with space n?~¢ can distinguish
between the cases rk M = n and rk M < dn with probability
2/3, where M is an input matrix of order n over a finite field
of size w(n). Our Corollary 1.4 is an exponential improvement
on [11] in the number of passes. Moreover, Corollary 1.4 is
valid for all finite fields regardless of size, and holds even when
the correctness probability is exponentially close to 1/2.

C. Determinant problem

Recall that a square matrix over a field IF has full rank if and
only if its determinant is nonzero. As a result, the problem of
computing the determinant has received considerable attention
in previous work on matrix rank, e.g., [4]-[6]. We are inter-
ested in the most general form of the determinant problem,
where Alice and Bob receive as input matrices A, B € F™"*",
respectively, and need to determine whether the determinant
of A+ B equals a or b. The problem parameters a and b are



distinct field elements that are fixed in advance. Formally, the
determinant problem is the partial communication problem on
matrix pairs (A4, B) given by

—1 if det(A+ B) =a,
DETS?(A,B) =1 if det(A+ B) =b,
* otherwise.

Prior to our work, the strongest result on the determinant
problem was due to Sun and Wang [5], who proved a tight
lower bound of Q(n? log |F|) for the randomized and quantum
communication complexity of DETE’? for nonzero a,b over
any finite field F of prime order. Théy conjectured the same
lower bound for the case of arbitrary a, b. To see why the case
of nonzero a,b is rather special, observe that the number of
matrices with determinant a is always the same as the number
of matrices with determinant b, with natural bijections between
these two sets; but this is no longer true if one of a,b is
zero. This asymmetry suggests that the determinant problem
requires a substantially different approach when one of a, b is
zero. In this work, we develop sufficiently strong techniques
to solve the determinant problem in full, thereby settling Sun
and Wang’s conjecture in the affirmative.

Theorem 1.5. There is an absolute constant ¢ > 0 such that
for every finite field F, every pair of distinct elements a,b € I,
and all integers n > 2,

@ . __(DE

27 4 F|(n=1)/3 TE:Z) > en’ log |]F|
The communication lower bound of Theorem L5 is best
possible, up to the multiplicative constant c. It matches the
trivial, deterministic protocol where Alice sends her input
matrix A to Bob using n?[log|F|] bits, at which point
Bob computes det(A + B) and announces the output of the
protocol. Furthermore, the error regime in Theorem L5 is also
essentially optimal because, for example, the problem DETE’;L
has a randomized protocol with only 2 bits of communication
and error probability 2 — ©(|F|"~1), by taking r = n — 1
and R = m = n in Theorem 1.2. Lastly, we note that the
requirement that n > 2 in Theorem L5 is also necessary
because the determinant problem for 1 x 1 matrices reduces
to the equality problem with domain I x [F and therefore has
randomized communication complexity O(1).

We prove Theorem 1.5 for all a,b from first principles,
without relying on the work of Sun and Wang [5]. In the case
of nonzero a,b, we give a new proof that is quite short and
uses only basic Fourier analysis, unlike the rather technical
proof of [5]. To settle the complementary case where one
of a,b is zero, we prove a stronger result of independent
interest. Here, we introduce a natural problem that we call
RANKDETIE";L , which combines features of the matrix rank
and determinant problems. It is parameterized by a nonzero
field element ¢ € F and a nonnegative integer » < n, and
Alice and Bob’s objective is to distinguish input pairs (A, B)
with rk(A + B) = r from those with det(A + B) = a. We
prove the following.

Theorem 1.6. There is an absolute constant ¢ > 0 such that
for every finite field F, every field element a € F \ {0}, and
all integers n > r > 0,

Qi (RANKDET,?) > c(1 + 1 log [F|).
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Taking » = n — 1 in this result settles Theorem 1.5 when one
of a,b is zero, as desired. Theorem 1.6 is optimal in a strong
sense: even the fotal problem RANKY™™ which subsumes
RANKDET]E,’;L, has bounded-error classical communication
complexity O(1+ 172 log |F|) by Theorem 1.2. Theorem 1.6 for
the RANKDETE:;’ problem significantly strengthens our main
result, Theorem I.1, for the matrix rank problem RAN KITF,’LL m
(in the former problem, Alice and Bob distinguish rank r from
determinant a # 0; in the latter problem, they distinguish rank

r from rank n).

D. Subspace sum and intersection problems

There are two natural ways to recast the computation of
matrix rank as a communication problem. One approach,
discussed in detail above, is to assign matrices A and B to
Alice and Bob, respectively, and require them to compute the
rank of A + B. Alternatively, one can require Alice and Bob
to compute the rank of the matrix [A B]. This alternative
approach is best described in the language of linear subspaces:
letting S and T stand for the column space of A and B,
respectively, the rank of [A B] is precisely the dimension
of the linear subspace S + T generated by S and 7. Here,
we may assume that the dimensions of S and 7" are known
in advance because this information can be communicated at
negligible cost.

In this way, one arrives at the subspace sum problem over a
finite field ¥, where Alice receives as input an m-dimensional
linear subspace S C F" and Bob receives an /-dimensional
linear subspace 7' C F™. The integers m and ¢ are part of
the problem specification and are fixed in advance. In the
promise version of the subspace sum problem, the objective
is to distinguish subspace pairs with dim(S + T') = d; from
those with dim(S +T') = da, for distinct integers d;, do fixed
in advance. This corresponds to the partial function given by

—1 if dim(S+7T) =dy,
SUMG G (S.T) = {1 if dim(S+7) =,
* otherwise.

The corresponding total communication problem is that of
determining whether .S + 7" has dimension at most d, for an
integer d fixed in advance:

—1 if dim(S+7T) < d,

SUM,™™(S,T) = )
1 otherwise.

The total problem is more challenging than the promise
problem in that SUME’IT’L&T’K is a restriction of SUM[S;"’m’l,
for any integers d; < da. As noted by many authors, from
the standpoint of communication complexity, computing the
dimension of the subspace sum S + T is equivalent to

computing the dimension of the subspace intersection .S N 7.



This equivalence follows from the identity dim(S + 7T') =
dim(S) + dim(7) — dim(SNT).

Despite the syntactic similarity between the matrix sum
A 4+ B and the corresponding subspace sum S + 7T, the
subspace sum problem appears to be significantly more subtle
and technical. Previous work has focused on a special case
that we call subspace disjointness (determining whether Alice
and Bob’s subspaces have trivial intersection, {0}) and the
dual problem that we call vector space span (determining if
the sum of Alice and Bob’s subspaces is the entire vector
space). These two problems were studied in [4], [12], with
an optimal lower bound of €2(n?logp) on their deterministic
communication complexity over a field with p elements. Sun
and Wang [5] showed that the Q(n?logp) lower bound for
subspace disjointness remains valid even for randomized and
quantum communication. In follow-up work, Li, Sun, Wang,
and Woodruff [6] proved an (n? log p) quantum lower bound
for a promise version of subspace disjointness, where Alice
and Bob’s inputs are n/2-dimensional subspaces that either
have trivial intersection or intersect in a one-dimensional
subspace. The authors of [13] considered an asymmetric
problem where Alice receives an n-bit vector, Bob receives a
subspace, and their objective is to determine whether Alice’s
vector is contained in Bob’s subspace. They showed that in
any randomized one-way protocol that solves this problem,
either Alice sends ©2(n) bits, or Bob sends §2(n?) bits.

In summary, all previous lower bounds for two-way commu-
nication complexity have focused on subspace disjointness or
vector space span. The general problem, where Alice and Bob
need to distinguish between the cases dim(S + 7T') = d; and
dim(S + T') = da, is substantially harder and has remained
unsolved. The difficulty is that previous results [5], [6] are
based on a reduction from the matrix rank problem to subspace
disjointness, and this straightforward strategy does not produce
optimal results for the subspace sum problem with arbitrary
parameters. In this paper, we approach the subspace sum
problem from first principles and solve it completely. Our
solution settles both the promise version of subspace sum and
the corresponding total version. For clarity, we first state our
result in the regime of constant error.

Theorem L7. Let F be a finite field with ¢ = |F| elements, and
let n,m,¢,d, D be nonnegative integers with max{m,{} <
d <D <min{m+{,n}. If m ={ =d, then

Ry /3(SUMS™™") = O(1).

If m,£,d are not all equal, then

Qi /5(SUM ™) = ©((d —=m+1)(d — £ + 1) log g),
Ry /3(SUML™™) = ©((d — m +1)(d — £ + 1) log q).

Several remarks are in order. Recall that in ", the sum of an
m-dimensional subspace and an ¢-dimensional subspace has
dimension between max{m, ¢} and min{m+¢, n}. This justi-
fies the above requirement that d, D € [max{m, ¢}, min{m +
¢,n}]. Theorem L7 shows that the promise version of the

subspace sum problem has the same communication complex-
ity as the total version, up to a constant factor. Moreover,
the theorem shows that this communication complexity is
the same, up to a constant factor, for quantum and classical
communication protocols. Both the lower and upper bounds in
Theorem 1.7 require substantial effort. Lastly, the degenerate
case d = m = £ of the subspace sum problem is easily seen
to be equivalent to the equality problem, which explains the
O(1) bound in the theorem statement.

In addition to the constant-error regime of Theorem 1.7,
we are able to determine the communication complexity of
subspace sum for essentially all settings of the error parameter,
as follows.

Theorem L8. Let F be a finite field with ¢ = |F| elements, and
let n,m, ¢, d, D be nonnegative integers with max{m,/{} <
d< D <min{m+{,n}. If m={=d, then

Ry 3(SUML™™) = O(1).

If m,0,d are not all equal, then for all v €
[1g=@d=m=0/5 1]
3 130
Q1. (SUM ™)
= O((log, [q*™~] + 1)(log,[¢**4] + 1) logq),
sn,m, b
Rl_TW(SUMS )

= O((log, [¢"™] + 1)(log,[¢"~ 4] + 1) log q)
and moreover

R, , (SUME™™*) < 2. (1)
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Theorem 1.8 determines the communication complexity
of subspace sum for every error probability in [§,3 —
O(|F|~(2d=m=6/5)]. This is essentially the complete range of
interest because by (1), the communication cost drops to 2 bits
when the error probability is set to 1 — |F|~(2d-m=0-6(1),
Analogous to the constant-error regime, Theorem 1.8 shows
that the communication complexity of subspace sum for any
error in (1,3 — O(|F|~(4=m=0/5)] is the same, up to a
constant factor, for both the partial and total versions of the
problem, and for both quantum and classical communication.
Theorems 1.7 and 1.8 reveal a rather subtle dependence of the
communication complexity on the problem parameters d, m, ¢,
particularly as one additionally varies the error parameter.
This explains why we were not able to obtain these theorems
via a reduction from the matrix rank problem, as was done
in previous work [5], [6] in the special case of subspace
disjointness.

In view of the aforementioned identity dim(S + 7)) =
dim(S) 4+ dim(7") —dim(SNT'), our results for subspace sum
can be equivalently stated in terms of subspace intersection.
Formally, the subspace intersection problem requires Alice and
Bob to distinguish subspace pairs (S, T') with dim(SNT") = d;
from those with dim(S N T) = dp, where S is an m-
dimensional subspace given as input to Alice, T is an /-
dimensional subspace given to Bob, and di,d> are distinct



integers fixed in advance. This corresponds to the partial
function
=1 if dim(SNT)=d,
INTERSECT "™ (S, T) =1 if dim(SNT) = do,
* otherwise.
The total version of the subspace intersection problem is given
by
if dim(SNT) > d,

~1

INTERSECTS™™*(S,T) = ‘
d

1 otherwise,

where d is a problem parameter fixed in advance. Theorem
1.8 fully settles the complexity of the subspace intersection
problem, as follows.

Theorem L1.9. Let F be a finite field with q¢ = |F| elements,
and let n,m, 0, r, R be nonnegative integers with max{0, m+
—n}<r<R<min{m,l}. If m ={ =R, then

Ry /3(INTERSECT;™™") = O(1).

If m,{,R are not all equal, then for all ~ €
[Lg—(m+e=2R)/5 1]
Qi (INTERSECTIF oty

= O((log,[¢" "] + 1)(log,[¢" ] + 1) log q),
Ri- (INTERSECT;™™")

= O((log, [¢" ] + 1)(log,[¢" "] + 1) log g)
and moreover

Ri . (INTERSECT ;™™ < 2.
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A moment’s reflection (see Proposition I1.25) shows that
in " the intersection of an m-dimensional subspace and an
{-dimensional subspace is a subspace of dimension between
max{0, m+¢—n} and min{m, £}, hence the requirement that
r, R € [max{0,m + £ — n}, min{m, ¢}]. Remarks analogous
to those for subspace sum apply to Theorem 1.9 as well.
Specifically, Theorem 1.9 determines the c-error communica-
tion complexity of subspace intersection for all € € [%,% —
O(|F|~(m+£=2R)/5)] "which is essentially the complete range
of interest because the communication cost drops to 2 bits
when the error probability is set to 3 — |F|~(m+¢-2R)-61),
Also, Theorem 1.9 shows that in this range of interest, the
e-error communication complexity of subspace intersection is
the same (up to a constant factor) for both the partial and total
versions of the problem, and for both quantum and classical
communication.

E. Previous approaches

A powerful tool for proving lower bounds on randomized
and quantum communication complexity is the approximate
trace norm [2], [14]-[17]. In more detail, let F': X x Y —
{—1,1} be a given communication problem, and let M =
[F(x,9)]z,y be its characteristic matrix. The J-approximate
trace norm of M, denoted || M ||5;, 5, is the minimum trace norm

of a real matrix M that approximates M entrywise within 4.
The approximate trace norm bound states that

| M ||5 2
A lm,2e 2
3 > (2)

1
“(F)> =1
QI(F) 2og< X

for all € > 0, making it possible to prove communication
lower bounds by analyzing the approximate trace norm of M.
To bound the approximate trace norm from below, it is useful
to appeal to its dual formulation as a maximization problem,
whereby

(M, @) — 2¢[|®]s

M52 >
o 1]l

3)

for every nonzero real matrix ®. As a result, proving a
communication lower bound reduces to constructing a matrix
® whose spectral norm and ¢; norm are small relative to the
inner product of ® with the communication matrix M. The
matrix @ is often referred to as a dual matrix or a witness.
The lower bound (2) remains valid for partial functions
F: X xY — {—1,1, %} and their characteristic matrices M,
in which case the dual characterization of the approximate
trace norm is given by

|| ||E2e = <Z Mz y@e y
dom F

=2 Bfi = D [Day )

dom F

for all ® # 0. In this equation, dom F' = {(z,y) : F(z,y) #
+} denotes the domain of the partial function F. Comparing
this dual characterization with the original one (3) for total
functions, we notice that the inner product is now restricted to
the domain of F, and there is an additional penalty term for
any weight placed by @ outside the domain of F. For more
background on the use of duality in proving communication
lower bounds, we refer the reader to the surveys [18], [19].

Main idea in [5], [6]: Constructing a good witness ® can be
very challenging. Sun and Wang [5] studied the nonsingularity
problem over fields [F, of prime order p, where Alice and
Bob’s inputs are matrices A, B € F}*", respectively, and they
are required to output —1 if A+ B is nonsingular and 1 other-
wise. Let M be the characteristic matrix of this communication
problem. To analyze the approximate trace norm of M, the
authors of [5] use the witness ® = [(—1)"§(A+DB)] 4,5, where
g is the Fourier transform of the function g: Fj*" — {0,1}
given by g(X) = 1 if and only if X is nonsingular. The
calculations in [5] reveal the following, where C' > 6 is an
absolute constant:

W [o)=1

(i) (M, @) =2p" ~" T, (p" = 1);

(iif) @[y < Cp™ " [T, (0" — 1).

Using this witness @ in (3) with a sufficiently small error pa-
rameter ¢, Sun and Wang obtain || M || 2. = Q(p™ p"("—1)/2),
which in view of (2) gives an Q(n? log p) lower bound on the



bounded-error communication complexity of the nonsingular-
ity problem.

