GEOGRAPHY OF PINCHED FOUR-MANIFOLDS
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ABSTRACT. We prove several new restrictions on the Euler characteristic and
signature of oriented 4-manifolds with (positively or negatively) pinched sec-
tional curvature. In particular, we show that simply connected 4-manifolds
with § < sec < 1, where § = m 2 0.161, are homeomorphic to S* or CP2.

1. INTRODUCTION

The so-called Geography Problem in 4-manifold topology is to determine which
pairs (o,x) € Z? can be realized as signature ¢ = o(M) and Euler characteristic
X = x(M) of a certain class of 4-manifolds M; e.g., complex surfaces [Per87],
irreducible 4-manifolds [FS94], or those with a given fundamental group [KL09]. In
this paper, we systematically investigate a geometric version of this problem, where
the condition imposed on M is the existence of a Riemannian metric with pinched
curvature. We say that a Riemannian manifold (M,g) is positively or negatively
d-pinched, § € (0,1], if the sectional curvature of every tangent 2-plane II satisfies

0 <sec(Il) <1, or —1<sec(Il) <-4,

respectively. Collectively, (M,g) is called d-pinched if it is either positively or
negatively d-pinched. It is well-known that 0-pinched 4-manifolds have x (M) > 0;
our first main result provides an explicit upper bound for the ratio |o(M)|/x(M):

THEOREM A. If (M*,g) is a §-pinched oriented 4-manifold with finite volume, then
(1.1) o (M)] < A(0) x(M),
where X: (0,1] — R is an explicit continuous function, given in (1.5), that is strictly

. ) . _ 1 1 1y _ 1 _
decreasing and satisfies (}1\1‘% A(9) = o0, A(m> <3, M3) =3, and A(1) = 0.

In the above statement, and throughout this paper, all manifolds are assumed
complete and without boundary. If (M*,g) is negatively §-pinched, then M need
not be closed, in which case o (M) is to be understood as the proper homotopy in-
variant given by the L?-signature o) (M*,g), see Section 2.6 and [CG85a, CG85b].

The fact that A is an explicit function of § is the crucial component of Theorem A,
as the existence of some function A: (0,1] — R satisfying (1.1) and A(1) = 0 can be
shown with routine arguments. Theorem A is a concoction of our main technical
result (Theorem 6.2) and a thorough extension (Theorem A.1) of the seminal works
of Ville [Vil85, Vil89], carried out in Appendix A. While Theorem 6.2 gives a
continuously differentiable function A*: (0,1] — R satisfying (1.1) and all other
conditions in Theorem A except % — %, Theorem A.1 yields a continuous function
AV 6y, 1] — R, where 6y = 0.163, satisfying (1.1) and £ % Combining these,
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we have the function A(§) = min{\*(6), AV (6)} in Theorem A; see Section 1.4 for
details. Theorem A also improves a similar result of Polombo [Pol78] for 0 < § < %.

Since d-pinching becomes less stringent as § N\, 0, it is natural that a function
A: (0,1) — R satisfying (1.1) be decreasing and A(0;) = +00. On the other hand,
A(1) = 0 indicates a certain sharpness regarding (1.1), since 1-pinched manifolds
are either spherical or hyperbolic spaceforms, which, being locally conformally flat,
have vanishing signature. Also )\(%) = % is sharp, as the complex projective plane
M = CP? and compact quotients M = CH?/T of the complex hyperbolic plane
are all }-pinched and have o(M) = $x(M).

Let us further analyze the positively and negatively pinched cases separately.

1.1. Positively pinched 4-manifolds. By the celebrated 1/4-pinched Sphere
Theorem and its several improvements [BS11, PT09], it is known that there exists
£ > 0 such that if an oriented 4-manifold (M*,g) is 6-pinched with § > % — ¢, then
M is diffeomorphic to $* or CP2. Moreover, every positively d-pinched oriented
4-manifold M is closed and has by (M) = 0, hence |o(M)| < x(M), see (2.8).
Thus, in this case, Theorem A only provides new information in the range

(1.2) A1) <6<t —¢,
where \71(1) = %ﬁ 2~ 0.052, according to (1.5). A particularly interesting
value in the above range is 1+; 73 2 (.161, since positively ﬁ—pinched oriented

4-manifolds were recently shown by Didgenes and Ribeiro [DR19, Thm. 1] to have
definite intersection form. Combined with Theorem A, that gives |o(M)| < $x(M),
and the classical works of Donaldson [Don83] and Freedman [Fre82], this yields:

THEOREM B. If (M*,g) is a positively §-pinched simply-connected 4-manifold, with

o> 1+;)\/§ = (.161, then M is homeomorphic to S* or CP2.

