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Abstract—We fully determine the communication complexity
of approximating matrix rank, over any finite field F. We study
the most general version of this problem, where 0 6 r < R 6 n
are given integers and Alice and Bob need to determine whether
their respective matrices A,B ∈ F

n×n satisfy rk(A + B) = r
versus rk(A+B) = R. We show that this problem has commu-
nication cost Ω(r2 log |F|), which is optimal. Our lower bound
holds even for quantum protocols and even for error probability
1
2
(1− |F|−r/3), which too is optimal because this problem has a

two-bit classical protocol with error 1
2
(1−|F|−Θ(r)). Prior to our

work, lower bounds were known only for constant-error protocols
and only for consecutive integers r and R, with no implication for
the approximation of matrix rank. We also settle an analogous
question for subspaces, where Alice has a subspace S, Bob has
a subspace T, and they need to approximate the dimension
of the subspace S + T generated by S and T (equivalently,
approximate the dimension of S ∩ T ). As an application, we
obtain an Ω(n2 log |F|)/k memory lower bound for any streaming
algorithm with k passes that approximates the rank of an input
matrix M ∈ F

n×n within a factor of
√
2− δ, for any δ > 0. Our

result is an exponential improvement in k over previous work.
Index Terms—Approximation of matrix rank, communication

complexity, quantum computation, subspace intersection prob-
lem, subspace sum problem

I. INTRODUCTION

The exact and approximate computation of matrix rank is a

fundamental problem in theoretical computer science, studied

for its intrinsic importance as well as its connections to other

algorithmic and complexity-theoretic questions. In particular,

a large body of research has focused on the communication

complexity of the matrix rank problem in Yao’s two-party

model [1], [2], with both classical and quantum communi-

cation. In this problem, the two parties Alice and Bob receive

matrices A,B ∈ F
n×n, respectively, over a finite field F

and are tasked with determining the rank of A + B using

minimal communication. The first result in this line of research

was obtained three decades ago by Chu and Schnitger [3],

who proved a lower bound of Ω(kn2) for the deterministic

communication complexity of computing the rank of A + B
when the matrix entries are k-bit integers. Several years later,

Chu and Schnitger [4] further showed that this communication

problem has deterministic complexity Ω(n2 log p) when the

matrix entries are in Fp, the finite field with p elements. The
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first result on the randomized communication complexity of

the matrix rank problem was obtained by Sun and Wang [5],

who proved that determining whether A + B is singular

requires Ω(n2 log p) bits of communication for matrices A,B
over the finite field Fp for prime p. In a follow-up paper, Li,

Sun, Wang, and Woodruff [6] showed that this Ω(n2 log p)
lower bound holds even for a promise version of the matrix

rank problem, where the matrix A+B is guaranteed to have

rank either n − 1 or n. The lower bounds of [5], [6] further

apply to quantum communication.

Despite these exciting developments, no progress has been

made on lower bounds for approximating matrix rank. Our

main contribution is the complete resolution of the approxi-

mate matrix rank problem. In what follows, we state our results

for matrix rank and several other approximation problems, and

present applications of our work to streaming complexity.

A. Matrix rank problem

We study the problem of approximating matrix rank in its

most general form. Specifically, let F be any finite field. For

integer parameters n,m,R, r such that min{n,m} > R >
r > 0, we consider the promise communication problem

defined on pairs of matrices A,B ∈ F
n×m by

RANKF,n,m
r,R (A,B) =





−1 if rk(A+B) = r,

1 if rk(A+B) = R,

∗ otherwise,

where the asterisk indicates that the communication protocol

may exhibit arbitrary behavior when rk(A + B) /∈ {r,R}.

In words, the problem amounts to distinguishing input pairs

with rk(A + B) = r from those with rk(A + B) = R. The

corresponding total communication problem is given by

RANKF,n,m
r (A,B) =

{
−1 if rk(A+B) 6 r,

1 otherwise.

Clearly, the total problem RANKF,n,m
r is more challenging

than the promise problem RANKF,n,m
r,R . Prior to our work, the

strongest known result was the Ω(n2 log p) lower bound of

[6] on the bounded-error quantum communication complexity

of RANK
Fp,n,n
n−1,n for fields Fp of prime order. Unfortunately,

this lower bound has no implications for the approximation of



matrix rank because the ratio (n − 1)/n rapidly tends to 1.

We resolve this question in full in the following theorem.

Theorem I.1 (Lower bound for rank problem). There is an

absolute constant c > 0 such that for all finite fields F and

all integers n,m,R, r with min{n,m} > R > r > 0,

Q∗
1
2−

1

4|F|r/3
(RANKF,n,m

r,R ) > c(1 + r2 log |F|).

In particular,

Q∗
1/4(RANKF,n,m

r,R ) > c(1 + r2 log |F|).
In the statement above, Q∗

ε denotes ε-error quantum com-

munication complexity with arbitrary prior entanglement,

which is the most powerful model of probabilistic compu-

tation. Clearly, all our lower bounds apply to the randomized

(classical) model as well. Two other remarks are in order. Even

in the special case of r = n−1 and R = n, our result is a sig-

nificant improvement on previous work because our theorem

is proved in the large-error regime, with the error probability

exponentially close to 1/2. This should be contrasted with the

communication lower bounds of [5], [6], which were proved

for error probability 1/3. Moreover, Theorem I.1 is the first

result of its kind because it allows for an arbitrary gap between

r and R. In particular, Theorem I.1 shows for the first time that

approximating the matrix rank to any constant factor requires

Ω(n2 log |F|) bits of communication, even for protocols that

succeed with exponentially small probability (take R = n and

r = cn for a small constant c > 0).

Theorem I.1 is optimal in a very strong sense. Specifically,

we have the following matching upper bound, which we prove

by adapting Clarkson and Woodruff’s streaming algorithm

for matrix rank [7]. In the statement below, Rε denotes

randomized (classical) communication complexity with error

ε.

Theorem I.2 (Upper bound for rank problem). There is an

absolute constant c > 0 such that for all finite fields F and

all integers n,m, r with min{n,m} > r > 0,

R1/3(RANKF,n,m
r ) 6 c(1 + r2 log |F|),

R 1
2−

1
32|F|r

(RANKF,n,m
r ) 6 2.

This result shows that the lower bound of Theorem I.1

is tight not only for quantum protocols solving the partial

problem RANKF,n,m
r,R but even for classical, bounded-error

protocols solving the total problem RANKF,n,m
r . Moreover,

Theorem I.2 shows that the error regime for which we prove

our lower bound in Theorem I.1 is also optimal, in that the

total rank problem has a classical protocol with cost only 2
bits and error probability 1

2 − |F|−Θ(r).

B. Streaming complexity

The streaming complexity of matrix rank has received

extensive attention in the literature [5]–[11]. In this model,

an algorithm with limited memory is presented with a matrix

M of order n over a given field, in row-major order. The

objective is to compute or approximate the rank of M , using

either a single pass or multiple passes over M . Via standard

reductions, our Theorem I.1 implies an essentially optimal

lower bound on the streaming complexity of approximating

matrix rank. Unlike previous work, our result remains valid

even for polynomially many passes and even for correctness

probability exponentially close to 1/2. Stated in its most

general form, our result is as follows.

Theorem I.3. Let n, r,R be nonnegative integers with n/2 6

r < R 6 n, and let F be a finite field. Define f : Fn×n →
{−1, 1, ∗} by

f(M) =





−1 if rkM = r,

1 if rkM = R,

∗ otherwise.

Let A be any randomized streaming algorithm for f with error

probability 1
2 − 1

4 |F|−(r−dn/2e)/3 that uses s bits of memory

and k passes. Then

sk = Ω

((
r −

⌈n
2

⌉)2
log |F|

)
.

By way of notation, recall that f in the above statement

is a partial function, and the algorithm is allowed to exhibit

arbitrary behavior on matrices M where f(M) = ∗.

Corollary I.4. Fix arbitrary constants ε ∈ (0, 2] and δ ∈
(1/2, 1). Let F be a finite field. Then no randomized o(nε)-
pass streaming algorithm with n2−ε log |F| bits of memory, on

input a matrix M ∈ F
n×n, can distinguish between the cases

rkM = n and rkM = bδnc with probability of correctness

greater than 1
2 (1 + |F|−Θ(n)).

Proof. Take R = n and r = bδnc in Theorem I.3, for any n
larger than a certain constant.

The memory lower bound in Corollary I.4 is essentially

optimal since the rank of a matrix M ∈ F
n×n can be com-

puted exactly by a trivial, single-pass algorithm with memory

O(n2 log |F|). Prior to our work, the strongest streaming lower

bound for approximating matrix rank was due to Chen et

al. [11]. For all constants ε > 0 and δ > 0, they proved that

no o(
√
log n)-pass algorithm with space n2−ε can distinguish

between the cases rkM = n and rkM 6 δn with probability

2/3, where M is an input matrix of order n over a finite field

of size ω(n). Our Corollary I.4 is an exponential improvement

on [11] in the number of passes. Moreover, Corollary I.4 is

valid for all finite fields regardless of size, and holds even when

the correctness probability is exponentially close to 1/2.

C. Determinant problem

Recall that a square matrix over a field F has full rank if and

only if its determinant is nonzero. As a result, the problem of

computing the determinant has received considerable attention

in previous work on matrix rank, e.g., [4]–[6]. We are inter-

ested in the most general form of the determinant problem,

where Alice and Bob receive as input matrices A,B ∈ F
n×n,

respectively, and need to determine whether the determinant

of A+B equals a or b. The problem parameters a and b are



distinct field elements that are fixed in advance. Formally, the

determinant problem is the partial communication problem on

matrix pairs (A,B) given by

DETF,n
a,b (A,B) =





−1 if det(A+B) = a,

1 if det(A+B) = b,

∗ otherwise.

Prior to our work, the strongest result on the determinant

problem was due to Sun and Wang [5], who proved a tight

lower bound of Ω(n2 log |F|) for the randomized and quantum

communication complexity of DETF,n
a,b for nonzero a, b over

any finite field F of prime order. They conjectured the same

lower bound for the case of arbitrary a, b. To see why the case

of nonzero a, b is rather special, observe that the number of

matrices with determinant a is always the same as the number

of matrices with determinant b, with natural bijections between

these two sets; but this is no longer true if one of a, b is

zero. This asymmetry suggests that the determinant problem

requires a substantially different approach when one of a, b is

zero. In this work, we develop sufficiently strong techniques

to solve the determinant problem in full, thereby settling Sun

and Wang’s conjecture in the affirmative.

Theorem I.5. There is an absolute constant c > 0 such that

for every finite field F, every pair of distinct elements a, b ∈ F,
and all integers n > 2,

Q∗
1
2−

1

4|F|(n−1)/3
(DETF,n

a,b ) > cn2 log |F|.

The communication lower bound of Theorem I.5 is best

possible, up to the multiplicative constant c. It matches the

trivial, deterministic protocol where Alice sends her input

matrix A to Bob using n2dlog |F|e bits, at which point

Bob computes det(A + B) and announces the output of the

protocol. Furthermore, the error regime in Theorem I.5 is also

essentially optimal because, for example, the problem DETF,n
0,b

has a randomized protocol with only 2 bits of communication

and error probability 1
2 − Θ(|F|n−1), by taking r = n − 1

and R = m = n in Theorem I.2. Lastly, we note that the

requirement that n > 2 in Theorem I.5 is also necessary

because the determinant problem for 1 × 1 matrices reduces

to the equality problem with domain F× F and therefore has

randomized communication complexity O(1).
We prove Theorem I.5 for all a, b from first principles,

without relying on the work of Sun and Wang [5]. In the case

of nonzero a, b, we give a new proof that is quite short and

uses only basic Fourier analysis, unlike the rather technical

proof of [5]. To settle the complementary case where one

of a, b is zero, we prove a stronger result of independent

interest. Here, we introduce a natural problem that we call

RANKDETF,n
r,a , which combines features of the matrix rank

and determinant problems. It is parameterized by a nonzero

field element a ∈ F and a nonnegative integer r < n, and

Alice and Bob’s objective is to distinguish input pairs (A,B)
with rk(A + B) = r from those with det(A + B) = a. We

prove the following.

Theorem I.6. There is an absolute constant c > 0 such that

for every finite field F, every field element a ∈ F \ {0}, and

all integers n > r > 0,

Q∗
1
2−

1

4|F|r/3
(RANKDETF,n

r,a ) > c(1 + r2 log |F|).

Taking r = n− 1 in this result settles Theorem I.5 when one

of a, b is zero, as desired. Theorem I.6 is optimal in a strong

sense: even the total problem RANKF,n,n
r , which subsumes

RANKDETF,n
r,a , has bounded-error classical communication

complexity O(1+r2 log |F|) by Theorem I.2. Theorem I.6 for

the RANKDETF,n
r,a problem significantly strengthens our main

result, Theorem I.1, for the matrix rank problem RANKF,n,n
r,n

(in the former problem, Alice and Bob distinguish rank r from

determinant a 6= 0; in the latter problem, they distinguish rank

r from rank n).

D. Subspace sum and intersection problems

There are two natural ways to recast the computation of

matrix rank as a communication problem. One approach,

discussed in detail above, is to assign matrices A and B to

Alice and Bob, respectively, and require them to compute the

rank of A+B. Alternatively, one can require Alice and Bob

to compute the rank of the matrix
[
A B

]
. This alternative

approach is best described in the language of linear subspaces:

letting S and T stand for the column space of A and B,
respectively, the rank of

[
A B

]
is precisely the dimension

of the linear subspace S + T generated by S and T . Here,

we may assume that the dimensions of S and T are known

in advance because this information can be communicated at

negligible cost.

In this way, one arrives at the subspace sum problem over a

finite field F, where Alice receives as input an m-dimensional

linear subspace S ⊆ F
n and Bob receives an `-dimensional

linear subspace T ⊆ F
n. The integers m and ` are part of

the problem specification and are fixed in advance. In the

promise version of the subspace sum problem, the objective

is to distinguish subspace pairs with dim(S + T ) = d1 from

those with dim(S+T ) = d2, for distinct integers d1, d2 fixed

in advance. This corresponds to the partial function given by

SUMF,n,m,`
d1,d2

(S, T ) =





−1 if dim(S + T ) = d1,

1 if dim(S + T ) = d2,

∗ otherwise.

The corresponding total communication problem is that of

determining whether S + T has dimension at most d, for an

integer d fixed in advance:

SUMF,n,m,`
d (S, T ) =

{
−1 if dim(S + T ) 6 d,

1 otherwise.

The total problem is more challenging than the promise

problem in that SUMF,n,m,`
d1,d2

is a restriction of SUMF,n,m,`
d1

,

for any integers d1 < d2. As noted by many authors, from

the standpoint of communication complexity, computing the

dimension of the subspace sum S + T is equivalent to

computing the dimension of the subspace intersection S ∩ T.



This equivalence follows from the identity dim(S + T ) =
dim(S) + dim(T )− dim(S ∩ T ).

Despite the syntactic similarity between the matrix sum

A + B and the corresponding subspace sum S + T , the

subspace sum problem appears to be significantly more subtle

and technical. Previous work has focused on a special case

that we call subspace disjointness (determining whether Alice

and Bob’s subspaces have trivial intersection, {0}) and the

dual problem that we call vector space span (determining if

the sum of Alice and Bob’s subspaces is the entire vector

space). These two problems were studied in [4], [12], with

an optimal lower bound of Ω(n2 log p) on their deterministic

communication complexity over a field with p elements. Sun

and Wang [5] showed that the Ω(n2 log p) lower bound for

subspace disjointness remains valid even for randomized and

quantum communication. In follow-up work, Li, Sun, Wang,

and Woodruff [6] proved an Ω(n2 log p) quantum lower bound

for a promise version of subspace disjointness, where Alice

and Bob’s inputs are n/2-dimensional subspaces that either

have trivial intersection or intersect in a one-dimensional

subspace. The authors of [13] considered an asymmetric

problem where Alice receives an n-bit vector, Bob receives a

subspace, and their objective is to determine whether Alice’s

vector is contained in Bob’s subspace. They showed that in

any randomized one-way protocol that solves this problem,

either Alice sends Ω(n) bits, or Bob sends Ω(n2) bits.

In summary, all previous lower bounds for two-way commu-

nication complexity have focused on subspace disjointness or

vector space span. The general problem, where Alice and Bob

need to distinguish between the cases dim(S + T ) = d1 and

dim(S + T ) = d2, is substantially harder and has remained

unsolved. The difficulty is that previous results [5], [6] are

based on a reduction from the matrix rank problem to subspace

disjointness, and this straightforward strategy does not produce

optimal results for the subspace sum problem with arbitrary

parameters. In this paper, we approach the subspace sum

problem from first principles and solve it completely. Our

solution settles both the promise version of subspace sum and

the corresponding total version. For clarity, we first state our

result in the regime of constant error.

Theorem I.7. Let F be a finite field with q = |F| elements, and

let n,m, `, d,D be nonnegative integers with max{m, `} 6

d < D 6 min{m+ `, n}. If m = ` = d, then

R1/3(SUMF,n,m,`
d ) = O(1).

If m, `, d are not all equal, then

Q∗
1/3(SUM

F,n,m,`
d,D ) = Θ((d−m+ 1)(d− `+ 1) log q),

R1/3(SUM
F,n,m,`
d ) = Θ((d−m+ 1)(d− `+ 1) log q).

Several remarks are in order. Recall that in F
n, the sum of an

m-dimensional subspace and an `-dimensional subspace has

dimension between max{m, `} and min{m+`, n}. This justi-

fies the above requirement that d,D ∈ [max{m, `},min{m+
`, n}]. Theorem I.7 shows that the promise version of the

subspace sum problem has the same communication complex-

ity as the total version, up to a constant factor. Moreover,

the theorem shows that this communication complexity is

the same, up to a constant factor, for quantum and classical

communication protocols. Both the lower and upper bounds in

Theorem I.7 require substantial effort. Lastly, the degenerate

case d = m = ` of the subspace sum problem is easily seen

to be equivalent to the equality problem, which explains the

O(1) bound in the theorem statement.

In addition to the constant-error regime of Theorem I.7,

we are able to determine the communication complexity of

subspace sum for essentially all settings of the error parameter,

as follows.

Theorem I.8. Let F be a finite field with q = |F| elements, and

let n,m, `, d,D be nonnegative integers with max{m, `} 6

d < D 6 min{m+ `, n}. If m = ` = d, then

R1/3(SUMF,n,m,`
d ) = O(1).

