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Abstract

While lignin has garnered significant research interest for its abundance and ver-

satility, its complicated structure poses a challenge to understanding its underlying

reaction kinetics and optimizing various lignin characteristics. In this regard, math-

ematical models, especially the multiscale kinetic Monte Carlo (kMC) method, have

been devised to offer a precise analysis of fractionation kinetics and lignin properties.

The kMC model effectively handles the simulation of all particles within the system

by calculating reaction rates between species and generating a rate-based probability

distribution. Then, it selects a reaction to execute based on this distribution. However,
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due to the vast number of lignin polymers involved in the reactions, the rate calculation

step becomes a computational bottleneck, limiting the model’s applicability in real-time

control scenarios. To address this, the machine learning (ML) technique is integrated

into the existing kMC framework. By training an artificial neural network (ANN) on

the kMC datasets, we predict the probability distributions instead of repeatedly cal-

culating them over time. Subsequently, the resulting ANN-accelerated multiscale kMC

(AA-M-kMC) model is incorporated into a model predictive controller (MPC), facilitat-

ing real-time control of intricate lignin properties. This innovative approach effectively

reduces the computational burden of kMC and advances lignin processing methods.

1 Introduction

Lignin, a complex and heterogeneous biopolymer, holds significant promise for a sustain-

able future due to its abundance and numerous potential applications in biofuels, chemicals,

and materials.1–4 However, its successful utilization remains obscure since lignin processing

faces significant obstacles stemming from its intricate structure. 5–7 To tackle this, numerous

experimental studies have aimed to enhance fractionation techniques by developing novel sol-

vents8–11 or catalysts.12–15 Recently, in line with these efforts, various modeling techniques

have also emerged to study the underlying kinetics of lignin reactions. Such endeavors include

the lumped kinetic model16 and the population balance model17 to track lignin properties,

including monomer yields18,19 and the average molecular weight of the resulting lignin. 20,21

However, these works primarily focused on the depolymerization reactions. Despite their

valuable insight into lignin depolymerization, models for studying the full fractionation pro-

cesses and controlling the lignin properties are still limited.

To overcome this, multiscale modeling approaches have been developed to provide a com-

prehensive understanding of the overall fractionation process, 22–25 including lignin dissolution

from the woody biomass feedstocks (i.e. delignification) and their depolymerization. In these

studies, the kinetic Monte Carlo (kMC) method has offered a numerical approach to solv-
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ing the chemical master equation for complicated systems. 26–28 The kMC provides detailed

insights throughout the microscopic depolymerization reactions, and it is integrated with

the macroscopic delignification model, completing global lignin mass balance and multiscale

model structure for the whole fractionation system. Such high-fidelity models can be utilized

in control approaches to determine the optimal recipe for achieving diverse lignocellulosic

material properties as desired.29,30 However, the kMC models are computationally expensive

due to their stochastic algorithm and detailed system description. Specifically, calculating

reaction rates is the primary computational bottleneck in the kMC framework, as it involves

determining the rates of numerous possible reactions for a vast number of chemical species

involved in the reaction. In terms of model-based control, while a model predictive con-

troller (MPC) is considered a viable strategy to address this problem, integrating multiscale

models has not yet been considered feasible for real-time control of the lignin properties. If

the embedded model is computationally demanding, obtaining a real-time solution within

each sampling time becomes challenging, leading to poor control performance and negative

impacts on product quality.

Recent advances have demonstrated the utility of machine learning (ML) techniques in

multiscale systems modeling. These approaches have been used to capture complex dynam-

ics across different scales and integrate them into control systems for chemical processes. 31–33

ML models, particularly data-driven approaches, have been integrated into nonlinear MPCs

for real-time process control.34 Moreover, the Koopman operator theory and the Operable

Adaptive Sparse Identification of Systems (OASIS) framework have shown potential in rep-

resenting nonlinear dynamics.35,36 However, these methods often involve the linearization of

nonlinear systems or require extensive data pre-processing and parameter tuning, which may

limit their application in some scenarios.