In follow-up work, Li, Sun, Wang, and Woodruff [6] studied
the partial communication problem F = RANK, """ Let
M’ denote its characteristic matrix. The authors of [6] used
the same witness ® as Sun and Wang [5] and obtained the

following refinements:

) o] =1: 2 |

(ii) ZdomF M,/q B‘I)A B=p" —n(1_|_p711:_1 ) H?Zl(pl—lﬁ
(i) [|P[h = p" " 12 (L4077 - TI, (0 = 1)
(iv) ZdomF |®A-,B| < ||(p||1 - ZdomF M1/47B¢AVB.
Making these substitutions in (4) and setting € to a suffi-
mently small constant, the authors [6] obtain ||[M'||s 2. =
Q(p™ “prn— D/2), which along with (2) results in an
Q(n?log p) lower bound on the quantum communication com-
plexity of F = RANK. > We note that we have described
the work of [5], [6] in the framework that we adopt in our
paper, which differs somewhat from the original presentation
in [5], [6]. These differences do not affect any of the ideas or
bounds in question.

Unfortunately, the above analyses rely heavily on € being
set to a small constant. This is because ||®||; is too large
compared to the inner product (M, ®) and the correlation
> domr M4 p®a B, which makes setting ¢ close to 1/2
impossible. Since the authors of [6] determined ||®||; and
Y domr M 1’4) 5Pa p exactly, with equality, there is no room
for improved analysis and no possibility of setting € close
to 1/2 with this choice of witness ®. This rules out the use
of ® for proving Theorem I.1 even in the special case of
RANK!™" . When it comes to the more general problem
RANKE,;L " with r < n — 2, the witness ® does not produce
any meaningful results at all, even for small constant €. The
fundamental obstacle is that the ¢; norm of ® is concentrated
on matrix pairs (A4, B) for which A+ B has rank n or n — 1,
whereas the domain of RANKE”Z’" with 7 < n — 2 consists
of matrix pairs whose sum has rank n or r. This makes
the contribution of 3\ 41 5)—,_1 |®a,5| to the summation
> 3omF7 |®a,B| too large, and renders the resulting lower
bound worthless. Our attempts at simple modifications to &
were not successful.

FE. Our approach

Our techniques depart substantially from the previous work
in [5], [6]. Instead of attempting to guess a good witness ¢ and
analyzing its metric and analytic properties, we determine how
exactly these properties depend on the choice of a witness.
In this way, we are able to construct essentially optimal
witnesses for the matrix rank, determinant, subspace sum, and
subspace intersection problems. We first discuss the matrix
rank problem, over an arbitrary finite field IF. In this overview,
we focus on the canonical case F' = RANK, """, where Alice
and Bob receive square matrices A, B € F"*", respectively,
and need to distinguish between the cases k(A + B) = k and
rk(A + B) = n. This special case captures the matrix rank
problem in its full generality via straightforward reductions.

Reducing the degrees of freedom: We will call a witness
® symmetric if each entry ®4 p is fully determined by the
rank of A+ B. In searching for a good witness for the matrix
rank problem, we will only consider symmetric witnesses .
This restriction is without loss of generality: since F(A, B)
depends only on the rank of A+ B, it is not hard to verify that
any witness for F' can be “symmetrized” without harming the
corresponding value of the approximate trace norm bound, (4).
The resulting witness matrix ¢ has only n + 1 degrees of
freedom, corresponding to every possible value of the rank of
A+ B.

Let i € {0,1,...,n} be given. Consider the matrix whose
rows and columns are indexed by elements of F"*™ and
whose (A, B) entry is defined to be 1 if tk(A + B) = i
and zero otherwise. Normalize this matrix to have ¢/, norm 1,
and call the resulting matrix E;. Then any symmetric witness
matrix is a linear combination of Ey, E1, ..., E,. With this in
mind, for any real function ¢: {0,1,...,n} — R, we define

Ep = ¢9(0)Eo + 9()Ey + -+ + ¢(n) Ey.

Taking ® = E, in the approximate trace norm bound (4)
and simplifying, we arrive at the following bound for the
characteristic matrix M of F"

1
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Our challenge now is to understand how ¢ affects the spectral
norm of K.
By analyzing the singular values of E, we prove that

n

D elt

t=0

(6)

max

0,1,....,n

.2
||E90|| =q" o

where ¢ is the order of the finite field IF, and I',, is an auxiliary
function. In more detail, we define

Tn(s,t) = kE w<A’B>,

rk A=s

rk B=t

where w is a primitive root of unity of order equal to the
characteristic of I, with the operation x +— w® for field
elements = € [ deferred to Section II-D. An exact expression
for T',,(n,t) can be obtained from the analysis of the Fourier
spectrum of the nonsingularity function in [5]. Understanding
T, (s,t) for general s, ¢, however, is rather nontrivial. To this
end, we derive the representation

n

Z P,(s,t,r)Ty(n,r),

r=0

L.(s,t) =

where P, (s,t,r) is the probability that the upper-left s x ¢
quadrant of a uniformly random nonsingular matrix of or-
der n has rank r. By explicitly calculating the probabilities



P, (s,t,r) and combining them with the closed-form expres-
sion for T';,(n,r), we obtain the upper bound |T',(s,t)| <
cq—*"/2 for an absolute constant c¢. In addition to this analytic
property, we establish the following algebraic result: for
n,s fixed, I',(s,t) as a function of ¢t € {0,1,...,n} is a
polynomial in ¢~* of degree at most s. These two properties
play a central role in our analysis. In what follows, we will
refer to a polynomial in ¢~* as a hyperpolynomial in t.
Univariate object for the rank problem: Since (5) is in-
variant under multiplication of ¢ by a positive factor, we will
normalize ¢ such that p(n) = 1. To achieve a large value
on the right-hand side of (5), we will construct a function ¢
that is negative at k, has ¢; norm concentrated on {k,n},
and results in E, having a small spectral norm. In view
of (6), the spectral norm requirement amounts to a bound on
max; [y ;o ()T (s, t)]. Quantitatively speaking, to obtain
an asymptotically optimal lower bound for the matrix rank
problem, we need ¢ to satisfy the following constraints:
(i) p(n) =1;
(i) (k) <0;
(i) g pny 10(0)] = ¢~
iv) | > e(&)n(s,t)] = ¢ ") for every integer s €
{0,1,...,n}.
The last requirement states that ¢ needs to be almost orthog-
onal to each I'),(s,t), viewed as a function of ¢ with fixed
s. Recall from our earlier discussion that for s and n fixed,
T, (s,t) is a hyperpolynomial of low degree, namely, a poly-
nomial in ¢g~! of degree at most s. To achieve orthogonality
to hyperpolynomials of low degree, we leverage the Cauchy
binomial theorem [20, eqn. (1.87)], which implies that

> (?) (~1)'qBg(g™t) = 0 (7
t=0 q
for every polynomial g of degree less than n. In particular,
defining p(t) = (?)q(—l)tq(;) for t = 0,1,...,n ensures
that ¢ is exactly orthogonal to each hyperpolynomial I';, (s, t)
for s < n. Unfortunately, this choice of ¢ does not satisfy our
constraint on the distribution of the ¢; norm because most of
it would be concentrated on the values ((t) at points ¢t ~ n.
To overcome this difficulty, we apply a hyperpolynomial of
low degree to achieve the desired distribution of the /; norm.
Specifically, we set

olt) = (”)q(—l)f—"qG)-(?)c(q—t)

t

for a carefully constructed polynomial (; the factor

(—1)’"q7(g) in this formula serves to normalize ¢ and ensure
the proper signs. As we increase the degree of (, we improve
the distribution of the ¢; norm of ¢ at the expense of a
weaker orthogonality guarantee, for now ¢ is orthogonal only
to hyperpolynomials of degree less than n — deg(. With
an appropriate choice of (, we are able to ensure all four
desiderata (i)—(iv) for the univariate function (. The most
technical part of the analysis is the upper bound in (iv). For
s small, our construction guarantees (iv) as a consequence of

the Cauchy binomial theorem, with »_;" (@ (¢)T'n(s,t) = 0.
For s large, we use the pointwise bounds for ¢ and I';, and
show that 3°1"_ [(£)] [T (s, £)] = ¢+

By combining equations (5) and (6) with the properties
(i)—(iv) of the univariate function ¢, we derive the following
bound on the approximate trace norm: ||[M|x2. > (1 —
2e — ¢~ 20" () Applying the approximate trace norm
method (4), we obtain the sought lower bound of Q(k? log q)
on the quantum communication complexity of F' for error
€= % — ¢~9()_ To achieve the error probability as stated in
Theorem 1.1, we derive bounds for ¢ with explicit constants,
which we did not discuss in this proof sketch.

The determinant problem: To solve the determinant problem
DETS:Z for all field elements a, b, we combine our approach
to the matrix rank problem presented above with additional
Fourier-theoretic ideas. Recall that we tackle the determinant
problem from first principles, without relying on the partial
solution for nonzero a, b due to Sun and Wang [5]. With this
in mind, we will first discuss the case of nonzero a, b. Consider
the function g, p: F"*™ — {—1,1,0} given by

—1 if det X =a,
Gap(X) =<1 if det X =b,
0 otherwise.

A simple argument reveals that the Fourier coefficients of g,
corresponding to singular matrices are zero, whereas those
corresponding to nonsingular matrices M depend only on
det(M). By applying Parseval’s identity, we obtain a strong
upper bound on the absolute value of every Fourier coefficient
of Ja,b:

1
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where SL(F,n) denotes the special linear group of order-n
matrices over [F. Consider now the matrix ®,; whose rows
and columns are indexed by elements of F™"*™ and whose
entries are given by @, (A, B) = gq5(A + B). The spectral
norm of ®, ; is governed by the Fourier coefficients of gq p,
with

2
n

q
V/|SL(F, n)|

Observe that ®,; is precisely the characteristic matrix of
DETE:Z with the * entries replaced by zeroes. Using @,
as a witness in the approximate trace norm method, we
immediately obtain Theorem L.5 for nonzero a, b.

Consider now the complementary case when one of a, b is
zero, say, a # 0 and b = 0. Here, we study the rank versus
determinant problem RANKDETE’Z, which in this case is a
subproblem of the determinant problem. Its parameters are an
integer £ € {0,1,...,n — 1} and a nonzero field element
a € TF. Recall that in this problem, Alice and Bob are
given matrices A, B € F"*™ respectively, and are called
upon to distinguish between the cases rk(A + B) = k and
det(A 4 B) = a. To construct a witness for RANKDET}",
we combine our solutions to the matrix rank problem and

2 —_—
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the determinant problem for nonzero field elements. In more
detail, consider the witness ® for the problem RANK]F o
that we sketched above. Recall that ® 4 p depends only on
the rank of A + B, and moreover the f/1 norm of ® is
concentrated on matrix pairs (A4, B) with rk(A+B ) € {k,n}.
To turn @ into a witness for RANKDET , we form a linear
combination of ® with the matrices @, for all b € F\{0,a},
constructed in the previous paragraph for the determinant
problem with nonzero field elements. The coefficients in this
linear combination are chosen so as to transfer the ¢; weight
placed by ® on matrix pairs with det(A + B) ¢ {0,a} to the
matrix pairs with det(A+ B) = a, without affecting any other
entries of ®. The resulting dual witness has low spectral norm
(being a combination of matrices with low spectral norm)
and has its ¢; norm concentrated on matrix pairs (A, B)
for which A + B has rank k or determinant a, ensurmg
strong correlation with the partial function RANKDET

By applying the approximate trace norm method, we obtaln
the claimed communication lower bounds for RANKDET% i

Subspace sum and intersection: We now present the main
ideas in our solution to the subspace sum and subspace
intersection problems. Since these problems are equivalent,
we will discuss the intersection problem alone. As before, we
work with an arbitrary finite field IF, whose order we denote
by ¢. Also by way of notation, recall that m and ¢ stand for
the dimensions of Alice’s subspace S and Bob’s subspace T,
respectively. For simplicity, we will assume in this overview
that the dimension n of the ambient vector space satisfies
n > m + ¢, which ensures that dim(S N T) takes on every
possible value in {0,1,2,...,min{m, ¢}} as one varies the
subspaces S, 7. We will focus on the canonical case of the
subspace intersection problem where Alice and Bob need to
distinguish subspace pairs with dim(S N7T) = 0 from those
with dim(S NT) = R, for an integer R with 0 < R <
min{m, ¢}. In what follows, we let F' = INTERSECTE’?{’m’e
stand for this communication problem of interest. The géneral
case of the subspace intersection problem, which we will not
discuss in this overview, reduces to this canonical case.

As before, the challenge is to construct a dual matrix ® that
witnesses a strong lower bound on the approximate trace norm
of the characteristic matrix M of F'. Note that the rows of ®
are indexed by m-dimensional subspaces, and the columns are
indexed by /-dimensional subspaces. Analogous to the matrix
rank problem, we start with the methodological observation
that the symmetry of F' greatly reduces the number of degrees
of freedom in ®. Specifically, F(S,T) by definition depends
only on dim(S NT). A moment’s thought now shows that
any dual matrix ® for the subspace intersection problem can
be “symmetrized” such that its (S,T") entry depends only on
dim(S N T), and this symmetrization can only improve the
resulting lower bound on the approximate trace norm in (4).

Forr = 0,1,...,min{m, £}, let J?™* stand for the matrix
whose rows are indexed by m-dimensional subspaces of F",
whose columns are indexed by ¢-dimensional subspaces of
F™, and whose (S,T) entry is 1 if dim(SN7T) = r and zero
otherwise. Put another way, Jﬁvmvf is the characteristic matrix

of subspace pairs whose intersection has dimension 7. For an
arbitrary function ¢: {0,1,..., min{m, ¢}} — R, we define

min{m,(}

Z w(,’,)J:’L,m,Z.
r=0

We refer to this family of matrices, whose (S,7T) entry
depends only on dim(S NT), as subspace matrices. It will
also be helpful to have notation for normalized versions of
these matrices, as follows:

n,ml
Jw =

—n,m,{ _ 1 n,m,f
SRV
min{m,¢}
Jz ml _ Z P(r) n,m,tl
r=0 ||Jll’m’£| 1 '

In this notation, we are looking to construct a dual witness of
the form ® = J q/,m for some function . This matrix has
min{m, ¢} + 1 degrees of freedom, corresponding to every
possible value that dim(S N 7T') can take. Setting ® = J,;’ Tt
in the approximate trace norm bound (4) and srmphfymg, one
obtains the following bound for the characteristic matrix M
of F:

1
[M]|s,2c > g —1(0) + ¢ (R)
1
=2l — Y @] ®)
i¢{0,R}

At first glance, this equation looks similar to the corresponding
equation (5) for the matrix rank problem. However, there is a

major difference: the spectral norm of F is now replaced with

m,e
the spectral norm of J 7., and there is no reason to expect

that these quantities depend on their corresponding univariate
objects o and v in a similar way. Indeed, our spectral analysis
of 7:;,771 ‘ is quite different and significantly more technical
than that of E,.

Analyzing the spectrum of subspace matrices: Symmet-
ric subspace matrices J"""™" are classical objects whose
eigenvectors and eigenvalues have been studied in numerous
works, e.g., [21]-[24]. However, these previous analyses do
not seem to apply to the general, asymmetric case of interest
to us, namely, that of subspace matrices JZ’m’Z for arbitrary
m,£. One way to reduce the analysis of the spectral norm
of Jg’m’e to the symmetric case is to express the product
Jﬁ’m’e(JZ’m’e)T as the sum of symmetric
subspace matrices and then apply known results for the
symmetric case. Unfortunately, multiplying these subspace
matrices leads to expressions so unwieldy and complicated
that this is clearly not the method of choice.

Instead, our analysis is inspired by a result of Knuth [25]
on what he called combinatorial matrices. Specifically, Knuth
investigated the eigenvalues of symmetric matrices of order
(’z) whose rows and columns are indexed by t-element subsets
of {1,2,...,n} and whose (A, B) entry depends only on

0 n,lom
:Jn-,’ﬂ’hJ;,
P



|A N B|. To determine the eigenvectors of a combinatorial
matrix, Knuth studied certain homogeneous linear systems
with variables indexed by subsets of a fixed cardinality s, and
the equations themselves corresponding to sets of cardinality
s — 1. He showed that any solution to such a system for
s € {1,2,...,t} is an eigenvector for every combinatorial
matrix of order (). Knuth also proved that for any given s,
the space of solutions has a basis supported on the variables
indexed by what he called basic sets. These sets have a simple
combinatorial description, which the author of [25] used to
prove that the eigenvectors arising from the homogeneous
systems for s = 1,2,...,t, together with the all-ones vector,
form an exhaustive description of the eigenvectors of each
combinatorial matrix. Once the eigenvectors are determined,
one readily calculates their associated eigenvalues and in
particular the spectral norm.