If m, `, d are not all equal, then for all γ ∈
[ 13q

−(2d−m−`)/5, 13 ],

Q∗
1−γ
2

(SUMF,n,m,`
d,D )

= Θ((logqdqd−mγe+ 1)(logqdqd−`γe+ 1) log q),

R 1−γ
2
(SUMF,n,m,`

d )

= Θ((logqdqd−mγe+ 1)(logqdqd−`γe+ 1) log q)

and moreover

R 1
2−

1

16q2d−m−`+16
(SUMF,n,m,`

d ) 6 2. (1)

Theorem I.8 determines the communication complexity

of subspace sum for every error probability in [ 13 ,
1
2 −

Θ(|F|−(2d−m−`)/5)]. This is essentially the complete range of

interest because by (1), the communication cost drops to 2 bits

when the error probability is set to 1
2 − |F|−(2d−m−`)−Θ(1).

Analogous to the constant-error regime, Theorem I.8 shows

that the communication complexity of subspace sum for any

error in [ 13 ,
1
2 − Θ(|F|−(2d−m−`)/5)] is the same, up to a

constant factor, for both the partial and total versions of the

problem, and for both quantum and classical communication.

Theorems I.7 and I.8 reveal a rather subtle dependence of the

communication complexity on the problem parameters d,m, `,
particularly as one additionally varies the error parameter.

This explains why we were not able to obtain these theorems

via a reduction from the matrix rank problem, as was done

in previous work [5], [6] in the special case of subspace

disjointness.

In view of the aforementioned identity dim(S + T ) =
dim(S)+dim(T )−dim(S∩T ), our results for subspace sum

can be equivalently stated in terms of subspace intersection.

Formally, the subspace intersection problem requires Alice and

Bob to distinguish subspace pairs (S, T ) with dim(S∩T ) = d1
from those with dim(S ∩ T ) = d2, where S is an m-

dimensional subspace given as input to Alice, T is an `-
dimensional subspace given to Bob, and d1, d2 are distinct



integers fixed in advance. This corresponds to the partial

function

INTERSECTF,n,m,`
d1,d2

(S, T ) =





−1 if dim(S ∩ T ) = d1,

1 if dim(S ∩ T ) = d2,

∗ otherwise.

The total version of the subspace intersection problem is given

by

INTERSECTF,n,m,`
d (S, T ) =

{
−1 if dim(S ∩ T ) > d,

1 otherwise,

where d is a problem parameter fixed in advance. Theorem

I.8 fully settles the complexity of the subspace intersection

problem, as follows.

Theorem I.9. Let F be a finite field with q = |F| elements,

and let n,m, `, r, R be nonnegative integers with max{0,m+
`− n} 6 r < R 6 min{m, `}. If m = ` = R, then

R1/3(INTERSECT
F,n,m,`
R ) = O(1).

If m, `,R are not all equal, then for all γ ∈
[ 13q

−(m+`−2R)/5, 13 ],

Q∗
1−γ
2

(INTERSECTF,n,m,`
r,R )

= Θ((logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q),

R 1−γ
2
(INTERSECTF,n,m,`

R )

= Θ((logqdqm−Rγe+ 1)(logqdq`−Rγe+ 1) log q)

and moreover

R 1
2−

1

16qm+`−2R+16
(INTERSECTF,n,m,`

R ) 6 2.

A moment’s reflection (see Proposition II.25) shows that

in F
n, the intersection of an m-dimensional subspace and an

`-dimensional subspace is a subspace of dimension between

max{0,m+`−n} and min{m, `}, hence the requirement that

r,R ∈ [max{0,m + ` − n},min{m, `}]. Remarks analogous

to those for subspace sum apply to Theorem I.9 as well.

Specifically, Theorem I.9 determines the ε-error communica-

tion complexity of subspace intersection for all ε ∈ [ 13 ,
1
2 −

Θ(|F|−(m+`−2R)/5)], which is essentially the complete range

of interest because the communication cost drops to 2 bits

when the error probability is set to 1
2 − |F|−(m+`−2R)−Θ(1).

Also, Theorem I.9 shows that in this range of interest, the

ε-error communication complexity of subspace intersection is

the same (up to a constant factor) for both the partial and total

versions of the problem, and for both quantum and classical

communication.

E. Previous approaches

A powerful tool for proving lower bounds on randomized

and quantum communication complexity is the approximate

trace norm [2], [14]–[17]. In more detail, let F : X × Y →
{−1, 1} be a given communication problem, and let M =
[F (x, y)]x,y be its characteristic matrix. The δ-approximate

trace norm of M , denoted ‖M‖Σ,δ , is the minimum trace norm

of a real matrix M̃ that approximates M entrywise within δ.

The approximate trace norm bound states that

Q∗
ε(F ) >

1

2
log

(
‖M‖Σ,2ε
3
√
|X||Y |

)
(2)

for all ε > 0, making it possible to prove communication

lower bounds by analyzing the approximate trace norm of M .

To bound the approximate trace norm from below, it is useful

to appeal to its dual formulation as a maximization problem,

whereby

‖M‖Σ,2ε >
〈M,Φ〉 − 2ε‖Φ‖1

‖Φ‖ (3)

for every nonzero real matrix Φ. As a result, proving a

communication lower bound reduces to constructing a matrix

Φ whose spectral norm and `1 norm are small relative to the

inner product of Φ with the communication matrix M . The

matrix Φ is often referred to as a dual matrix or a witness.

The lower bound (2) remains valid for partial functions

F : X × Y → {−1, 1, ∗} and their characteristic matrices M ,

in which case the dual characterization of the approximate

trace norm is given by

‖M‖Σ,2ε >
1

‖Φ‖

( ∑

domF

Mx,yΦx,y

−2ε‖Φ‖1 −
∑

domF

|Φx,y|


 (4)

for all Φ 6= 0. In this equation, domF = {(x, y) : F (x, y) 6=
∗} denotes the domain of the partial function F . Comparing

this dual characterization with the original one (3) for total

functions, we notice that the inner product is now restricted to

the domain of F, and there is an additional penalty term for

any weight placed by Φ outside the domain of F. For more

background on the use of duality in proving communication

lower bounds, we refer the reader to the surveys [18], [19].

Main idea in [5], [6]: Constructing a good witness Φ can be

very challenging. Sun and Wang [5] studied the nonsingularity

problem over fields Fp of prime order p, where Alice and

Bob’s inputs are matrices A,B ∈ F
n×n
p , respectively, and they

are required to output −1 if A+B is nonsingular and 1 other-

wise. Let M be the characteristic matrix of this communication

problem. To analyze the approximate trace norm of M, the

authors of [5] use the witness Φ = [(−1)nĝ(A+B)]A,B , where

ĝ is the Fourier transform of the function g : Fn×np → {0, 1}
given by g(X) = 1 if and only if X is nonsingular. The

calculations in [5] reveal the following, where C > 6 is an

absolute constant:

(i) ‖Φ‖ = 1;

(ii) 〈M,Φ〉 = 2pn
2−n

∏n
i=1(p

i − 1);

(iii) ‖Φ‖1 6 Cpn
2−n

∏n
i=1(p

i − 1).

Using this witness Φ in (3) with a sufficiently small error pa-

rameter ε, Sun and Wang obtain ‖M‖Σ,2ε = Ω(pn
2

pn(n−1)/2),
which in view of (2) gives an Ω(n2 log p) lower bound on the



bounded-error communication complexity of the nonsingular-

ity problem.

In follow-up work, Li, Sun, Wang, and Woodruff [6] studied

the partial communication problem F = RANK
Fp,n,n
n−1,n . Let

M ′ denote its characteristic matrix. The authors of [6] used

the same witness Φ as Sun and Wang [5] and obtained the

following refinements:

(i) ‖Φ‖ = 1;

(ii)
∑

domF M
′
A,BΦA,B = pn

2−n(1+p−p
−n+1

p−1 )
∏n
i=1(p

i−1);

(iii) ‖Φ‖1 = pn
2−n

∏n−1
i=0 (1 + p−i) ·∏n

i=1(p
i − 1);

(iv)
∑

domF |ΦA,B | 6 ‖Φ‖1 −
∑

domF M
′
A,BΦA,B .

Making these substitutions in (4) and setting ε to a suffi-

ciently small constant, the authors [6] obtain ‖M ′‖Σ,2ε =

Ω(pn
2

pn(n−1)/2), which along with (2) results in an

Ω(n2 log p) lower bound on the quantum communication com-

plexity of F = RANK
Fp,n,n
n−1,n . We note that we have described

the work of [5], [6] in the framework that we adopt in our

paper, which differs somewhat from the original presentation

in [5], [6]. These differences do not affect any of the ideas or

bounds in question.

Unfortunately, the above analyses rely heavily on ε being

set to a small constant. This is because ‖Φ‖1 is too large

compared to the inner product 〈M,Φ〉 and the correlation∑
domF M

′
A,BΦA,B , which makes setting ε close to 1/2

impossible. Since the authors of [6] determined ‖Φ‖1 and∑
domF M

′
A,BΦA,B exactly, with equality, there is no room

for improved analysis and no possibility of setting ε close

to 1/2 with this choice of witness Φ. This rules out the use

of Φ for proving Theorem I.1 even in the special case of

RANKF,n,n
n−1,n. When it comes to the more general problem

RANKF,n,n
r,n with r 6 n− 2, the witness Φ does not produce

any meaningful results at all, even for small constant ε. The

fundamental obstacle is that the `1 norm of Φ is concentrated

on matrix pairs (A,B) for which A+B has rank n or n− 1,

whereas the domain of RANKF,n,n
r,n with r 6 n − 2 consists

of matrix pairs whose sum has rank n or r. This makes

the contribution of
∑

rk(A+B)=n−1 |ΦA,B | to the summation∑
domF |ΦA,B | too large, and renders the resulting lower

bound worthless. Our attempts at simple modifications to Φ
were not successful.

F. Our approach

Our techniques depart substantially from the previous work

in [5], [6]. Instead of attempting to guess a good witness Φ and

analyzing its metric and analytic properties, we determine how

exactly these properties depend on the choice of a witness.

In this way, we are able to construct essentially optimal

witnesses for the matrix rank, determinant, subspace sum, and

subspace intersection problems. We first discuss the matrix

rank problem, over an arbitrary finite field F. In this overview,

we focus on the canonical case F = RANKF,n,n
k,n , where Alice

and Bob receive square matrices A,B ∈ F
n×n, respectively,

and need to distinguish between the cases rk(A+B) = k and

rk(A + B) = n. This special case captures the matrix rank

problem in its full generality via straightforward reductions.

Reducing the degrees of freedom: We will call a witness

Φ symmetric if each entry ΦA,B is fully determined by the

rank of A+B. In searching for a good witness for the matrix

rank problem, we will only consider symmetric witnesses Φ.

This restriction is without loss of generality: since F (A,B)
depends only on the rank of A+B, it is not hard to verify that

any witness for F can be “symmetrized” without harming the

corresponding value of the approximate trace norm bound, (4).

The resulting witness matrix Φ has only n + 1 degrees of

freedom, corresponding to every possible value of the rank of

A+B.

Let i ∈ {0, 1, . . . , n} be given. Consider the matrix whose

rows and columns are indexed by elements of F
n×n, and

whose (A,B) entry is defined to be 1 if rk(A + B) = i
and zero otherwise. Normalize this matrix to have `1 norm 1,
and call the resulting matrix Ei. Then any symmetric witness

matrix is a linear combination of E0, E1, . . . , En. With this in

mind, for any real function ϕ : {0, 1, . . . , n} → R, we define

Eϕ = ϕ(0)E0 + ϕ(1)E1 + · · ·+ ϕ(n)En.

Taking Φ = Eϕ in the approximate trace norm bound (4)

and simplifying, we arrive at the following bound for the

characteristic matrix M of F :

‖M‖Σ,2ε >
1

‖Eϕ‖


ϕ(n)− ϕ(k)

−2ε‖ϕ‖1 −
∑

i/∈{k,n}

|ϕ(i)|


 . (5)

Our challenge now is to understand how ϕ affects the spectral

norm of Eϕ.

By analyzing the singular values of Eϕ, we prove that

‖Eϕ‖ = q−n
2

max
s=0,1,...,n

∣∣∣∣∣
n∑

t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣ , (6)

where q is the order of the finite field F, and Γn is an auxiliary

function. In more detail, we define

Γn(s, t) = E
rkA=s
rkB=t

ω〈A,B〉,

where ω is a primitive root of unity of order equal to the

characteristic of F, with the operation x 7→ ωx for field

elements x ∈ F deferred to Section II-D. An exact expression

for Γn(n, t) can be obtained from the analysis of the Fourier

spectrum of the nonsingularity function in [5]. Understanding

Γn(s, t) for general s, t, however, is rather nontrivial. To this

end, we derive the representation

Γn(s, t) =

n∑

r=0

Pn(s, t, r)Γn(n, r),

where Pn(s, t, r) is the probability that the upper-left s × t
quadrant of a uniformly random nonsingular matrix of or-

der n has rank r. By explicitly calculating the probabilities



Pn(s, t, r) and combining them with the closed-form expres-

sion for Γn(n, r), we obtain the upper bound |Γn(s, t)| 6

cq−st/2 for an absolute constant c. In addition to this analytic

property, we establish the following algebraic result: for

n, s fixed, Γn(s, t) as a function of t ∈ {0, 1, . . . , n} is a

polynomial in q−t of degree at most s. These two properties

play a central role in our analysis. In what follows, we will

refer to a polynomial in q−t as a hyperpolynomial in t.
Univariate object for the rank problem: Since (5) is in-

variant under multiplication of ϕ by a positive factor, we will

normalize ϕ such that ϕ(n) = 1. To achieve a large value

on the right-hand side of (5), we will construct a function ϕ
that is negative at k, has `1 norm concentrated on {k, n},

and results in Eϕ having a small spectral norm. In view

of (6), the spectral norm requirement amounts to a bound on

maxs |
∑n
t=0 ϕ(t)Γn(s, t)|. Quantitatively speaking, to obtain

an asymptotically optimal lower bound for the matrix rank

problem, we need ϕ to satisfy the following constraints:

(i) ϕ(n) = 1;
(ii) ϕ(k) < 0;

(iii)
∑
i/∈{k,n} |ϕ(i)| = q−Ω(k);

(iv) |
∑n
t=0 ϕ(t)Γn(s, t)| = q−Ω(k2) for every integer s ∈

{0, 1, . . . , n}.

The last requirement states that ϕ needs to be almost orthog-

onal to each Γn(s, t), viewed as a function of t with fixed

s. Recall from our earlier discussion that for s and n fixed,

Γn(s, t) is a hyperpolynomial of low degree, namely, a poly-

nomial in q−t of degree at most s. To achieve orthogonality

to hyperpolynomials of low degree, we leverage the Cauchy

binomial theorem [20, eqn. (1.87)], which implies that

n∑

t=0

(
n

t

)

q

(−1)tq(
t
2)g(q−t) = 0 (7)

for every polynomial g of degree less than n. In particular,

defining ϕ(t) =
(
n
t

)
q
(−1)tq(

t
2) for t = 0, 1, . . . , n ensures

that ϕ is exactly orthogonal to each hyperpolynomial Γn(s, t)
for s < n. Unfortunately, this choice of ϕ does not satisfy our

constraint on the distribution of the `1 norm because most of

it would be concentrated on the values ϕ(t) at points t ≈ n.

To overcome this difficulty, we apply a hyperpolynomial of

low degree to achieve the desired distribution of the `1 norm.

Specifically, we set

ϕ(t) =

(
n

t

)

q

(−1)t−nq(
t
2)−(

n
2)ζ(q−t)

for a carefully constructed polynomial ζ; the factor

(−1)−nq−(
n
2) in this formula serves to normalize ϕ and ensure

the proper signs. As we increase the degree of ζ, we improve

the distribution of the `1 norm of ϕ at the expense of a

weaker orthogonality guarantee, for now ϕ is orthogonal only

to hyperpolynomials of degree less than n − deg ζ. With

an appropriate choice of ζ, we are able to ensure all four

desiderata (i)–(iv) for the univariate function ϕ. The most

technical part of the analysis is the upper bound in (iv). For

s small, our construction guarantees (iv) as a consequence of

the Cauchy binomial theorem, with
∑n
t=0 ϕ(t)Γn(s, t) = 0.

For s large, we use the pointwise bounds for ϕ and Γn and

show that
∑n
t=0 |ϕ(t)| |Γn(s, t)| = q−Ω(k2).

By combining equations (5) and (6) with the properties

(i)–(iv) of the univariate function ϕ, we derive the following

bound on the approximate trace norm: ‖M‖Σ,2ε > (1 −
2ε− q−Ω(k))qn

2

qΩ(k2). Applying the approximate trace norm

method (4), we obtain the sought lower bound of Ω(k2 log q)
on the quantum communication complexity of F for error

ε = 1
2 − q−Θ(k). To achieve the error probability as stated in

Theorem I.1, we derive bounds for ϕ with explicit constants,

which we did not discuss in this proof sketch.

The determinant problem: To solve the determinant problem

DETF,n
a,b for all field elements a, b, we combine our approach

to the matrix rank problem presented above with additional

Fourier-theoretic ideas. Recall that we tackle the determinant

problem from first principles, without relying on the partial

solution for nonzero a, b due to Sun and Wang [5]. With this

in mind, we will first discuss the case of nonzero a, b. Consider

the function ga,b : F
n×n → {−1, 1, 0} given by

ga,b(X) =





−1 if detX = a,

1 if detX = b,

0 otherwise.

A simple argument reveals that the Fourier coefficients of ga,b
corresponding to singular matrices are zero, whereas those

corresponding to nonsingular matrices M depend only on

det(M). By applying Parseval’s identity, we obtain a strong

upper bound on the absolute value of every Fourier coefficient

of ga,b:

‖ĝa,b‖∞ 6
1√

|SL(F, n)|
,

where SL(F, n) denotes the special linear group of order-n
matrices over F. Consider now the matrix Φa,b whose rows

and columns are indexed by elements of F
n×n and whose

entries are given by Φa,b(A,B) = ga,b(A+ B). The spectral

norm of Φa,b is governed by the Fourier coefficients of ga,b,
with

‖Φa,b‖ = qn
2‖ĝa,b‖∞ 6

qn
2

√
|SL(F, n)|

.

Observe that Φa,b is precisely the characteristic matrix of

DETF,n
a,b with the ∗ entries replaced by zeroes. Using Φa,b

as a witness in the approximate trace norm method, we

immediately obtain Theorem I.5 for nonzero a, b.
Consider now the complementary case when one of a, b is

zero, say, a 6= 0 and b = 0. Here, we study the rank versus

determinant problem RANKDETF,n
k,a , which in this case is a

subproblem of the determinant problem. Its parameters are an

integer k ∈ {0, 1, . . . , n − 1} and a nonzero field element

a ∈ F. Recall that in this problem, Alice and Bob are

given matrices A,B ∈ F
n×n, respectively, and are called

upon to distinguish between the cases rk(A + B) = k and

det(A+B) = a. To construct a witness for RANKDETF,n
k,a ,

we combine our solutions to the matrix rank problem and



the determinant problem for nonzero field elements. In more

detail, consider the witness Φ for the problem RANKF,n,n
k,n

that we sketched above. Recall that ΦA,B depends only on

the rank of A + B, and moreover the `1 norm of Φ is

concentrated on matrix pairs (A,B) with rk(A+B) ∈ {k, n}.