Inspired by this challenge, we developed an artificial neural network (ANN)-accelerated

kMC framework, which offers a unique solution by directly predicting reaction rates, reduc-

ing computational demands without compromising accuracy. In this approach, the kMC
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algorithm calculates reaction rates at each time step based on the current system configura-

tion, but the computationally expensive rate calculation step is replaced by an ANN trained

on kMC-generated datasets. This substitution retains the detailed tracking capability of the

kMC model, as all other components, including system updates and mechanisms, remain

intact. The outputs of the ANN-kMC model are validated against the experiments, demon-

strating its effectiveness in accelerating computations. Also, the model accuracy remains

similar to the traditional kMC, while the computation time is reduced to less than 1%. Sub-

sequently, the developed ANN-accelerated multiscale kMC (AA-M-kMC) model is seamlessly

integrated into the MPC, facilitating real-time control of the biomass fractionation processes

and optimizing lignin properties. The results confirm the outstanding performance of the

accelerated MPC based on the AA-M-kMC model, showing precise control of key variables

such as the molecular weight distribution (MWd) and the monomeric ratio.

The rest of this article is structured as follows: Section 2 discusses the mathematical

formulation of the multiscale kMC model, followed by the ANN training process and inte-

grating the ANN into the kMC algorithm. Subsequently, the open-loop simulation results

using the AA-M-kMC model are also provided. In Section 3, an MPC is designed to regu-

late the lignin properties. Subsequently, its performance and real-time control capability are

demonstrated. Then, we conclude with its significance and remarks in Section 4.

2 Model formulation and open-loop simulation

2.1 Preliminaries

A schematic diagram for the fractionation process is shown in Figure 1. The process involves

two phases: the chip phase and the liquor phase. The reactions can be classified into two

categories: slow delignification and redeposition between the two phases (macroscopic), and

fast de/repolymerization and demethoxylation within the liquor phase (microscopic). It is

important to note that the reactions in these two categories occur on distinct length scales,

leading to significant differences in their rates. If the kMC were to evaluate all the probabil-
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Figure 1: The brief illustration of the fractionation process. Two different monolignols and
bonds are in distinct colors. The orange bonds stand for cleavable β-O-4 bonds, while the
blue bonds are for any other uncleavable bonds.

ities simultaneously, the slower macroscopic reactions have relatively lower probabilities of

being selected. This does not mean that slower reactions never occur, but they require much

longer simulation times to be observed at the same frequency as the faster reactions. On the

other hand, a layered kMC can appropriately account for these timescale differences, ensur-

ing that both fast and slow reactions are accurately modeled according to their respective

timescales, while preventing the slower reaction from being overlooked.

Therefore, a two-layer kMC model, comprising a delignification and a depolymerization

layer, was used in this work. As a multiscale model, these two layers are updated simul-

taneously and interact with each other at every time step, providing rich insights into the

reacting system. However, the kMC algorithm calculates every reaction rate for all species

for each time step, demanding significant computational resources. Hence, to substitute the

rate calculating step, ANN training is performed based on the kMC model outputs. In this

ANN-kMC framework, the resulting ANN predicts the rates, the kMC algorithm executes a

reaction using the ANN prediction, and the system information is updated. The proposed

ANN-kMC does not compromise simulation accuracy, while the CPU time is significantly
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reduced to around 1% of its original time. Based on these results, the ANN-kMC was di-

rectly incorporated into the MPC to regulate lignin MWd and S/G ratio, completing the

AA-M-kMC model. Each component will be described in the following subsections.

2.2 kMC framework description

The properties of the Aspen wood chip used in this study are listed below:

• Prepared chip size: 1.0 mm

• Lignin content: 19.6% of the dry chip weight

• Lignin initial MW: 13 kDa

• Monolignol MW: 0.227 (S) and 0.179 (G) kDa

• Initial S/G ratio: 1.76

• β-O-4 bond content: 84%

In this work, only syringyl (S) and guaiacyl (G) monomeric units are considered, as they

constitute the most significant portion of the Aspen lignin. Also, the S/G ratio is defined

as the number of S units divided by the number of G units. Using the above information,

the wood chip is first configured. The S and G units are randomly assigned to build a 13

kDa lignin chain. This process is repeated until the total lignin mass reaches the specified

amount, ensuring the overall S/G ratio is 1.76. Additionally, these monomers are bonded by

different types of bonds, including carbon-oxygen (C-O) and carbon-carbon (C-C). Among

them, since β-O-4 bonds constitute the majority, it is assumed that all C-O bonds in our

system are β-O-4.

2.2.1 Delignification layer

The delignification reaction releases a lignin chain from the chip phase to the liquor phase.