With some effort, we are able to adapt Knuth’s ideas
to the context of subspaces. Along the way, we encounter
several obstacles. To begin with, counting problems that are
straightforward for sets become challenging for subspaces,
and some intuitive combinatorial principles no longer work.
For example, the inclusion-exclusion formula dim(S +7T) =
dim(S) + dim(7") — dim(S N T') has no analogue for three
or more subspaces. Another obstacle is that Knuth’s notion
of a basic set does not seem to have a meaningful analogue
for subspaces. For this reason, we reformulate Knuth’s ideas
in a purely linear-algebraic way and sidestep much of the
combinatorial machinery in [25]. The final hurdle is extending
Knuth’s analysis to the asymmetric case. Ultimately, we are
able to determine the spectral norm of every subspace matrix

. . . . . —n,m,t

J;”m’l and in particular its normalized version J Z " We
prove that
min{m,¢} 1/2
L 71 m, L
JVL 5,1, _ m
|| 4 ” $=0,1,...,min{m, ¢} Z w ( )
min{m,¢} . 1/2
TL m

X Z W(r O] C)

—n,m,l —n,t, . . .

where A, and A""™ are functions with algebraic and
analytic properties analogous to those of the I',, function in
our solution to the matrix rank problem. Specifically, we have:

(i) for n,m,¢,s fixed, Krn’m’l(s) as a function of r €

{0,1,...,min{m, ¢}} is a polynomial in ¢" of degree
at most s;

i) A" L}( )| < 8(2);1q*5(m”)/2 for every integer r =
0,1,...,min{m, ¢}.

By swapping the roles of m and ¢, one obtains analogous
properties for A, Zm(s)

This spectral result gives us fine-grained control over the
spectrum of J” b ™% Via the univariate function 1. Our con-
struction of v is based on the Cauchy binomial theorem and is
conceptually similar to our univariate function ¢ in the matrix
rank problem. In particular, we use the algebraic property (i)

to bound the product in (9) for small s, and the analytic
property (ii) to bound it for large s. We further ensure that
the ¢; norm of ¢ is highly concentrated on {0, R}, with
1(0) < 0 and 9(R) > 0. This results in a strong lower bound
in (8), which in turn leads to an optimal lower bound on the
communication complexity of F' by virtue of the approximate
trace norm method.

II. PRELIMINARIES
A. General notation

We view Boolean functions as mappings X — {—1,1},
where X is a nonempty finite set and the range elements
—1,1 correspond to “true” and “false,” respectively. A partial
Boolean function is a mapping f: X — {—1,1,%}, whose
domain is defined as dom f = {z € X : f(x) # }. Recall
that for an arbitrary function f: X — Y, the restriction of f to
a subset X’ C X is defined to be the mapping f|x : X' =Y
given by (f[x)(x) = f(x).

We adopt the shorthand [n] = {1,2,...,n}. We use the
letters p and ¢ throughout this manuscript to refer to a prime
number and a prime power, respectively. As usual, IF, stands
for the Galois field GF(q), the g-element field which is unique
up to isomorphism. For a given set X, the Kronecker delta 6
is defined for x,y € X by

5 — 1 if x =y,
Y10 otherwise.

For a function f: X — C, we use the familiar norms || f||; =
Y owex [f(x)] and || flloo = maxzex |f(z)|. Similarly, for a
real or complex matrix M, one defines | M|, = >_ |M; ;| and
|M||oo = max|M; ;|. The norms |jv||; and ||v||s for a real
or complex vector v are defined analogously. The Euclidean
norm is given by ||v|l2 = /> |vi|?. We denote the base-q
logarithm of z by log, x. In the special case of the binary
logarithm, we write simply log z rather than log, x.

B. Linear-algebraic preliminaries

Let F be a given field. We denote the set of n X m matrices
over F by F"*". We use the standard notation rk A, ker A,
and AT for the rank, null space, and transpose of the matrix A.
As usual, the determinant of A € F"*™ is denoted det A. The
trace of a matrix A € F™*"™ is denoted tr A and defined as the
sum of the diagonal elements of A. The commutativity of the
trace operator is often helpful: tr(AB) = tr(BA) for square
matrices A, B. We let diag(ay,as,...,a,) denote the diag-
onal matrix of order n with diagonal entries a1, as, ..., ay,.
Recall that 7,, normally denotes the identity matrix of order
n, whereas I denotes the identity matrix whose order is to be
inferred from the context. We generalize the meaning of I,
somewhat by defining

I, = diag(1,1,...1,0,...0),

where the order of the matrix (and hence the number of zeroes
on the diagonal) will be clear from the context. We let J and



1 denote the all-ones matrix and all-ones vector, respectively,
whose dimensions will be clear from the context.

Fact IL.1. For square matrices A, B of order n over a given
field F,
tkAB > 1k A+1k B —n.

Proof: Recall that the dimension of ker AB is at most the
sum of the dimensions of ker A and ker B. By the rank-nullity
theorem, this is equivalent to the claimed inequality. ]

For F a finite field or the field of real numbers, the inner
product operation on vectors and matrices is defined as usual
by (z,y) = > a;y; and (A,B) = >~ A; ;B; ;. For F = C,
the modified definitions (z,y) = > ;7; and (A4,B) =
> A, ;B;; are used instead. For complex-valued functions

f,9: X — C, we write (f,g) = > .y f(z)g(z). Again for
F = C, the conjugate transpose of a matrix A = [A; ;];; is
denoted by A* = [A;;]; ;, and a matrix A € C"*" is called
unitary if A*A = AA* = I. The following useful fact relates
the inner product and trace operators.

Fact IL.2. Let A, B, C, D be matrices of order n over R or a
finite field. Then:

() (A, B) =tr(ABT) = tr(A"B),
(ii) (A,C1BCy) = (CTACT, B).

Proof: Ttem (i) is immediate from the definition of matrix
multiplication, whereas (ii) follows from (i) and the commuta-
tivity of the trace operator: (A, C; BCy) = tr(AC] BTCT) =
tr(CJ AC] BT) = (CT ACJ , B). ]

For any field F, we let ej,eq,.. denote as usual
the vectors of the standard basis for F™. For any subset
S C F7”, recall that its span over IF is denoted span.S. For
a linear subspace S, the symbols dim S and S+ refer as
usual to the dimension of S' and the orthogonal complement
of S, respectively. For a linear transformation M, we let
M(S) = {Mz : x € S} denote the image of S under
M. Recall that the sum of linear subspaces S and T is
defined as S+ T = {x +y : 2 € S,y € T} and is the
smallest subspace that contains both S and 7'. In expressions
involving subspaces, we adopt the convention that the union
U and intersection N operators have higher precedence than
the subspace sum operator 4. For a vector space V' and an
integer k, we adopt the notation . (V. k) for the set of all
subspaces of V' of dimension k. For arbitrary subspaces S, 7T
in a finite-dimensional vector space, the following identity is
well-known, and we use it extensively in our proofs without
further mention:

dim(S 4+ T') = dim(S) + dim(7T") — dim(S N T).

'7677,

(10)

This equation is one of the few instances when subspaces
behave in ways analogous to sets. Such instances are rare.
For example, unlike sets, general subspaces S, T, U need not
satisfy SN (T +U) = SNT+ SNU. The equality requires
additional hypotheses, as recorded below.

Fact IL3. For any linear subspaces S,S’',T with S’ C S,
SN(S"+T)=8+SNT.

Proof: Tt is clear that S’ + S N T is a subspace of both
S and S’ + T. It remains to prove the opposite inclusion,
SN(S"+T) C S +SNT. For this, consider an arbitrary
vector u+v € Swithu € S’andv € T. Thenv € S+u = S.
As a result, v € SN T and therefore u +v € 8"+ SNT as
claimed. |
We continue with a fact that relates the dimension of SNT
to that of St N T+,

Fact IL4. Let S, T C F™ be subspaces over a given field F.
Then

(S+T)t=stn1t, (11)
SnT)t =5+ +14. (12)
Moreover,
dim(SNT)
= dim(S) + dim(7T) + dim(S* NT+) —n. (13)

Proof: To begin with,

StNT+ ={x: (x,y) =0forall y € S}

N{z: (z,y)=0forall y e T}
={x:{(x,y)=0forally e SUT}
={z:(z,y)=0forally e S+ T}
= (S+1)",

where the third step uses the linearity of inner product. This
settles (11). Applying (11) to the orthogonal complements of .S
and T results in (S++7T+)% = SNT, which upon orthogonal
complementation of both sides yields (12). Equation (13) is
also a straightforward consequence of (11), as follows:

dim(S*+NTY) = dim((S +T)*)
=n—dim(S+7T)
=n —dim(S) — dim(7T") + dim(SN7T).

This completes the proof. [ ]

It is well-known that for a symmetric real matrix, any
pair of eigenvectors corresponding to distinct eigenvalues are
orthogonal. For completeness, we state this simple fact with a
proof below.

Fact IL5. Let M be a symmetric real matrix. Let u,v be
eigenvectors of M corresponding to different eigenvalues.
Then {(u,v) = 0.

Proof: Suppose that Mu = au and Mv = [Sv, where
a # . Then (a — ) (u,v) = (au, v) — (u, fv) = (Mu,v) —
{(u, M) = 0, where the last step uses M = M. This forces
(u,v) =0, as claimed. [ |

C. Matrix norms

Associated with every matrix A € C™*™ are min{n, m}
nonnegative reals that are called the singular values of A,
denoted 01 (A) = 02(A) > -+ = Owmingn,m} (A). Every matrix
A € C™"™ has a singular value decomposition A = UXV™*,
where U and V are unitary matrices of order n and m,



respectively, and X is a rectangular diagonal matrix whose
diagonal entries are o1(A),02(A), ..., Omin{n,m}(A4). In the
case of real matrices A, the matrices U and V' in the singular
value decomposition can be taken to be real. An alternative
characterization of the singular values is given by

Fact I1.6. Let A € C™*™ be given, with n < m. Then the
singular values of A are precisely the square roots of the
eigenvalues of AA*, counting multiplicities.

The spectral norm, trace norm, and Frobenius norm of A
are defined in terms of the singular values as follows:

[All = 01(A), (14)

1Az =" 0i(A), (15)

1Alle = /> oa(A)2. (16)
Equivalently,

Al = [lAz, a7

14l = /3 145 (18)

These equations agree with (14) and (16) because the Eu-
clidean norm on vectors is invariant under unitary transforma-
tions.

Fact I1.7. For any matrices A, B € C"*™,
(A, B)| < [|A]l IB]ls.

Fact 11.7 follows directly from (17) and the singular value
decomposition of B. We now recall a relationship between
the trace norm and Frobenius norm; see, e.g., [17, Prop. 2.4].

Fact IL.8. For all matrices A and B of compatible dimensions,
|AB|s < [[Allr [ B|lr-

Recall that a sign matrix is a real matrix with entries in
{—1,1}. A partial sign matrix, then, is a matrix with entries
in {—1,1,+}. We define the domain of a partial sign matrix
F by dom F' = {(¢,7) : Fij # =}. The e-approximate trace
norm of F', denoted ||F'||s,., is the least trace norm of a real
matrix F' that satisfies

|Fij—F |<E

¥ if F;; € {—1,1},
|F~‘”| < 1 + €

19)
(20)

The following lower bound on the approximate trace norm
is well known [17], [19], [26]. For reader’s convenience, we
include a proof.

Proposition IL9. For any partial sign matrix F and € > 0,

)y

(i,5)€dom F

1
[Flls,e > Z%W Fij®i; —el| @l

-2

(i,7)¢dom F

|

Proof: Let F be a real matrix that approximates F' in the
sense of (19) and (20). Then for any ® # 0,

(F,®)= Y F;®ij+ > (Fiy—F)®i+ Y F;®;

dom F dom F dom F
> Y Py — Y |Fiy— Fyl @)
dom F dom F
— Y |Eyl 19y
dom F'
> Y Fiybi— Y eldyl— Y (1+4e)[dy]
dom F dom F dom F
= ) Fy®i—e|®i— D (@4l
dom F dom F'

On the other hand, Fact 1.7 shows that (F,®) <||F|s @]
Combining these two bounds for (F', ®) gives

~ 1
1F]ls > & > Fy®i—ell@flh— D |yl
dom F dom F

Taking the supremum over ¢ # 0 completes the proof. |

D. Fourier transform
Consider a prime power ¢ = p”, with p a prime and k a pos-
itive integer. Recall that the additive group of I, is isomorphic
to the Abelian group Z[’f. Fix any such isomorphism . Let
w = e>™/P_ a primitive p-th root of unity. For z € F,, define
w® = wPrw® ... w*  where (z1,%2,...,2k) is the image of

2 under . Then for all z,y € TF,
WY = wPwWY,

2L
(22)

w™T =W,

One further calculates Zwqu w® = Hle(l fwtwi4+
wp_l) = 0, which in turn generalizes to

Zw‘””:O, acF,\ {0}

z€F,;

(23)

since x — ax is a permutation on F,.
Let n be a positive integer. For A € F;*", define a
corresponding character x 4 : Fy ™ — C by

Xa(X) = w2,
It follows from (21) that
XaA(X +Y) = xa(X)xa(Y),

making x4 a homomorphism of the additive group Fy;*" into
the multiplicative group of C. Using (21) and (22), one obtains
(axp) = YxwANuEX = $w@X-3X) -
3 wABX) “which along with (23) leads to

( - v if A=B,
XA XB] = 0 otherwise.

(24)

(25)

Hence, the characters x4 for A € Fp*" form an orthogonal
basis for the complex vector space of functions Fj*" — C.



In particular, every function f: Fy*" — C has a unique
representation as a linear combination of the characters:

S FAa(x)

AFy*™

(26)

The numbers f(A) are called the Fourier coefficients of f.
They are given by

- 2

flA)=q¢ " (f,xa)= E

F(X)w™ A5,
XEFZ;X"

27
where the first step is justified by (25), and the second step
uses (22). An 1mmed1ate consequence of (25) and (26) is that
(f, f)=q" ZA \f( )|2. This result is known as Parseval’s
identity, and it is typically written in the form

IFCOPI= > IFP

XanXn
q AE]Fan

(28)

With f viewed as a complex-valued function on Fy*™,
the linear transformation that sends f ~— f is called the
Fourier transform. Its matrix representation is easy to describe.
Specifically, define

H, = q7n2/2[w<A’B>]A,B,

where the row and column indices range over all matrices in
[y ™. Analogous to (25), one shows that Hy, is unitary:

H,H = H'H, =1. (29)

Then the Fourier transform f — Z, given by (27), corresponds
to the linear transformation ¢=" /2H*. Analogously, the in-
verse transformation f — f of (26) corresponds to ¢" */ ’H,.

The following well-known fact relates the singular values
of a matrix [¢(A + B)]a,p to the Fourier spectrum of the
outer function . We include a proof adapted from [6] and
generalized to the case of F,.

Fact IL.10 (adapted from Li et al.,
Fy~"™ — C be given. Define

B = [p(X + V)] xycamen-

Lemma 20). Let ¢ :

Then

& — H,DH,,
where D is the diagonal matrix given by Dy 4 = g p(A).
In particular, the singular values of ® are q"2 |p(A)| for A €

]E‘TIXTL

Proof: Using the
characters,

p(X+Y)

homomorphic property (24) of the

S HANAX +Y)

AeFy <™

> BA)xaX)xaY).

AeFpxn

Restated in matrix form, this equation becomes ® =

[xa(X)]x,a diag(...,8(A),...) [xa(Y)]ay = H,DH,, as
desired. |

E. Gaussian binomial coefficients

Gaussian binomial coefficients, also known as q-binomial
coefficients, are defined by

n\ ("= —q) - (¢"—q™)
<m>q (=)™ —q)-- (g — g™t G0
_ (=D =) (g - 1) 31)

(@m ="' =1)---(¢—1)
for all nonnegative integers n,m and real numbers ¢ > 1.
Observe that (”)q = 1 since the above product is empty for
m = 0. Note further that () = 0 whenever m > n. One
recovers standard binomial coefqﬁments from this definition via

i (1) = ()

As a matter of convenience, one generalizes Gaussian binomial
coefficients to arbitrary integers n, m by defining

(),

With this convention, one has the familiar identity

(). = (a2 0).