Theorem B improves on results of Ville [Vil89], Seaman [Sea89], and Ko [Ko05],
where the same conclusion is obtained under stricter J-pinching: § > % >~ 0.211,
6 > 0.188, and § > 0.171, respectively. Although it is widely expected that closed
simply-connected 4-manifolds (M*, g) with sec > 0 be diffeomorphic to S* or CP?
(see e.g. [Zill4]), this remains a difficult open problem. Perhaps the most com-
pelling evidence for this conjecture is that it holds if (M*,g) has an isometric circle
action [HK89, GW14]. From this point of view, Theorem B provides new evidence
without any symmetry assumptions, cf. also [BM22, Thm. CJ.

Our next main result gives upper bounds on the region in the (|o|, x)-plane reach-

able by positively §-pinched 4-manifolds, refining an observation of Berger [Ber62]
2

that such 4-manifolds are either homology spheres or have x (M) < 6% +% (% —1)

THEOREM C. If (M*,g) is a positively §-pinched oriented 4-manifold, then either
M is diffeomorphic to S*, or x(M) < $(% —1)% and |o(M)| < 2 (% — 1)2.

To the best of our knowledge, no restrictions on (M), aside those inherited from
lo(M)| < x(M) — 2, were previously known for positively d-pinched manifolds.

Even though the upper bounds in Theorem C diverge to 400 as § N\ 0, x(M) and
|o(M)| are known to be bounded above by a universal constant C'(4) for any closed
4-manifold (M*, g) with sec > 0. This is a consequence of the celebrated total Betti
number bound of Gromov [Gro81], see Remark 7.5 for details. Gromov conjectured
that C'(4) = 24, but the best available estimates (due to Abresch [Abr87]) only give
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FIGURE 1. Admissible range (green) for (|o(M)|,x(M)) if M is
positively d-pinched by (2.8) and Theorems A and C; drawn with

§ = 2222 = (136, so A(6) = 0.552, x(M) < 36, and o (M) < 12.

C(4) £ 2.731 x 10?32, The latter is a smaller upper bound on y(M) than that in
Theorem C if § < 5.705 x 1077, but it is hundreds of orders of magnitude larger
if, e.g., 6 2 0.086, in which case Theorem C gives (M) < 102. Still, according to
the conjectured classification of closed simply-connected 4-manifolds with sec > 0,
one ought to have x(M) < 3 and |0(M)| < 1, no matter how small is § > 0.

The admissible region in the (|o|, x)-plane for positively d-pinched 4-manifolds, as
constrained by Theorems A and C, is illustrated in Figure 1. By Synge’s Theorem,
such a 4-manifold M has 71 (M) = {1} if it is oriented, and m (M) = Z4 otherwise.
Thus, resorting again to the works of Donaldson [Don83] and Freedman [Fre82] for
the simply-connected case, and to Hambleton, Kreck, and Teichner [HKT94] for
the non-simply-connected case, one derives the following from Theorems A and C.

COROLLARY D. For all 6 > 0, there exists an explicit finite list of possible homeo-
morphism types for positively §-pinched 4-manifolds.

While Corollary D also follows from the above mentioned bound on x(M) for
each 6 > 0 by Berger [Ber62], together with |o(M)|+2 < x(M), the explicit list of
homeomorphism types obtained using Theorems A and C is substantially shorter.

1.2. Negatively pinched 4-manifolds. In light of constructions of Gromov and
Thurston [GT87], classification results similar to the 1/4-pinched Sphere Theorem
are impossible in the negatively pinched case. Indeed, for all € > 0, there are
closed negatively (1 —¢)-pinched 4-manifolds that do not admit metrics of constant
curvature. While the examples in [GT87] have zero signature, similar examples
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with nonzero signature were recently found by Ontaneda [Ont20, Cor. 4]. Thus, in
stark contrast to the positively pinched case (1.2), the conclusion of Theorem A in
the negatively pinched case is nontrivial in the full range 0 < § < 1. As § 1,
it follows from Theorem A that negatively J-pinched oriented 4-manifolds (M*, g)
with o(M) # 0 must have x(M) ' +oo; namely, by (1.5), we have that

2462 — 126 + 15
x(M) > TEE

if § is sufficiently close to 1. In particular, solving for §, one sees that closed oriented
4-manifolds M with o(M) # 0 and fixed Euler characteristic x(M) = x can only
admit metrics that are negatively d-pinched if § < §, < 1, where §, is explicit. A
similar gap § < ¢, holds [Bel99, Cor. 1.3] weakening o(M) # 0 to M not admitting
hyperbolic metrics, and fixing 71 (M) = 7 instead of x(M), but d, is not explicit.