Note that the dissolved lignin can also be redeposited to the chip phase. For these two reac-
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tions, the reversible first-order kinetics is proposed and their reaction rates can be expressed

as follows:37

rD = −dLc

dt
= kDLc − kRLd (1a)

rR = −dLd

dt
= −kDLc + kRLd (1b)

where the subscripts D and R denote delignification and redeposition, respectively. Lc and

Ld stand for the lignin in the chip phase and the dissolved lignin in the liquor phase, re-

spectively. Throughout this article, the rate constants k follow the Arrhenius-type equation,

k = Ae−Ea/RT . Here, A and Ea are the pre-exponential factor and the activation energy

barrier, respectively, R is the universal gas constant (0.008314 kJ/mol), and T is the tem-

perature.

Additionally, the energy balance equations are also implemented. The chip phase tem-

perature change can be represented as follows:

dTc

dt
CPcMc = ∆HRrD + U(Tf − Tc) (2)

where Tc, CPc , and Mc are the chip phase temperature, specific heat, and mass, respectively.

In this work, CPc is expressed as a function of chip phase temperature: CPc = 0.1031 +

0.003867Tc in [kJ/kg K].38 Also, ∆HR is the heat of the reaction, U is the overall heat

transfer coefficient, and Tf is the liquor phase temperature. Since both chip and liquor

phases interact, the liquor phase temperature also changes, following the equation below.

dTf

dt
CPf

Mf = −U(Tf − Tc) + CPextṀext(Text − Tf ) (3)

Similar to the chip phase, CPf
and Mf are the specific heat and the mass of the liquor

phase. As some reactions are highly sensitive to temperature changes, the temperature will

be controlled to obtain the desired lignin properties. In eq 3, the first term corresponds to
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the temperature change by the delignification reaction. In addition, the last term accounts

for the temperature change by the external heat source, denoted by the subscript ext. The

external heat source is applied in the open-loop simulation to maintain a constant liquor-

phase temperature. Additionally, delignification and redeposition influence the liquor phase

composition, and therefore, the specific heat of the liquor phase changes. Hence, a linear

mixing rule is applied to estimate the specific heat of the liquor phase during the fractionation

process,39 according to the following equation.

CPf
= xfsCPc + xflCPl

(4)

where xfs and xfl stand for the mass fraction of the lignin molecules and solvent (PSA) in

the liquor phase, and CPl
is the specific heat of the pure solvent.

The delignification time resolution, i.e., the macroscopic time step, is set to be ∆t =

5×10−4 minutes. For the multiscale model to simulate the delignification over ∆t, the amount

of dissolved lignin is calculated using eq 1a. Once the dissolved mass has accumulated to the

mass of one chain, the delignification reaction is triggered, and the kMC selects the chains

within the chip phases to be delignified. The redeposition process occurs in the same fashion

using eq 1b. At every ∆t, the system configuration is updated and then delivered to the

depolymerization layer.

2.2.2 Depolymerization layer

In this layer, the dissolved chains in the liquor phase can experience four reactions: depoly-

merization, repolymerization, demethoxylation, and null events. Depolymerization involves

the scission of the given chain. Repolymerization, also known as condensation, is the head-

to-tail polymerization of two arbitrary chains. Demethoxylation is a monomeric conversion

where an S unit loses one methoxy group and becomes a G unit. The null event designates

any other reactions that affect neither the lignin MWd nor the S/G ratio, only advancing the
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simulation time. Unlike the delignification and redeposition which occur across two different

phases, the above four are considered microscopic.

The delignification and redeposition mass can easily be tracked in ODE form (eq 1),

allowing their kinetic parameters to be determined through simple data fitting. On the

other hand, to handle the complicated structure of lignin chains at the monomer level, we

utilized the density functional theory (DFT) and ab initio molecular dynamics (AIMD)

simulations to determine the microscopic kinetic parameters. For the selected chains and

de/repolymerization sites, the activation energy barriers are calculated, considering the bond

identity (e.g., S-G, S-S, G-G), system temperature, and MWd. Detailed procedures of the

DFT-AIMD simulations and parameter calculations are described in our previous publica-

tion.22 In this work, according to their less branched nature, the lignin chains are assumed

to have a linear structure.40,41 Additionally, the lignin MWd is assumed to follow the log-

normal distribution.42–45 The β-O-4 bond takes the majority, and they are the most cleavable

in the lignin.46 Therefore, it is assumed that only β-O-4 can be broken. Furthermore, the

condensed bonds from repolymerization are not considered to be cleaved again.