Gaussian binomial coefficients play an important role in enu-
merative combinatorics. In particular, we recall the following
classical fact.

if min{n,m} < 0.

n,m € 7. (32)

Fact II.11. Fix a prime power q and integers n > m > 0.
Then the number of m-dimensional subspaces of Fy is exactly
(m)g
Proof: This result is clearly true for m = 0. For m > 1,
there are (¢ — 1)(¢" — q)---(¢"™ — ¢™ ') ordered bases
(v1,v2,...,v;) of vectors in Fy. Each such basis defines
an m-dimensional subspace. Conversely, every m-dimensional
subspace has exactly (¢™—1)(¢™—q) - - - (¢™—q™ ') ordered
bases. Thus, the number of m-dimensional subspaces is (30),
as claimed. [ ]
The following monotonicity property of g-binomial coeffi-
cients is well-known. We provide a proof for convenience.

Fact IL.12. Let n > m > 0 be given integers. Then for all
integers { € [m,n —m]| and reals g > 1,

(), < (2),

Proof: The defining equation (31) gives

(), (), 75
Eq 9 4=m-+1 q_l

If ¢/ < n/2, then every fraction in the above product is
greater than 1. As a result, (33) holds in this case. In the
complementary case £ > n/2, we have n — ¢ € [m,n/2] and

therefore
n n
(), < (u"0)
m/, n—=¥¢ .

(33)



by the first part of the proof. Since (" e)q = (’Z)q, we again
arrive at (33). [ |

We will use the next proposition to accurately estimate
Gaussian binomial coefficients.

Proposition 11.13. For any set I of positive integers, and any

real number x > 2,
1 1
- 1-—) <1,
4 H< xz)

i€l

Proof: The upper bound is trivial. For the lower bound,
we may clearly assume that 7 = {1,2,3...}. A simple induc-

tive argument shows that (1—aq) - - - (1—a,) > 1—a1— - -—ay,
for any ay,...,a, € (0,1). It follows that
o0
1 1 1 1
H(l_)>1_2_3_...:1_
s xt x x z(x —1)
and therefore
ad 1 1 1 1
H 1-—)>(1—-- 1—-— ) > -,
, x x x(x—1) 4
=1
where the last step uses x > 2. [ |

Corollary 11.14. For any integers n > m >
number q > 2,

m q

0 and any real

Proof: The lower bound follows directly from the fact
that (¢" — ¢*)/(¢™ — ¢') = q"/q™ for n > m. The upper
bound can be verified as follows:

<n> _ ("= —q).. - (@"— ")
m . (qm_1)(qm_q)”.(qm_qm—l)

qnm
< ,
¢ T2 (1= q7)
< dgmnmm),
where the last step applies Proposition II.13. ]

We now recall a classical result known as the Cauchy
binomial theorem, see, e.g., [20, eqn. (1.87)].

Fact 11.15. For any integer n > 1 and real number q > 1,
the following identity holds in R[t]:

n—1 n i
(1+t)(1+qt)...(1+¢" ) Zq (Z)t (34)

Corollary I1.16. For any integer n > 1 and real number
q > 1, and any real polynomial g of degree less than n,

>0 (1) st o

=0

(35)

Proof: For d = 0,1,...,n
to obtain

— 1, take t = —1/¢% in (34)

(36)

This establishes (35) when g is a monomial of degree less than
n. The general case follows by linearity: multiply (36) by the
degree-d coefficient in g and sum over d. [ ]

FE. Counting and generating matrices of given rank

For a field F, we let .# ™™ denote the set of matrices in
F™>*™ of rank r. Since we mostly use IF = [, in this work, we
will usually omit the reference to the field and write simply
V™. As a matter of convenience, we adopt the convention
that for any n > 0 there is exactly one “matrix” of size 0 X n
and exactly one “matrix” of size n x 0, both of rank 0. The
role of these empty matrices is to ensure that

|y = || = 1, n =0,

which simplifies the statement of several lemmas in this paper.
Analogously, we define

M = if min{n, m,r} <O0. 37
For nonsingular matrices of order n >

shorthand ./, = 4.

1, we adopt the

Proposition IL.17. Let n,m,r be nonnegative integers with
r < min{n, m}. Then

| AT = <7:> (@ =D@"=q)...(¢"=q"). (38

Proof: If r = 0, then the right-hand side of (38) evaluates
to 1. This is consistent with our convention that |.Z;""| =1
for all n,m > 0.

We now consider the complementary case » > 1, which
forces n and m to be positive. Fix an arbitrary r-dimensional
subspace S C IFZL and consider the subset .#Zs C .Z™ of
matrices whose column space is S. Fix an n X r matrix A
with column space S. Since the columns of A are linearly
independent, every matrix in .#s has a unique representation
of the form AB for some B € .#,"". Conversely, any product
AB with B € "™ is a matrix in .#s. Therefore,

| Ms| = |47 (39)

Recall that ™ is the disjoint union of .#Zg over r-
dimensional subspaces S C Iy, and there are precisely (;f)q
such subspaces (Fact II.11). With this in mind, (39) leads to
n
= () g (40)
q

Finally, the number of r X m matrices of rank r is precisely
the number of bases (vi,va,...,v,) of row vectors in F}?,
whence [.Z"™| = (¢™ —1)(¢™ —q)--- (¢" —¢"~"). Making
this substitution in (40) completes the proof. [ ]

Using Proposition 11.13 and Corollary II.14 to estimate the
right-hand side of (38), we obtain:

Corollary I1.18. Let m,n,r be nonnegative integers with r <
min{n, m}. Then

iqr(n-i-m—r) < |'//Tn,m| < 4qr(n+m—r).



The following fact is well-known; cf. [6].

Proposition I1.19. Let n > 1 be a given integer. Let X,Y be
random matrices distributed independently and uniformly on
M,,. Then:
(1) for any fixed A € M, the matrices XA and AX are
distributed uniformly on M#y;
(ii) foranyr € {0,1,...,n} andfixed A € A", the matrix
XAY is distributed uniformly on A" .

Proof: (i) For any B € #,, we have P[XA = B| =
P[X = BA™'] = 1/|.#,|. Therefore, XA is distributed
uniformly on .#,. The argument for AX is analogous.

(i) Fix B € . arbitrarily. Then B can be obtained from
A by a series of elementary row and column operations, so
that B = M7 AM, for nonsingular My, M. As a result,

P[XAY = B] = P[M; ' XAY M, ! = A
=P[XAYM; ' = A]
= P[XAY = A],

where the last two steps are valid by part (i). To summarize,
X AY takes on every value in . " with the same probability.
Since X AY € .#>", the proof is complete. ]

G. Random projections

Given a collection of subspaces S7, So, ..., S, in a vector
space, we use random projections to reduce the dimension
of the ambient space while preserving algebraic relation-
ships among the S;. This is done by choosing a uniformly
random matrix X and replacing Si,Ss,...,S,, with the
subspaces X (S1), X (S2),...,X(Sm), respectively. The fol-
lowing lemma provides quantitative details.

Lemma I1.20. Let n and d be positive integers, F a finite
field with |F| = q elements, and S C F™ a subspace. Then for
every integer t < min{dim(S),d},

P [dim(X(9)) < t] < 4¢g~WmS)=Dld=) (4
XeFdxn
In particular, for every integer T < min{dim(S), d},
B T—min{T,dim(X(S))}
XeFdxn
< 14 8¢~ [@m(S)=THN(EA-T+1)+1 (49

Proof: Equations (41) and (42) hold trivially for negative
t and T, respectively. As a result, we may assume that ¢ > 0
and T' > 0. Abbreviate k = dim(S). Fix a basis vy, va, . .., v
for S and extend it to a basis vy, vs,...,v, for F". Let A €
F™*" be the unique matrix such that Av; = e; for each i =
1,2,...,n. In particular, A(S) = span{ey,ea,...,er}. Now,
let X € F4*" be uniformly random. Then the rows of X A
are independent random variables, each a uniformly random
linear combination of the rows of A. Since A is nonsingular
of order n, it follows that the rows of X A are independent
random vectors in F™. Put another way, X A € F?*" has the
same distribution as X. As a result,

P[dim(X(S)) <

= P[dim(X A(S)) < ]

= P[dim(X (A(S))) < {]

= P[dim(span{Xe;, Xes, ..., Xex}) < ¢t

= P[3B € .7(F%,t) such that Xe;, Xea, ..., Xey, € B
< ). PlXe, Xey,..., Xep € B, (43)

Be.#(Fd t)

where the third step uses A(S) = span{ej,es,..., e}, and
the last step applies a union bound. Now

a'\"
Pldim(X(S)) <t]< > (qd)

F(Fd 1)

AN
:(t)qk(dt)
q

< 4gtld=1) g —H(d=1)
— 4g~(k=0)(d—1)

where the first step is justified by (43) and the fact that
Xey, Xes,...,Xe, are independent and uniformly random
vectors in F%; the second step applies Fact II.11; and the third
step uses Corollary II.14. This settles (41). Now (42) can be
verified as follows:

E qT—min{T,dim(X(S))}

T-1

<1+ Y ¢" ' Pldim(X(S)) =]
t=0
T—1

<14+ Y Tt gq-h-0d-D)
t=0
T

=1+ ¢ g BTHIETHY
t=1
T

— 14+ th  4g~ k= THD(A=T+1) = (t=1)(d+k+t=2T+1)

t=1

<1+ th .4q—(k—T+1)(d—T+1)—(t2—1)
t=1
<1 4 dg~ B=THDE=T+D+1 q 3
q—
< 1 + 8q_(k_T+1)(d_T+1)+17

where the third step is a change of variable, the next-to-last
step bounds the series by a geometric series, and the last step
is valid due to g > 2. |

The previous lemma gives an analogous results for matrices:

Lemma IL.21. Let n,m,d be positive integers, F a finite field
with |F| = q elements, and M € F"*™ a given matrix. Then
Sfor every integer t < min{rk M, d}:
() Pik(XM) < t] < 4q~CKAD=9E=1) for g uniformly
random matrix X € F4x,
(i) Prk(MY) < t] < 4q~O=DE=) o a uniformly
random matrix Y € Fm>4,



Proof: Let S be the column span of M. Then rk(X M) =
dim(X(S)), and (i) follows from Lemma IL.20. For (ii),
rewrite the probability of interest as P[rk(YTMT) < t] and

apply (i). [ |
H. Communication complexity

An excellent reference on communication complexity is the
monograph by Kushilevitz and Nisan [27]. In this overview, we
will limit ourselves to key definitions and notation. The public-
coin randomized model, due to Yao [1], features two players
Alice and Bob and a (possibly partial) Boolean function
F: XxY — {-1,1, x} for finite sets X and Y. Alice is given
as input an element x € X, Bob is given y € Y, and their
objective is to evaluate F'(z,y). To this end, Alice and Bob
communicate by sending bits according to a protocol agreed
upon in advance. Moreover, they have an unlimited supply
of shared random bits which they can use when deciding
what message to send at any given point in the protocol.
An e-error protocol for F is one which, on every input
(z,y) € domF, produces the correct answer F'(z,y) with
probability at least 1 — . The protocol’s behavior on inputs
outside dom F' can be arbitrary. The cost of a protocol is
the total bit length of the messages exchanged by Alice and
Bob in the worst-case execution of the protocol. The e-error
randomized communication complexity of F, denoted R.(F),
is the least cost of an e-error randomized protocol for F'. The
standard setting of the error parameter is ¢ = 1/3, which
can be replaced by any other constant in (0,1/2) with only a
constant-factor change in communication cost.

A far-reaching generalization of the randomized model is
Yao’s quantum model [2], where Alice and Bob exchange
quantum messages. As before, their objective is to evaluate
a fixed function F: X xY — {—1,1,*} on any given input
pair (z,y), where Alice receives as input = and Bob receives
y. We allow arbitrary prior entanglement at the start of the
communication, which is the quantum analogue of shared ran-
domness. A measurement at the end of the protocol produces a
one-bit answer, which is interpreted as the protocol output. An
e-error protocol for F' is required to output, on every input
(z,y) € domF, the correct value F'(x,y) with probability
at least 1 — . As before, the protocol can exhibit arbitrary
behavior on inputs outside dom F. The cost of a quantum
protocol is the total number of quantum bits exchanged in
the worst-case execution. The e-error quantum communication
complexity of F, denoted QZ(F), is the least cost of an e-error
quantum protocol for F. The asterisk in Q7 (F') indicates that
the parties can share arbitrary prior entanglement. As before,
the standard setting of the error parameter is ¢ = 1/3. For
a detailed formal description of the quantum model, we refer
the reader to [15], [17], [28]. For any protocol II, quantum
or otherwise, we write cost(II) for the communication cost of
II.

The following theorem, due to Linial and Shraibman [16,
Lem. 10], states that the matrix of the acceptance proba-
bilities of a quantum protocol has an efficient factorization
with respect to the Frobenius norm. Closely analogous state-

ments were established earlier by Yao [2], Kremer [14], and
Razborov [15].

Theorem I1.22. Let X,Y be finite sets. Let P be a quantum
protocol (with or without prior entanglement) with cost C
qubits and input sets X and Y. Then

| PIP(,y) = 1]

for some real matrices A, B with ||Allr < 29/|X]| and
|Bllr <2¢/[Y].

Theorem I1.22 provides a transition from quantum protocols to
matrix factorization, which is by now a standard technique that
has been used by various authors in various contexts. Among
other things, Theorem I1.22 gives the following approximate
trace norm method for quantum lower bounds; see, e.g., [15,
Thm. 5.5]. For the reader’s convenience, we state and prove
this result in the generality that we require.

= AB
zeX,yey

Theorem I1.23 (Approximate trace norm method). Let
F: X xY — {=1,1,%} be a (possibly partial) communi-
cation problem. Then

JQIE) S [ M][5: 2 ’
3VIXIY]
where M = [F(x,y)]zex yey is the characteristic matrix of
F.

Proof: Let P be a quantum protocol with prior entangle-
ment that computes F' with error € and cost C. Put

= |P[P(x,y) = 1]}

zeX,yey

Then the matrix M = 2I1 — .J _satisfies |]T4;y| < 1 for all
(x,y) € X xY and |M,, — M, ,| < 2¢ for all (z,y) €
dom M. In particular,

1Ml 2e < |IM]]5- (44)

On the other hand, Theorem II.22 guarantees the existence
of matrices A and B with AB = II and ||Al|r||Bllr <

49, /IX||Y|. Therefore,
[M||s = [I2AB = J||z
<2([ABllz + (/s
< 2[[AllelBlle + [ /]ls
<2-49VIXIY]+ ]

=2-49/|X| Y]+ VIX] Y],

(45)

where the third step uses Fact II1.8. Equations (44) and (45)
give |M|s2 < (249 + 1)y/|X][|Y], which implies the
claimed lower bound on 4¢. [

A distinguisher for a communication problem F': X xY —
{—1,1,%} is a communication protocol II for which the
expected output on every input in F~1(—1) is less than the
expected output on every input in F~1(1). We will use the
following proposition to convert any distinguisher for F' into
a communication protocol that computes F'.



Proposition I1.24. Ler F: X xY — {—1,1, %} be a (possibly
partial) communication problem. Suppose that 11 is a cost-c
randomized protocol with output +1 such that

E[ll(z,y)] <«  forall (z,y) € F~1(-1),
Ell(z,y)] > B  forall (x,y) € F~'(1),
where o, 3 are reals with —1 < a < 8 < 1. Then

(46)
(47)

R%—%(ﬁ—a)(F) <ec
Proof: For a real number ¢, define sgnt to be 1if £t > 0
and —1if ¢ < 0. Set p = |a+f|/(2+|a+0]) and consider the
following randomized protocol II" with input (z,y) € X x Y
with probability p, Alice and Bob output — sgn(a-+ 3) without
any communication; with the complementary probability 1 —p,
they execute the original protocol I on (z,y) and output its
answer. Clearly, IT" has the same cost as II. On every (z,y) €
F_l(_1)7
E[Il'(z,y)] < —psgn(a + 8) + (1 — p)a
_ —(a+8)+2a
2+ ]a+ B
a—p
2+ |+ B
g - B — aa
4
where the first step uses (46), and the last step uses —1 <
a < 8 < 1. Analogously, on every (z,y) € F~1(1),

E[II'(z,y)] > —psgn(a + B) + (1 —p)B
_ —(a+pB)+28
2+ ]a+ 5
b —«
2+ |a+ B
>
4
where the first step uses (47). We have shown that
E[Il'(z,y)F(x,y)] > (8—«)/4 on the domain of F, which is
another way of saying that II' computes F' with error at most
% — %(ﬂ —a). [ |

1. Communication problems defined

Let I be a given field. For nonnegative integers n,m,r
with 7 < min{n, m}, the rank problem is the communication
problem in which Alice and Bob are given matrices A, B €
Fxm respectively, and their objective is to determine whether
rk(A + B) < r. Formally, this problem corresponds to the
Boolean function RANK ™™ : FnXm x Fnxm _ (1 1}

given by
RANKE™™(A 4+ B) = —1 & k(A + B) <.
F,n,m

We also study the corresponding partial problem RANKn R
for nonnegative integers n,m,r, R with r < R < min{n, m},
defined on F™*" x F"*™ by
—1 if tk(A+B) =,
RANK 2™ (A,B) =1 if tk(A+ B) =R,
* otherwise.