To turn Φ into a witness for RANKDETF,n
k,a , we form a linear

combination of Φ with the matrices Φa,b for all b ∈ F\{0, a},

constructed in the previous paragraph for the determinant

problem with nonzero field elements. The coefficients in this

linear combination are chosen so as to transfer the `1 weight

placed by Φ on matrix pairs with det(A+B) /∈ {0, a} to the

matrix pairs with det(A+B) = a, without affecting any other

entries of Φ. The resulting dual witness has low spectral norm

(being a combination of matrices with low spectral norm)

and has its `1 norm concentrated on matrix pairs (A,B)
for which A + B has rank k or determinant a, ensuring

strong correlation with the partial function RANKDETF,n
k,a .

By applying the approximate trace norm method, we obtain

the claimed communication lower bounds for RANKDETF,n
k,a .

Subspace sum and intersection: We now present the main

ideas in our solution to the subspace sum and subspace

intersection problems. Since these problems are equivalent,

we will discuss the intersection problem alone. As before, we

work with an arbitrary finite field F, whose order we denote

by q. Also by way of notation, recall that m and ` stand for

the dimensions of Alice’s subspace S and Bob’s subspace T,
respectively. For simplicity, we will assume in this overview

that the dimension n of the ambient vector space satisfies

n > m + `, which ensures that dim(S ∩ T ) takes on every

possible value in {0, 1, 2, . . . ,min{m, `}} as one varies the

subspaces S, T. We will focus on the canonical case of the

subspace intersection problem where Alice and Bob need to

distinguish subspace pairs with dim(S ∩ T ) = 0 from those

with dim(S ∩ T ) = R, for an integer R with 0 < R 6

min{m, `}. In what follows, we let F = INTERSECTF,n,m,`
0,R

stand for this communication problem of interest. The general

case of the subspace intersection problem, which we will not

discuss in this overview, reduces to this canonical case.

As before, the challenge is to construct a dual matrix Φ that

witnesses a strong lower bound on the approximate trace norm

of the characteristic matrix M of F . Note that the rows of Φ
are indexed by m-dimensional subspaces, and the columns are

indexed by `-dimensional subspaces. Analogous to the matrix

rank problem, we start with the methodological observation

that the symmetry of F greatly reduces the number of degrees

of freedom in Φ. Specifically, F (S, T ) by definition depends

only on dim(S ∩ T ). A moment’s thought now shows that

any dual matrix Φ for the subspace intersection problem can

be “symmetrized” such that its (S, T ) entry depends only on

dim(S ∩ T ), and this symmetrization can only improve the

resulting lower bound on the approximate trace norm in (4).

For r = 0, 1, . . . ,min{m, `}, let Jn,m,`r stand for the matrix

whose rows are indexed by m-dimensional subspaces of F
n,

whose columns are indexed by `-dimensional subspaces of

F
n, and whose (S, T ) entry is 1 if dim(S ∩ T ) = r and zero

otherwise. Put another way, Jn,m,`r is the characteristic matrix

of subspace pairs whose intersection has dimension r. For an

arbitrary function ψ : {0, 1, . . . ,min{m, `}} → R, we define

Jn,m,`ψ =

min{m,`}∑

r=0

ψ(r)Jn,m,`r .

We refer to this family of matrices, whose (S, T ) entry

depends only on dim(S ∩ T ), as subspace matrices. It will

also be helpful to have notation for normalized versions of

these matrices, as follows:

J
n,m,`

r =
1

‖Jn,m,`r ‖1
Jn,m,`r ,

J
n,m,`

ψ =

min{m,`}∑

r=0

ψ(r)

‖Jn,m,`r ‖1
Jn,m,`r .

In this notation, we are looking to construct a dual witness of

the form Φ = J
n,m,`

ψ for some function ψ. This matrix has

min{m, `} + 1 degrees of freedom, corresponding to every

possible value that dim(S ∩ T ) can take. Setting Φ = J
n,m,`

ψ

in the approximate trace norm bound (4) and simplifying, one

obtains the following bound for the characteristic matrix M
of F :

‖M‖Σ,2ε >
1

‖Jn,m,`ψ ‖


−ψ(0) + ψ(R)

−2ε‖ψ‖1 −
∑

i/∈{0,R}

|ψ(i)|


 . (8)

At first glance, this equation looks similar to the corresponding

equation (5) for the matrix rank problem. However, there is a

major difference: the spectral norm of Eϕ is now replaced with

the spectral norm of J
n,m,`

ψ , and there is no reason to expect

that these quantities depend on their corresponding univariate

objects ϕ and ψ in a similar way. Indeed, our spectral analysis

of J
n,m,`

ψ is quite different and significantly more technical

than that of Eϕ.
Analyzing the spectrum of subspace matrices: Symmet-

ric subspace matrices Jn,m,mψ are classical objects whose

eigenvectors and eigenvalues have been studied in numerous

works, e.g., [21]–[24]. However, these previous analyses do

not seem to apply to the general, asymmetric case of interest

to us, namely, that of subspace matrices Jn,m,`ψ for arbitrary

m, `. One way to reduce the analysis of the spectral norm

of Jn,m,`ψ to the symmetric case is to express the product

Jn,m,`ψ (Jn,m,`ψ )T = Jn,m,`ψ Jn,`,mψ as the sum of symmetric

subspace matrices and then apply known results for the

symmetric case. Unfortunately, multiplying these subspace

matrices leads to expressions so unwieldy and complicated

that this is clearly not the method of choice.

Instead, our analysis is inspired by a result of Knuth [25]

on what he called combinatorial matrices. Specifically, Knuth

investigated the eigenvalues of symmetric matrices of order(
n
t

)
whose rows and columns are indexed by t-element subsets

of {1, 2, . . . , n} and whose (A,B) entry depends only on



|A ∩ B|. To determine the eigenvectors of a combinatorial

matrix, Knuth studied certain homogeneous linear systems

with variables indexed by subsets of a fixed cardinality s, and

the equations themselves corresponding to sets of cardinality

s − 1. He showed that any solution to such a system for

s ∈ {1, 2, . . . , t} is an eigenvector for every combinatorial

matrix of order
(
n
t

)
. Knuth also proved that for any given s,

the space of solutions has a basis supported on the variables

indexed by what he called basic sets. These sets have a simple

combinatorial description, which the author of [25] used to

prove that the eigenvectors arising from the homogeneous

systems for s = 1, 2, . . . , t, together with the all-ones vector,

form an exhaustive description of the eigenvectors of each

combinatorial matrix. Once the eigenvectors are determined,

one readily calculates their associated eigenvalues and in

particular the spectral norm.

With some effort, we are able to adapt Knuth’s ideas

to the context of subspaces. Along the way, we encounter

several obstacles. To begin with, counting problems that are

straightforward for sets become challenging for subspaces,

and some intuitive combinatorial principles no longer work.

For example, the inclusion-exclusion formula dim(S + T ) =
dim(S) + dim(T ) − dim(S ∩ T ) has no analogue for three

or more subspaces. Another obstacle is that Knuth’s notion

of a basic set does not seem to have a meaningful analogue

for subspaces. For this reason, we reformulate Knuth’s ideas

in a purely linear-algebraic way and sidestep much of the

combinatorial machinery in [25]. The final hurdle is extending

Knuth’s analysis to the asymmetric case. Ultimately, we are

able to determine the spectral norm of every subspace matrix

Jn,m,`ψ and in particular its normalized version J
n,m,`

ψ . We

prove that

‖Jn,m,`ψ ‖ = max
s=0,1,...,min{m,`}

∣∣∣∣∣∣

min{m,`}∑

r=0

ψ(r)Λ
n,m,`

r (s)

∣∣∣∣∣∣

1/2

×

∣∣∣∣∣∣

min{m,`}∑

r=0

ψ(r)Λ
n,`,m

r (s)

∣∣∣∣∣∣

1/2

, (9)

where Λ
n,m,`

r and Λ
n,`,m

r are functions with algebraic and

analytic properties analogous to those of the Γn function in

our solution to the matrix rank problem. Specifically, we have:

(i) for n,m, `, s fixed, Λ
n,m,`

r (s) as a function of r ∈
{0, 1, . . . ,min{m, `}} is a polynomial in qr of degree

at most s;

(ii) |Λn,m,`

r (s)| 6 8
(
n
m

)−1

q
q−s(m−r)/2 for every integer r =

0, 1, . . . ,min{m, `}.

By swapping the roles of m and `, one obtains analogous

properties for Λ
n,`,m

r (s).
This spectral result gives us fine-grained control over the

spectrum of Jn,m,`ψ via the univariate function ψ. Our con-

struction of ψ is based on the Cauchy binomial theorem and is

conceptually similar to our univariate function ϕ in the matrix

rank problem. In particular, we use the algebraic property (i)

to bound the product in (9) for small s, and the analytic

property (ii) to bound it for large s. We further ensure that

the `1 norm of ψ is highly concentrated on {0, R}, with

ψ(0) < 0 and ψ(R) > 0. This results in a strong lower bound

in (8), which in turn leads to an optimal lower bound on the

communication complexity of F by virtue of the approximate

trace norm method.

II. PRELIMINARIES

A. General notation

We view Boolean functions as mappings X → {−1, 1},

where X is a nonempty finite set and the range elements

−1, 1 correspond to “true” and “false,” respectively. A partial

Boolean function is a mapping f : X → {−1, 1, ∗}, whose

domain is defined as dom f = {x ∈ X : f(x) 6= ∗}. Recall

that for an arbitrary function f : X → Y, the restriction of f to

a subset X ′ ⊆ X is defined to be the mapping f |X′ : X ′ → Y
given by (f |X′)(x) = f(x).

We adopt the shorthand [n] = {1, 2, . . . , n}. We use the

letters p and q throughout this manuscript to refer to a prime

number and a prime power, respectively. As usual, Fq stands

for the Galois field GF(q), the q-element field which is unique

up to isomorphism. For a given set X, the Kronecker delta δx,y
is defined for x, y ∈ X by

δx,y =

{
1 if x = y,

0 otherwise.

For a function f : X → C, we use the familiar norms ‖f‖1 =∑
x∈X |f(x)| and ‖f‖∞ = maxx∈X |f(x)|. Similarly, for a

real or complex matrix M, one defines ‖M‖1 =
∑ |Mi,j | and

‖M‖∞ = max |Mi,j |. The norms ‖v‖1 and ‖v‖∞ for a real

or complex vector v are defined analogously. The Euclidean

norm is given by ‖v‖2 =
√∑ |vi|2. We denote the base-q

logarithm of x by logq x. In the special case of the binary

logarithm, we write simply log x rather than log2 x.

B. Linear-algebraic preliminaries

Let F be a given field. We denote the set of n×m matrices

over F by F
n×m. We use the standard notation rkA, kerA,

and AT for the rank, null space, and transpose of the matrix A.
As usual, the determinant of A ∈ F

n×n is denoted detA. The

trace of a matrix A ∈ F
n×n is denoted trA and defined as the

sum of the diagonal elements of A. The commutativity of the

trace operator is often helpful: tr(AB) = tr(BA) for square

matrices A,B. We let diag(a1, a2, . . . , an) denote the diag-

onal matrix of order n with diagonal entries a1, a2, . . . , an.
Recall that In normally denotes the identity matrix of order

n, whereas I denotes the identity matrix whose order is to be

inferred from the context. We generalize the meaning of In
somewhat by defining

In = diag(1, 1, . . . 1︸ ︷︷ ︸
n

, 0, . . . 0),

where the order of the matrix (and hence the number of zeroes

on the diagonal) will be clear from the context. We let J and



1 denote the all-ones matrix and all-ones vector, respectively,

whose dimensions will be clear from the context.

Fact II.1. For square matrices A,B of order n over a given

field F,
rkAB > rkA+ rkB − n.

Proof: Recall that the dimension of kerAB is at most the

sum of the dimensions of kerA and kerB. By the rank-nullity

theorem, this is equivalent to the claimed inequality.

For F a finite field or the field of real numbers, the inner

product operation on vectors and matrices is defined as usual

by 〈x, y〉 =
∑
xiyi and 〈A,B〉 =

∑
Ai,jBi,j . For F = C,

the modified definitions 〈x, y〉 =
∑
xiyi and 〈A,B〉 =∑

Ai,jBi,j are used instead. For complex-valued functions

f, g : X → C, we write 〈f, g〉 = ∑x∈X f(x)g(x). Again for

F = C, the conjugate transpose of a matrix A = [Ai,j ]i,j is

denoted by A∗ = [Aj,i]i,j , and a matrix A ∈ C
n×n is called

unitary if A∗A = AA∗ = I. The following useful fact relates

the inner product and trace operators.

Fact II.2. Let A,B,C,D be matrices of order n over R or a

finite field. Then:

(i) 〈A,B〉 = tr(ABT) = tr(ATB),
(ii) 〈A,C1BC2〉 = 〈CT

1 AC
T

2 , B〉.
Proof: Item (i) is immediate from the definition of matrix

multiplication, whereas (ii) follows from (i) and the commuta-

tivity of the trace operator: 〈A,C1BC2〉 = tr(ACT

2 B
TCT

1 ) =
tr(CT

1 AC
T

2 B
T) = 〈CT

1 AC
T

2 , B〉.
For any field F, we let e1, e2, . . . , en denote as usual

the vectors of the standard basis for F
n. For any subset

S ⊆ F
n, recall that its span over F is denoted spanS. For

a linear subspace S, the symbols dimS and S⊥ refer as

usual to the dimension of S and the orthogonal complement

of S, respectively. For a linear transformation M, we let

M(S) = {Mx : x ∈ S} denote the image of S under

M . Recall that the sum of linear subspaces S and T is

defined as S + T = {x + y : x ∈ S, y ∈ T} and is the

smallest subspace that contains both S and T. In expressions

involving subspaces, we adopt the convention that the union

∪ and intersection ∩ operators have higher precedence than

the subspace sum operator +. For a vector space V and an

integer k, we adopt the notation S (V, k) for the set of all

subspaces of V of dimension k. For arbitrary subspaces S, T
in a finite-dimensional vector space, the following identity is

well-known, and we use it extensively in our proofs without

further mention:

dim(S + T ) = dim(S) + dim(T )− dim(S ∩ T ). (10)

This equation is one of the few instances when subspaces

behave in ways analogous to sets. Such instances are rare.

For example, unlike sets, general subspaces S, T, U need not

satisfy S ∩ (T + U) = S ∩ T + S ∩ U. The equality requires

additional hypotheses, as recorded below.

Fact II.3. For any linear subspaces S, S′, T with S′ ⊆ S,

S ∩ (S′ + T ) = S′ + S ∩ T.

Proof: It is clear that S′ + S ∩ T is a subspace of both

S and S′ + T. It remains to prove the opposite inclusion,

S ∩ (S′ + T ) ⊆ S′ + S ∩ T. For this, consider an arbitrary

vector u+v ∈ S with u ∈ S′ and v ∈ T. Then v ∈ S+u = S.
As a result, v ∈ S ∩ T and therefore u + v ∈ S′ + S ∩ T as

claimed.

We continue with a fact that relates the dimension of S∩T
to that of S⊥ ∩ T⊥.

Fact II.4. Let S, T ⊆ F
n be subspaces over a given field F.

Then

(S + T )⊥ = S⊥ ∩ T⊥, (11)

(S ∩ T )⊥ = S⊥ + T⊥. (12)

Moreover,

dim(S ∩ T )
= dim(S) + dim(T ) + dim(S⊥ ∩ T⊥)− n. (13)

Proof: To begin with,

S⊥ ∩ T⊥ = {x : 〈x, y〉 = 0 for all y ∈ S}
∩ {x : 〈x, y〉 = 0 for all y ∈ T}

= {x : 〈x, y〉 = 0 for all y ∈ S ∪ T}
= {x : 〈x, y〉 = 0 for all y ∈ S + T}
= (S + T )⊥,

where the third step uses the linearity of inner product. This

settles (11). Applying (11) to the orthogonal complements of S
and T results in (S⊥+T⊥)⊥ = S∩T, which upon orthogonal

complementation of both sides yields (12). Equation (13) is

also a straightforward consequence of (11), as follows:

dim(S⊥ ∩ T⊥) = dim((S + T )⊥)

= n− dim(S + T )

= n− dim(S)− dim(T ) + dim(S ∩ T ).
This completes the proof.

It is well-known that for a symmetric real matrix, any

pair of eigenvectors corresponding to distinct eigenvalues are

orthogonal. For completeness, we state this simple fact with a

proof below.

Fact II.5. Let M be a symmetric real matrix. Let u, v be

eigenvectors of M corresponding to different eigenvalues.

Then 〈u, v〉 = 0.

Proof: Suppose that Mu = αu and Mv = βv, where

α 6= β. Then (α− β)〈u, v〉 = 〈αu, v〉 − 〈u, βv〉 = 〈Mu, v〉 −
〈u,Mv〉 = 0, where the last step uses M =MT. This forces

〈u, v〉 = 0, as claimed.

C. Matrix norms

Associated with every matrix A ∈ C
n×m are min{n,m}

nonnegative reals that are called the singular values of A,

denoted σ1(A) > σ2(A) > · · · > σmin{n,m}(A). Every matrix

A ∈ C
n×m has a singular value decomposition A = UΣV ∗,

where U and V are unitary matrices of order n and m,



respectively, and Σ is a rectangular diagonal matrix whose

diagonal entries are σ1(A), σ2(A), . . . , σmin{n,m}(A). In the

case of real matrices A, the matrices U and V in the singular

value decomposition can be taken to be real. An alternative

characterization of the singular values is given by

Fact II.6. Let A ∈ C
n×m be given, with n 6 m. Then the

singular values of A are precisely the square roots of the

eigenvalues of AA∗, counting multiplicities.

The spectral norm, trace norm, and Frobenius norm of A
are defined in terms of the singular values as follows:

‖A‖ = σ1(A), (14)

‖A‖Σ =
∑

σi(A), (15)

‖A‖F =
√∑

σi(A)2. (16)

Equivalently,

‖A‖ = max
x:‖x‖2=1

‖Ax‖2, (17)

‖A‖F =
√∑

|Aij |2. (18)

These equations agree with (14) and (16) because the Eu-

clidean norm on vectors is invariant under unitary transforma-

tions.

Fact II.7. For any matrices A,B ∈ C
n×m,

|〈A,B〉| 6 ‖A‖ ‖B‖Σ.

Fact II.7 follows directly from (17) and the singular value

decomposition of B. We now recall a relationship between

the trace norm and Frobenius norm; see, e.g., [17, Prop. 2.4].

Fact II.8. For all matrices A and B of compatible dimensions,

‖AB‖Σ 6 ‖A‖F ‖B‖F.