The calculated kinetic parameters are used to determine the reaction rates for the existing

chains. For any selected chain of length N , the depolymerization rate is expressed for each

monomer-monomer bond as below:

rdep,i = φikdep,iC(LN) = φiAdep exp

(
−Edep,i

RTf

)
C(LN), 1 ≤ i ≤ N − 1

φi =


1 if the selected bond i is β-O-4

0 if the selected bond i is the others or the condensed one

(5)

where φi is a bond indicator to ensure only β-O-4 bond has the depolymerization rate and

can be cleaved. Also, C(LN) is the concentration of the chain with its length N . Adep is

the pre-exponential factor for depolymerization, and Edep,i is the activation energy barrier

of the i-th bond within the selected chain. Note that the activation energy barrier varies
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by inter-monolignol bonds.22 For repolymerization, which involves two chains, the rate is

computed as follows:

rrep = krepC(LM)C(LN) = Arep exp

(
−Erep

RTf

)
C(LM)C(LN) (6)

where the subscripts M,N indicate the length of the selected lignin chains. Arep and Erep

are the pre-exponential factor and the activation energy barrier of repolymerization. Also,

the S unit has two methoxy groups that can be eliminated by the demethoxylation reaction.

For the selected chain, the demethoxylation rate can be computed using the equation below:

rdem = 2kdemxSC(LN) = 2Adem exp

(
−Edem

RTf

)
xSC(LN) (7)

where xS is the molar fraction of the S unit in the selected chain. Adem and Edem are the

pre-exponential factor and the activation energy barrier of demethoxylation. The null event

does not change the kMC outputs but only advances the simulation clock. This is defined

as a zeroth-order reaction, i.e., rnull = knull.

To conduct the kMC simulation, all microscopic reaction rates are summed up to rsum

at each moment. Using this, the microscopic time, δt, can be calculated using the equation

below:26

δt = − ln ξt
rsum

(8)

where ξt ∈ [0, 1) is a randomly generated number. For every δt, one microscopic reaction

is selected based on the probability distribution. The execution probability is calculated

by normalizing all reaction rates (eqs 5-7), and thus, a reaction with high rates has the

highest probability of execution. Every reaction updates the lignin population, MWd, and

the S/G ratio. Note that the microscopic reactions are significantly faster compared to the

macroscopic reactions. In this model, the selection-execution process for the microscopic

reactions is repeated until δt accumulates to ∆t. Once Σδt approaches ∆t, the simulation
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returns to the delignification layer, and the macroscopic events occur based on the current

system configuration and eqs 1-4.

2.3 ANN development

In our proposed framework, all lignin chains are tracked with respect to their own S/G

compositions and chain lengths. Based on this information, the microscopic reaction rates

are computed using eq 5-7. When a microscopic event occurs, the lignin population within

the liquor phase changes. Consequently, the existing kMC algorithm scans every chain

and calculates the microscopic reaction rates again for every δt. It should be noted that the

kMC algorithm offers accurate and in-depth tracking of the simulating system, but executing

one microscopic event requires exhaustive computations. This limitation poses a significant

challenge in building a real-time controller based on this model.

Therefore, an ANN is trained to predict the overall distribution of reaction rates instead of

calculating every individual rate, thereby reducing computational demand. The ANN inputs

are the current system status, and the outputs are the microscopic reaction rates computed

from the kMC model. Additionally, for ANN training, all input data were normalized to

the range [0, 1] by min-max normalization. For the ANN output, the computed microscopic

reaction rates are used including de/repolymerization and demethoxylation. However, each

class has different levels of activation energy barriers, leading to exponential differences

between the reaction rates. Therefore, to facilitate effective training, the output data were

transformed using a logarithmic scale prior to normalization. In this section, a detailed ANN

training procedure and its implementation into the existing kMC are discussed.

2.3.1 Data preparation

The kMC tracks diverse information including molecular weights and monolignol composi-

tions of each lignin chain in the liquor phase. However, the primary challenge in dealing with

lignin chains directly is the sheer number of chains and their structural variability, which
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Figure 2: The original MWd parametrized into seven Gaussian distribution peaks.

results in high-dimensional data. In our simulations, there are thousands of lignin chains,

each with unique molecular weight, bond structures, and monolignol compositions. Tracking

the properties and reactions of each chain individually would not only result in substantial

memory requirements but would also significantly increase the computational time due to

the need to calculate the reaction rate for each chain at every time step. Therefore, there

is a need for parametrization of the information of the existing lignin chains to effectively

train the ANN.