For a positive integer n and a pair of distinct field elements
a,b € F, the determinant problem DETE:Z: [Frexm x Frxn —
{=1,1,%} is given by

1 if det(A+ B) =a,
DETS?(A,B) = {1 if det(A+ B) =b,

* otherwise.

The rank versus determinant problem is a hybrid inspired by
the previous two problems. Specifically, for a number r €
{0,1,...,n—1} and a nonzero field element a € F\ {0}, we
define RANKDET, 7 : F"X™ x F*™ — {—1,1,%} by

-1 if rk(A+B) =,
RANKDET,?(A,B) ={¢ 1 if det(A+ B) = a,
* otherwise.
Note that RANKDETY'? is a subproblem of both RANK; """
and DETE:Z, in the sense that the domain of RANKDETE;:
is a subset of the domain of each of these other two problems
and it agrees on its domain with those problems.

Consider now the setting where Alice is given an m-
dimensional subspace S C [F™ and Bob is given an /-
dimensional subspace T' C ", for some nonnegative integers
n,m,{ with max{m, ¢} < n. In the subspace intersection
problem with parameter d, Alice and Bob need to determine
whether S N T has dimension at least d. In the subspace
sum problem, they need to determine whether S + T has
dimension at most d. Formally, these problems correspond to
the Boolean functions INTERSECT, ™" and SUM5™™*
that are defined on .(F"™, m) x .Z(F™,{) by

INTERSECTS ™™ (S, T) = ~1
SUM, ™™ (8, T) = -1

<  dim(SNT) >d,
&  dim(S+7T) <d.
Their INTERSECT}"™"

SUME’@Z”{ for any pair of distinct integers dj,ds, are
defined on .7(F", m) x .Z(F", ¢) by

partial  counterparts and

1 if dim(SNT) = dy,
INTERSECT "/ (S,T) =4 1 if dim(SNT) = do,
* otherwise,

-1 if dim(S+7T)=ds,
SUME™™ (8, T) =1 if dim(S +T) = da,
* otherwise.

These partial functions are well-defined for any d;,ds, with
d1 # ds. Their communication complexity, however, is
zero unless both d; and do have meaningful values for the
problem in question. Specifically, one must have di,ds €
[max{m, £}, min{m + ¢,n}] for the subspace sum problem
and di,ds € [max{0,m + ¢ — n},min{m, £}] for the sub-
space intersection problem. We record this simple fact as a
proposition below.



Proposition I1.25. Let F be a field. Let n, m, { be nonnegative
integers with max{m, ¢} < n. Then:

(i) there exist S € S(F",m) and T € Z(F",{) with
dim(S + T) = d if and only if d is an integer with
max{m, {} < d < min{m + ¢,n};

(ii) there exist S € L (F",m) and T € . (F",{) with
dim(S NT) = d if and only if d is an integer with
max{0,m + ¢ —n} < d < min{m, ¢}.

Proof: (i) For any subspaces S,T C F™ we have the
trivial bounds max{dim(S),dim(7)} < dim(S + 7T) <
min{dim(S) + dim(7),n}. This proves the “only if” part
of (i). For the converse, let d be any integer with max{m, ¢} <
d < min{m + ¢,n}. Then the sets A = {1,2,...,m} and
B={d—-(+1,...,d—1,d} satisfy A, B C {1,2,...,n}
(because £ < d < n) and AU B = {1,2,...,d} (because
m < d < m+¥). As a result, span{ey,es,..., e} and
span{eq_¢i1,...,€d-1,€q} are a pair of subspaces in F" of
dimension m and ¢, respectively, whose sum has dimension
d.

(ii) Recall that dim(SNT) = dim(S) +
T') for any subspaces S, T. As a result,

dim(7") —dim(S +

{dim(SNT):S e LEF",m),TecSE" L)}
={m+L—dim(S+T):5 e SEF",m),T e SE" L)}
={m+{l—d:deZ, max{m,l} < d<min{m+ {,n}}

= {max{0,m + £ — n},...,min{m, £} — 1,min{m, £}},

where the second step uses (i). [ |
Let F: X xY — {-1,1,%} and F': X' xY' —
{—1,1,%} be (possibly partial) communication problems. A
communication-free reduction from F to F’ is a pair of
mappings «: X — X’ and §: Y — Y’ such that F(x,y) =
F'(a(z),B(y)) for all (z,y) € domF. We indicate the
existence of a communication-free reduction from F' to F’ by
writing F/ = F'. In this case, it is clear that the communication
complexity of F’ in any given model is bounded from below
by the communication complexity of F' in the same model.

Proposition 11.26. Let n,m,{,r, R be integers with 0 < 17 <
R < min{m, ¢} and max{m, £} < n. Then

INTERSECT, "™ = INTERSECT )" ~" .

Proof: Consider the injective linear map ¢: F*»~" — F”
that takes any vector and extends it with r zero components
to obtain a vector in F™. Given arbitrary subspaces S,T C
F*~" of dimension m — r and ¢ — r, respectively, define S’ =
span(¢(S)U{en—rt1,-.-,en—1,en}) and T/ = span(p(T)U
{en—r41,--+,€n—1,€n}). Then clearly

dim(S'NT")
dim(S") + dim(7T") — dim(S" + 1)
dim(S) +r + dim(T) +r —dim(S+T) — r
dim(S) + dlm( ) —dim(S+T)+r
dim(SNT)+

im

whence the reduction INTERSECTE)’}ZT;"’_T’@_T(S, T) =
INTERSECT, "™(S",T"). ]

III. THE MATRIX RANK PROBLEM

In this section, we prove a tight lower bound on the
randomized and quantum communication complexity of the
rank problem. As discussed in the introduction, we obtain
this lower bound by constructing a dual matrix ¢ with certain
properties, namely, low spectral norm, low #; norm, and high
correlation with the characteristic matrix of the rank problem.
We start in Section III-A by analyzing the probabilities P,
that arise in the recurrence relation for the I',, function. The
latter plays an important role in our proof and is studied in
Section III-B. Section III-C constructs a univariate dual object
¢ defined on {0, 1,...,n} and studies its analytic and metric
properties. We build on ¢ to construct a dual matrix £, in
Section III-D, and discuss how the properties of ¢ give rise to
analogous properties of E,. Sections III-E and III-F establish
lower bounds for the approximate trace norm of the charac-
teristic matrix and the communication complexity of the rank
problem, with & = E, used as the dual witness. We prove
a matching communication upper bound in Section III-G.
Section III-H concludes our study of the rank problem with
an application to streaming complexity.

Throughout this section, the underlying field is IF, for an
arbitrary prime power g. The root of unity w and the notation
w® for x € F, are as defined in Section II-D.

A. The P, function

The P, function, defined next, conveys useful information
about random nonsingular matrices of order n over a given
field.

Definition 111.1. Let n > 1 be a given integer. For nonnegative
integers s,t,r € {0,1,...,n}, define P,(s,t,r) to be the
probability that the upper-left s x ¢t quadrant of a uniformly
random nonsingular matrix in [Fj*" has rank r:

P, (s,t,r) = XeP//ln [tk(I; X I;) =7]. (48)

To derive a closed-form expression for P,,, we essentially
need to count the number of ways to complete a given s X ¢
matrix of rank 7 to a nonsingular matrix of order n. We break
this counting task into two steps, where the first step is to
count the number of completions of an s x ¢ matrix of rank r
to an s X n matrix of rank s.

Lemma IIL.2. Let s,t,r,m be nonnegative integers with
r < min{s,t}. Let A € A" be given. Then the number
of matrices B € Fg*™ for which rk [A B] =sis

'rm |%S rm|

Proof: If r = 0, then tk [A B] = rk B. As a result,
rk[A B] = s if and only if B € ;™. Therefore, the
lemma holds in this case. In what follows, we consider r > 1,
which forces s and ¢ to be positive integers.

Define the matrices A’ and A” to be the top r rows of A
and the bottom s —r rows of A, respectively. We first consider



the possibility when A” is zero or empty. Here, the column
span of A’ is necessarily all of 7. Given an s X m matrix B,
partition it into B” and B” conformably with the partition of
A. Then

/ !
rk [A B} =rk [13 g,,]
A0
=rk |: 0 B//]
=r1k(A") + rk(B")
=r+rk(B").

Thus, [A B] has rank s if and only if rk(B”) = s — r.
This means that there are |.#_ """ | ways to choose B”, and
independently g™ ways to choose B’, such that tk [A  B] =
s.

It remains to examine the case of a general matrix A of rank
r > 1. Let V be an invertible matrix such that the bottom s—1r
rows of VA are zero. Let .# be the set of s X m matrices
M for which rk [VA M] = s. Then rk [A B] = s if and
only if VB € .# . In particular, the number of matrices B for
which rk [A B] = s is |.#|. Since |#| = ¢"™ |4
by the previous paragraph, we are done. ]

We now derive an exact expression for P, and establish its
relevant algebraic and analytic properties.

Lemma IIL3. Let n > 1 be a given integer. Then for all
s, t,re€{0,1,...,n}:

(i) P(s,t,r)=0if r > min{s,t} orr < s+t —n;

(i) Pu(s.t,r) = q" DLz 50" /(0" = 10" —
Q) (" — ¢ h));

(iii) for any fixed values of n,s,r, the quantity P,(s,t,r) as
a function of ¢t € {0,1,...,n} is a polynomial in ¢~* of
degree at most s;

(iv) P(s,t,r) < 16~ (s~
Proof: (i) Since the quadrant of interest is an s X t matrix,

the first inequality is trivial. For the second inequality, observe

that the matrix [, XI; in the defining equation (48) satisfies

k(I X 1) > vk Is + rk(X1I;) — n = s+t — n by Fact IL1.

(ii) If » > min{s, ¢}, then the left-hand side and right-hand

side of (ii) both vanish due to (i) and the definition of .Z*".

We now treat the case r < min{s, ¢}. Letting .# stand for the

set of nonsingular matrices of order n whose upper-left s x ¢

quadrant has rank r, we have

24

P, (s, t,r) Al
A matrix in .# can be chosen by the following three-step
process: choose a matrix in . for the upper-left quadrant;
extend the quadrant to a matrix in .Z2", which by Lemma
II1.2 can be done in ¢" ("~ |.#Z5~""""| ways; and finally add
n — s rows to obtain an invertible matrix, which can be done
in (¢" —q¢*)(q" —¢*T1) - (g™ — ¢" 1) ways. Altogether, we
obtain

(49)

|%| _ |%Ts,t| . qr(n—t) |(%Ss_—:,n—t|

n

("= ¢*)q" =)

whereas Proposition I1.17 gives

Mo = (q" = 1)(q" —q) - (¢" — ¢" ).

Making these substitutions in (49) completes the proof.
(iii) We claim that for all s,¢,r € {0,1,...,n},
(@ =D —q) (" —qd")

Palsitir) =00 (")
q

O ) [ R C ek i} (50)

(@"=D(¢"—q)--(¢" =)
Indeed, in the case when r > min{s,t} or r < s+t —n,
the right-hand side vanishes and therefore the equality holds
due to (i). In the complementary case, Proposition I1.17 gives
closed-form expressions for |.#t| and |.#2~"""| which,
when substituted in (ii), result in (50). This settles (50) for all
s,t,r € {0,1,...,n}.
Rewrite (50) to obtain

Pn(S,t,T) =q™" (i) (1—q_t)(1—q_t+1) - (1_q—t+r—1)

S ) [C e R C et i} 51)

(" =" —q)-- (" —¢*")

Now, fix n, s, r arbitrarily. If » < s, then (51) makes it clear
that P,(s,t,r) is a polynomial in ¢~! of degree at most 7 +
(s —r)=s.If r > s, then P,(s,t,r) is identically zero and
thus trivially a polynomial in ¢~¢ of degree at most s.

(iv) For r > s, we have P, (s,t,r) = 0 by (i) and therefore
the claimed upper bound holds trivially. In the complementary
case, simplify (50) to obtain

P (s, t,r)
q(n—t)(s—r)

S
< q'r'(n—t)( ) qtr_
r), (@ =1 —q) - (¢"
r(n— s ' n— sS—r —ns
< t><r> 47 dgnDG),
q

< qr(nft) . 4qr(sfr)qtr . 4q(n7t)(sfr)q7ns

_ qsfl)

— 16q7(sfr)(t7r)7

where the second and third steps apply Proposition II.13
and Corollary II.14, respectively. [ ]

B. The I',, function

A basic building block in our construction is the character-
istic function of matrices in IFj;*" of a given rank. Its Fourier
spectrum is best understood in terms of what we call the I',,
function.

Definition 111.4. Let n >
{0,1,...,n}, define
I.(s,t)= E wiAB)

rk A=s
rk B=t

1 be a given integer. For s,t €

where the expectation is taken with respect to the uniform
distribution on .Z™"™ x #]"".



Sun and Wang [5] studied the Fourier spectrum of the non-
singularity function on F*", defined to be 1 on nonsingular
matrices and 0 otherwise. In our notation, they established the
following result.

Lemma IIL5. For any integers n > 1 and r € {0,1,...,n},
“1)re(®)
Tn(n,r) = (=g -
(" =" —q)-- (" —q"")

The proof of Sun and Wang [5] is stated for fields I,
with prime p, but their analysis readily extends to fields of
cardinality a prime power. In the full version of this paper [29],
we prove Lemma II1.5 from scratch in our desired generality,
using a simpler proof than that of [5].

Our next lemma collects crucial properties of I',(s,t) for
general values of s, t.

Lemma IIL6. Let n > 1 be a given integer. Then for all
s, t€{0,1,...,n}:

(@) [Tuls,t)] < 1;
(ii) Fn(s>t) =Tn(t, 8)5
(i) Ty (s,t) = >0y Pu(s,t,7)Tp(n,r);
(iv) for n,s fixed, I',,(s,t) as a function of t € {0,1,...,n}
is a polynomial in ¢! of degree at most s;
(V) [To(s,t)] < 128¢7°1/2.
Proof: (i) Using |w| = 1 and the triangle inequality,

Do (s, )| = ‘ E wAB| < E ‘wM’B)‘ ~1.
AB AB

(ii) The symmetry of I',, follows from the independence of
A and B in the defining equation for I',,, and the symmetry
of the inner product over F,.