Recall that a sign matrix is a real matrix with entries in

{−1, 1}. A partial sign matrix, then, is a matrix with entries

in {−1, 1, ∗}. We define the domain of a partial sign matrix

F by domF = {(i, j) : Fij 6= ∗}. The ε-approximate trace

norm of F , denoted ‖F‖Σ,ε, is the least trace norm of a real

matrix F̃ that satisfies

|Fij − F̃ij | 6 ε if Fij ∈ {−1, 1}, (19)

|F̃ij | 6 1 + ε if Fij = ∗. (20)

The following lower bound on the approximate trace norm

is well known [17], [19], [26]. For reader’s convenience, we

include a proof.

Proposition II.9. For any partial sign matrix F and ε > 0,

‖F‖Σ,ε > sup
Φ 6=0

1

‖Φ‖


 ∑

(i,j)∈domF

FijΦij − ε‖Φ‖1

−
∑

(i,j)/∈domF

|Φij |


 .

Proof: Let F̃ be a real matrix that approximates F in the

sense of (19) and (20). Then for any Φ 6= 0,

〈F̃ ,Φ〉 =
∑

domF

FijΦij +
∑

domF

(F̃ij − Fij)Φij +
∑

domF

F̃ijΦij

>
∑

domF

FijΦij −
∑

domF

|F̃ij − Fij | |Φij |

−
∑

domF

|F̃ij | |Φij |

>
∑

domF

FijΦij −
∑

domF

ε|Φij | −
∑

domF

(1 + ε)|Φij |

=
∑

domF

FijΦij − ε‖Φ‖1 −
∑

domF

|Φij |.

On the other hand, Fact II.7 shows that 〈F̃ ,Φ〉 6 ‖F̃‖Σ ‖Φ‖.

Combining these two bounds for 〈F̃ ,Φ〉 gives

‖F̃‖Σ >
1

‖Φ‖


 ∑

domF

FijΦij − ε‖Φ‖1 −
∑

domF

|Φij |


 .

Taking the supremum over Φ 6= 0 completes the proof.

D. Fourier transform

Consider a prime power q = pk, with p a prime and k a pos-

itive integer. Recall that the additive group of Fq is isomorphic

to the Abelian group Z
k
p . Fix any such isomorphism ψ. Let

ω = e2πi/p, a primitive p-th root of unity. For x ∈ Fq, define

ωx = ωx1ωx2 · · ·ωxk , where (x1, x2, . . . , xk) is the image of

x under ψ. Then for all x, y ∈ Fq,

ωx+y = ωxωy, (21)

ω−x = ωx. (22)

One further calculates
∑
x∈Fq

ωx =
∏k
i=1(1+ω+ω2+ · · ·+

ωp−1) = 0, which in turn generalizes to
∑

x∈Fq

ωax = 0, a ∈ Fq \ {0} (23)

since x 7→ ax is a permutation on Fq.
Let n be a positive integer. For A ∈ F

n×n
q , define a

corresponding character χA : Fn×nq → C by

χA(X) = ω〈A,X〉.

It follows from (21) that

χA(X + Y ) = χA(X)χA(Y ), (24)

making χA a homomorphism of the additive group F
n×n
q into

the multiplicative group of C. Using (21) and (22), one obtains

〈χA, χB〉 =
∑
X ω

〈A,X〉ω〈B,X〉 =
∑
X ω

〈A,X〉−〈B,X〉 =∑
X ω

〈A−B,X〉, which along with (23) leads to

〈χA, χB〉 =
{
qn

2

if A = B,

0 otherwise.
(25)

Hence, the characters χA for A ∈ F
n×n
q form an orthogonal

basis for the complex vector space of functions F
n×n
q → C.



In particular, every function f : Fn×nq → C has a unique

representation as a linear combination of the characters:

f(X) =
∑

A∈F
n×n
q

f̂(A)χA(X). (26)

The numbers f̂(A) are called the Fourier coefficients of f .

They are given by

f̂(A) = q−n
2〈f, χA〉 = E

X∈F
n×n
q

f(X)ω−〈A,X). (27)

where the first step is justified by (25), and the second step

uses (22). An immediate consequence of (25) and (26) is that

〈f, f〉 = qn
2 ∑

A |f̂(A)|2. This result is known as Parseval’s

identity, and it is typically written in the form

E
X∈F

n×n
q

[|f(X)|2] =
∑

A∈F
n×n
q

|f̂(A)|2. (28)

With f̂ viewed as a complex-valued function on F
n×n
q ,

the linear transformation that sends f 7→ f̂ is called the

Fourier transform. Its matrix representation is easy to describe.

Specifically, define

Hn = q−n
2/2[ω〈A,B〉]A,B ,

where the row and column indices range over all matrices in

F
n×n
q . Analogous to (25), one shows that Hn is unitary:

HnH
∗
n = H∗

nHn = I. (29)

Then the Fourier transform f 7→ f̂ , given by (27), corresponds

to the linear transformation q−n
2/2H∗

n. Analogously, the in-

verse transformation f̂ 7→ f of (26) corresponds to qn
2/2Hn.

The following well-known fact relates the singular values

of a matrix [ϕ(A + B)]A,B to the Fourier spectrum of the

outer function ϕ. We include a proof adapted from [6] and

generalized to the case of Fq .

Fact II.10 (adapted from Li et al., Lemma 20). Let ϕ :
F
n×n
q → C be given. Define

Φ = [ϕ(X + Y )]X,Y ∈F
n×n
q

.

Then

Φ = HnDHn,

where D is the diagonal matrix given by DA,A = qn
2

ϕ̂(A).

In particular, the singular values of Φ are qn
2 |ϕ̂(A)| for A ∈

F
n×n
q .

Proof: Using the homomorphic property (24) of the

characters,

ϕ(X + Y ) =
∑

A∈F
n×n
q

ϕ̂(A)χA(X + Y )

=
∑

A∈F
n×n
q

ϕ̂(A)χA(X)χA(Y ).

Restated in matrix form, this equation becomes Φ =
[χA(X)]X,A diag(. . . , ϕ̂(A), . . .) [χA(Y )]A,Y = HnDHn, as

desired.

E. Gaussian binomial coefficients

Gaussian binomial coefficients, also known as q-binomial

coefficients, are defined by
(
n

m

)

q

=
(qn − 1)(qn − q) · · · (qn − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)
(30)

=
(qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q − 1)
(31)

for all nonnegative integers n,m and real numbers q > 1.

Observe that
(
n
0

)
q
= 1 since the above product is empty for

m = 0. Note further that
(
n
m

)
q
= 0 whenever m > n. One

recovers standard binomial coefficients from this definition via

lim
q↘1

(
n

m

)

q

=

(
n

m

)
.

As a matter of convenience, one generalizes Gaussian binomial

coefficients to arbitrary integers n,m by defining
(
n

m

)

q

= 0 if min{n,m} < 0.

With this convention, one has the familiar identity
(
n

m

)

q

=

(
n

n−m

)

q

, n,m ∈ Z. (32)

Gaussian binomial coefficients play an important role in enu-

merative combinatorics. In particular, we recall the following

classical fact.

Fact II.11. Fix a prime power q and integers n > m > 0.

Then the number of m-dimensional subspaces of Fnq is exactly(
n
m

)
q
.

Proof: This result is clearly true for m = 0. For m > 1,
there are (qn − 1)(qn − q) · · · (qn − qm−1) ordered bases

(v1, v2, . . . , vm) of vectors in F
n
q . Each such basis defines

an m-dimensional subspace. Conversely, every m-dimensional

subspace has exactly (qm−1)(qm−q) · · · (qm−qm−1) ordered

bases. Thus, the number of m-dimensional subspaces is (30),

as claimed.

The following monotonicity property of q-binomial coeffi-

cients is well-known. We provide a proof for convenience.

Fact II.12. Let n > m > 0 be given integers. Then for all

integers ` ∈ [m,n−m] and reals q > 1,
(
n

m

)

q

6

(
n

`

)

q

. (33)

Proof: The defining equation (31) gives

(
n

`

)

q

=

(
n

m

)

q

·
∏̀

i=m+1

qn−i+1 − 1

qi − 1
.

If ` 6 n/2, then every fraction in the above product is

greater than 1. As a result, (33) holds in this case. In the

complementary case ` > n/2, we have n− ` ∈ [m,n/2] and

therefore (
n

m

)

q

6

(
n

n− `

)

q



by the first part of the proof. Since
(
n
n−`

)
q
=
(
n
`

)
q
, we again

arrive at (33).

We will use the next proposition to accurately estimate

Gaussian binomial coefficients.

Proposition II.13. For any set I of positive integers, and any

real number x > 2,

1

4
6
∏

i∈I

(
1− 1

xi

)
6 1.

Proof: The upper bound is trivial. For the lower bound,

we may clearly assume that I = {1, 2, 3 . . .}. A simple induc-

tive argument shows that (1−a1) · · · (1−an) > 1−a1−· · ·−an
for any a1, . . . , an ∈ (0, 1). It follows that

∞∏

i=2

(
1− 1

xi

)
> 1− 1

x2
− 1

x3
− . . . = 1− 1

x(x− 1)

and therefore
∞∏

i=1

(
1− 1

xi

)
>

(
1− 1

x

)(
1− 1

x(x− 1)

)
>

1

4
,

where the last step uses x > 2.

Corollary II.14. For any integers n > m > 0 and any real

number q > 2,

qm(n−m)
6

(
n

m

)

q

6 4qm(n−m).

Proof: The lower bound follows directly from the fact

that (qn − qi)/(qm − qi) > qn/qm for n > m. The upper

bound can be verified as follows:(
n

m

)

q

=
(qn − 1)(qn − q) . . . (qn − qm−1)

(qm − 1)(qm − q) . . . (qm − qm−1)

6
qnm

qm2
∏m
i=1(1− q−i)

6 4qm(n−m),

where the last step applies Proposition II.13.

We now recall a classical result known as the Cauchy

binomial theorem, see, e.g., [20, eqn. (1.87)].

Fact II.15. For any integer n > 1 and real number q > 1,
the following identity holds in R[t]:

(1 + t)(1 + qt) . . . (1 + qn−1t) =

n∑

i=0

q(
i
2)
(
n

i

)

q

ti. (34)

Corollary II.16. For any integer n > 1 and real number

q > 1, and any real polynomial g of degree less than n,

n∑

i=0

(−1)iq(
i
2)
(
n

i

)

q

g(q−i) = 0. (35)

Proof: For d = 0, 1, . . . , n − 1, take t = −1/qd in (34)

to obtain
n∑

i=0

(−1)iq(
i
2)
(
n

i

)

q

(q−i)d = 0. (36)

This establishes (35) when g is a monomial of degree less than

n. The general case follows by linearity: multiply (36) by the

degree-d coefficient in g and sum over d.

F. Counting and generating matrices of given rank

For a field F, we let M F,n,m
r denote the set of matrices in

F
n×m of rank r. Since we mostly use F = Fq in this work, we

will usually omit the reference to the field and write simply

M n,m
r . As a matter of convenience, we adopt the convention

that for any n > 0 there is exactly one “matrix” of size 0×n
and exactly one “matrix” of size n × 0, both of rank 0. The

role of these empty matrices is to ensure that

|M 0,n
0 | = |M n,0

0 | = 1, n > 0,

which simplifies the statement of several lemmas in this paper.

Analogously, we define

M
n,m
r = ∅ if min{n,m, r} < 0. (37)

For nonsingular matrices of order n > 1, we adopt the

shorthand Mn = M n,n
n .

Proposition II.17. Let n,m, r be nonnegative integers with

r 6 min{n,m}. Then

|M n,m
r | =

(
n

r

)

q

(qm − 1)(qm − q) . . . (qm − qr−1). (38)

Proof: If r = 0, then the right-hand side of (38) evaluates

to 1. This is consistent with our convention that |M n,m
0 | = 1

for all n,m > 0.
We now consider the complementary case r > 1, which

forces n and m to be positive. Fix an arbitrary r-dimensional

subspace S ⊆ F
n
q and consider the subset MS ⊆ M n,m

r of

matrices whose column space is S. Fix an n × r matrix A
with column space S. Since the columns of A are linearly

independent, every matrix in MS has a unique representation

of the form AB for some B ∈ M r,m
r . Conversely, any product

AB with B ∈ M r,m
r is a matrix in MS . Therefore,

|MS | = |M r,m
r |. (39)

Recall that M n,m
r is the disjoint union of MS over r-

dimensional subspaces S ⊆ F
n
q , and there are precisely

(
n
r

)
q

such subspaces (Fact II.11). With this in mind, (39) leads to

|M n,m
r | =

(
n

r

)

q

|M r,m
r |. (40)

Finally, the number of r ×m matrices of rank r is precisely

the number of bases (v1, v2, . . . , vr) of row vectors in F
m
q ,

whence |M r,m
r | = (qm−1)(qm− q) · · · (qm− qr−1). Making

this substitution in (40) completes the proof.

Using Proposition II.13 and Corollary II.14 to estimate the

right-hand side of (38), we obtain:

Corollary II.18. Let m,n, r be nonnegative integers with r 6
min{n,m}. Then

1

4
qr(n+m−r)

6 |M n,m
r | 6 4qr(n+m−r).



The following fact is well-known; cf. [6].

Proposition II.19. Let n > 1 be a given integer. Let X,Y be

random matrices distributed independently and uniformly on

Mn. Then:

(i) for any fixed A ∈ Mn, the matrices XA and AX are

distributed uniformly on Mn;
(ii) for any r ∈ {0, 1, . . . , n} and fixed A ∈ M n,n

r , the matrix

XAY is distributed uniformly on M n,n
r .

Proof: (i) For any B ∈ Mn, we have P[XA = B] =
P[X = BA−1] = 1/|Mn|. Therefore, XA is distributed

uniformly on Mn. The argument for AX is analogous.

(ii) Fix B ∈ M n,n
r arbitrarily. Then B can be obtained from

A by a series of elementary row and column operations, so

that B =M1AM2 for nonsingular M1,M2. As a result,

P[XAY = B] = P[M−1
1 XAYM−1

2 = A]

= P[XAYM−1
2 = A]

= P[XAY = A],

where the last two steps are valid by part (i). To summarize,

XAY takes on every value in M n,n
r with the same probability.

Since XAY ∈ M n,n
r , the proof is complete.

G. Random projections

Given a collection of subspaces S1, S2, . . . , Sm in a vector

space, we use random projections to reduce the dimension

of the ambient space while preserving algebraic relation-

ships among the Si. This is done by choosing a uniformly

random matrix X and replacing S1, S2, . . . , Sm with the

subspaces X(S1), X(S2), . . . , X(Sm), respectively. The fol-

lowing lemma provides quantitative details.

Lemma II.20. Let n and d be positive integers, F a finite

field with |F| = q elements, and S ⊆ F
n a subspace. Then for

every integer t 6 min{dim(S), d},
P

X∈Fd×n
[dim(X(S)) 6 t] 6 4q−(dim(S)−t)(d−t). (41)

In particular, for every integer T 6 min{dim(S), d},

E
X∈Fd×n

qT−min{T,dim(X(S))}

6 1 + 8q−(dim(S)−T+1)(d−T+1)+1. (42)

Proof: Equations (41) and (42) hold trivially for negative

t and T, respectively. As a result, we may assume that t > 0
and T > 0. Abbreviate k = dim(S). Fix a basis v1, v2, . . . , vk
for S and extend it to a basis v1, v2, . . . , vn for F

n. Let A ∈
F
n×n be the unique matrix such that Avi = ei for each i =

1, 2, . . . , n. In particular, A(S) = span{e1, e2, . . . , ek}. Now,

let X ∈ F
d×n be uniformly random. Then the rows of XA

are independent random variables, each a uniformly random

linear combination of the rows of A. Since A is nonsingular

of order n, it follows that the rows of XA are independent

random vectors in F
n. Put another way, XA ∈ F

d×n has the

same distribution as X . As a result,

P[dim(X(S)) 6 t]

= P[dim(XA(S)) 6 t]

= P[dim(X(A(S))) 6 t]

= P[dim(span{Xe1, Xe2, . . . , Xek}) 6 t]

= P[∃B ∈ S (Fd, t) such that Xe1, Xe2, . . . , Xek ∈ B]

6
∑

B∈S (Fd,t)

P[Xe1, Xe2, . . . , Xek ∈ B], (43)

where the third step uses A(S) = span{e1, e2, . . . , ek}, and

the last step applies a union bound. Now

P[dim(X(S)) 6 t] 6
∑

S (Fd,t)

(
qt

qd

)k

=

(
d

t

)

q

q−k(d−t)

6 4qt(d−t)q−k(d−t)

= 4q−(k−t)(d−t),

where the first step is justified by (43) and the fact that

Xe1, Xe2, . . . , Xek are independent and uniformly random

vectors in F
d; the second step applies Fact II.11; and the third

step uses Corollary II.14. This settles (41). Now (42) can be

verified as follows:

E qT−min{T,dim(X(S))}

6 1 +

T−1∑

t=0

qT−t
P[dim(X(S)) = t]

6 1 +

T−1∑

t=0

qT−t · 4q−(k−t)(d−t)

= 1 +

T∑

t=1

qt · 4q−(k−T+t)(d−T+t)

= 1 +

T∑

t=1

qt · 4q−(k−T+1)(d−T+1)−(t−1)(d+k+t−2T+1)

6 1 +

∞∑

t=1

qt · 4q−(k−T+1)(d−T+1)−(t2−1)

6 1 + 4q−(k−T+1)(d−T+1)+1 · q

q − 1

6 1 + 8q−(k−T+1)(d−T+1)+1,

where the third step is a change of variable, the next-to-last

step bounds the series by a geometric series, and the last step

is valid due to q > 2.

The previous lemma gives an analogous results for matrices:

Lemma II.21. Let n,m, d be positive integers, F a finite field

with |F| = q elements, and M ∈ F
n×m a given matrix. Then

for every integer t 6 min{rkM,d}:
(i) P[rk(XM) 6 t] 6 4q−(rk(M)−t)(d−t) for a uniformly

random matrix X ∈ F
d×n;

(ii) P[rk(MY ) 6 t] 6 4q−(rk(M)−t)(d−t) for a uniformly

random matrix Y ∈ F
m×d.



Proof: Let S be the column span of M. Then rk(XM) =
dim(X(S)), and (i) follows from Lemma II.20. For (ii),

rewrite the probability of interest as P[rk(Y TMT) 6 t] and

apply (i).

H. Communication complexity

An excellent reference on communication complexity is the

monograph by Kushilevitz and Nisan [27]. In this overview, we

will limit ourselves to key definitions and notation. The public-

coin randomized model, due to Yao [1], features two players

Alice and Bob and a (possibly partial) Boolean function

F : X×Y → {−1, 1, ∗} for finite sets X and Y. Alice is given

as input an element x ∈ X, Bob is given y ∈ Y , and their

objective is to evaluate F (x, y). To this end, Alice and Bob

communicate by sending bits according to a protocol agreed

upon in advance. Moreover, they have an unlimited supply

of shared random bits which they can use when deciding

what message to send at any given point in the protocol.