Firstly, for the existing molecular weight data to be parametrized, the Gaussian Mixture

Model (GMM) is employed,47 and fitgmdist function in MATLAB is used to find the GMM.

The fitgmdist function in MATLAB employs the Expectation-Maximization (EM) algorithm

to estimate the parameters of the GMM. This iterative algorithm maximized the likelihood

of the data by alternately estimating the membership of each data point to the Gaussian

components (E-step) and updating the model parameters (M-step), thus effectively capturing

the distribution of the dataset. This approach can represent the entire lignin MWd as a few

Gaussian distributions, which have finite parameters such as their respective means (µ),

variances (σ), and relative weights (ω). Consequently, for the m Gaussian distributions, the

lignin MWd information is reduced to 3m parameters, facilitating effective ANN training
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Figure 3: Akaike Information Criterion (AIC) evaluation to determine the optimal number
of Gaussian distributions.

later.

Remark 1. Note that the depolymerization reaction breaks the lignin chains into smaller

segments and there are >12,000 chains during a 30-minute operation. Considering that the

GMM fitting scans the MWd information for all lignin chains within the system, excessive

chains require more time for the parametrization of the MWd. Therefore, to alleviate the

computational cost, the 2,000 lignin chains are sampled, ensuring that the distribution ob-

tained from this reduced number of samples closely follows the original distribution. This

practice reduced the GMM fitting time to 10-30%.

Subsequently, the sampled chain information is used to perform the GMM fitting. As

presented in Figure 2, the lignin population is characterized well with the resulting Gaussian

distributions. To determine how many peaks would best fit the original system, the Akaike

Information Criterion (AIC) is used, calculated as AIC = −2 log l + 2p. Note that the

likelihood (l) and the number of estimated parameters (p) compete against each other,

resulting in the lowest AIC for the best output. According to the AICs displayed in Figure 3,

7 Gaussian distributions are used to represent the current lignin MWd. Although there are

diverse lengths of chains showing distinct peaks, especially in the first few minutes, note
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that 7 distributions are determined to be optimal. For ANN training, these 7 parameter sets

(µ, σ, and ω) from these distributions are utilized instead of the entire MWd information.

Secondly, since the S/G ratio also influences the microscopic rates, especially the demethoxy-

lation, the average S/G ratio is also used as a variable to reflect the effect of the monomer

composition on the rates in the ANN training. Additionally, the liquor phase temperature

is considered since microscopic reactions are sensitive to the temperature.

In summary, the lignin MWd and S/G ratio are parametrized to Gaussian distributions

and the average ratio, respectively. Based on these data, the trained ANN predicts the

distribution of microscopic reaction rates, circumventing the rate calculation for every δt.

The kMC algorithm then decides which reactions to execute based on the predicted rate

distribution, thereby alleviating overall computational demand. The ANN training process

is further explained in the next subsection.

2.3.2 ANN training

While the average of multiple kMC runs converges to certain values for MWd and S/G

ratio, each kMC simulation gives different reaction trajectories due to its stochastic and

probabilistic algorithm. In this regard, the kMC datasets are collected over 30 different

operating conditions and used for the ANN training. To obtain the ANN training data,

the MWd, S/G ratio, reactor temperature, and reaction rate data are collected every 0.025

min at 0 ≤ t < 1 min, and then every 1 min at t ≥ 1 min. This is because there are

a considerably smaller number of chains in the liquor phase at that time, and they show

significantly different populations for each dataset.

The ANN architecture used in this work was configured with the following layers:

• Input layer: 23 nodes (including 7 sets of [µ, σ, ω], average S/G ratio, and Tf ).

• Hidden layers: all nodes are fully connected, and followed by a rectified linear unit

(ReLU) activation function.
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Figure 4: Negligible changes were observed in MWd over a period of 0.05 minutes, despite
the execution of approximately 500 microscopic events.

• Output layers: 3 nodes (including the sum of each de/repolymerization or demethoxy-

lation).

Here, two hidden layers have 12 and 6 nodes, respectively. The Stochastic Gradient Descent

with Momentum (SGDM) optimizer is used for network training and its initial learning rate

is set to 0.1. The datasets are divided into 85% for training and 15% for validation. For every

15 epochs, the training process is monitored utilizing the validation data. If 15 validation

tests do not lead to any improvements, the training process is terminated.