(iii) We have:

T (s,t)

= E f
Aea?
BEJ/IS"‘"

t

A,B)

_ E w<X15Y7Z1Z2ItW>
XY, Z1,Zo ,WEM,

_ E w(XISYWTItZ;,Zl)
XY, Z1,Zy,Wey

= E w<X(IsUIt)ZgT721>

X,U,Z1,Z2EMn

;0 o2, k(UL = 1]

X E
X,U,Z1,Z2€ M,

;O 2, [rk(I,UIL) = 7]

|:W<X(ISUIt)Z;’Z1> | rk(I,UIy) :r}

W<szl>
Be#""
Z1EMn

n
= Z Pn(57 t, T)Fn(n7 T)v
r=0

where the first step restates the definition of I',,, the second
step uses Proposition II.19, the third step applies Fact I1.2(ii),

the fourth and sixth steps again use Proposition II.19, and the
last step is immediate from the definitions of P,, and T',,.
(iv) Immediate from (iii) and Lemma IIL.3(iii).
(v) We have:

- >

r=max{0,s+t—n}

P, (s,t,7) |Tp(n,r)|

n

>

r=max{0,s+t—n}

N

16q—(8—7‘)(t—7")

i)

@ =D —q) (g -

n

D>

r=max{0,s+t—n}
g 128q75t/2 ’

q 1)

64q7(57r)(t7'r)+(2)7nr

where the first step appeals to (iii), the third step is valid
by Lemma II1.3(i), the fourth step uses Lemma II1.3(iv) and
Lemma IIL.5, the fifth step applies Proposition II.13, and the
last step which completes the proof is justified by the following

claim. [ ]
Claim IIL7. For any integers n > 1 and s,t € {0,1,...,n},
Z q_(S_T')(t_T')‘*‘(;)_"T < 2¢7 52, (52)

r=max{0,s+t—n}

Proof: The exponent of ¢q on the left-hand side of (52) is
given by the function

Alr) = (s —r)(t—1) + (;) —nr

t L + t+1 2
—st—-(r+n—s— -
2 2

1 1\?
- - - - . 4
+2(n S t+2) 54

The first equality shows that A(r) is always an integer,
whereas the second shows that A(r) is a strictly decreasing
function in the variable r € [max{0,s +t — n},c0). These
two facts lead to

(53)

A(max{0,s +t—n}+1i) < A(max{0,s +t —n}) — 1,

1=0,1,2,.... (55)

We will now prove that
A(max{0,s +t —n}) < —%t. (56)
There are two cases to consider. If s + ¢ < n, then

A(max{0,s+t—n}) = A(0) = —st and therefore (56) holds.



The complementary case s +¢ > n + 1 is more challenging.

Here, we have

A(max{0,s+t—n})=A(s+t—n)

<t+1 t+12
\82n8 5)

where the second step uses (54). Thus, the proof of (56) will
be complete once we show that

1\2
<nst+2> — st <0.

To prove (57), suppose that of all pairs (s,t) € {0,1,...,n}>
with s+t > n+ 1, the left-hand side of (57) is maximized at
a pair (s*,t*). By symmetry, we may assume that s* < ¢*. If
we had t* < n—1, then it would follow that s* > 2 (due to the
requirement that s*+¢* > n+1); as a result, the left-hand side
of (57) would be larger for the pair (s,t) = (s*—1,t*+1) than
it is for the pair (s,t) = (s*,¢*), an impossibility. Therefore,
t* = n. In addition, we have s* > 1 (due to the requirement
that s* +¢* > n+1). Evaluating the right-hand side of (57) at
this pair (s*,t*) = (s*,n), we obtain (s* — 3)? — s*n, which
is clearly negative due to s* € {1,2,...,n}. This completes
the proof of (57) and therefore that of (56).
Now,

(57)

oo

>

r=max{0,s+t—n}

q—(s—7-)(t—7-)+(g)—m-

oo

- =

r=max{0,s+t—n}

g

9
— Z qA(max{O,s+t—7L}+z)

=0
00
< qA(Irlax{O,s+t—n}) Z q—i
=0
- q
<q P -1

where the first step uses the definition of A(r), the third step
applies (55), and the final step appeals to (56) and a geometric
series. Since q > 2, this completes the proof of (52). [ |

C. Univariate dual object

Our construction of the univariate dual object is based on
the Cauchy binomial theorem along with a certain “correcting”
polynomial {. The next lemma presents ¢ as parametrized by
two numbers ¢ and m and gives its basic properties.

Lemma IIL8. Let n, k, £, m be nonnegative integers such that
{4+ m < k < n. Define a univariate polynomial ¢ by

—1 — —1 —3

o =I5

(58)

Then:

M C(g™) =
(i) sgn((g™*) = (=1)"*1
(iii) ¢(¢-") = 0 for r € {0,1,...

m =1} U{k, n});

(iv) deg¢=n+Ll+m—Fk—1;
v) |C(q—r)| < 4q77‘(n7k+mfl)+(g)7k7(k;
Lk—m—1}

Proof: Ttems (i), (iii), and (iv) are immediate from the
defining equation for ¢. Item (ii) holds because for t = ¢~*,
the first and second products in (58) contain only positive
factors, whereas the third product contains exactly n — k — 1
factors all of which are negative. For (v),

an}\({£7€+]—avk7

") for r € {€, 0+

[9¢/] _’”)I
qr_qi q'r_qi qr_qi
H -n _ g q " H
i1=k—m 1= k+1
1 —q 1 _ ,—(n—i) 7,) ety 1— q—(n—z) el 1— q—(n—z)
—1 k—1 ; n—1 :
1 qz—r qz—r
< [ — -t
111) 1- 7 (= l) i lk_lm 1- q_(”_i) 1':11-1 1- q_(”_i)

The product of the numerators in the last expression is
g =R+m=1+(5)=k=("3")  whereas the product of the de-
nominators is at least 1/4 by Proposition II.13. [ ]

With ¢ in hand, we are now in a position to construct
the promised univariate dual object . The properties of ¢
established in the lemma below will give rise to analogous
properties in the dual matrix .

Lemma IIL9. Let n, k, ¢, m be nonnegative integers such that
{+m < k < n. Then there is a function ¢: {0,1,...,n} > R
such that:

@) ¢(n) =1;

(i) p(k) <0;

(iii) ¢(r) =0 for r € {0,1,...
1} U {kv n}),

iv) >y @(r)&(g") = 0 for every polynomial ¢ of degree
at most k — £ — m;

V) 2re(0, i\ {kon} [P(T)] <
Proof: Define

olr) = (“)q(—l)r-"q@)-(@c(q—rx

k—m —

N {1,

32¢— ™ L.

r

where ( is the univariate polynomial from Lemma IILS.
Then items (i)—(iii) are immediate from the corresponding
items (i)—(iii) of Lemma III.8.

For (iv), fix a univariate polynomial ¢ of degree at most
k — ¢ —m. In view of Lemma II.8(iv), the product of ¢ and
¢ has degree less than n. As a result, the Cauchy binomial
theorem (Corollary II.16) implies that

> e(r)élg



For (v), fix any r € {¢(,{+1,...,k —m — 1}. Then
e = (1) 4O Olea)
q

< 4qr(n7r) . q(g)—(g) . 4q—r(n—k+m—1)+(Z)—k_(k—2m)
(k77n71'+1)_

= 16q~ 2 m (59)

where in the second step we bound the g-binomial coefficient
via Corollary II.14 and |¢(¢~")| via Lemma IIL.8(v). Now

k—m—1

> o)=Y lor)]
re{0,..n}\{k,n} r={
k—m—1

o SRR
r==~0

< i 16~ ()—m
=2

16g—™ 1!

q

)

where the first step is valid by (iii), the second step uses (59),
and the fourth step uses a geometric series with (;) >i—1
for ¢ > 2. Since ¢ > 2, this completes the proof of (v). [ |

D. From univariate dual objects to dual matrices

En route to the main result of this section, we now show
how to convert a univariate dual object ¢, such as the one
constructed in Lemma II1.9, into a dual matrix £,.

Definition T1.10. Let n > 1 be a given integer. For r =

0,1,...,n, define E,. to be the matrix with rows and columns
indexed by matrices in Fy*", and entries given by
g AP i rk(A + B) =,
(ET)A,B = .
0 otherwise.

For a function ¢: {0,1,...,n} — R, define

n
E, = Z o(r)E,.
r=0
As one would expect, the metric and analytic properties of

E, are closely related to those of .

Lemma III.11 (Metric properties of E,). Let n > 1 be an
integer and ¢: {0,1,...,n} — R a given function. Then

Z (Ep)a,B = (1), r=20,1,...,n, (60)
A,B:rk(A+B)=r
> UBoasl=ler), r=0,1,...,n. (61)

A,B:rk(A+B)=r

In particular,
[Eollr = llll1-

Proof: Recall that for any fixed matrix A € Fy*", the
mapping B +— A + B is a permutation on Fy*™. As a result,
for any fixed matrix A, there are exactly |.#"| matrices B
such that k(A + B) = r. Altogether, there are ¢" ||
matrix pairs (A, B) with rk(A + B) = r. With this in mind,
Definition III.10 implies the following for each r:

Z (E’I‘)A,B = Z |(ET)A,B| =1.

rk(A+B)=r rk(A+B)=r

(62)

Now for each 7,

&
D
>
oS!

[

> D eli)(Ei)as

rk(A+B)=r i=0
Z e(r)(Er)a,B

rk(A+B)=r

= (1),

where the second step uses (E;)a,p = 0 for ¢ # r, and the
final step applies (62). Analogously,

n
S B asl= > Doeli)(E)as
rk(A+B)=r rk(A+B)=r |i=0
= > leMII(B) a5
rk(A+B)=r
= p(r)]-
This establishes (60) and (61). Summing (61) over r gives
Bl = llells- m

To discuss the spectrum of E,, we first describe the
Fourier spectrum of the characteristic function of matrices of
a given rank. This is where the significance of the I',, function
becomes evident.

Lemma IIL.12. Let n > 1 be a given integer. For r €

{0,1,...,n}, define f.: Fp*™ — {0,1} by fr(X) = 1 if
and only if rk X = r. Then for all M € Fy*",
. /ALl
fr(M) = | qzz | -Tp(rk M, r).
Proof: We have
M) = E oMY (x)
XeFy ™
— 2 —
=q " Z w— (M. X)
Xed"
_ q—nzl'//lrn,nl E o MX)
Xedr™
_ q—n2|t%n,n| w—(M,UXV}
" xeaurm
UVed,
— q7n2|%7‘1,n| E w<7UTMVT,X>
" Xearn
U Ve,
=q Lyt B WM
Xed»"
veuls,

= ¢ " || T (ck M, 1),



where the second step uses the definition of f,., the fourth step
is valid by Proposition II.19, the fifth step invokes Fact I1.2(ii),
the sixth step uses Proposition II.19 once more, and the last
step applies the definition of I',,. [ |

We are now ready to describe the spectrum of E,, in terms
of ¢ and the I',, function.

Lemma IIL.13 (Singular values of E,). Let n > 1 be an
integer and ¢: {0,1,...,n} — R a given function. Then the
singular values of E, are

s=0,1,...,n,

with corresponding multiplicities |.#"| for s =0,1,...,n.

Proof: Fort =0,1,...,
In this notation,

n, define f; as in Lemma III.12.

t=0
t=0 q ‘/// ‘ A,B
= [f(A+ B)]a,B,
where
~_ o)
f = n,n ft
ZO ||
By Fact II.10, the singular values of E, are q”2|f(M )| for

M e IE‘ZX”. Calculating,

n2

qn2|.]?(M)| = Z n;'p( )n n|
t=0

=

77"42

=4q

o(t)

t=0

D, (ck M, 1))

where the first step uses the linearity of the Fourier transform,
and the second step applies Lemma III.12. Grouping these
singular values according to rk M shows that the spectrum of
E, is as claimed. u

E. Approximate trace norm of the rank problem

Using the machinery developed in previous sections, we
now prove a lower bound on the approximate trace norm of
the characteristic matrix of the rank problem. Combined with
the approximate trace norm method, this will allow us to obtain
our communication lower bounds for the rank problem.

Theorem IIL14. Let n > k > 0 be given integers. Let F
be the matrix with rows and columns indexed by elements of
F>" and entries given by

1 if rk(A+ B) =n,
—1 if tk(A+ B) =k,

* otherwise.

Fap=

Then for all reals § >
with £ +m < k,
1 64

1—-6—
15 qm+1

1- k/2 n?
0 171 -

Proof: Let ¢: {0,1,...,n} — R be the function con-
structed in Lemma III.9. Then

Y Fan(E)as —08|Elli— > |(E

0 and all nonnegative integers £, m

2
HF”E,(S 2 ) qf(kfzfm+1)/2 q’n , (63)

[Fss = (64)

©)A,B
dom F dom F
= Z (Ew)A,B - Z (Ecp)fLB
rk(A+B)=n rk(A+B)=k
—6[|Eglr — > |(Ey) a5l

rk(A+B)¢{n,k}
= p(n) — k) =dleli — Y le(r)]
ré¢{n,k}
=)+ lek) = dleli = D le(r)]

ré{n,k}
=(1=dleli-2 >
ré&{n,k}
>(1-0-2 > o)l |llel,  ©5)
ré{n,k}

where the second step uses Lemma III.11, the third step is
valid by Lemma II1.9(i)—(ii), and the last step is justified by
Lemma II1.9(i).

We now analyze the spectral norm of F,. Recall from
Lemma II1.6(iv) that for any fixed values of n and s, the
quantity T',(s,t) as a function of ¢ € {0,1,...,n} is a
polynomial in ¢~* of degree at most s. In this light, Lemma
II.9(iv) implies that

D el

t=0

max

£ =o.
s€{0,1,....k—€—m}

(66)

Continuing,

n(s,t)

se{k—L— m+1 ..... n—1,n}

Zw

t=

T, (s,
. }{'9"%6{@,@“&%..,”} (.01
128q—5t/2}

(67)

= max

n(s,t)
s€{k—L—m+1,.

.,n—1,n}

< max
se{k—L—m+1,..

< max {|<p max
se{k—L—m+1,.. te{l,0+1,...,n}
g e

where the first step uses Lemma II1.9(iii), and the third step
applies the bound of Lemma IIL.6(v). By (66), (67), and
Lemma III.13,

2
1Eo|| < 128]l ||y g~ F 7m0/ g7,

(68)



Proposition 11.9 with & = E, implies, in view of (65)
and (68), that

1
— |1-6-2
E Ca S
ré{n,k}
2
x glth—t=m+1)/2 n®

1Fls,5 >

(69)

Since >, [2(r)] < 32¢~™~! by Lemma IIL.9(v), this
settles (63). The alternate lower bound (64) follows from (69)
by taking ¢ = k and m = 0 and noting that > o, ;. [0(r)| =
0 in this case (by Lemma II1.9(iii)). [ |

F. Communication lower bounds

We will now use our newly obtained lower bound on the
approximate trace norm to prove the main result of this section,
a tight lower bound on the communication complexity of
the rank problem. We will first examine the canonical case
of distinguishing rank-k matrices in F"”*" from full-rank
matrices.

Theorem IIL.15. There is an absolute constant ¢ > 0 such
that for all finite fields F and all integers n > k > 0,

Q51+ (RANK™™) > ¢(1 4 k*log|F|). (70)
27 qE(E/3 o
Proof: Abbreviate ¢ = |F| and ¢ = % - i/S Since

RANKF”" is a nonconstant function, we have the trivial
lower bound

Q:(RANK,™™) > 1. (71)

Let F' be the characteristic matrix of this communication
problem. We first examine the case k¥ < 50. Here, taking
6 = 2¢ in equatlon (64) of Theorem II1.14 shows that
[Flls2e = ¢¥/6¢"° /300 > ¢**/3004n" /300, where the last
step uses k < 50. It follows from Theorem I1.23 that

k2/300 1

2
—~ k2loeq —
3300 = 600 1084

Taking a weighted arlthmetlc average of this lower bound
and (71) settles (70).

Consider now the complementary case k > 50. Taking § =
2¢, ¢ = [k/3], and m = | k/2] in equation (63) of Theorem
II.14 gives

Q:(RANK, ") > log

7 1 1 64
1£]ls,2e = 150 \ 2¢F/3  glk/2]+1
— —_ 77/2
x glF/31(k=Tk/3]1=k/2]+1)/2 4

1
> —(1-
300
1 2
> —k/3 _[k/31k/12 n
> 7600 q q q
1 42 2
2 /48 n
7600q q
where the last two steps use k > 50. As a result, Theorem

I1.23 guarantees that

128 —k/3 [k/31k/12 n?
k/6> q q q

k2/48

1
*(RANKE™™) > 1 — k%logq — 6.
Qs( k,n ) Og 3 600 96 Og q

Taking a weighted arithmetic average of this lower bound
and (71) settles (70). |

We now establish our main lower bound for the rank
problem in its full generality.

Theorem (restatement of Theorem 1.1). There is an absolute
constant ¢ > 0 such that for all finite fields F and all integers
n,m, R,r with min{n,m} > R >r > 0,

Qi (RANKI ™) > ¢(1 + 2 log |F|). (72)
4|F|” !
In particular,
Q;/4s(RANK™) > ¢(1 + r* log |F]). (73)

Proof: There is a communication-free reduction from
RANKE 2 to RANKI™, where Alice and Bob pad their
input matrices A4, B € ]FRXR with zeroes to obtain matrices
A, B' € F™*™ with tk(A + B) = rk(A’ + B’). Therefore,
Q: (RANK“ ™) > Q:(RANK, 1) for all . Now Theo-
rem II1.15 implies (72), which in turn implies (73). |

G. Communication upper bounds

To finalize our study of the rank problem, we will prove a
matching upper bound on its communication complexity. We
emphasize that our upper bound is achieved by a randomized
(classical) protocol, whereas our lower bound is valid even for
quantum communication.