An ε-error protocol for F is one which, on every input

(x, y) ∈ domF, produces the correct answer F (x, y) with

probability at least 1 − ε. The protocol’s behavior on inputs

outside domF can be arbitrary. The cost of a protocol is

the total bit length of the messages exchanged by Alice and

Bob in the worst-case execution of the protocol. The ε-error

randomized communication complexity of F, denoted Rε(F ),
is the least cost of an ε-error randomized protocol for F . The

standard setting of the error parameter is ε = 1/3, which

can be replaced by any other constant in (0, 1/2) with only a

constant-factor change in communication cost.

A far-reaching generalization of the randomized model is

Yao’s quantum model [2], where Alice and Bob exchange

quantum messages. As before, their objective is to evaluate

a fixed function F : X × Y → {−1, 1, ∗} on any given input

pair (x, y), where Alice receives as input x and Bob receives

y. We allow arbitrary prior entanglement at the start of the

communication, which is the quantum analogue of shared ran-

domness. A measurement at the end of the protocol produces a

one-bit answer, which is interpreted as the protocol output. An

ε-error protocol for F is required to output, on every input

(x, y) ∈ domF, the correct value F (x, y) with probability

at least 1 − ε. As before, the protocol can exhibit arbitrary

behavior on inputs outside domF . The cost of a quantum

protocol is the total number of quantum bits exchanged in

the worst-case execution. The ε-error quantum communication

complexity of F , denoted Q∗
ε(F ), is the least cost of an ε-error

quantum protocol for F. The asterisk in Q∗
ε(F ) indicates that

the parties can share arbitrary prior entanglement. As before,

the standard setting of the error parameter is ε = 1/3. For

a detailed formal description of the quantum model, we refer

the reader to [15], [17], [28]. For any protocol Π, quantum

or otherwise, we write cost(Π) for the communication cost of

Π.
The following theorem, due to Linial and Shraibman [16,

Lem. 10], states that the matrix of the acceptance proba-

bilities of a quantum protocol has an efficient factorization

with respect to the Frobenius norm. Closely analogous state-

ments were established earlier by Yao [2], Kremer [14], and

Razborov [15].

Theorem II.22. Let X,Y be finite sets. Let P be a quantum

protocol (with or without prior entanglement) with cost C
qubits and input sets X and Y. Then

[
P[P (x, y) = 1]

]
x∈X,y∈Y

= AB

for some real matrices A,B with ‖A‖F 6 2C
√

|X| and

‖B‖F 6 2C
√
|Y |.

Theorem II.22 provides a transition from quantum protocols to

matrix factorization, which is by now a standard technique that

has been used by various authors in various contexts. Among

other things, Theorem II.22 gives the following approximate

trace norm method for quantum lower bounds; see, e.g., [15,

Thm. 5.5]. For the reader’s convenience, we state and prove

this result in the generality that we require.

Theorem II.23 (Approximate trace norm method). Let

F : X × Y → {−1, 1, ∗} be a (possibly partial) communi-

cation problem. Then

4Q
∗
ε(F )

>
‖M‖Σ,2ε
3
√
|X| |Y |

,

where M = [F (x, y)]x∈X,y∈Y is the characteristic matrix of

F.

Proof: Let P be a quantum protocol with prior entangle-

ment that computes F with error ε and cost C. Put

Π =
[
P[P (x, y) = 1]

]
x∈X, y∈Y

.

Then the matrix M̃ = 2Π − J satisfies |M̃x,y| 6 1 for all

(x, y) ∈ X × Y and |Mx,y − M̃x,y| 6 2ε for all (x, y) ∈
domM . In particular,

‖M‖Σ,2ε 6 ‖M̃‖Σ. (44)

On the other hand, Theorem II.22 guarantees the existence

of matrices A and B with AB = Π and ‖A‖F ‖B‖F 6

4C
√
|X| |Y |. Therefore,

‖M̃‖Σ = ‖2AB − J‖Σ
6 2‖AB‖Σ + ‖J‖Σ
6 2‖A‖F‖B‖F + ‖J‖Σ
6 2 · 4C

√
|X| |Y |+ ‖J‖Σ

= 2 · 4C
√

|X| |Y |+
√

|X| |Y |, (45)

where the third step uses Fact II.8. Equations (44) and (45)

give ‖M‖Σ,2ε 6 (2 · 4C + 1)
√
|X| |Y |, which implies the

claimed lower bound on 4C .
A distinguisher for a communication problem F : X×Y →

{−1, 1, ∗} is a communication protocol Π for which the

expected output on every input in F−1(−1) is less than the

expected output on every input in F−1(1). We will use the

following proposition to convert any distinguisher for F into

a communication protocol that computes F .



Proposition II.24. Let F : X×Y → {−1, 1, ∗} be a (possibly

partial) communication problem. Suppose that Π is a cost-c
randomized protocol with output ±1 such that

E[Π(x, y)] 6 α for all (x, y) ∈ F−1(−1), (46)

E[Π(x, y)] > β for all (x, y) ∈ F−1(1), (47)

where α, β are reals with −1 6 α 6 β 6 1. Then

R 1
2−

1
8 (β−α)

(F ) 6 c.

Proof: For a real number t, define s̃gn t to be 1 if t > 0
and −1 if t < 0. Set p = |α+β|/(2+|α+β|) and consider the

following randomized protocol Π′ with input (x, y) ∈ X×Y :

with probability p, Alice and Bob output − s̃gn(α+β) without

any communication; with the complementary probability 1−p,

they execute the original protocol Π on (x, y) and output its

answer. Clearly, Π′ has the same cost as Π. On every (x, y) ∈
F−1(−1),

E[Π′(x, y)] 6 −p s̃gn(α+ β) + (1− p)α

=
−(α+ β) + 2α

2 + |α+ β|

=
α− β

2 + |α+ β|

6 −β − α

4
,

where the first step uses (46), and the last step uses −1 6

α 6 β 6 1. Analogously, on every (x, y) ∈ F−1(1),

E[Π′(x, y)] > −p s̃gn(α+ β) + (1− p)β

=
−(α+ β) + 2β

2 + |α+ β|

=
β − α

2 + |α+ β|

>
β − α

4
,

where the first step uses (47). We have shown that

E[Π′(x, y)F (x, y)] > (β−α)/4 on the domain of F, which is

another way of saying that Π′ computes F with error at most
1
2 − 1

8 (β − α).

I. Communication problems defined

Let F be a given field. For nonnegative integers n,m, r
with r 6 min{n,m}, the rank problem is the communication

problem in which Alice and Bob are given matrices A,B ∈
F
n×m, respectively, and their objective is to determine whether

rk(A + B) 6 r. Formally, this problem corresponds to the

Boolean function RANKF,n,m
r : Fn×m × F

n×m → {−1, 1}
given by

RANKF,n,m
r (A+B) = −1 ⇔ rk(A+B) 6 r.

We also study the corresponding partial problem RANKF,n,m
r,R

for nonnegative integers n,m, r,R with r < R 6 min{n,m},

defined on F
n×m × F

n×m by

RANKF,n,m
r,R (A,B) =





−1 if rk(A+B) = r,

1 if rk(A+B) = R,

∗ otherwise.

For a positive integer n and a pair of distinct field elements

a, b ∈ F, the determinant problem DETF,n
a,b : F

n×n×F
n×n →

{−1, 1, ∗} is given by

DETF,n
a,b (A,B) =





−1 if det(A+B) = a,

1 if det(A+B) = b,

∗ otherwise.

The rank versus determinant problem is a hybrid inspired by

the previous two problems. Specifically, for a number r ∈
{0, 1, . . . , n− 1} and a nonzero field element a ∈ F \ {0}, we

define RANKDETF,n
r,a : F

n×n × F
n×n → {−1, 1, ∗} by

RANKDETF,n
r,a (A,B) =





−1 if rk(A+B) = r,

1 if det(A+B) = a,

∗ otherwise.

Note that RANKDETF,n
r,a is a subproblem of both RANKF,n,n

r,n

and DETF,n
0,a , in the sense that the domain of RANKDETF,n

r,a

is a subset of the domain of each of these other two problems

and it agrees on its domain with those problems.

Consider now the setting where Alice is given an m-

dimensional subspace S ⊆ F
n and Bob is given an `-

dimensional subspace T ⊆ F
n, for some nonnegative integers

n,m, ` with max{m, `} 6 n. In the subspace intersection

problem with parameter d, Alice and Bob need to determine

whether S ∩ T has dimension at least d. In the subspace

sum problem, they need to determine whether S + T has

dimension at most d. Formally, these problems correspond to

the Boolean functions INTERSECTF,n,m,`
d and SUMF,n,m,`

d

that are defined on S (Fn,m)× S (Fn, `) by

INTERSECTF,n,m,`
d (S, T ) = −1 ⇔ dim(S ∩ T ) > d,

SUMF,n,m,`
d (S, T ) = −1 ⇔ dim(S + T ) 6 d.

Their partial counterparts INTERSECTF,n,m,`
d1,d2

and

SUMF,n,m,`
d1,d2

, for any pair of distinct integers d1, d2, are

defined on S (Fn,m)× S (Fn, `) by

INTERSECTF,n,m,`
d1,d2

(S, T ) =





−1 if dim(S ∩ T ) = d1,

1 if dim(S ∩ T ) = d2,

∗ otherwise,

SUMF,n,m,`
d1,d2

(S, T ) =





−1 if dim(S + T ) = d1,

1 if dim(S + T ) = d2,

∗ otherwise.

These partial functions are well-defined for any d1, d2 with

d1 6= d2. Their communication complexity, however, is

zero unless both d1 and d2 have meaningful values for the

problem in question. Specifically, one must have d1, d2 ∈
[max{m, `},min{m + `, n}] for the subspace sum problem

and d1, d2 ∈ [max{0,m + ` − n},min{m, `}] for the sub-

space intersection problem. We record this simple fact as a

proposition below.



Proposition II.25. Let F be a field. Let n,m, ` be nonnegative

integers with max{m, `} 6 n. Then:

(i) there exist S ∈ S (Fn,m) and T ∈ S (Fn, `) with

dim(S + T ) = d if and only if d is an integer with

max{m, `} 6 d 6 min{m+ `, n};
(ii) there exist S ∈ S (Fn,m) and T ∈ S (Fn, `) with

dim(S ∩ T ) = d if and only if d is an integer with

max{0,m+ `− n} 6 d 6 min{m, `}.
Proof: (i) For any subspaces S, T ⊆ F

n, we have the

trivial bounds max{dim(S), dim(T )} 6 dim(S + T ) 6

min{dim(S) + dim(T ), n}. This proves the “only if” part

of (i). For the converse, let d be any integer with max{m, `} 6

d 6 min{m + `, n}. Then the sets A = {1, 2, . . . ,m} and

B = {d − ` + 1, . . . , d − 1, d} satisfy A,B ⊆ {1, 2, . . . , n}
(because ` 6 d 6 n) and A ∪ B = {1, 2, . . . , d} (because

m 6 d 6 m + `). As a result, span{e1, e2, . . . , em} and

span{ed−`+1, . . . , ed−1, ed} are a pair of subspaces in F
n of

dimension m and `, respectively, whose sum has dimension

d.
(ii) Recall that dim(S∩T ) = dim(S)+dim(T )−dim(S+

T ) for any subspaces S, T . As a result,

{dim(S ∩ T ) : S ∈ S (Fn,m), T ∈ S (Fn, `)}
= {m+ `− dim(S + T ) : S ∈ S (Fn,m), T ∈ S (Fn, `)}
= {m+ `− d : d ∈ Z, max{m, `} 6 d 6 min{m+ `, n}}
= {max{0,m+ `− n}, . . . ,min{m, `} − 1,min{m, `}},

where the second step uses (i).

Let F : X × Y → {−1, 1, ∗} and F ′ : X ′ × Y ′ →
{−1, 1, ∗} be (possibly partial) communication problems. A

communication-free reduction from F to F ′ is a pair of

mappings α : X → X ′ and β : Y → Y ′ such that F (x, y) =
F ′(α(x), β(y)) for all (x, y) ∈ domF. We indicate the

existence of a communication-free reduction from F to F ′ by

writing F ′ � F . In this case, it is clear that the communication

complexity of F ′ in any given model is bounded from below

by the communication complexity of F in the same model.

Proposition II.26. Let n,m, `, r, R be integers with 0 6 r <
R 6 min{m, `} and max{m, `} 6 n. Then

INTERSECTF,n,m,`
r,R � INTERSECTF,n−r,m−r,`−r

0,R−r .

Proof: Consider the injective linear map ϕ : Fn−r → F
n

that takes any vector and extends it with r zero components

to obtain a vector in F
n. Given arbitrary subspaces S, T ⊆

F
n−r of dimension m− r and `− r, respectively, define S′ =

span(ϕ(S)∪{en−r+1, . . . , en−1, en}) and T ′ = span(ϕ(T )∪
{en−r+1, . . . , en−1, en}). Then clearly

dim(S′∩T ′)

= dim(S′) + dim(T ′)− dim(S′ + T ′)

= dim(S) + r + dim(T ) + r − dim(S + T )− r

= dim(S) + dim(T )− dim(S + T ) + r

= dim(S ∩ T ) + r,

whence the reduction INTERSECTF,n−r,m−r,`−r
0,R−r (S, T ) =

INTERSECTF,n,m,`
r,R (S′, T ′).

III. THE MATRIX RANK PROBLEM

In this section, we prove a tight lower bound on the

randomized and quantum communication complexity of the

rank problem. As discussed in the introduction, we obtain

this lower bound by constructing a dual matrix Φ with certain

properties, namely, low spectral norm, low `1 norm, and high

correlation with the characteristic matrix of the rank problem.

We start in Section III-A by analyzing the probabilities Pn
that arise in the recurrence relation for the Γn function. The

latter plays an important role in our proof and is studied in

Section III-B. Section III-C constructs a univariate dual object

ϕ defined on {0, 1, . . . , n} and studies its analytic and metric

properties. We build on ϕ to construct a dual matrix Eϕ in

Section III-D, and discuss how the properties of ϕ give rise to

analogous properties of Eϕ. Sections III-E and III-F establish

lower bounds for the approximate trace norm of the charac-

teristic matrix and the communication complexity of the rank

problem, with Φ = Eϕ used as the dual witness. We prove

a matching communication upper bound in Section III-G.

Section III-H concludes our study of the rank problem with

an application to streaming complexity.

Throughout this section, the underlying field is Fq for an

arbitrary prime power q. The root of unity ω and the notation

ωx for x ∈ Fq are as defined in Section II-D.

A. The Pn function

The Pn function, defined next, conveys useful information

about random nonsingular matrices of order n over a given

field.

Definition III.1. Let n > 1 be a given integer. For nonnegative

integers s, t, r ∈ {0, 1, . . . , n}, define Pn(s, t, r) to be the

probability that the upper-left s × t quadrant of a uniformly

random nonsingular matrix in F
n×n
q has rank r:

Pn(s, t, r) = P
X∈Mn

[rk(IsXIt) = r]. (48)

To derive a closed-form expression for Pn, we essentially

need to count the number of ways to complete a given s × t
matrix of rank r to a nonsingular matrix of order n. We break

this counting task into two steps, where the first step is to

count the number of completions of an s× t matrix of rank r
to an s× n matrix of rank s.

Lemma III.2. Let s, t, r,m be nonnegative integers with

r 6 min{s, t}. Let A ∈ M s,t
r be given. Then the number

of matrices B ∈ F
s×m
q for which rk

[
A B

]
= s is

qrm |M s−r,m
s−r |.

Proof: If r = 0, then rk
[
A B

]
= rkB. As a result,

rk
[
A B

]
= s if and only if B ∈ M s,m

s . Therefore, the

lemma holds in this case. In what follows, we consider r > 1,
which forces s and t to be positive integers.

Define the matrices A′ and A′′ to be the top r rows of A
and the bottom s−r rows of A, respectively. We first consider



the possibility when A′′ is zero or empty. Here, the column

span of A′ is necessarily all of Frq. Given an s×m matrix B,
partition it into B′ and B′′ conformably with the partition of

A. Then

rk
[
A B

]
= rk

[
A′ B′

0 B′′

]

= rk

[
A′ 0
0 B′′

]

= rk(A′) + rk(B′′)

= r + rk(B′′).

Thus,
[
A B

]
has rank s if and only if rk(B′′) = s − r.

This means that there are |M s−r,m
s−r | ways to choose B′′, and

independently qrm ways to choose B′, such that rk
[
A B

]
=

s.
It remains to examine the case of a general matrix A of rank

r > 1. Let V be an invertible matrix such that the bottom s−r
rows of V A are zero. Let M be the set of s × m matrices

M for which rk
[
V A M

]
= s. Then rk

[
A B

]
= s if and

only if V B ∈ M . In particular, the number of matrices B for

which rk
[
A B

]
= s is |M |. Since |M | = qrm |M s−r,m

s−r |
by the previous paragraph, we are done.

We now derive an exact expression for Pn and establish its

relevant algebraic and analytic properties.

Lemma III.3. Let n > 1 be a given integer. Then for all

s, t, r ∈ {0, 1, . . . , n}:

(i) Pn(s, t, r) = 0 if r > min{s, t} or r < s+ t− n;

(ii) Pn(s, t, r) = qr(n−t)|M s,t
r | |M s−r,n−t

s−r |/((qn − 1)(qn −
q) · · · (qn − qs−1));

(iii) for any fixed values of n, s, r, the quantity Pn(s, t, r) as

a function of t ∈ {0, 1, . . . , n} is a polynomial in q−t of

degree at most s;
(iv) Pn(s, t, r) 6 16q−(s−r)(t−r).

Proof: (i) Since the quadrant of interest is an s×t matrix,

the first inequality is trivial. For the second inequality, observe

that the matrix IsXIt in the defining equation (48) satisfies

rk(IsXIt) > rk Is + rk(XIt)− n = s+ t− n by Fact II.1.

(ii) If r > min{s, t}, then the left-hand side and right-hand

side of (ii) both vanish due to (i) and the definition of M s,t
r .

We now treat the case r 6 min{s, t}. Letting M stand for the

set of nonsingular matrices of order n whose upper-left s× t
quadrant has rank r, we have

Pn(s, t, r) =
|M |
|Mn|

. (49)

A matrix in M can be chosen by the following three-step

process: choose a matrix in M s,t
r for the upper-left quadrant;

extend the quadrant to a matrix in M s,n
s , which by Lemma

III.2 can be done in qr(n−t) |M s−r,n−t
s−r | ways; and finally add

n− s rows to obtain an invertible matrix, which can be done

in (qn− qs)(qn− qs+1) · · · (qn− qn−1) ways. Altogether, we

obtain

|M | = |M s,t
r | · qr(n−t) |M s−r,n−t

s−r |

× (qn − qs)(qn − qs+1) · · · (qn − qn−1),

whereas Proposition II.17 gives

|Mn| = (qn − 1)(qn − q) · · · (qn − qn−1).