2.3.3 ANN-kMC integration

After training the ANN, the rate calculation in the kMC algorithm is replaced with the

rate prediction with ANN. After the total rdep, rrep, and rdem are predicted by the trained

ANN, the selection of microscopic events is determined based on the following two-step

process. The selection of de/repolymerization or demethoxylation at the current time step

is weighted according to the magnitudes of the predicted total rates by ANN, ensuring that

more probable events are chosen more frequently. This allows the algorithm to prioritize

reactions that are more likely to occur based on the system’s current state.

Once a specific event is chosen, the algorithm selects the relevant chains and bonds for
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the reaction. For depolymerization or demethoxylation, a single chain is selected uniformly

from the entire system. In the case of depolymerization, the activation energy barriers for

each β-O-4 bond within the selected chain are evaluated, and the bond with the lowest Edep,i

is cleaved. For demethoxylation, one of the S monolignols in the selected chain is randomly

chosen and demethoxylated by removing a methoxy group. For repolymerization, two chains

are selected uniformly, and the algorithm condenses them into one longer chain. As the total

reaction rates are predicted by the ANN, δt can still be calculated using eq 8.

While this process simplifies the event and chain selection mechanism, it is grounded

in the high-fidelity kMC simulations used to train the ANN. Since the microscopic rates

are primarily affected by the lignin concentration, utilizing concentration-based selection

can avoids the need for exhaustive rate calculations across all chains and bonds at each time

step. This allows for a significant improvement in computational efficiency while maintaining

the accuracy required for high-fidelity simulations.

This ANN-kMC serves as a surrogate kMC model, simplifying the rate calculation step.

Since only the rate calculating step is substituted, the ANN-kMC retains the full advantage

of the kMC simulation, such as the capability of predicting how the MWd and S/G ratio

evolves over time. Note that, as shown in Figure 4, the entire distribution does not change

significantly over around 500 microscopic events. Therefore, the microscopic reaction rate

distribution also remains similar for a short period. In this regard, the GMM fitting and rate

predictions are performed sparsely. The simulation is set to execute 500 microscopic events

based on the current rate prediction and moves to the next prediction. To demonstrate

its validity and feasibility, the CPU time and simulation outputs from both models are

compared.
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Figure 5: The ANN training loss calculated by eq 9.

2.4 Open-loop simulation results

During the ANN training, the loss function of the network is given by:

Loss =

√√√√ 1

2S

S∑
i=1

(Yi −Ti)
2 (9)

where S is the number of data points, Y and T are the predicted and true values, respectively.

The loss function history is shown in Figure 5, and its final value is as low as 0.0072,

confirming the ANN is trained well. To further demonstrate the accuracy of the surrogate

AA-M-kMC model, the results from both models are compared.

In Figure 6a, at 0 ≤ t ≤ 5, the AA-M-kMC model shows a large fluctuation due to

the lumped simulation settings. The number-average (Mn) and weight-average (Mw) were

calculated as defined below:

Mn =

∑Nl

i wi

Nl

Mw =

∑Nl

i w2
i∑Nl

i wi

(10)

where Nl is the total number of the dissolved lignin chains and wi is the molecular weight of

a lignin chain i. Given that fewer chains are dissolved in the liquor phase at the beginning,

17



Figure 6: The comparison for both the high-fidelity kMC and the AA-M-kMC models: (a)
average molecular weights, and (b) S/G ratio.

Table 1: Comparison of RMSE for the high-fidelity model and AA-M-kMC model.

RMSE High-fidelity model AA-M-kMC model
Mn (kDa) 0.2688 0.2987
Mw (kDa) 0.2484 0.2220
S/G ratio 0.1226 0.1242

the random scission mechanism and repolymerization between a limited number of chains

significantly affect the average MW, leading to an outstanding oscillation in Mn and Mw.

However, the outputs of the AA-M-kMC model converge to the experimental data after 15

minutes of the reaction time. As the lignin population gradually increases, the fluctuation

in molecular weights is significantly alleviated and the lumped execution does not change

the system aggressively. Additionally, the S/G ratio is also captured by both models and

plotted in Figure 6b. In both models, the ratio initially increases, attributed to the higher

population of S units, but it decreases over time due to the demethoxylation reaction. These

results indicate that the number of S and G units becomes similar during fractionation. The

root-mean-square errors (RMSEs) are provided in Table 1. For both the average lignin MW

and the S/G ratio, the results from both models closely aligned with the experimental data.