We also remark that although the lower bound (1.1) becomes arbitrarily weak
as § N\, 0, it follows from Gromov [Gro78, §1.7 (2)] that there exists C' > 0 such
that, for all 6 > 0, negatively d-pinched closed 4-manifolds with (M) # 0 have
X(M) > C. Combined with (1.1), one has the lower bound

)2 {200 1

which remains uniformly away from zero for all §, and diverges to +o0o0 as § 7 1.
Another striking difference arises from negatively d-pinched closed 4-manifolds

M not necessarily having by (M) = 0. However, as these manifolds have x(M) > 0,

(1.3) bi(M) <1+ 1by(M)+ 3b_(M).

A consequence of Theorem A is that this upper bound can be improved to

(L4)  by(M) <14 A max{by (M), b_ (M)} + A5 min{b (M), b_ (M)},

where A = A(6) > 0. Note that the above weighted average of by (M) is strictly
smaller than the simple average in (1.3) whenever o (M) # 0.

Similarly to Theorem C, upper bounds (depending on volume) can be given on
the admissible region in the (|o]|, x)-plane for negatively d-pinched 4-manifolds:

THEOREM E. If (M*,g) is a negatively d-pinched oriented 4-manifold with finite
volume, then

3 2
M) < -~ Vol(M M)| < == (1 —68)*Vol(M, g).
X(M) € 2 VOl(M ), and. [o(M)| < g2 (1~ 8)° Vol(M, )
Equality in the upper bound for x(M) is achieved if and only if (M*,g) is hyperbolic.

The above upper bound on x(M) is likely known among experts (e.g., it follows
from [Vil87, Thm. 1]), but we are unaware of any such prior results for o(M). Asin
Theorem A, o(M) is to be understood as the L2-signature if (M4, g) is noncompact.

Using Bishop Volume Comparison in the inequalities in Theorem E, we see that
negatively d-pinched closed oriented 4-manifolds (M*, g) with diam(M, g) < D have

(M) < 2(2 + cosh D)sinh* £ and |o(M)| < 32(1—6)*(2+ cosh D) sinh* 2,

2
and, once again, equality in the upper bound for x(M) holds if and only if (M*, g) is
hyperbolic. It follows from Gromov [Gro78, §1.7 (1)] that, for all D > 0 and V' > 0,
there exists 0 < d(D,V) < 1 such that if a closed 4-manifold M is negatively
0(D,V)-pinched and o(M) # 0, then diam(M,g) > D and Vol(M,g) > V. Note
that Theorem E quantifies this result, yielding explicit estimates on §(D, V'), since it
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implies that closed d-pinched 4-manifolds with o (M) # 0 have Vol(M,g) > %

and diam(M,g) > D where D > 0 satisfies (2 + cosh D) sinh* L= ﬁ.

1.3. Methods of proof. Our results on pinched 4-manifolds are proven with a
blend of Differential Geometry and Convex Algebraic Geometry. By the Chern—
Gauss—Bonnet formula and Hirzebruch signature formula, the Euler characteristic
and signature of (M4, g) can be computed as integrals (2.9) of quadratic forms y(R)
and o(R) on its curvature operator R, respectively. (These formulas generalize to
the case in which M is noncompact, see Section 2.6.) We use these to estimate
x(M) and o(M) combining pointwise bounds on such integrands, obtained through
optimization methods; and global restrictions on the diameter and volume of such
manifolds, obtained with standard Comparison Geometry techniques. Moreover,
since x(R) and g(R) only have degree 2 terms, any pointwise bounds on positively
d-pinched operators automatically hold for negatively d-pinched operators.

The key link with Convex Algebraic Geometry is the Finsler—Thorpe Trick
(Lemma 2.3), a distinctly 4-dimensional phenomenon (see [BKM21]) that character-
izes the set of positively 6-pinched (algebraic) curvature operators R: A2R* — AZR*
as a spectrahedral shadow. More precisely, it is the intersection of the projections
onto the space Symg(A2R*) of the spectrahedra of operators in Sym?(A?R*) with
all eigenvalues > ¢ and < 1, respectively. Recall that Sym7(A2R*) C Sym?(A2R*)
is the subspace of operators satisfying the first Bianchi identity, and its orthogonal
complement is spanned by the Hodge star operator x. Moreover, a spectrahedral
shadow is (by definition) a linear projection of a spectrahedron, and the intersection
of two spectrahedral shadows is also a spectrahedral shadow.