Making these substitutions in (49) completes the proof.

(iii) We claim that for all s, t, r ∈ {0, 1, . . . , n},

Pn(s, t, r) = qr(n−t)
(
s

r

)

q

(qt − 1)(qt − q) · · · (qt − qr−1)

× (qn−t − 1)(qn−t − q) · · · (qn−t − qs−r−1)

(qn − 1)(qn − q) · · · (qn − qs−1)
. (50)

Indeed, in the case when r > min{s, t} or r < s + t − n,
the right-hand side vanishes and therefore the equality holds

due to (i). In the complementary case, Proposition II.17 gives

closed-form expressions for |M s,t
r | and |M s−r,n−t

s−r | which,

when substituted in (ii), result in (50). This settles (50) for all

s, t, r ∈ {0, 1, . . . , n}.
Rewrite (50) to obtain

Pn(s, t, r) = qrn
(
s

r

)

q

(1−q−t)(1−q−t+1) · · · (1−q−t+r−1)

× (qn−t − 1)(qn−t − q) · · · (qn−t − qs−r−1)

(qn − 1)(qn − q) · · · (qn − qs−1)
. (51)

Now, fix n, s, r arbitrarily. If r 6 s, then (51) makes it clear

that Pn(s, t, r) is a polynomial in q−t of degree at most r +
(s− r) = s. If r > s, then Pn(s, t, r) is identically zero and

thus trivially a polynomial in q−t of degree at most s.
(iv) For r > s, we have Pn(s, t, r) = 0 by (i) and therefore

the claimed upper bound holds trivially. In the complementary

case, simplify (50) to obtain

Pn(s, t, r)

6 qr(n−t)
(
s

r

)

q

qtr · q(n−t)(s−r)

(qn − 1)(qn − q) · · · (qn − qs−1)

6 qr(n−t)
(
s

r

)

q

qtr · 4q(n−t)(s−r)q−ns

6 qr(n−t) · 4qr(s−r)qtr · 4q(n−t)(s−r)q−ns

= 16q−(s−r)(t−r),

where the second and third steps apply Proposition II.13

and Corollary II.14, respectively.

B. The Γn function

A basic building block in our construction is the character-

istic function of matrices in F
n×n
q of a given rank. Its Fourier

spectrum is best understood in terms of what we call the Γn
function.

Definition III.4. Let n > 1 be a given integer. For s, t ∈
{0, 1, . . . , n}, define

Γn(s, t) = E
rkA=s
rkB=t

ω〈A,B〉,

where the expectation is taken with respect to the uniform

distribution on M n,n
s × M

n,n
t .



Sun and Wang [5] studied the Fourier spectrum of the non-

singularity function on F
n×n
q , defined to be 1 on nonsingular

matrices and 0 otherwise. In our notation, they established the

following result.

Lemma III.5. For any integers n > 1 and r ∈ {0, 1, . . . , n},

Γn(n, r) =
(−1)rq(

r
2)

(qn − 1)(qn − q) · · · (qn − qr−1)
.

The proof of Sun and Wang [5] is stated for fields Fp

with prime p, but their analysis readily extends to fields of

cardinality a prime power. In the full version of this paper [29],

we prove Lemma III.5 from scratch in our desired generality,

using a simpler proof than that of [5].

Our next lemma collects crucial properties of Γn(s, t) for

general values of s, t.

Lemma III.6. Let n > 1 be a given integer. Then for all

s, t ∈ {0, 1, . . . , n}:
(i) |Γn(s, t)| 6 1;

(ii) Γn(s, t) = Γn(t, s);
(iii) Γn(s, t) =

∑n
r=0 Pn(s, t, r)Γn(n, r);

(iv) for n, s fixed, Γn(s, t) as a function of t ∈ {0, 1, . . . , n}
is a polynomial in q−t of degree at most s;

(v) |Γn(s, t)| 6 128q−st/2.

Proof: (i) Using |ω| = 1 and the triangle inequality,

|Γn(s, t)| =
∣∣∣∣ EA,B ω

〈A,B〉

∣∣∣∣ 6 E
A,B

∣∣∣ω〈A,B〉
∣∣∣ = 1.

(ii) The symmetry of Γn follows from the independence of

A and B in the defining equation for Γn, and the symmetry

of the inner product over Fq .

(iii) We have:

Γn(s, t)

= E
A∈M

n,n
s

B∈M
n,n
t

ω〈A,B〉

= E
X,Y,Z1,Z2,W∈Mn

ω〈XIsY,Z1Z2ItW 〉

= E
X,Y,Z1,Z2,W∈Mn

ω〈XIsYW
TItZ

T

2 ,Z1〉

= E
X,U,Z1,Z2∈Mn

ω〈X(IsUIt)Z
T

2 ,Z1〉

=

n∑

r=0

P
U∈Mn

[rk(IsUIt) = r]

× E
X,U,Z1,Z2∈Mn

[
ω〈X(IsUIt)Z

T

2 ,Z1〉 | rk(IsUIt) = r
]

=
n∑

r=0

P
U∈Mn

[rk(IsUIt) = r] E
B∈M

n,n
r

Z1∈Mn

ω〈B,Z1〉

=
n∑

r=0

Pn(s, t, r)Γn(n, r),

where the first step restates the definition of Γn, the second

step uses Proposition II.19, the third step applies Fact II.2(ii),

the fourth and sixth steps again use Proposition II.19, and the

last step is immediate from the definitions of Pn and Γn.

(iv) Immediate from (iii) and Lemma III.3(iii).

(v) We have:

|Γn(s, t)| =
∣∣∣∣∣
n∑

r=0

Pn(s, t, r)Γn(n, r)

∣∣∣∣∣

6

n∑

r=0

Pn(s, t, r)|Γn(n, r)|

=
n∑

r=max{0,s+t−n}

Pn(s, t, r) |Γn(n, r)|

6

n∑

r=max{0,s+t−n}

16q−(s−r)(t−r)

× q(
r
2)

(qn − 1)(qn − q) · · · (qn − qr−1)

6

n∑

r=max{0,s+t−n}

64q−(s−r)(t−r)+(r2)−nr

6 128q−st/2,

where the first step appeals to (iii), the third step is valid

by Lemma III.3(i), the fourth step uses Lemma III.3(iv) and

Lemma III.5, the fifth step applies Proposition II.13, and the

last step which completes the proof is justified by the following

claim.

Claim III.7. For any integers n > 1 and s, t ∈ {0, 1, . . . , n},

∞∑

r=max{0,s+t−n}

q−(s−r)(t−r)+(r2)−nr 6 2q−st/2. (52)

Proof: The exponent of q on the left-hand side of (52) is

given by the function

A(r) = −(s− r)(t− r) +

(
r

2

)
− nr (53)

= −st− 1

2

(
r + n− s− t+

1

2

)2

+
1

2

(
n− s− t+

1

2

)2

. (54)

The first equality shows that A(r) is always an integer,

whereas the second shows that A(r) is a strictly decreasing

function in the variable r ∈ [max{0, s + t − n},∞). These

two facts lead to

A(max{0, s+ t− n}+ i) 6 A(max{0, s+ t− n})− i,

i = 0, 1, 2, . . . . (55)

We will now prove that

A(max{0, s+ t− n}) 6 −st
2
. (56)

There are two cases to consider. If s + t 6 n, then

A(max{0, s+t−n}) = A(0) = −st and therefore (56) holds.



The complementary case s + t > n + 1 is more challenging.

Here, we have

A(max{0, s+ t− n}) = A(s+ t− n)

6 −st+ 1

2

(
n− s− t+

1

2

)2

,

where the second step uses (54). Thus, the proof of (56) will

be complete once we show that
(
n− s− t+

1

2

)2

− st 6 0. (57)

To prove (57), suppose that of all pairs (s, t) ∈ {0, 1, . . . , n}2
with s+ t > n+1, the left-hand side of (57) is maximized at

a pair (s∗, t∗). By symmetry, we may assume that s∗ 6 t∗. If

we had t∗ 6 n−1, then it would follow that s∗ > 2 (due to the

requirement that s∗+t∗ > n+1); as a result, the left-hand side

of (57) would be larger for the pair (s, t) = (s∗−1, t∗+1) than

it is for the pair (s, t) = (s∗, t∗), an impossibility. Therefore,

t∗ = n. In addition, we have s∗ > 1 (due to the requirement

that s∗+ t∗ > n+1). Evaluating the right-hand side of (57) at

this pair (s∗, t∗) = (s∗, n), we obtain (s∗ − 1
2 )

2 − s∗n, which

is clearly negative due to s∗ ∈ {1, 2, . . . , n}. This completes

the proof of (57) and therefore that of (56).

Now,

∞∑

r=max{0,s+t−n}

q−(s−r)(t−r)+(r2)−nr

=
∞∑

r=max{0,s+t−n}

qA(r)

=

∞∑

i=0

qA(max{0,s+t−n}+i)

6 qA(max{0,s+t−n})
∞∑

i=0

q−i

6 q−st/2 · q

q − 1
,

where the first step uses the definition of A(r), the third step

applies (55), and the final step appeals to (56) and a geometric

series. Since q > 2, this completes the proof of (52).

C. Univariate dual object

Our construction of the univariate dual object is based on

the Cauchy binomial theorem along with a certain “correcting”

polynomial ζ. The next lemma presents ζ as parametrized by

two numbers ` and m and gives its basic properties.

Lemma III.8. Let n, k, `,m be nonnegative integers such that

`+m 6 k < n. Define a univariate polynomial ζ by

ζ(t) =

`−1∏

i=0

t− q−i

q−n − q−i
·

k−1∏

i=k−m

t− q−i

q−n − q−i

×
n−1∏

i=k+1

t− q−i

q−n − q−i
. (58)

Then:

(i) ζ(q−n) = 1;
(ii) sgn ζ(q−k) = (−1)n−k−1;

(iii) ζ(q−r) = 0 for r ∈ {0, 1, . . . , n} \ ({`, ` + 1, . . . , k −
m− 1} ∪ {k, n});

(iv) deg ζ = n+ `+m− k − 1;

(v) |ζ(q−r)| 6 4q−r(n−k+m−1)+(n2)−k−(
k−m

2 ) for r ∈ {`, `+
1, . . . , k −m− 1}.

Proof: Items (i), (iii), and (iv) are immediate from the

defining equation for ζ. Item (ii) holds because for t = q−k,
the first and second products in (58) contain only positive

factors, whereas the third product contains exactly n− k − 1
factors all of which are negative. For (v),

|ζ(q−r)|

=

∣∣∣∣∣
`−1∏

i=0

q−r − q−i

q−n − q−i
·

k−1∏

i=k−m

q−r − q−i

q−n − q−i
·
n−1∏

i=k+1

q−r − q−i

q−n − q−i

∣∣∣∣∣

=

`−1∏

i=0

1− qi−r

1− q−(n−i)
·

k−1∏

i=k−m

qi−r − 1

1− q−(n−i)
·
n−1∏

i=k+1

qi−r − 1

1− q−(n−i)

6

`−1∏

i=0

1

1− q−(n−i)
·

k−1∏

i=k−m

qi−r

1− q−(n−i)
·
n−1∏

i=k+1

qi−r

1− q−(n−i)
.

The product of the numerators in the last expression is

q−r(n−k+m−1)+(n2)−k−(
k−m

2 ), whereas the product of the de-

nominators is at least 1/4 by Proposition II.13.

With ζ in hand, we are now in a position to construct

the promised univariate dual object ϕ. The properties of ϕ
established in the lemma below will give rise to analogous

properties in the dual matrix Eϕ.

Lemma III.9. Let n, k, `,m be nonnegative integers such that

`+m 6 k < n. Then there is a function ϕ : {0, 1, . . . , n} → R

such that:

(i) ϕ(n) = 1;
(ii) ϕ(k) < 0;

(iii) ϕ(r) = 0 for r ∈ {0, 1, . . . , n} \ ({`, `+ 1, . . . , k −m−
1} ∪ {k, n});

(iv)
∑n
r=0 ϕ(r)ξ(q

−r) = 0 for every polynomial ξ of degree

at most k − `−m;
(v)

∑
r∈{0,...,n}\{k,n} |ϕ(r)| 6 32q−m−1.

Proof: Define

ϕ(r) =

(
n

r

)

q

(−1)r−nq(
r
2)−(

n
2)ζ(q−r),

where ζ is the univariate polynomial from Lemma III.8.

Then items (i)–(iii) are immediate from the corresponding

items (i)–(iii) of Lemma III.8.

For (iv), fix a univariate polynomial ξ of degree at most

k − `−m. In view of Lemma III.8(iv), the product of ζ and

ξ has degree less than n. As a result, the Cauchy binomial

theorem (Corollary II.16) implies that

n∑

r=0

ϕ(r)ξ(q−r)



= (−1)−nq−(
n
2)

n∑

r=0

(
n

r

)

q

(−1)rq(
r
2)ζ(q−r)ξ(q−r)

= 0.

For (v), fix any r ∈ {`, `+ 1, . . . , k −m− 1}. Then

|ϕ(r)| =
(
n

r

)

q

q(
r
2)−(

n
2)|ζ(q−r)|

6 4qr(n−r) · q(
r
2)−(

n
2) · 4q−r(n−k+m−1)+(n2)−k−(

k−m
2 )

= 16q−(
k−m−r+1

2 )−m, (59)

where in the second step we bound the q-binomial coefficient

via Corollary II.14 and |ζ(q−r)| via Lemma III.8(v). Now

∑

r∈{0,...n}\{k,n}

|ϕ(r)| =
k−m−1∑

r=`

|ϕ(r)|

6

k−m−1∑

r=`

16q−(
k−m−r+1

2 )−m

6

∞∑

i=2

16q−(
i
2)−m

6
16q−m−1

1− 1
q

,

where the first step is valid by (iii), the second step uses (59),

and the fourth step uses a geometric series with
(
i
2

)
> i − 1

for i > 2. Since q > 2, this completes the proof of (v).

D. From univariate dual objects to dual matrices

En route to the main result of this section, we now show

how to convert a univariate dual object ϕ, such as the one

constructed in Lemma III.9, into a dual matrix Eϕ.

Definition III.10. Let n > 1 be a given integer. For r =
0, 1, . . . , n, define Er to be the matrix with rows and columns

indexed by matrices in F
n×n
q , and entries given by

(Er)A,B =

{
q−n

2 |M n,n
r |−1 if rk(A+B) = r,

0 otherwise.

For a function ϕ : {0, 1, . . . , n} → R, define

Eϕ =
n∑

r=0

ϕ(r)Er.

As one would expect, the metric and analytic properties of

Eϕ are closely related to those of ϕ.

Lemma III.11 (Metric properties of Eϕ). Let n > 1 be an

integer and ϕ : {0, 1, . . . , n} → R a given function. Then
∑

A,B:rk(A+B)=r

(Eϕ)A,B = ϕ(r), r = 0, 1, . . . , n, (60)

∑

A,B:rk(A+B)=r

|(Eϕ)A,B | = |ϕ(r)|, r = 0, 1, . . . , n. (61)

In particular,

‖Eϕ‖1 = ‖ϕ‖1.

Proof: Recall that for any fixed matrix A ∈ F
n×n
q , the

mapping B 7→ A+B is a permutation on F
n×n
q . As a result,

for any fixed matrix A, there are exactly |M n,n
r | matrices B

such that rk(A + B) = r. Altogether, there are qn
2 |M n,n

r |
matrix pairs (A,B) with rk(A + B) = r. With this in mind,

Definition III.10 implies the following for each r:
∑

rk(A+B)=r

(Er)A,B =
∑

rk(A+B)=r

|(Er)A,B | = 1. (62)

Now for each r,

∑

rk(A+B)=r

(Eϕ)A,B =
∑

rk(A+B)=r

n∑

i=0

ϕ(i)(Ei)A,B

=
∑

rk(A+B)=r

ϕ(r)(Er)A,B

= ϕ(r),

where the second step uses (Ei)A,B = 0 for i 6= r, and the

final step applies (62). Analogously,

∑

rk(A+B)=r

|(Eϕ)A,B | =
∑

rk(A+B)=r

∣∣∣∣∣
n∑

i=0

ϕ(i)(Ei)A,B

∣∣∣∣∣

=
∑

rk(A+B)=r

|ϕ(r)| |(Er)A,B |

= |ϕ(r)|.
This establishes (60) and (61). Summing (61) over r gives

‖Eϕ‖1 = ‖ϕ‖1.
To discuss the spectrum of Eϕ, we first describe the

Fourier spectrum of the characteristic function of matrices of

a given rank. This is where the significance of the Γn function

becomes evident.

Lemma III.12. Let n > 1 be a given integer. For r ∈
{0, 1, . . . , n}, define fr : F

n×n
q → {0, 1} by fr(X) = 1 if

and only if rkX = r. Then for all M ∈ F
n×n
q ,

f̂r(M) =
|M n,n

r |
qn2 · Γn(rkM, r).

Proof: We have

f̂r(M) = E
X∈F

n×n
q

ω−〈M,X〉fr(X)

= q−n
2 ∑

X∈M
n,n
r

ω−〈M,X〉

= q−n
2 |M n,n

r | E
X∈M

n,n
r

ω−〈M,X〉

= q−n
2 |M n,n

r | E
X∈M

n,n
r

U,V ∈Mn

ω−〈M,UXV 〉

= q−n
2 |M n,n

r | E
X∈M

n,n
r

U,V ∈Mn

ω〈−UTMV T,X〉

= q−n
2 |M n,n

r | E
X∈M

n,n
r

Y ∈M
n,n
rkM

ω〈Y,X〉

= q−n
2 |M n,n

r |Γn(rkM, r),



where the second step uses the definition of fr, the fourth step

is valid by Proposition II.19, the fifth step invokes Fact II.2(ii),

the sixth step uses Proposition II.19 once more, and the last

step applies the definition of Γn.
We are now ready to describe the spectrum of Eϕ in terms

of ϕ and the Γn function.

Lemma III.13 (Singular values of Eϕ). Let n > 1 be an

integer and ϕ : {0, 1, . . . , n} → R a given function. Then the

singular values of Eϕ are

q−n
2

∣∣∣∣∣
n∑

t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣ , s = 0, 1, . . . , n,

with corresponding multiplicities |M n,n
s | for s = 0, 1, . . . , n.

Proof: For t = 0, 1, . . . , n, define ft as in Lemma III.12.

In this notation,

Eϕ =

n∑

t=0

ϕ(t)Et

=

n∑

t=0

ϕ(t)

[
1

qn2 |M n,n
t | · ft(A+B)

]

A,B

= [f(A+B)]A,B ,

where

f =

n∑

t=0

ϕ(t)

qn2 |M n,n
t | · ft.