Considering that both models have excellent performances, the CPU times for both mod-
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Figure 7: The comparison of the CPU times for each modeling approach.

els are compared to check the computational efficiency. As exhibited in Figure 7, the AA-

M-kMC approach drastically reduced the computational demand. It requires substantially

less simulation time, taking only about 0.94% of the time needed by the existing kMC-based

model. Moreover, the main advantage of using ANN becomes evident in the depolymeriza-

tion layer. In the previous kMC algorithm, the depolymerization layer conducted the rate

calculation and event execution for every δt, taking 1,456.5 seconds. In contrast, the AA-

M-kMC model predicts the reaction rate distribution in just 6.04 seconds. Also, it executes

multiple microscopic events based on the predicted rates, taking 3.34 seconds. Therefore,

for the microscopic simulation, the CPU time decreased to 0.6%, as indicated by the arrows

in Figure 7.

Remark 2. This ANN-based acceleration technique has broad applicability across various

multiscale modeling studies, especially those that include kMC simulations. By reducing

computational burdens, this approach can significantly enhance the real-time control capabil-

ities of complex systems. Similar studies have demonstrated the potential for integrating ML

into multiscale simulations to optimize performance without compromising model accuracy

in various applications, including thin film deposition, 48–51 lignocellulosic biomass,52,53 and

quantum dots.54 This framework is not only beneficial for kMC-based models but can also be
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Figure 8: A bimodal lignin MWd after a 30-minute operation.

extended to other simulation-based approaches in multiscale modeling.

3 MPC design and closed-loop operation results

With the above results, the AA-M-kMC model is seamlessly implemented into the MPC

framework to regulate the key properties of the resulting lignin. In this section, the MPC

formulation and the closed-loop control results are presented.

3.1 MPC formulation

The MPC is formulated as follows:

min
Text,k

7∑
j=1

ϕj(Xj(tN)−Xj,sp)
2 (11a)

s.t. AA-M-kMC model (Section 2.1 to 2.3) (11b)

338 ≤ Text [K] ≤ 368 (11c)

|Text(tk+1)− Text(tk)| ≤ 5 ∀k ∈ {1, . . . , N − 1} (11d)
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where ϕj is a weighting constant, Xj stands for the elements to be controlled, N represents

the number of the prediction horizon, and Text,k indicates the external jacket temperature at

t = tk, respectively. The AA-M-kMC model, integrated as the surrogate model in this MPC

formulation, predicts the microscopic reaction rates required to update the system state at

each control interval. This allows the MPC to simulate the system efficiently without the

computational burden of the full kMC model. By incorporating the surrogate model into

the control loop, the MPC optimizes the temperature trajectory based on real-time process

feedback, ensuring that key process variables such as MWd and S/G ratio remain within

the desired operating ranges. Additionally, this real-time application leverages the reduced

computational demand of the AA-M-kMC model, ensuring that the MPC can meet the

time constraints required for each sampling interval. As shown in Figure 8, an open-loop

operation gives the bimodal lignin MWd after t = 30 min, since depolymerization cuts down

a lot of chains into smaller fragments. Thus, the target MWd in this framework is set to

consist of two peaks in relatively lower and higher ranges. In this regard, X is defined as

[µ1, µ2, σ1, σ2, ω1, ω2, ρ], where ρ represents the resulting S/G ratio, and the subscript 1 and

2 designate the peak at the lower and higher MW range, respectively. Additionally, the

MPC finds the optimal temperature trajectory avoiding a significant rise or drop in the

liquor-phase temperature as indicated in eq 11d.

3.2 Closed-loop operation results

To demonstrate the performance of the proposed MPC, we carried out a virtual experiment

with the original high-fidelity multiscale model. In this work, the control action is taken

every 5 minutes. Also, the set-points are defined as Xsp = [1000, 2200, 400, 800, 0.70, 0.30,

1.00]. Note that MWd is controlled by the controller, instead of their average values, such

as Mn and Mw. For the system to reach the set-points, the Tf is controlled by varying Text.

The temperature control profile is shown in Figure 9, and the control results are shown

in Table 2. As the controller raised the temperature, the delignification became faster.
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Figure 9: The temperature input trajectory from the proposed MPC framework.

Table 2: The set-points and the control results.