As explained in Section 4, it also follows from Finsler—Thorpe’s Trick that pro-
jecting away the traceless Ricci part R, of a pinched curvature operator R produces
an Einstein curvature operator R — R, which is at least as pinched as R. The set
of such operators is a far simpler convex set: it is the orbit under the SO(4)-action
on Symi(/\QIR‘l) of a set affinely equivalent to a simplex A} C R, which we call
the Einstein simplex. Similarly, there is an augmented Einstein simplex AS C RS
that parametrizes SO(4)-orbits of d-pinched Einstein curvature operators R and the
corresponding t; € R such that R + t1 * € Sym? (A’R*) has all eigenvalues > .

Thus, finding extrema of SO(4)-invariant quadratic forms on R that do not de-
pend on R, reduces to a quadratic optimization problem on the simplex AJ. Even
though general quadratic programming is NP-hard [Sah74, PV91], the cases at hand
are manageable. For example, we are able to explicitly compute the maximum of
a|Wy|? + b|W_|?, for any a,b € R, where W are the self-dual and anti-self-dual
Weyl parts of a J-pinched curvature operator, and also characterize the equality
case, see Proposition 7.1. This sharp pointwise estimate, which is likely to have
other applications, is the main new input to prove Theorems C and E.

On the other hand, the 1-parameter family of SO(4)-invariant quadratic forms
IL(R) = x(R) — +0(R) used to prove Theorem A, and the particular case I.(R)
needed for Theorem B, do depend on the traceless Ricci part Rz. To overcome
this, we prove (Proposition 5.3) an upper bound on |R|? for any R € Sym?(A?R?)
in terms of its minimal (or maximal) sectional curvature k € R, scal, Wy, and a
value t € R such that +£(R — kId) + ¢ * is positive-semidefinite (which exists by the
Finsler-Thorpe Trick). Aside from its independent interest, Proposition 5.3 can be
used to eliminate the dependence on R, and find a quadratic form Qy: A% — R
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on the augmented Einstein simplex A§ whose values bound those of I, from below.
Then, optimizing () on Ag and requesting that its minimum be nonnegative de-
termines an explicit description of a semialgebraic set in the (J, A)-plane. Applying
Cylindrical Algebraic Decomposition to this set gives, for each §, the desired explicit
lower bound on A that is sufficient to ensure Ix(R) > 0 for all §-pinched curvature
operators, and hence o(M) < X - x(M) for all §-pinched 4-manifolds (M?,g). This
yields Theorem 6.2, which is our main technical result leading to Theorem A.

1

| —

-199+9+v545 1 1
71 4

FIGURE 2. Graphs of functions A* from Theorem 6.2 (red) and AV
from Theorem A.1 (blue); whose minimum is A given by (1.5).

1.4. Explicit function A(d). As mentioned above, Theorem A is the combination
of Theorems 6.2 and A.1, each of which proves (1.1) for a certain explicit function
of §. Comparing these functions and extracting A(6) = min{\* (), AV ()} gives:

2 48-85+02+6—4
e ’ 0<d<dy,
4 1-6
S S 51S5<527
(1.5) A(@) =< 3V154/0(0+2)
2 i 4 3 2 —
26° +80+2 = 2V3VERT F AP+ 67 +8I -1 o oo
3(1—0)2
8(1 — §)?
 8(1—-9) <o <
2462 — 126 + 15’ pEEh

where
(i) 91 = 0.069 is the smallest real root of the polynomial 252 — 4062 + 895 — 6,
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(ii) d =2 0.191 is the largest real root of the polynomial 227955+ 62465° +44705* +
206002 — 45002 — 246 — 1,
(iii) d3 =2 0.211 is the largest real root of the polynomial 140644405 —65%+885—19.
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2. PRELIMINARIES ON 4-MANIFOLDS

In this section, we discuss a multitude of basic topics regarding 4-manifolds
needed in the remainder of the paper, also fixing notations and conventions.

2.1. Four-dimensional curvature operators. We now briefly recall some well-
known facts about curvature operators of oriented 4-manifolds, for details, we refer
the reader to [Bes08, Chap. 1.G-H].

The space Sym?(A2R*) of symmetric endomorphisms of A2R* decomposes as the
orthogonal direct sum of four irreducible pairwise non-isomorphic O(4)-submodules,

(2.1) Sym?(A*RY) =U & L & W @ ATRY,

and, accordingly, we write R = Ry + Rz + Ryy + Ra4 to indicate the components
of an element R € Sym?(A?R*). The (real) dimensions of the spaces in (2.1) are 1,
9, 10, and 1, respectively. In particular, the summand R4 is a scalar multiple of
the Hodge star operator * € Sym?(A2R*), and it vanishes if and only if R satisfies
the first Bianchi identity. We denote by Symj(A2R*) the subspace of elements
R € Symz(/\zlﬁ‘l) with Rys = 0. Such R are called algebraic curvature operators,
while general elements of Sym?(A2RR*) are often called modified curvature operators.