Theorem IIL.16. Let n,m, R be nonnegative integers with
min{n,m} > R > 0. Let F be a finite field with |F| = q
elements. Then for all ¢ € (0,1), there is a two-party
randomized communication protocol which:
o takes as input a pair of matrices A, B € F"*™ for Alice
and Bob, respectively;
o computes min{rk(A + B), R} with probability of error
at most €; and
o has communication cost O((R + [log,(1/)])*log ).

Proof: We may assume that n, m > 1 since the theorem
is trivial otherwise. Set A = [logq(8/5ﬂ. On input A, B €
F>™ the protocol is as follows. Alice and Bob use their
shared randomness to pick a pair of independent and uniformly
random matrices X € F(E+2)xn and Y ¢ F*(R+A) Then
Alice sends the matrix XAY € FEFX)X(E+A) o Bob,
who announces min{rk(X (A4 + B)Y'), R} as the output. The
communication cost is O((R + A)?logq) as claimed, due
to X(A+ B)Y = XAY + XBY. It is also clear that this
protocol always outputs a lower bound on the correct value
min{rk(A + B), R}, due to rk(X (A + B)Y) < rk(A + B)
for all X,Y. It remains to show that

P[rk(X(A+ B)Y) > min{rk(A + B),R}] >

Abbreviate ¢ = A + B. Conditioned on X, we have
rtk(XCY) > min{rk(XC), R} with probability at least
1 —4¢= 271 > 1 — £/2 (apply Lemma IL21(ii) with M =
XC and t = min{rk(XC), R} — 1). Similarly, tk(XC) >
min{rk C, R} with probability at least 1 — /2 (apply Lemma
I1.21(31) with M = C and t = min{rk C, R} — 1). The union

l—c. (74)



bound now gives P[tk(XCY) > min{rtkC,R}] > 1 — ¢,
settling (74). [ |

Corollary IIL.17. Let n,m,r be integers with min{n,m} >
r > 0. Let F be a finite field with |F| = q elements. Then for
all € € (0,1/2),

nomy _ [ OClog(1/2)) yr=0,
<(RANK™™) = -
R (RANK, ) {0((r+[logq(1/€ﬂ)210gq) otheryise.

Proof: Observe that RANK"™"™ (A, B) = —1 if and only
if A= —B. Thus, RANK;™™ is equivalent to the equality
problem with domain F™*™ x F"*™ Tt is well known [27] that
the e-error randomized communication complexity of equality
is O(log(1/¢)). Thus, (75) holds for r = 0.

For r > 1, we have RANKY™™ (A, B) = —1 if and only
if min{rk(A + B),r + 1} < r. To compute min{rk(A +
B),r + 1} on input A, B to error ¢, Alice and Bob can use
the randomized protocol of Theorem II.16 with R = r + 1,
with communication cost O((r + [log,(1/¢)])*logq). [ |

We now prove an alternate communication upper bound,
showing that even a two-bit protocol can solve the rank
problem with nontrivial advantage.

Theorem IIL.18. Let n,m,r be integers with min{n,m} >
r > 0. Let F be a finite field with |F| = q elements. Then

Ry_ i (RANK;™™) < 2.

3247

(76)

Proof: Consider the following auxiliary protocol II. On
input A, B € F**™  Alice and Bob use their shared ran-
domness to pick a pair of independent and uniformly random
vectors x € F" and y € ™, as well as a uniformly
random function H: F — {—1,1}. They exchange H(x" Ay)
and H(—x"By) using 2 bits of communication and output
—H (2" Ay)H(—2" By).

We now analyze the expected output of TI(A, B) on a given
matrix pair A, B. To begin with,

1 if2T(A+ By =0,
E[II(A, B) | z,y] = (A +B)y (77)
0 otherwise.
Indeed, if z7(A + B)y = 0 then z'Ay = —2"By and

therefore I outputs —1. If, on the other hand, 27 (A+B)y # 0
then 2T Ay # —ax"By, which means that H(x"Ay) and
H(—2T"By) are independent and their product has expected
value 0. Equation (77) implies that ETI(A4, B) = — P[zT (A+
B)y = 0], which can be expanded as

EII(A,B) = —Plz"(A+ B) = 0]
~Plz"(A+B) £ 0|Plz"(A+B)y =0 | 2" (A+B) # 0].

The event 2" (A + B) = 0 is equivalent to = being in the
orthogonal complement of the column span of A 4+ B, which
happens with probability ¢"~*kK(A+5) /g = ¢=k(A+B)  Con-
ditioned on 2" (A + B) # 0, the field element 2" (A 4 B)y is

uniformly random and in particular is 0 with probability 1/q.
As a result,

1 1 1
EII(A,B) = T gRATE) (1 - qu(A-',-B)) g

1 q—1
76 o qR(A+B)+1

Therefore, the expected value of TI(A4, B) is at most —1/q —
(¢ —1)/q" " when rk(A + B) < r and is at least —1/q —
(g —1)/q"*? when 1k(A + B) > r. Proposition 11.24 now
shows that RANK.™™ has a communication protocol with
the same cost as II and error at most 3 — &(q — 1)%/¢" 2.
This settles (76) since g > 2. |

Corollary III.17 (with € = 1/3) and Theorem III.18 settle

Theorem 1.2 from the introduction.

H. Streaming complexity

Fix a finite field F and a (possibly partial) function
fiFrxm 5 L1.1 %}. A streaming algorithm for f receives
as input a matrix M € F"*"™ in row-major order. We say that
o/ computes f with error ¢ if for every input in the domain of
f, the output of .« agrees with f with probability at least 1—e¢.
We will now use a well-known reduction [6] to transform our
communication lower bound for the matrix rank problem into
a lower bound on its streaming complexity.

Theorem (restatement of Theorem 1.3). Let n,r, R be non-
negative integers withn/2 < r < R < n, and let F be a finite
field. Define f:TF™*™ — {—1,1,x} by
if tkM =r,
if tk M =R,

* otherwise.
Let o/ be any randomized streaming algorithm for f with error

probability § — %|F\_(T'_r”/2”/3 that uses s bits of memory
and k passes. Then

NN 2
skﬂ((r b]) log|]F|). (78)
Proof: Abbreviate m = |[n/2] and F =
RANKmm We will use a reduction from

r.—[n[2]7R—(n/2—\' ) .
communication to streaming due to Li, Sun, Wang, and

Woodruff [6, Thm. 29]. Specifically, let A, B € F™*™ be
Alice and Bob’s inputs, respectively, for F'. Define

A -1, 0
M=|B I, o |,
0 0 In—2m

where I,, and I,,_o,, stand for the identity matrices of order
m and n — 2m, respectively (in particular, I,,_s,, is empty for
even n). We have
A+B 0 0

B I, 0

0 0 In—2m
=1rk(A+B)4+n—-m

rk M =1k



=tk(4+B)+ | 7]

As a result, for all matrix pairs (A, B) with tk(A+B) € {r—
[n/2],R — [n/2]}, we have F'(A, B) = f(M). This makes
it possible for Alice and Bob to compute F' by simulating
/ on M. Alice starts the simulation by running ./ on the
first m rows of M, which depend only on her input A. She
then sends Bob the contents of 2/°s memory, and Bob runs
</ on the remaining n — m rows of M. This completes the
first pass. Next, Bob sends Alice the contents of .<7’s memory,
and they continue as before until they simulate all £ passes.
At the end of the k-th pass, Bob announces the output of &7
as the protocol output. The error probability of the described
protocol is the same as that of <7, and the communication cost
is s(2k — 1) + 1 bits. Therefore,

R%ii‘mlf(rfﬁl/2'|)/3(F) <s(2k—1)+ 1.

Since the left-hand side is at least Q((r — [n/2])? log [F| + 1)
by Theorem 1.1, the claimed trade-off (78) follows. [ |

IV. THE DETERMINANT PROBLEM

In this section, we establish our lower bound on the commu-
nication complexity of the determinant problem. We begin in
Section IV-A with technical results on characteristic functions
of matrices with a given determinant value. In Section IV-B,
we give our own proof of the lower bound for distinguishing
two nonzero values of the determinant, which is simpler and
more elementary than the proof in [5]. In Section IV-C,
we prove an optimal lower bound for the general case of
distinguishing two arbitrary values of the determinant, solving
an open problem from [5]. Throughout this section, we use a
generic finite field ' with ¢ elements, where ¢ is an arbitrary
prime power. The root of unity w and the notation w” for
z € I are as defined in Section II-D.

A. Auxiliary results

Fix a finite field F and a positive integer n. Recall that
the determinant function on F™*™ is multiplicative, with
det(AB) = det(A) det(B). As a result, the set of matrices
in F*"*" with nonzero determinants form a group under
matrix multiplication, called the general linear group and
denoted by GL(F, n). Analogously, the matrices in F"*" with
determinant 1 also form a group, called the special linear
group and denoted by SL(F,n). The multiplicativity of the
determinant further implies that SL(F, n) is a normal subgroup
of GL(FF,n), with quotient isomorphic to the multiplicative
group of the field: GL(F,n)/SL(FF,n) = F*. For any given
field element u # 0, the set of matrices with determinant u
form a coset of SL(F,n) in GL(F,n). In particular,

{X e F**" :det X = u}|
||
Recall that for each Y € F"*" the mapping X — X + Y
is a permutation on F"*™. As a result, the previous equation
implies that

uweF\{0}. (79

|{(X,Y) c ]ann % ann . det(X + Y) _ u}|

= [F|"*|SL(F,n)|, weF\{0}. (80)

To understand the spectral norm of the determinant problem,
we now introduce a relevant function on F™*"™ and discuss its
Fourier coefficients.

Lemma IV.1. Let n be a positive integer, F a finite field. For a
pair of distinct elements u,v € F\ {0}, define g, ,: F"*" —
{_17 1a O} by
—1 if det X = u,
gu,v<X) = 1 lf det X =,
0 otherwise.
Then:

(1) guo(A) = Ofor every singular matrix A;
(i) guv(A) = guo(B) whenever det A = det B;

(i) [|guvlloe < 1/+/ISL(F

Proof: (i) In view of (79), we have

EA = E u'UX —(4.X
Juo(d) = B guo(X)w

2 |l -
— F [ n E <A,X>
o |F| -1 (X:detX—vw

E w_<A’X>) .

X:det X=u

It remains to show that the expectations in the last expression
are equal. Since A is singular, there exist nonsingular matrices
P and @ such that A = PI,Q for s = rk A < n. Consider the
order-n diagonal matrix Z = diag(1,1,...,1,u"'v). Using
I, = I,Z, we obtain A = PI,ZQ = PI,QQ™'ZQ =
AQ71ZQ. As a result,

E owW@—- g o4e2QXx)
X:det X=u X:det X=u
- E wAaxezh
X:det X=u
— w7<A1Y>7
Y:det Y=v

where the second step uses Fact I1.2(ii), and the last step is
valid because the mapping X +— X(Q~'ZQ)T is a bijection
from the set of matrices with determinant u onto the set of
matrices with determinant u - det((Q~1ZQ)") = v

(ii) For singular A and B, the claim is immediate from (i).
In the complementary case,

ﬁ A) = E w,v X —{A4X)
F)= B gu(X)

= E
XeFnxn

XeFnxn

= E gu,v(X)w_<B’X>
XeFnxn

= Gu(B),

where the second step is valid because (BA™!)T is in-
vertible and hence X — (BA™')TX is a permutation on

gu’v((BAfl)TX)wf(A,(BA_l)TX>

U’U(X)w7<A’(BA_1)TX>



Fm>": the third step is justified by det((BA™1)TX) =
det(B) det(X)/det(A) = det X; and the fourth step is an
application of Fact II.2(ii).

(iii) Let M be a matrix with |gy, . (
we know that det M # 0. Now

1> ww 2
> B llgun(XP

> 1Gan(A)P
A€Fnxn
|Guo (A)2

>
A:det A=det M

= |{A:det A = det M}||gu..(M)|?

= |SL(F,n)

M) = [|guvlloc- By (0,

where the second step applies Parseval’s inequality (28), the
fourth step is justified by (ii), and the fifth step uses det M # 0
along with (79). [ |

B. Determinant problem for nonzero field elements

As an application of the previous lemma, we now prove that
the characteristic matrix of the determinant problem DETE’Z
for any two nonzero field elements a,b has small spectral
norm.

Lemma IV.2. Let F be a finite field with |F| = q elements.
For each u € F\ {0}, define G, to be the matrix with rows
and columns indexed by elements of F"*"™  and entries given
by

g " |SL(F,n)| 1 if det(X +Y) =u,
(Gu)X,Y - .
0 otherwise.
(81)
Then for all u,v € F\ {0},
HGu”l =1, (82)
Gy = Gl < ISL(F, n)| 732 <8¢50/ (83)

Proof: Equation (82) follows from (80). For (83), there
are two cases to consider. If v = v, then G, — G, = 0
and thus |G, — G| = 0. If u # v, write G, — G, =
[~ |SL(F, )|~ gus(X + Y)]x,y with g, as defined in
Lemma IV.1. Then

JGoalloe 1
ISL(F,n)| ~ |SL(F,n)[3/2’

where the first step applies Fact I1.10, and the second step uses
Lemma IV.1(iii). It remains to simplify the bound of (84):

1 (|t T
ISL(F,n)[3/2 ~ \q—1
—-3/2
—qi)>

n—2
_ <qn—1 H (q
i=0
< Sq—:s(n?—1)/27
where the first step uses (79), the second step applies Propo-
sition II.17, and the last step uses Proposition II.13. ]

|Gy — Gull = (84)

Lemma IV.2 was originally obtained by Sun and Wang [5]
using a different and rather technical proof. By contrast, the
proof presented above is short and uses only basic Fourier
analysis. With this newly obtained bound on the spectral
norm of the characteristic matrix of DET , for nonzero a, b,
we can use the approximate trace norm method to obtain a
tight communication lower bound for this special case of the
determinant problem.

Theorem IV.3. Let F be a finite field, and n a positive integer.
Then for every pair of distinct elements a,b € F\{0} and every
€(0,1),

. n 1 1 12

Qfi—y)/2(DET,}) > 1 (n” = 8)log|[F| — 5 log —.  (85)

Proof: Let F be the characteristic matrix of DET +. For

u € F\ {0}, define G,, as in Lemma IV.2. Since G, and Gy
are supported on disjoint sets of entries, (82) leads to

|Gy = Gallr = |Goll1 + [|Gallr = 2. (86)
Taking ® = G}, — G, in Proposition I1.9, we obtain
Flsi—y > FAB A,B
—(1 =Gy = Gali= Y [(Gy — Ga)a,5l
dom F
1
- o ([, (6 Gl
— (1 =G = Galln
_ Gy~ Gall
1Gy — Gall
1 2
> IFPeTDE, (87)

where the second and third steps are valid because G, — G, by
definition coincides in sign with ' on dom F' and vanishes on
dom F'; and the last step uses (83) and (86). Now (85) follows
from (87) in view of Theorem I1.23. [ |

We remind the reader that Theorem IV.3 was obtained with
different techniques by Sun and Wang [5], who settled the
determinant problem DETE:Z for nonzero a,b and left open
the complementary case when one of a, b is zero.

C. Determinant problem for arbitrary field elements

Recall that the rank versus determinant problem,
RANKDETH;:Z, is a hybrid problem that naturally generalizes
the matrix rank problem RANK],E:Z’" and the determinant
problem DETE:Z. Specifically, the rank versus determinant
problem requires Alice and Bob to distinguish matrix pairs
with tk(A + B) = k from those with det(A + B) = a,
where a is a nonzero field element, k is an integer with
k < n, and A, B are Alice and Bob’s respective inputs. We



will now construct a dual matrix for RANKDET],E’Z and
thereby obtain a lower bound on its approximate trace norm.
As a dual matrix, we will use a linear combination of the
dual matrices from our analyses of the rank and determinant
problems.