By Fact II.10, the singular values of Eϕ are qn
2 |f̂(M)| for

M ∈ F
n×n
q . Calculating,

qn
2 |f̂(M)| = qn

2

∣∣∣∣∣
n∑

t=0

ϕ(t)

qn2 |M n,n
t | · f̂t(M)

∣∣∣∣∣

= q−n
2

∣∣∣∣∣
n∑

t=0

ϕ(t)Γn(rkM, t)

∣∣∣∣∣ ,

where the first step uses the linearity of the Fourier transform,

and the second step applies Lemma III.12. Grouping these

singular values according to rkM shows that the spectrum of

Eϕ is as claimed.

E. Approximate trace norm of the rank problem

Using the machinery developed in previous sections, we

now prove a lower bound on the approximate trace norm of

the characteristic matrix of the rank problem. Combined with

the approximate trace norm method, this will allow us to obtain

our communication lower bounds for the rank problem.

Theorem III.14. Let n > k > 0 be given integers. Let F
be the matrix with rows and columns indexed by elements of

F
n×n
q , and entries given by

FA,B =





1 if rk(A+B) = n,

−1 if rk(A+B) = k,

∗ otherwise.

Then for all reals δ > 0 and all nonnegative integers `,m
with `+m 6 k,

‖F‖Σ,δ >
1

150

(
1− δ − 64

qm+1

)
q`(k−`−m+1)/2 qn

2

, (63)

‖F‖Σ,δ >
1− δ

150
· qk/2 qn2

. (64)

Proof: Let ϕ : {0, 1, . . . , n} → R be the function con-

structed in Lemma III.9. Then
∑

domF

FA,B(Eϕ)A,B − δ‖Eϕ‖1 −
∑

domF

|(Eϕ)A,B |

=
∑

rk(A+B)=n

(Eϕ)A,B −
∑

rk(A+B)=k

(Eϕ)A,B

− δ‖Eϕ‖1 −
∑

rk(A+B)/∈{n,k}

|(Eϕ)A,B |

= ϕ(n)− ϕ(k)− δ‖ϕ‖1 −
∑

r/∈{n,k}

|ϕ(r)|

= |ϕ(n)|+ |ϕ(k)| − δ‖ϕ‖1 −
∑

r/∈{n,k}

|ϕ(r)|

= (1− δ)‖ϕ‖1 − 2
∑

r/∈{n,k}

|ϕ(r)|

>


1− δ − 2

∑

r/∈{n,k}

|ϕ(r)|


 ‖ϕ‖1, (65)

where the second step uses Lemma III.11, the third step is

valid by Lemma III.9(i)–(ii), and the last step is justified by

Lemma III.9(i).

We now analyze the spectral norm of Eϕ. Recall from

Lemma III.6(iv) that for any fixed values of n and s, the

quantity Γn(s, t) as a function of t ∈ {0, 1, . . . , n} is a

polynomial in q−t of degree at most s. In this light, Lemma

III.9(iv) implies that

max
s∈{0,1,...,k−`−m}

∣∣∣∣∣
n∑

t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣ = 0. (66)

Continuing,

max
s∈{k−`−m+1,...,n−1,n}

∣∣∣∣∣
n∑

t=0

ϕ(t)Γn(s, t)

∣∣∣∣∣

= max
s∈{k−`−m+1,...,n−1,n}

∣∣∣∣∣
n∑

t=`

ϕ(t)Γn(s, t)

∣∣∣∣∣

6 max
s∈{k−`−m+1,...,n−1,n}

{
‖ϕ‖1 max

t∈{`,`+1,...,n}
|Γn(s, t)|

}

6 max
s∈{k−`−m+1,...,n−1,n}

{
‖ϕ‖1 max

t∈{`,`+1,...,n}
128q−st/2

}

= 128‖ϕ‖1q−`(k−`−m+1)/2, (67)

where the first step uses Lemma III.9(iii), and the third step

applies the bound of Lemma III.6(v). By (66), (67), and

Lemma III.13,

‖Eϕ‖ 6 128‖ϕ‖1 q−`(k−`−m+1)/2 q−n
2

. (68)



Proposition II.9 with Φ = Eϕ implies, in view of (65)

and (68), that

‖F‖Σ,δ >
1

128
·


1− δ − 2

∑

r/∈{n,k}

|ϕ(r)|




× q`(k−`−m+1)/2 qn
2

. (69)

Since
∑
r/∈{n,k} |ϕ(r)| 6 32q−m−1 by Lemma III.9(v), this

settles (63). The alternate lower bound (64) follows from (69)

by taking ` = k and m = 0 and noting that
∑
r/∈{n,k} |ϕ(r)| =

0 in this case (by Lemma III.9(iii)).

F. Communication lower bounds

We will now use our newly obtained lower bound on the

approximate trace norm to prove the main result of this section,

a tight lower bound on the communication complexity of

the rank problem. We will first examine the canonical case

of distinguishing rank-k matrices in F
n×n from full-rank

matrices.

Theorem III.15. There is an absolute constant c > 0 such

that for all finite fields F and all integers n > k > 0,

Q∗
1
2−

1

4|F|k/3
(RANKF,n,n

k,n ) > c(1 + k2 log |F|). (70)

Proof: Abbreviate q = |F| and ε = 1
2 − 1

4qk/3 . Since

RANKF,n,n
k,n is a nonconstant function, we have the trivial

lower bound

Q∗
ε(RANKF,n,n

k,n ) > 1. (71)

Let F be the characteristic matrix of this communication

problem. We first examine the case k 6 50. Here, taking

δ = 2ε in equation (64) of Theorem III.14 shows that

‖F‖Σ,2ε > qk/6qn
2

/300 > qk
2/300qn

2

/300, where the last

step uses k 6 50. It follows from Theorem II.23 that

Q∗
ε(RANK

F,n,n
k,n ) >

1

2
log

qk
2/300

3 · 300 >
1

600
k2 log q − 5.

Taking a weighted arithmetic average of this lower bound

and (71) settles (70).

Consider now the complementary case k > 50. Taking δ =
2ε, ` = dk/3e, and m = bk/2c in equation (63) of Theorem

III.14 gives

‖F‖Σ,2ε >
1

150

(
1

2qk/3
− 64

qbk/2c+1

)

× qdk/3e(k−dk/3e−bk/2c+1)/2qn
2

>
1

300

(
1− 128

qk/6

)
q−k/3qdk/3ek/12qn

2

>
1

600
q−k/3qdk/3ek/12qn

2

>
1

600
qk

2/48qn
2

,

where the last two steps use k > 50. As a result, Theorem

II.23 guarantees that

Q∗
ε(RANK

F,n,n
k,n ) >

1

2
log

qk
2/48

3 · 600 >
1

96
k2 log q − 6.

Taking a weighted arithmetic average of this lower bound

and (71) settles (70).

We now establish our main lower bound for the rank

problem in its full generality.

Theorem (restatement of Theorem I.1). There is an absolute

constant c > 0 such that for all finite fields F and all integers

n,m,R, r with min{n,m} > R > r > 0,

Q∗
1
2−

1

4|F|r/3
(RANKF,n,m

r,R ) > c(1 + r2 log |F|). (72)

In particular,

Q∗
1/4(RANKF,n,m

r,R ) > c(1 + r2 log |F|). (73)

Proof: There is a communication-free reduction from

RANKF,R,R
r,R to RANKF,n,m

r,R , where Alice and Bob pad their

input matrices A,B ∈ F
R×R with zeroes to obtain matrices

A′, B′ ∈ F
n×m with rk(A + B) = rk(A′ + B′). Therefore,

Q∗
ε(RANKF,n,m

r,R ) > Q∗
ε(RANKF,R,R

r,R ) for all ε. Now Theo-

rem III.15 implies (72), which in turn implies (73).

G. Communication upper bounds

To finalize our study of the rank problem, we will prove a

matching upper bound on its communication complexity. We

emphasize that our upper bound is achieved by a randomized

(classical) protocol, whereas our lower bound is valid even for

quantum communication.

Theorem III.16. Let n,m,R be nonnegative integers with

min{n,m} > R > 0. Let F be a finite field with |F| = q
elements. Then for all ε ∈ (0, 1), there is a two-party

randomized communication protocol which:

• takes as input a pair of matrices A,B ∈ F
n×m for Alice

and Bob, respectively;

• computes min{rk(A + B), R} with probability of error

at most ε; and

• has communication cost O((R+ dlogq(1/ε)e)2 log q).
Proof: We may assume that n,m > 1 since the theorem

is trivial otherwise. Set ∆ = dlogq(8/ε)e. On input A,B ∈
F
n×m, the protocol is as follows. Alice and Bob use their

shared randomness to pick a pair of independent and uniformly

random matrices X ∈ F
(R+∆)×n and Y ∈ F

m×(R+∆). Then

Alice sends the matrix XAY ∈ F
(R+∆)×(R+∆) to Bob,

who announces min{rk(X(A+B)Y ), R} as the output. The

communication cost is O((R + ∆)2 log q) as claimed, due

to X(A + B)Y = XAY + XBY . It is also clear that this

protocol always outputs a lower bound on the correct value

min{rk(A + B), R}, due to rk(X(A + B)Y ) 6 rk(A + B)
for all X,Y . It remains to show that

P[rk(X(A+B)Y ) > min{rk(A+B), R}] > 1− ε. (74)

Abbreviate C = A + B. Conditioned on X, we have

rk(XCY ) > min{rk(XC), R} with probability at least

1 − 4q−∆−1 > 1 − ε/2 (apply Lemma II.21(ii) with M =
XC and t = min{rk(XC), R} − 1). Similarly, rk(XC) >

min{rkC,R} with probability at least 1− ε/2 (apply Lemma

II.21(i) with M = C and t = min{rkC,R} − 1). The union



bound now gives P[rk(XCY ) > min{rkC,R}] > 1 − ε,
settling (74).

Corollary III.17. Let n,m, r be integers with min{n,m} >
r > 0. Let F be a finite field with |F| = q elements. Then for

all ε ∈ (0, 1/2),

Rε(RANK
F,n,m
r ) =

{
O(log(1/ε)) if r = 0,

O((r + dlogq(1/ε)e)2 log q) otherwise.

(75)

Proof: Observe that RANKF,n,m
0 (A,B) = −1 if and only

if A = −B. Thus, RANKF,n,m
0 is equivalent to the equality

problem with domain F
n×m×F

n×m. It is well known [27] that

the ε-error randomized communication complexity of equality

is O(log(1/ε)). Thus, (75) holds for r = 0.

For r > 1, we have RANKF,n,m
r (A,B) = −1 if and only

if min{rk(A + B), r + 1} 6 r. To compute min{rk(A +
B), r + 1} on input A,B to error ε, Alice and Bob can use

the randomized protocol of Theorem III.16 with R = r + 1,
with communication cost O((r + dlogq(1/ε)e)2 log q).

We now prove an alternate communication upper bound,

showing that even a two-bit protocol can solve the rank

problem with nontrivial advantage.

Theorem III.18. Let n,m, r be integers with min{n,m} >
r > 0. Let F be a finite field with |F| = q elements. Then

R 1
2−

1
32qr

(RANKF,n,m
r ) 6 2. (76)

Proof: Consider the following auxiliary protocol Π. On

input A,B ∈ F
n×m, Alice and Bob use their shared ran-

domness to pick a pair of independent and uniformly random

vectors x ∈ F
n and y ∈ F

m, as well as a uniformly

random function H : F → {−1, 1}. They exchange H(xTAy)
and H(−xTBy) using 2 bits of communication and output

−H(xTAy)H(−xTBy).
We now analyze the expected output of Π(A,B) on a given

matrix pair A,B. To begin with,

E[Π(A,B) | x, y] =
{
−1 if xT(A+B)y = 0,

0 otherwise.
(77)

Indeed, if xT(A + B)y = 0 then xTAy = −xTBy and

therefore Π outputs −1. If, on the other hand, xT(A+B)y 6= 0
then xTAy 6= −xTBy, which means that H(xTAy) and

H(−xTBy) are independent and their product has expected

value 0. Equation (77) implies that EΠ(A,B) = −P[xT(A+
B)y = 0], which can be expanded as

EΠ(A,B) = −P[xT(A+B) = 0]

−P[xT(A+B) 6= 0]P[xT(A+B)y = 0 | xT(A+B) 6= 0].

The event xT(A + B) = 0 is equivalent to x being in the

orthogonal complement of the column span of A+B, which

happens with probability qn−rk(A+B)/qn = q− rk(A+B). Con-

ditioned on xT(A+B) 6= 0, the field element xT(A+B)y is

uniformly random and in particular is 0 with probability 1/q.
As a result,

EΠ(A,B) = − 1

qrk(A+B)
−
(
1− 1

qrk(A+B)

)
· 1
q

= −1

q
− q − 1

qrk(A+B)+1
.

Therefore, the expected value of Π(A,B) is at most −1/q −
(q − 1)/qr+1 when rk(A + B) 6 r and is at least −1/q −
(q − 1)/qr+2 when rk(A + B) > r. Proposition II.24 now

shows that RANKF,n,m
r has a communication protocol with

the same cost as Π and error at most 1
2 − 1

8 (q − 1)2/qr+2.
This settles (76) since q > 2.

Corollary III.17 (with ε = 1/3) and Theorem III.18 settle

Theorem I.2 from the introduction.

H. Streaming complexity

Fix a finite field F and a (possibly partial) function

f : Fn×n → {−1, 1, ∗}. A streaming algorithm for f receives

as input a matrix M ∈ F
n×n in row-major order. We say that

A computes f with error ε if for every input in the domain of

f , the output of A agrees with f with probability at least 1−ε.
We will now use a well-known reduction [6] to transform our

communication lower bound for the matrix rank problem into

a lower bound on its streaming complexity.

Theorem (restatement of Theorem I.3). Let n, r,R be non-

negative integers with n/2 6 r < R 6 n, and let F be a finite

field. Define f : Fn×n → {−1, 1, ∗} by

f(M) =





−1 if rkM = r,

1 if rkM = R,

∗ otherwise.

Let A be any randomized streaming algorithm for f with error

probability 1
2 − 1

4 |F|−(r−dn/2e)/3 that uses s bits of memory

and k passes. Then

sk = Ω

((
r −

⌈n
2

⌉)2
log |F|

)
. (78)

Proof: Abbreviate m = bn/2c and F =
RANKF,m,m

r−dn/2e,R−dn/2e. We will use a reduction from

communication to streaming due to Li, Sun, Wang, and

Woodruff [6, Thm. 29]. Specifically, let A,B ∈ F
m×m be

Alice and Bob’s inputs, respectively, for F . Define

M =



A −Im 0
B Im 0
0 0 In−2m


 ,

where Im and In−2m stand for the identity matrices of order

m and n−2m, respectively (in particular, In−2m is empty for

even n). We have

rkM = rk



A+B 0 0
B Im 0
0 0 In−2m




= rk(A+B) + n−m



= rk(A+B) +
⌈n
2

⌉
.

As a result, for all matrix pairs (A,B) with rk(A+B) ∈ {r−
dn/2e, R − dn/2e}, we have F (A,B) = f(M). This makes

it possible for Alice and Bob to compute F by simulating

A on M . Alice starts the simulation by running A on the

first m rows of M , which depend only on her input A. She

then sends Bob the contents of A ’s memory, and Bob runs

A on the remaining n −m rows of M . This completes the

first pass. Next, Bob sends Alice the contents of A ’s memory,

and they continue as before until they simulate all k passes.

At the end of the k-th pass, Bob announces the output of A

as the protocol output. The error probability of the described

protocol is the same as that of A , and the communication cost

is s(2k − 1) + 1 bits. Therefore,

R 1
2−

1
4 |F|

−(r−dn/2e)/3(F ) 6 s(2k − 1) + 1.

Since the left-hand side is at least Ω((r−dn/2e)2 log |F|+1)
by Theorem I.1, the claimed trade-off (78) follows.

IV. THE DETERMINANT PROBLEM

In this section, we establish our lower bound on the commu-

nication complexity of the determinant problem. We begin in

Section IV-A with technical results on characteristic functions

of matrices with a given determinant value. In Section IV-B,

we give our own proof of the lower bound for distinguishing

two nonzero values of the determinant, which is simpler and

more elementary than the proof in [5]. In Section IV-C,

we prove an optimal lower bound for the general case of

distinguishing two arbitrary values of the determinant, solving

an open problem from [5]. Throughout this section, we use a

generic finite field F with q elements, where q is an arbitrary

prime power. The root of unity ω and the notation ωx for

x ∈ F are as defined in Section II-D.

A. Auxiliary results

Fix a finite field F and a positive integer n. Recall that

the determinant function on F
n×n is multiplicative, with

det(AB) = det(A) det(B). As a result, the set of matrices

in F
n×n with nonzero determinants form a group under

matrix multiplication, called the general linear group and

denoted by GL(F, n). Analogously, the matrices in F
n×n with

determinant 1 also form a group, called the special linear

group and denoted by SL(F, n). The multiplicativity of the

determinant further implies that SL(F, n) is a normal subgroup

of GL(F, n), with quotient isomorphic to the multiplicative

group of the field: GL(F, n)/ SL(F, n) ∼= F
×. For any given

field element u 6= 0, the set of matrices with determinant u
form a coset of SL(F, n) in GL(F, n). In particular,

|{X ∈ F
n×n : detX = u}|

= |SL(F, n)| = |Mn|
|F| − 1

, u ∈ F \ {0}. (79)

Recall that for each Y ∈ F
n×n, the mapping X 7→ X + Y

is a permutation on F
n×n. As a result, the previous equation

implies that

|{(X,Y ) ∈ F
n×n × F

n×n : det(X + Y ) = u}|
= |F|n2 |SL(F, n)|, u ∈ F \ {0}. (80)

To understand the spectral norm of the determinant problem,

we now introduce a relevant function on F
n×n and discuss its

Fourier coefficients.

Lemma IV.1. Let n be a positive integer, F a finite field. For a

pair of distinct elements u, v ∈ F \ {0}, define gu,v : F
n×n →

{−1, 1, 0} by

gu,v(X) =





−1 if detX = u,

1 if detX = v,

0 otherwise.

Then:

(i) ĝu,v(A) = 0 for every singular matrix A;
(ii) ĝu,v(A) = ĝu,v(B) whenever detA = detB;

(iii) ‖ĝu,v‖∞ 6 1/
√

|SL(F, n)|.
Proof: (i) In view of (79), we have

ĝu,v(A) = E
X∈Fn×n

gu,v(X)ω−〈A,X〉

= |F|−n2 · |Mn|
|F| − 1

(
E

X:detX=v
ω−〈A,X〉

− E
X:detX=u

ω−〈A,X〉

)
.