The curvature operator of a Riemannian 4-manifold (M*,g), at a point p € M,
is an element of Symj(A?R*) once T, M is isometrically identified with R*; and,
conversely, every element of Symj(A2RR*) can be realized as the curvature operator
of a Riemannian 4-manifold at a point. In terms of the Kulkarni-Nomizu product,

Ry =*%{gng, and Rg =380 (Ric—jscal),

i.e., geometrically, Ry, encodes the scalar curvature, R, the traceless Ricci tensor,
and Ryy the Weyl tensor, so an algebraic curvature operators R is called scalar flat
if Ry =0, Einstein if Ry = 0, and locally conformally flat if Ry, = 0.

2.2. Further decompositions. The Hodge star operator * € Sym?(A%?R*) has
eigenvalues +1, and the corresponding eigenspaces /\iR‘l and A2 R* are called the
self-dual and anti-self-dual subspaces, respectively. The orthogonal direct sum

(2.2) A RY= AR @ AZR?

is preserved by SO(4), whose action on (2.2) factors through the standard prod-
uct action of its Zs-quotient SO(3) x SO(3) on R® @ R3. Restricting the O(4)-
representation (2.1) to SO(4) C O(4), the subspace W further decomposes into two
SO(4)-irreducibles W = W, @ W_, which are the 5-dimensional subspaces Wy =
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Symg(AZRY). In particular, if (M*,g) is an oriented Riemannian 4-manifold, then
the summand Ryy of its curvature operator splits accordingly as Ry, + Rw_.
Restricting the O(4)-representation (2.1) once more, to U(2) C SO(4), the sub-
space AZRR* decomposes into two U(2)-irreducibles, of dimensions 1 and 2, and
thus W, decomposes into three U(2)-irreducibles, of dimensions 1, 2, and 2, while
L decomposes into two U(2)-irreducibles, of dimensions 3 and 6, see [Arm97, TV81].

2.3. Canonical form. Given R € Symj(A2R*), the above SO(4)-action on (2.2)
can be used to diagonalize R on each subspace AZIR?, obtaining orthonormal bases
of /\3_]R4 and A2 R* so that the matrix representing R has the block structure

_ uld +W+ Ct
23) k= ( C uld +W_) !

where u € R is a scalar, W, are traceless diagonal 3 x 3 matrices, with eigenvalues
wi < wi < wi, and Cis a 3 x 3 matrix. To simplify notation, we often use vectors

(2.4) W = (Wi, i, wi),

and write W4 = diag(wf,w%, w?jf) For convenience, we assume henceforth that
every algebraic curvature operator R is in the above canonical form (2.3).
The components in (2.3) correspond precisely to Ry, Rz, and Ryy, . Note that

_Llenl = L
u= 12scaul—ﬁtrR

and R is Einstein if and only if C = 0, which, in turn, is equivalent to R and x*
commuting. Moreover, R is called half conformally flat if one of the self-dual or
anti-self-dual Weyl tensors W vanishes. The involution of (2.2) given by reversing
orientation interchanges AZR?, and hence interchanges W, transposes C, but
leaves u invariant. This is the effect on the curvature operator of an oriented
Riemannian 4-manifold if its orientation is reversed.

The algebraic curvature operator R is Kdihler if R € Symj (u(2)), where u(2) C
0(4) =2 A2R* is the Lie algebra of U(2) C O(4), or, equivalently, if JR = RJ = R,
where J € Sym?(A?R*) = Sym?(A2C?) is the map J(v Aw) = vV—1v A vV/—1w.
In terms of the canonical form (2.3), this means that Wy = (—u, —u, 2u), or Wy =
(2u, —u, —u), depending on the sign of u, and C* has at most one nonzero row, so
that ker R contains u(2)* c AZR*.

Remark 2.1. There are other canonical ways to represent the matrix of a curvature
operator R € Symj(A?R*) aside from the above (2.3), see e.g. Ville [Vil85, Vil89]
and Appendix A. Furthermore, for Einstein curvature operators, see [Ber61, ST69].

2.4. Sectional curvature and pinching. Consider the oriented Grassmannian

(2.5) Gri( RY) ={aeNR':|a]* =1, aAha=0} C A’R",

which, using (2.2), can be realized as 5% x S? C R3®R3, cf. (A.6). Given a modified

curvature operator R € Sym?(A?R*), the sectional curvature of a € Gry (R*) is
secr(a) := (R(a), o).

Clearly, secy depends linearly on R. Moreover, given k € R, we write secg > k if

secg(a) > k for all @ € Grj (R*), and analogously for secp < k.