Theorem IV.4. Let n > k > 1 be given integers. Let F be a
finite field with |F| = q elements, and let o € F \ {0}. Let F'
be the characteristic matrix of RANKDETE’Z . Then for all
reals 0 > 0 and all nonnegative integers £, m with £+m < k,

1 64 e 2
1Fllss > 155 (1 —0- qmﬂ) grhm I g, (88)

1-6 )
F > . k/2 n )
1F|s.6 A

Proof: This proof combines our ideas in Theorems II1.14
and IV.3, and our dual matrix here will be a linear combination
of the dual matrices used in those theorems.

Fix nonnegative integers ¢,m with ¢ + m < k, and let
¢: {0,1,...,n} — R be the corresponding function con-
structed in Lemma II1.9. This univariate function gives rise
to a matrix E,, described in Definition III.10. To restate
equation (68) from our proof of Theorem III.14,

(89)

2
||E80H < 128”(,0”1 q—E(k—é—m+1)/2 q—n ) (90)

For v € F \ {0}, define G,, as in Lemma IV.2. As our dual
matrix, we will use

C=E,+ Y

beF\{0,a}

¢(n)
q-— 1 (Ga - Gb)-

O

Claim IV.5. For every matrix pair (A, B),

(Ey)a.B if det(A+ B) =0,
p(n)g~""|SL(F,n)| ™" if det(A+ B) =a,
0 otherwise.
Proof: If det(A+ B) = 0, then by definition (Gy)a,5 =

0 for every nonzero field element u. As a result, (91) gives
® 4.5 = (E,)a,p in this case.

In what follows, we treat the complementary case when
det(A + B) # 0. For all such matrix pairs,

Dy p=

n

(Eg)as =Y ¢(i)(Ei)as
i=0

= ¢(n)(En)aB
_ o)
qn2|/!n|
p(n)
q"* (¢ = 1)|SL(F,n)|’
where the first three steps are immediate from Defini-
tion III.10, and the last step uses (79). In particular,

p(n)
Pap = q"* (¢ — 1)|SL(F, n)|

+ Z M ((Ga)A,B - (Gb)A,B)-

ber\jo,a} 1 1

92)

If det(A + B) = a, then by definition (G,)ap =
¢~ |SL(F,n)|~ and (Gy)ap = 0 for all b € F\ {0,a},
so that (92) gives

p(n)
q"* (q — 1)[SL(F, n)|
__¢(n)
q"*|SL(F, n)|’

If, on the other hand, det(A+ B) = ¢ for some ¢ € F\{0,a},
then by definition (G,)4,g = 0 and likewise (G) 4,5 = O for
every b # c, so that (92) simplifies to

p(n)
(g — 1)g™*|SL(F,n)|

D

beF\{0,a}

by p=

Bap— e(n) __p(n)

¢ (¢ —DISLF,n)|  (¢—-1)
This completes the proof of the claim. [ ]

We proceed to establish key analytic and metric properties
of ®. To begin with,

(Ge)a,s =0.

lp(n)|
lol < 1B+ Y NG - Gl
bE]F\{O,a}q
el
<IBN+ Y. G =Gl
beF\{0,a}

—L(k—L—m —n?
< 128|f| g BTN g

+ Z ||gi||1 . 8q—3(n2—1)/2
beF\{0,a} q

< (128 Hk—t=m+D)/2 4 8q7(n273)/2) [l 93)

q/n2 ?
where the first step uses the triangle inequality, and the
third step is a substitution from (90) and equation (83)
of Lemma IV.2. To simplify this bound, recall from the
theorem hypothesis that n > k > 1 and ¢, m > 0. Therefore,
((k—L—m+1) < L(k—L+1) < (k+1)2/4 < n?/4 <n%-3.
This results in ¢~ (" =3)/2 L ¢~ tk—t=m+1)/2 "and thus (93)
simplifies to
@] < 136q =2 gl 94)

Next, we examine ||®||;. We have

Z |a,5| = Z [P,
rk(A+B)=n det(A+B)=a
_ oy e
det(A+B)=a ¢ ISL(F, n)|
= le(n)],

where the first and second steps are immediate from
Claim IV.5, and the last step applies (80). Also,

> ®asl= > |(Eyas|
rk(A+B)<n rk(A+B)<n
=IEN = > 1(By)asl
rk(A+B)=n
= [l = le(n)],



where the first step uses Claim IV.5, and the last step in-
vokes Lemma III.11. These two equations yield

@[l = llll1- (95)
Continuing,
Z FypPap= Z Dy — Z Dy.B
dom F det(A+B)=a rk(A+B)=k
_ Z p(n)
’ﬂ2
det(A+B)=a ¢ [SL(F, n)]
- Z (Ego)A-,B
rk(A+B)=k
= ¢(n) — (k)
= lp(n)| + |p(k)|
=lelh = > le)l, (96)
ré¢{k,n}

where the second step uses Claim IV.5, the third step invokes
Lemma III.11 and (80), and the fourth step is valid due
to Lemma II1.9(i), (ii). Finally,

2 [Pasl= D
rk(A+B)=n

dom F rk(A+B)¢{n,k}
det(A+B)#a

>

rk(A+B)¢{n,k}

- 3

rk(A+B)¢{n,k}
> I,
ré{n,k}

where the second and third steps use Claim IV.5, and the last
step uses Lemma III.11. Now

Z Fp®ap—90|®[: — Z |®4,5]

dom F' dom F

= [lolls = sl =2 )
ré{n.k)

>|1-6-2 Y |o(r)

ré¢{n,k}

where the first step uses (95)—(97), and the last step is
legitimate by Lemma II1.9(i).
Proposition I1.9 implies, in view of (94) and (98), that

1-6-2 Y
ré{n,k}
—£—m n?
« qlk=t=m+1)/2 n?

|Pa.Bl+ |®4,5]

|4, 5]

[(Ep) a5l

o7

ol (98)

Fllss > —
1l > 332

99)

Since 3, g0, 1y [0(r)] < 32¢™~! by Lemma IIL.9(v), this
proves (88). The alternate lower bound (89) follows by taking
.E = k and m = 0 in (99) and 1.1.c.>ting that 3, o ¢, 1y [0(r)] =0
in this case (by Lemma II1.9(iii)). [ |

By virtue of the approximate trace norm method, Theorem
IV.4 yields the following tight lower bound on the communi-
cation complexity of the rank versus determinant problem.

Theorem (restatement of Theorem 1.6). There is an absolute
constant ¢ > 0 such that for every finite field F, every field
element a € F\ {0}, and all integers n >k > 0,

Qi__1 _

27 qE|F/3

(RANKDET}") > ¢(1 + k?log [F|).  (100)

Proof: For k = 0, the claimed lower bound follows from
the fact that RANKDETE:Z is nonconstant and hence has
communication complexity at least 1 bit. For £ > 1, our lower

bounds on the approximate trace norm of RANKDET]F o

identical to those for RANK]F ™" (Theorems 1V.4 and The-
orem III.14, respectively). Accordmgly, the proof here is
identical to that of Theorem III.15, with equations (88) and
(89) of Theorem IV.4 used in place of the corresponding
equations (63) and (64) of Theorem III.14. |

As a consequence, we obtain an optimal communication
lower bound for the unrestricted determinant problem.

Theorem (restatement of Theorem 1.5). There is an absolute
constant ¢ > 0 such that for every finite field F, every pair of
distinct elements a,b € F, and all integers n > 2,

Q%4 . __(DET;})

27 qF(n=1)73

> cn?log |F). (101)

Proof: If ab = 0, then DETFZ contains as a subproblem

either RANKDETE "1 » (When a = 0) or = RANKDET"™, a
(when b = 0), and therefore (101) follows from Theorem L6.
If a and b are both nonzero, Theorem IV.3 gives

1
* F.n /2
El > JEE—
Q%_4\F\(nlfl)/3 (DETa’b) > ¢n”log [F| 2 log 24

for a small enough constant ¢’ > 0. Taking a weighted average
of this lower bound with the trivial lower bound of 1 bit
settles (101). |

V. THE SUBSPACE SUM AND INTERSECTION PROBLEMS

As discussed in the introduction, our analysis of the sub-
space sum and subspace intersection problems has similarities
with the rank problem but also diverges from it in important
ways. Instead of additively composed matrices whose rows
and columns are indexed by elements of Fy*", we now
have matrices with rows and columns indexed by subspaces,
and each entry (A, B) depends solely on the dimension of
AN B. While the construction of the univariate dual object is
similar to that for the rank problem, its relation to the singular
values of the dual matrix is significantly more intricate, and
computing the spectral norm of the dual matrix is now a
challenge. Our study of the spectral norm is based on ideas
due to Knuth [25]. We start by formalizing the equivalence of
the subspace sum and subspace intersection problems, which
allows us to focus on the latter problem from then on.



Proposition V.1. Let n,m,{ be nonnegative integers with

max{m,{} < n. Then for all integers d, D with d # D,
SUM, ™" = INTERSECT, vy b, (102)
SUM, ™™ = INTERSECT, /" (103)

Proof: Let S, T C F™ be arbitrary subspaces of dimension
m and ¢, respectively. Since dim(S+71") = m+{—dim(SNT),
we have

SUMET™ (8, T) = INTERSECTE ™ (8, T),

settling (102). Analogously, for any subspaces S,T C F™ of
dimension m and ¢, respectively, we have dim(S +T') < d if
and only if dim(SNT) > m+ £ — d, which implies (103). W

We will now prove our main result on the subspace sum
problem (stated in the introduction as Theorems 1.7 and L.8)
assuming our corresponding result on subspace intersection
(Theorem 1.9).

Proof of Theorems 1.7 and 1.8 assuming Theorem 1.9:
Recall that Theorem 1.7 is a special case of Theorem 1.8,
corresponding to v = 1/3. Therefore, it suffices to prove
Theorem 1.8. Define r = m+/¢— D and R = m+{—d. Then
the hypotheses max{m,f} < d < D < min{m + £,n} and
v € [2q~(24=m=0/5 1] of Theorem 1.8 can be equivalently
stated as

max{0,m+{—n} <r
vellq —(m+£—2R)/5 1.

< R < min{m, ¢}, (104)

(105)

Recall from Proposition V.1 that SUMIF"mZ is the same

function as INTERSECTIF nm.t Wthh in turn is the
negation of INTERSECTF"M. Now the bounds for
SUMF nm.t laimed in Theorem L8 follow from the bounds
for INTERSECTF" ™ in Theorem 1.9, upon substituting
R=m+/{—d. Th1s appeal to Theorem 1.9 is legitimate due
t0 (104) and (105).

Analogously, SUM;™™* is the same function as
INTERSECTIF""M (Proposition V.1), and therefore the
bounds claimed for SUMIF ¢ in Theorem 1.8 follow from
the bounds for INTERSECTanZ in Theorem 1.9, upon
substituting R =m + ¢ — d. ]

The proof of Theorem 1.9 is the focus of the remainder
of this section, which we defer to the full version of our
paper [29].

ACKNOWLEDGMENTS

The authors are thankful to Alan Joel for useful discussions
and his feedback on an earlier version of this manuscript.

REFERENCES

[1] A. C.-C. Yao, “Some complexity questions related to distributive com-
puting,” in Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing (STOC), 1979, pp. 209-213.

, “Quantum circuit complexity,” in Proceedings of the Thirty-Fourth

Annual IEEE Symposium on Foundations of Computer Science (FOCS),

1993, pp. 352-361.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]
(21]

[22]

(23]

[24]

[25]

[26]

J. I. Chu and G. Schnitger, “The communication complexity of several
problems in matrix computation,” J. Complex., vol. 7, no. 4, pp. 395—
407, 1991.

, “Communication complexity of matrix computation over finite
fields,” Math. Syst. Theory, vol. 28, no. 3, pp. 215-228, 1995.

X. Sun and C. Wang, “Randomized communication complexity for linear
algebra problems over finite fields,” in Proceedings of the Twenty-Ninth
International Symposium on Theoretical Aspects of Computer Science
(STACS), vol. 14, 2012, pp. 477-488.

Y. Li, X. Sun, C. Wang, and D. P. Woodruff, “On the communication
complexity of linear algebraic problems in the message passing model,”
in Proceedings of the Twenty-Eighth International Symposium on Dis-
tributed Computing (DISC), vol. 8784, 2014, pp. 499-513.

K. L. Clarkson and D. P. Woodruff, “Numerical linear algebra in
the streaming model,” in Proceedings of the Forty-First Annual ACM
Symposium on Theory of Computing (STOC), 2009, pp. 205-214.

M. Bury and C. Schwiegelshohn, “Sublinear estimation of weighted
matchings in dynamic data streams,” in Proceedings of the Twenty-Third
Annual European Symposium on Algorithms (ESA), 2015, pp. 263-274.
S. Assadi, S. Khanna, and Y. Li, “On estimating maximum matching size
in graph streams,” in Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 1723—
1742.

S. Assadi, G. Kol, R. R. Saxena, and H. Yu, “Multi-pass graph streaming
lower bounds for cycle counting, MAX-CUT, matching size, and other
problems,” in Proceedings of the Sixty-First Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2020, pp. 354-364.

L. Chen, G. Kol, D. Paramonov, R. R. Saxena, Z. Song, and H. Yu,
“Almost optimal super-constant-pass streaming lower bounds for reach-
ability,” in Proceedings of the Fifty-Third Annual ACM Symposium on
Theory of Computing (STOC), 2021, pp. 570-583.

L. Lovasz and M. E. Saks, “Lattices, Mobius functions and commu-
nication complexity,” in Proceedings of the Twenty-Ninth Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1988, pp. 81—
90.

P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson, “On data
structures and asymmetric communication complexity,” J. Comput. Syst.
Sci., vol. 57, no. 1, pp. 3749, 1998.

I. Kremer, “Quantum communication,” Master’s thesis, Hebrew Univer-
sity, Computer Science Department, 1995.

A. A. Razborov, “Quantum communication complexity of symmetric
predicates,” Izvestiya: Mathematics, vol. 67, no. 1, pp. 145-159, 2003.
N. Linial and A. Shraibman, “Lower bounds in communication complex-
ity based on factorization norms,” Random Struct. Algorithms, vol. 34,
no. 3, pp. 368-394, 2009.

A. A. Sherstov, “The pattern matrix method,” SIAM J. Comput., vol. 40,
no. 6, pp. 1969-2000, 2011, preliminary version in Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing (STOC),
2008.

, “Communication lower bounds using dual polynomials,” Bulletin
of the EATCS, vol. 95, pp. 59-93, 2008.

T. Lee and A. Shraibman, “Lower bounds in communication complex-
ity,” Foundations and Trends in Theoretical Computer Science, vol. 3,
no. 4, pp. 263-398, 2009.

R. P. Stanley, Enumerative Combinatorics, 2nd ed. Cambridge Univer-
sity Press, 2012, vol. L.

P. Delsarte, “Association schemes and ¢-designs in regular semilattices,”
J. Comb. Theory, Ser. A, vol. 20, no. 2, pp. 230-243, 1976.

J. Eisfeld, “The eigenspaces of the Bose-Mesner-algebras of the asso-
ciation schemes corresponding to projective spaces and polar spaces,”
Des. Codes Cryptogr., vol. 17, no. 1-3, pp. 129-150, 1999.

A. E. Brouwer, S. M. Cioaba, F. IThringer, and M. McGinnis, “The
smallest eigenvalues of Hamming graphs, Johnson graphs and other
distance-regular graphs with classical parameters,” J. Comb. Theory, Ser:
B, vol. 133, pp. 88-121, 2018.

S. M. Cioaba and H. Gupta, “On the eigenvalues of Grassmann graphs,
bilinear forms graphs and Hermitian forms graphs,” Graphs Comb.,
vol. 38, no. 2, p. 30, 2022.

D. E. Knuth, Selected Papers on Discrete Mathematics.
cations, 2001.

A. A. Sherstov, “Strong direct product theorems for quantum commu-
nication and query complexity,” SIAM J. Comput., vol. 41, no. 5, pp.
1122-1165, 2012, preliminary version in Proceedings of the Forty-Third
Annual ACM Symposium on Theory of Computing (STOC), 2011.

CSLI Publi-



[27] E. Kushilevitz and N. Nisan, Communication complexity. ~Cambridge [29] A. A. Sherstov and A. A. Storozhenko, “The communication complexity
University Press, 1997. of approximating matrix rank,” in Electronic Colloquium on Computa-
[28] R. de Wolf, “Quantum computing and communication complexity,” tional Complexity (ECCC), September 2024.
Ph.D. dissertation, University of Amsterdam, 2001.