It remains to show that the expectations in the last expression

are equal. Since A is singular, there exist nonsingular matrices

P and Q such that A = PIsQ for s = rkA < n. Consider the

order-n diagonal matrix Z = diag(1, 1, . . . , 1, u−1v). Using

Is = IsZ, we obtain A = PIsZQ = PIsQQ
−1ZQ =

AQ−1ZQ. As a result,

E
X:detX=u

ω−〈A,X〉 = E
X:detX=u

ω−〈AQ−1ZQ,X〉

= E
X:detX=u

ω−〈A,X(Q−1ZQ)T〉

= E
Y :detY=v

ω−〈A,Y 〉,

where the second step uses Fact II.2(ii), and the last step is

valid because the mapping X 7→ X(Q−1ZQ)T is a bijection

from the set of matrices with determinant u onto the set of

matrices with determinant u · det((Q−1ZQ)T) = v.
(ii) For singular A and B, the claim is immediate from (i).

In the complementary case,

ĝu,v(A) = E
X∈Fn×n

gu,v(X)ω−〈A,X〉

= E
X∈Fn×n

gu,v((BA
−1)TX)ω−〈A,(BA−1)TX〉

= E
X∈Fn×n

gu,v(X)ω−〈A,(BA−1)TX〉

= E
X∈Fn×n

gu,v(X)ω−〈B,X〉

= ĝu,v(B),

where the second step is valid because (BA−1)T is in-

vertible and hence X 7→ (BA−1)TX is a permutation on



F
n×n; the third step is justified by det((BA−1)TX) =

det(B) det(X)/ det(A) = detX; and the fourth step is an

application of Fact II.2(ii).

(iii) Let M be a matrix with |ĝu,v(M)| = ‖ĝu,v‖∞. By (i),

we know that detM 6= 0. Now

1 > E
X∈Fn×n

[|gu,v(X)|2]

=
∑

A∈Fn×n

|ĝu,v(A)|2

>
∑

A:detA=detM

|ĝu,v(A)|2

= |{A : detA = detM}| |ĝu,v(M)|2

= |SL(F, n)| ‖ĝu,v‖2∞,

where the second step applies Parseval’s inequality (28), the

fourth step is justified by (ii), and the fifth step uses detM 6= 0
along with (79).

B. Determinant problem for nonzero field elements

As an application of the previous lemma, we now prove that

the characteristic matrix of the determinant problem DETF,n
a,b

for any two nonzero field elements a, b has small spectral

norm.

Lemma IV.2. Let F be a finite field with |F| = q elements.

For each u ∈ F \ {0}, define Gu to be the matrix with rows

and columns indexed by elements of Fn×n, and entries given

by

(Gu)X,Y =

{
q−n

2 |SL(F, n)|−1 if det(X + Y ) = u,

0 otherwise.

(81)

Then for all u, v ∈ F \ {0},

‖Gu‖1 = 1, (82)

‖Gv −Gu‖ 6 |SL(F, n)|−3/2
6 8q−3(n2−1)/2. (83)

Proof: Equation (82) follows from (80). For (83), there

are two cases to consider. If u = v, then Gv − Gu = 0
and thus ‖Gv − Gu‖ = 0. If u 6= v, write Gv − Gu =
[q−n

2 |SL(F, n)|−1gu,v(X + Y )]X,Y with gu,v as defined in

Lemma IV.1. Then

‖Gv −Gu‖ =
‖ĝu,v‖∞
|SL(F, n)| 6

1

|SL(F, n)|3/2 , (84)

where the first step applies Fact II.10, and the second step uses

Lemma IV.1(iii). It remains to simplify the bound of (84):

1

|SL(F, n)|3/2 =

( |Mn|
q − 1

)−3/2

=

(
qn−1

n−2∏

i=0

(qn − qi)

)−3/2

6 8q−3(n2−1)/2,

where the first step uses (79), the second step applies Propo-

sition II.17, and the last step uses Proposition II.13.

Lemma IV.2 was originally obtained by Sun and Wang [5]

using a different and rather technical proof. By contrast, the

proof presented above is short and uses only basic Fourier

analysis. With this newly obtained bound on the spectral

norm of the characteristic matrix of DETF,n
a,b for nonzero a, b,

we can use the approximate trace norm method to obtain a

tight communication lower bound for this special case of the

determinant problem.

Theorem IV.3. Let F be a finite field, and n a positive integer.

Then for every pair of distinct elements a, b ∈ F\{0} and every

γ ∈ (0, 1),

Q∗
(1−γ)/2(DETF,n

a,b ) >
1

4
(n2 − 3) log |F| − 1

2
log

12

γ
. (85)

Proof: Let F be the characteristic matrix of DETF,n
a,b . For

u ∈ F \ {0}, define Gu as in Lemma IV.2. Since Ga and Gb
are supported on disjoint sets of entries, (82) leads to

‖Gb −Ga‖1 = ‖Gb‖1 + ‖Ga‖1 = 2. (86)

Taking Φ = Gb −Ga in Proposition II.9, we obtain

‖F‖Σ,1−γ >
1

‖Gb −Ga‖

( ∑

domF

FA,B(Gb −Ga)A,B

−(1− γ)‖Gb −Ga‖1−
∑

domF

|(Gb −Ga)A,B |




=
1

‖Gb −Ga‖

( ∑

domF

|(Gb −Ga)A,B |

− (1− γ)‖Gb −Ga‖1




=
γ‖Gb −Ga‖1
‖Gb −Ga‖

>
1

4
γ|F|3(n2−1)/2, (87)

where the second and third steps are valid because Gb−Ga by

definition coincides in sign with F on domF and vanishes on

domF ; and the last step uses (83) and (86). Now (85) follows

from (87) in view of Theorem II.23.

We remind the reader that Theorem IV.3 was obtained with

different techniques by Sun and Wang [5], who settled the

determinant problem DETF,n
a,b for nonzero a, b and left open

the complementary case when one of a, b is zero.

C. Determinant problem for arbitrary field elements

Recall that the rank versus determinant problem,

RANKDETF,n
k,a , is a hybrid problem that naturally generalizes

the matrix rank problem RANKF,n,n
k,n and the determinant

problem DETF,n
0,a . Specifically, the rank versus determinant

problem requires Alice and Bob to distinguish matrix pairs

with rk(A + B) = k from those with det(A + B) = a,
where a is a nonzero field element, k is an integer with

k < n, and A,B are Alice and Bob’s respective inputs. We



will now construct a dual matrix for RANKDETF,n
k,a and

thereby obtain a lower bound on its approximate trace norm.

As a dual matrix, we will use a linear combination of the

dual matrices from our analyses of the rank and determinant

problems.

Theorem IV.4. Let n > k > 1 be given integers. Let F be a

finite field with |F| = q elements, and let a ∈ F \ {0}. Let F
be the characteristic matrix of RANKDETF,n

k,a . Then for all

reals δ > 0 and all nonnegative integers `,m with `+m 6 k,

‖F‖Σ,δ >
1

150

(
1− δ − 64

qm+1

)
q`(k−`−m+1)/2 qn

2

, (88)

‖F‖Σ,δ >
1− δ

150
· qk/2 qn2

. (89)

Proof: This proof combines our ideas in Theorems III.14

and IV.3, and our dual matrix here will be a linear combination

of the dual matrices used in those theorems.

Fix nonnegative integers `,m with ` + m 6 k, and let

ϕ : {0, 1, . . . , n} → R be the corresponding function con-

structed in Lemma III.9. This univariate function gives rise

to a matrix Eϕ, described in Definition III.10. To restate

equation (68) from our proof of Theorem III.14,

‖Eϕ‖ 6 128‖ϕ‖1 q−`(k−`−m+1)/2 q−n
2

. (90)

For u ∈ F \ {0}, define Gu as in Lemma IV.2. As our dual

matrix, we will use

Φ = Eϕ +
∑

b∈F\{0,a}

ϕ(n)

q − 1
(Ga −Gb). (91)

Claim IV.5. For every matrix pair (A,B),

ΦA,B =





(Eϕ)A,B if det(A+B) = 0,

ϕ(n)q−n
2 |SL(F, n)|−1 if det(A+B) = a,

0 otherwise.

Proof: If det(A+B) = 0, then by definition (Gu)A,B =
0 for every nonzero field element u. As a result, (91) gives

ΦA,B = (Eϕ)A,B in this case.

In what follows, we treat the complementary case when

det(A+B) 6= 0. For all such matrix pairs,

(Eϕ)A,B =

n∑

i=0

ϕ(i)(Ei)A,B

= ϕ(n)(En)A,B

=
ϕ(n)

qn2 |Mn|

=
ϕ(n)

qn2(q − 1)|SL(F, n)| ,

where the first three steps are immediate from Defini-

tion III.10, and the last step uses (79). In particular,

ΦA,B =
ϕ(n)

qn2(q − 1)|SL(F, n)|

+
∑

b∈F\{0,a}

ϕ(n)

q − 1
((Ga)A,B − (Gb)A,B). (92)

If det(A + B) = a, then by definition (Ga)A,B =

q−n
2 |SL(F, n)|−1 and (Gb)A,B = 0 for all b ∈ F \ {0, a},

so that (92) gives

ΦA,B=
ϕ(n)

qn2(q − 1)|SL(F, n)| +
∑

b∈F\{0,a}

ϕ(n)

(q − 1)qn2 |SL(F, n)|

=
ϕ(n)

qn2 |SL(F, n)| .

If, on the other hand, det(A+B) = c for some c ∈ F\{0, a},
then by definition (Ga)A,B = 0 and likewise (Gb)A,B = 0 for

every b 6= c, so that (92) simplifies to

ΦA,B =
ϕ(n)

qn2(q − 1)|SL(F, n)| −
ϕ(n)

(q − 1)
(Gc)A,B = 0.

This completes the proof of the claim.

We proceed to establish key analytic and metric properties

of Φ. To begin with,

‖Φ‖ 6 ‖Eϕ‖+
∑

b∈F\{0,a}

|ϕ(n)|
q − 1

‖Ga −Gb‖

6 ‖Eϕ‖+
∑

b∈F\{0,a}

‖ϕ‖1
q − 1

‖Ga −Gb‖

6 128‖ϕ‖1 q−`(k−`−m+1)/2 q−n
2

+
∑

b∈F\{0,a}

‖ϕ‖1
q − 1

· 8q−3(n2−1)/2

6 (128q−`(k−`−m+1)/2 + 8q−(n2−3)/2)
‖ϕ‖1
qn2 , (93)

where the first step uses the triangle inequality, and the

third step is a substitution from (90) and equation (83)

of Lemma IV.2. To simplify this bound, recall from the

theorem hypothesis that n > k > 1 and `,m > 0. Therefore,

`(k−`−m+1) 6 `(k−`+1) 6 (k+1)2/4 6 n2/4 6 n2−3.
This results in q−(n2−3)/2 6 q−`(k−`−m+1)/2, and thus (93)

simplifies to

‖Φ‖ 6 136q−`(k−`−m+1)/2q−n
2‖ϕ‖1. (94)

Next, we examine ‖Φ‖1. We have
∑

rk(A+B)=n

|ΦA,B | =
∑

det(A+B)=a

|ΦA,B |

=
∑

det(A+B)=a

|ϕ(n)|
qn2 |SL(F, n)|

= |ϕ(n)|,

where the first and second steps are immediate from

Claim IV.5, and the last step applies (80). Also,
∑

rk(A+B)<n

|ΦA,B | =
∑

rk(A+B)<n

|(Eϕ)A,B |

= ‖Eϕ‖ −
∑

rk(A+B)=n

|(Eϕ)A,B |

= ‖ϕ‖1 − |ϕ(n)|,



where the first step uses Claim IV.5, and the last step in-

vokes Lemma III.11. These two equations yield

‖Φ‖1 = ‖ϕ‖1. (95)

Continuing,
∑

domF

FA,BΦA,B =
∑

det(A+B)=a

ΦA,B −
∑

rk(A+B)=k

ΦA,B

=
∑

det(A+B)=a

ϕ(n)

qn2 |SL(F, n)|

−
∑

rk(A+B)=k

(Eϕ)A,B

= ϕ(n)− ϕ(k)

= |ϕ(n)|+ |ϕ(k)|
= ‖ϕ‖1 −

∑

r/∈{k,n}

|ϕ(r)|, (96)

where the second step uses Claim IV.5, the third step invokes

Lemma III.11 and (80), and the fourth step is valid due

to Lemma III.9(i), (ii). Finally,
∑

domF

|ΦA,B | =
∑

rk(A+B)/∈{n,k}

|ΦA,B |+
∑

rk(A+B)=n
det(A+B) 6=a

|ΦA,B |

=
∑

rk(A+B)/∈{n,k}

|ΦA,B |

=
∑

rk(A+B)/∈{n,k}

|(Eϕ)A,B |

=
∑

r/∈{n,k}

|ϕ(r)|, (97)

where the second and third steps use Claim IV.5, and the last

step uses Lemma III.11. Now
∑

domF

FA,BΦA,B − δ‖Φ‖1 −
∑

domF

|ΦA,B |

= ‖ϕ‖1 − δ‖ϕ‖1 − 2
∑

r/∈{n,k}

|ϕ(r)|

>


1− δ − 2

∑

r/∈{n,k}

|ϕ(r)|


 ‖ϕ‖1, (98)

where the first step uses (95)–(97), and the last step is

legitimate by Lemma III.9(i).

Proposition II.9 implies, in view of (94) and (98), that

‖F‖Σ,δ >
1

136


1− δ − 2

∑

r/∈{n,k}

|ϕ(r)|




× q`(k−`−m+1)/2 qn
2

. (99)

Since
∑
r/∈{n,k} |ϕ(r)| 6 32q−m−1 by Lemma III.9(v), this

proves (88). The alternate lower bound (89) follows by taking

` = k and m = 0 in (99) and noting that
∑
r/∈{n,k} |ϕ(r)| = 0

in this case (by Lemma III.9(iii)).

By virtue of the approximate trace norm method, Theorem

IV.4 yields the following tight lower bound on the communi-

cation complexity of the rank versus determinant problem.

Theorem (restatement of Theorem I.6). There is an absolute

constant c > 0 such that for every finite field F, every field

element a ∈ F \ {0}, and all integers n > k > 0,

Q∗
1
2−

1

4|F|k/3
(RANKDETF,n

k,a) > c(1 + k2 log |F|). (100)

Proof: For k = 0, the claimed lower bound follows from

the fact that RANKDETF,n
0,a is nonconstant and hence has

communication complexity at least 1 bit. For k > 1, our lower

bounds on the approximate trace norm of RANKDETF,n
k,a are

identical to those for RANKF,n,n
k,n (Theorems IV.4 and The-

orem III.14, respectively). Accordingly, the proof here is

identical to that of Theorem III.15, with equations (88) and

(89) of Theorem IV.4 used in place of the corresponding

equations (63) and (64) of Theorem III.14.

As a consequence, we obtain an optimal communication

lower bound for the unrestricted determinant problem.

Theorem (restatement of Theorem I.5). There is an absolute

constant c > 0 such that for every finite field F, every pair of

distinct elements a, b ∈ F, and all integers n > 2,

Q∗
1
2−

1

4|F|(n−1)/3
(DETF,n

a,b ) > cn2 log |F|. (101)

Proof: If ab = 0, then DETF,n
a,b contains as a subproblem

either RANKDETF,n
n−1,b (when a = 0) or ¬RANKDETF,n

n−1,a

(when b = 0), and therefore (101) follows from Theorem I.6.

If a and b are both nonzero, Theorem IV.3 gives

Q∗
1
2−

1

4|F|(n−1)/3
(DETF,n

a,b ) > c′n2 log |F| − 1

2
log 24

for a small enough constant c′ > 0. Taking a weighted average

of this lower bound with the trivial lower bound of 1 bit

settles (101).

V. THE SUBSPACE SUM AND INTERSECTION PROBLEMS

As discussed in the introduction, our analysis of the sub-

space sum and subspace intersection problems has similarities

with the rank problem but also diverges from it in important

ways. Instead of additively composed matrices whose rows

and columns are indexed by elements of F
n×n
q , we now

have matrices with rows and columns indexed by subspaces,

and each entry (A,B) depends solely on the dimension of

A∩B. While the construction of the univariate dual object is

similar to that for the rank problem, its relation to the singular

values of the dual matrix is significantly more intricate, and

computing the spectral norm of the dual matrix is now a

challenge. Our study of the spectral norm is based on ideas

due to Knuth [25]. We start by formalizing the equivalence of

the subspace sum and subspace intersection problems, which

allows us to focus on the latter problem from then on.



Proposition V.1. Let n,m, ` be nonnegative integers with

max{m, `} 6 n. Then for all integers d,D with d 6= D,

SUMF,n,m,`
d,D = INTERSECTF,n,m,`

m+`−d,m+`−D, (102)

SUMF,n,m,`
d = INTERSECTF,n,m,`

m+`−d . (103)

Proof: Let S, T ⊆ F
n be arbitrary subspaces of dimension

m and `, respectively. Since dim(S+T ) = m+`−dim(S∩T ),
we have

SUMF,n,m,`
d,D (S, T ) = INTERSECTF,n,m,`

m+`−d,m+`−D(S, T ),

settling (102). Analogously, for any subspaces S, T ⊆ F
n of

dimension m and `, respectively, we have dim(S+T ) 6 d if

and only if dim(S ∩T ) > m+ `− d, which implies (103).

We will now prove our main result on the subspace sum

problem (stated in the introduction as Theorems I.7 and I.8)

assuming our corresponding result on subspace intersection

(Theorem I.9).

Proof of Theorems I.7 and I.8 assuming Theorem I.9:

Recall that Theorem I.7 is a special case of Theorem I.8,

corresponding to γ = 1/3. Therefore, it suffices to prove

Theorem I.8. Define r = m+ `−D and R = m+ `−d. Then

the hypotheses max{m, `} 6 d < D 6 min{m + `, n} and

γ ∈ [ 13q
−(2d−m−`)/5, 13 ] of Theorem I.8 can be equivalently

stated as

max{0,m+ `− n} 6 r < R 6 min{m, `}, (104)

γ ∈ [ 13q
−(m+`−2R)/5, 13 ]. (105)

Recall from Proposition V.1 that SUMF,n,m,`
d,D is the same

function as INTERSECTF,n,m,`
R,r , which in turn is the

negation of INTERSECTF,n,m,`
r,R . Now the bounds for

SUMF,n,m,`
d,D claimed in Theorem I.8 follow from the bounds

for INTERSECTF,n,m,`
r,R in Theorem I.9, upon substituting

R = m+ `− d. This appeal to Theorem I.9 is legitimate due

to (104) and (105).

Analogously, SUMF,n,m,`
d is the same function as

INTERSECTF,n,m,`
R (Proposition V.1), and therefore the

bounds claimed for SUMF,n,m,`
d in Theorem I.8 follow from

the bounds for INTERSECTF,n,m,`
R in Theorem I.9, upon

substituting R = m+ `− d.
The proof of Theorem I.9 is the focus of the remainder

of this section, which we defer to the full version of our

paper [29].
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