Definition 2.2. Given 0 < § < 1, an algebraic curvature operator R € Symj(A2R*)
is called positively d-pinched if 6 < secg < 1, negatively d-pinched if —R is positively
0-pinched, and §-pinched if either R or —R is positively d-pinched.
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The following characterization of sectional curvature bounds for algebraic curva-
ture operators is a consequence of Finsler’s Lemma in Optimization Theory, that be-
came known as Thorpe’s trick in the Geometric Analysis community, see [BKM21].

Lemma 2.3 (Finsler-Thorpe Trick). Let R € Sym?(A?R*) be an algebraic curva-
ture operator. Then secg > 0 if and only if there exists t € R such that R+tx = 0.

In other words, the set of algebraic curvature operators with sec > 0 is the image
of the set of positive-semidefinite operators in Sym?(A?R*) under the orthogonal
projection onto Symi(/\QIR‘l). Since secr depends linearly on R, and secyq = 1, the
following is an immediate consequence of Lemma 2.3.

Corollary 2.4. An algebraic curvature operator R € Symg(/\2]R4) is positively
d-pinched if and only if there exist t1,t2 € R such that

(2.6) R—6Id4t,% =0,  and  Id—R+tyx = 0.

Ezample 2.5. Useful models of algebraic curvature operators are given by the cur-
vature operators of symmetric spaces, which are trivially constant. Recall that
each compact symmetric space has a noncompact dual, and their curvature opera-
tors are the opposite of one another. For instance, the round 4-sphere S*, and its
noncompact dual, the hyperbolic space H*, have curvature operators

Rgi =1d, and Rys = —1d,

and hence have constant sectional curvature 1 and —1, respectively. Both are
obviously Einstein and locally conformally flat. Moreover, Rga4 is clearly the unique
algebraic curvature operator that is positively d-pinched for all 0 < § < 1.

The curvature operators of the complex projective plane CP?, and its noncom-
pact dual, the complex hyperbolic plane CH?, written in the form (2.3), are:

diag(0,0,6 diag(—6,0,0
(2.7)  Reps = ( iag( ) 2Id> and  Rege = ( iag( ) —21d>’

and hence have sectional curvatures 1 < SeCR,, < 4 and —4 < SeCR,,, < -1,
respectively. In particular, R = %R@ p2 is positively %—pinched, with (2.6) satisfied
setting t; = i and g = % Both curvature operators (2.7) are half conformally flat,
Kahler, and Einstein. Reversing orientations, one obtains the curvature operators

Rgpz and Rz, having the same diagonal blocks as (2.7) but in the reverse order.

2.5. Topology of closed 4-manifolds. Let M be a closed oriented (smooth)
4-manifold, and denote by by (M) = rank Hy(M,Z) its Betti numbers. The in-
tersection form of M is the unimodular symmetric bilinear form defined on the
torsion-free part of the second cohomology H?(M,Z) as

Qnr: H*(M,Z) /torsion x H?*(M,Z)/torsion — Z.
Qu(a, B) = (a — B)([M]),

where [M] € Hy(M,Z) denotes the fundamental class of M. Alternatively, using
de Rham cohomology and representing a, 3 € Q?(M) as 2-forms on M, one has
Qum(a,p) = fM a A B. The number of positive and negative eigenvalues of @y,
counted with multiplicities, are denoted by (M) and b_ (M), respectively. By Hodge
Theory, by (M) = dim{a € Q?(M) : Aa =0, *a = +a}.

The manifold M is called definite if Qs is definite, i.e., if either by (M) = 0 or
b_(M) = 0, and called indefinite otherwise. Denoting by M the manifold M with
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its reverse orientation, Q37 = —Qur, s0 by (M) = b (M). Moreover, Qur,4n, =
Q 1, DQ o, For instance, CP? is definite, since by (CP?) = 1 and b_(CP?) = 0, and
b (#"CP2#5CP?) = r and b_(#"CP?#°CP?) = s, while S? x S? is indefinite, as
by (S2xS?) = b_(S2xS?) = 1, and b (#7(S?x S%)) = b_ (#7(S?x 52)) = r. Recall
that S2 x S2 = S2 x S2, since the antipodal map on S? is orientation-reversing.

Clearly, bo(M) = by (M) + b_(M). Since M is oriented, by Poincaré duality,
bo(M) = by(M) =1 and by (M) = b3(M). The Euler characteristic and signature
of M are given by

X(M)=2—-2by(M)+ b (M) +b_(M)
o(M)=by (M) —0b_(M).
In particular, it follows that, for all closed oriented 4-manifolds,
(2.8) X(M)=c(M) mod?2, and x(M)>|oc(M)l—2b(M)+2.
If M is simply-connected, then H2(M, Z) is free and by (M) = b3(M) = 0. In this

case, the celebrated works of Donaldson [Don83] and Freedman [Fre82], combined
with the A-genus obstruction to scal > 0 for spin manifolds yields the following;:

Theorem 2.6 (Donaldson, Freedman, Lichnerowicz). Let M be a smooth, closed,
oriented, simply-connected 4-manifold that admits a metric with scal > 0.