Variable Set-point Closed-loop operation Difference
µ1 1.000 0.899 −0.101
σ1 0.400 0.425 +0.025
ω1 0.700 0.697 −0.003
µ2 2.200 1.847 −0.353
σ2 0.800 0.773 −0.027
ω2 0.300 0.303 +0.003
ρ 1.000 1.012 +0.012

Moreover, the dissolved chains were quickly depolymerized into smaller fragments, resulting

in the high lignin population at the low-MW range as shown in Figure 10. Then, the

depolymerization becomes slower as the temperature decreases at t ≥ 15 min. Consequently,

the MWd finally approached the set-point at the end of the operation.

Another critical property, the S/G ratio, is also regulated through the MPC, as exhibited

in Figure 11. Initially, the ratio increased due to the dissolution of S-rich chains, as previously

observed in Figure 6b. However, it fell drastically due to the high temperature applied until

t = 10 min. It seems there were light fluctuations in the S/G ratio for the next 10 minutes

under lower temperatures, but it finally approached the set-point with a low error level of

1.2%.
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Figure 10: The evolution of lignin MWd compared to the MPC set-points.

The proposed MPC also enabled real-time control owing to the ANN-assisted accelera-

tion. As highlighted in Figure 12, all the computation times for each segment are less than 5

minutes, the actual sampling time. Also, while the AA-M-kMC model requires substantially

reduced computational demand compared to the existing kMC method, this framework re-

tains the full advantage of the kMC method. In this work, only the rate-calculating step has

been replaced with the neural network, while all other procedures, such as the event execu-

tion algorithm, remain the same. Therefore, the outputs of the AA-M-kMC model consist of

the full information, allowing for detailed system predictions similar to those available from

the previous kMC approach.

Hybrid modeling approaches, which integrate first-principles with data-driven models,

have been widely employed to enhance model accuracy in complex systems. These methods

leverage the strengths of both physics-based and ML models to provide a more comprehen-

sive representation of the system dynamics. In contrast, note that the approach presented

in this work focuses primarily on improving computational efficiency rather than solely on

enhancing accuracy. By substituting the computationally intensive rate calculation step in

the kMC model with ANN predictions, we achieve significant reductions in computational

demand while maintaining the detailed system tracking capabilities inherent to the kMC
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Figure 11: The evolution of the S/G ratio controlled by the proposed MPC.

framework. This distinction is important, as our ANN-based acceleration framework not

only preserves the accuracy of the original multiscale model but also enables its application

in real-time control scenarios where computational resources are constrained. Such an ap-

proach complements hybrid modeling efforts by addressing the limitations of computational

efficiency in multiscale systems.

While the current framework demonstrates the MPC’s ability to achieve desired lignin

properties, future work will explore how disturbance scenarios can be integrated into the

surrogate model training. For example, some fluctuations due to feedstock quality or envi-

ronmental conditions can be handled by integrating observers within the MPC. This could

further enhance its resilience to unanticipated process changes, ensuring reliable closed-loop

operation in real-world applications.

4 Conclusion

In this study, a novel approach to predicting detailed lignin properties in a computationally

efficient manner was presented by developing an ANN-accelerated kMC simulation. Specifi-

cally, the rate calculation step of the kMC model was replaced with ANN predictions, and the

resulting ANN-kMC model performed event selection and system updates in the same man-
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Figure 12: The time required to determine the next temperature for each time segment.

ner as the existing kMC algorithm. Therefore, the ANN-kMC model was readily integrated

with the macroscopic layer, completing the multiscale model structure, suggested as the AA-

M-kMC model in this work. The proposed AA-M-kMC model effectively captured the lignin

properties over two phases, according to the system updates from interphase macroscopic

events, liquor-phase microscopic events, and their respective governing equations. Moreover,

our AA-M-kMC model approach successfully addressed the computational challenges asso-

ciated with the previous kMC-based model. By replacing the computationally expensive

rate calculation step with the ANN predictions, the model significantly reduced the overall

simulation time while maintaining the detailed system tracking capability.

Additionally, the AA-M-kMC model was directly implemented in the MPC framework,

demonstrating its potential for real-time process control. The virtual experiments, conducted

with the high-fidelity kMC model as a benchmark, confirmed the effectiveness of the proposed

MPC framework in achieving the target lignin properties, including MWd and S/G ratio.

The MPC regulated these properties with high accuracy in real-time, keeping both variables

around their respective set-points. To the best of our knowledge, this is the first attempt to

incorporate a highly detailed multiscale model directly into the real-time controller. Overall,

this work demonstrated a significant advancement in lignin processing methods, offering a

25



powerful tool to enhance the efficiency of biomass fractionation processes.
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