(i) If M is non-spin, then M is homeomorphic to # " CP?#5CP?2,

(ii) If M is spin, then o(M) =0 and M is homeomorphic to #"(S? x S?),
where v = by (M) and s = b_(M); and if r = 0 or s = 0, then the corresponding
(trivial) summand is S*.

Proof. By Donaldson [Don83] and Freedman [Fre82], every smooth, closed, ori-
ented, simply-connected 4-manifold M is homeomorphic to either:

e a connected sum of CP?’s and CP?’s, if M is non-spin,

e a connected sum of S% x §%’s and Mg,’s, if M is spin.
In the above, Mg, is a certain non-smooth 4-manifold with o(Mpg,) = 8, see [DK90,
Chap. 1] for details. However, if M is spin, then the existence of a metric with
scal > 0 implies that A(M) = 0, and hence (M) = 0, sec e.g. [Bes08, §6.72].
Therefore, no copies of M, may appear in this situation, concluding the proof. [

Remark 2.7. The converse to Theorem 2.6 also holds, in the sense that for all
r,s € N U {0}, the 4-manifolds #"CP*#5CP? and #"(S? x 5?) admit (smooth
structures that support) metrics with scal > 0; in fact Ric > 0, see [SY93, Per97].

2.6. Integral formulas. According to the Chern—Gauss—Bonnet formula and the
Hirzebruch signature formula, the FEuler characteristic and signature of a closed
oriented Riemannian 4-manifold (M*,g) can be respectively expressed as

1 1
(2.9) x(M) = ﬁ/ X(R) volg, and o(M) = ﬁ/ a(R) volg,
M M
where x(R) and ¢g(R) are quadratic forms on its curvature operator R, given by
(2.10) X(R) = § (6u® + W, > + [W_|> = 2|C|?) ,
(2.11) o(R) = & (W42 = [W_ ),
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if R is written in the canonical form (2.3), see e.g. [Bes08, p. 161]. We denote by | A|
the Hilbert-Schmidt norm of A € Mat,«,(R), i.e., [A]*> =Y, j a?j. In particular,
We? = [ ]* = (wi")? + (w3)? + (w§)?,

is the usual Euclidean norm of the vectors Wy as in (2.4). Since all terms in (2.10)
and (2.11) are of degree 2, it follows that o(—R) = g(R) and x(—R) = x(R).
Moreover, reversing the orientation changes the sign of g but leaves x invariant.
Remark 2.8. If R is Einstein, i.e., C' = 0, then 2x(R)—30(R) = 3u?+3|W_|> > 0 by
(2.10) and (2.11). Therefore, any closed oriented Einstein 4-manifold (M?,g) sat-
isfies the Hitchin—Thorpe inequality |o(M)| < 2x(M), see e.g. [Bes08, Thm. 6.35].

If (M*,g) is a noncompact negatively §-pinched 4-manifold with finite volume,
then the integrals (2.9) converge. Such manifolds have finite topological type;
i.e., are diffeomorphic to the interior of a compact manifold with boundary, see
e.g. [BGS85, Thm. 10.5]. In particular, y(M) is well-defined. Moreover, (M?*,g)
has bounded geometry in the sense of Cheeger and Gromov [CG85a, CG85b], since
its universal cover has infinite injectivity radius. Thus, by [CG85a, Thm. 3.1 (3),
Thm. 6.1], both equalities in (2.9) hold, where o(M) is to be understood as the
L?-signature o(2)(M*,g), which is a proper homotopy invariant.

We shall also need the following consequence of [CGY03, Thm A].

Lemma 2.9 (Chang GurskyYang). If (M*,g) is a closed oriented 4-manifold
with sec > 0, then either M is diffeomorphic to S*, or

1
M) < o [ W W ol
Proof. To apply [CGY03, Thm A], we need to show that the Yamabe invariant
Y (M, g) is positive. By the solution of the Yamabe problem (see [Aub98, Thms 5.11,
5.30]), there exists a positive function ¢ € C°°(M) such that the metric g’ = ¢%g
has constant scalar curvature ¢, and such that the infimum in the definition of
Y (M, g) is achieved at g’. Thus Y (M, g) = ¢ Vol(M,g')*/2. Let p € M be the global
maximum of the conformal factor ¢, so that Ap(p) > 0. Since 6Ap+scalg p = c?,
we have that ¢ > 0, so Y(M,g) > 0. The conclusion now follows from [CGY03,
Thm A], keeping in mind the different norm conventions, see [CGY03, Rmk 2]. O

2.7. Sphere theorem and volume bound. Finally, for the reader’s convenience,
we now explain how to use standard techniques in Comparison Geometry to prove:

Lemma 2.10. Let (M*,g) be a 4-manifold with sec > 6 > 0. If M is not homeo-

morphic to S*, then Vol(M, g) < é%j'

Proof. Since M is not homeomorphic to S*, the Grove-Shiohama Diameter Sphere
. . . 1 3. 1 P .

Theorem [GS77] implies that diam(M) < §d1am(S4(%)) = 575 In particular,

choosing any p € M, we have M = B(p, 2L\/3) Since sec > §, the Ricci curvature

of (M*,g) is at least that of the sphere 54(% and hence, by the Bishop Volume

Comparison Theorem (see e.g. [Bes08, Chap. 0.H]), the volume of the ball B(p, QFW)
is at most the volume of a hemisphere in 54(%). In conclusion:

Vol(M, g) = Vol(B(p, 575)) < 5 Vol(5*(5)) = 532 Vol(8%(1)) = . O
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3. PRELIMINARIES ON OPTIMIZATION

This short section discusses an elementary (yet quite useful) approach to optimize
quadratic forms on compact convex sets, particularly polytopes and simplices.

Let @Q: R™ — R be a polynomial function of degree 2. We say @ is positive- or
negative-(semi)definite if its Hessian matrix is positive- or negative-(semi)definite,
and indefinite otherwise. It is noteworthy that even though the quadratic program

maximize Q(x),
subject to Ax +b =<0,

where A € Mat,x,(R) and b € R"™, can be solved in polynomial time if @ is
negative-semidefinite [KTH79], it becomes NP-hard if the Hessian of @ is allowed
to have positive eigenvalues [Sah74, PV91].
A face of a closed convex set K C R"™ is a convex subset F' C K such that,
Tty

whenever =% € F' for some z,y € K, then both z,y € F'. Given a closed convex

set K C R”, let F(K)={F C K : F is a face of K}. Then

K= I_I relint(F'),
FeF(K)

where relint(F') is the relative interior of F, i.e., the interior of F inside its affine
hull aff (F'), which is the smallest affine subspace of R™ containing F. The dimension
of a face F is defined as the dimension of its supporting affine space aff (F').

Proposition 3.1. Let Q: R™ — R be a polynomial function of degree 2, and
let K C R™ be a compact conver set. There is a face F of K such that Q' =
Qlagt(r) 18 negative-definite and a point xo € relint(F') such that Q(xo) = max Q(x).
re
Furthermore, xg is the unique point in aff(F') such that VQ'(zo) = 0.

Proof. Let o € K be such that Q(zo) = max Q(z) and F € F(K) the face whose
xT
relative interior contains xg. We clearly have Q'(zg) = max Q' (). If @' is not
zE

negative-definite, then there is an affine line L C aff(F) through zg, such that
the restriction of ' to L is a convex function. So there exists x; in the relative
boundary of F, and hence in a face of smaller dimension, with Q(z1) > Q(xo).
This implies the first claim. Furthermore, since @’ is negative-definite, it has a
unique critical point, which is the global maximum of @’. Since xq is in the relative
interior of F', it must be the global maximum of Q. O

Note that if F' = {x} is a singleton, then aff (F') = relint(F') = F, the restriction
of Q|ag(ry is simultaneously negative- and positive-definite, and VQ|.g(r)(z0) = 0.

Corollary 3.2. Let @Q: R™ — R be a polynomial function of degree 2 whose Hessian
matriz has d eigenvalues in (—00,0), and K C R™ be a compact convex set. Then

mREeW = pa,, @@
FeF(K),dim F<d
Proof. By Proposition 3.1 there exists a face F' of K such that Q|.g(r) is negative-
definite and zp € relint(F) with Q(zg) = maécQ(x). Negative-definiteness of
€

Q|ar(ry implies that dim(F) < d. 0
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3.1. Optimizing quadratic polynomials on simplices. Suppose A*F C R” is
a k-simplex with vertices V' = {v1,..., 0541}, i.e., V is affinely independent and
AF = conv(V), and Q: R — R is a polynomial function of degree 2. Recall that

N N
conv(S) := {ijsj 185, €8, x5 20, ijzl,Ne]N}
j=1 j=1

denotes the convex hull of a set S C R™. Note that Proposition 3.1 gives a method
to compute max Q(x) that only involves Linear Algebra, and Corollary 3.2 renders
e

this computation significantly easier if d is small.

By Proposition 3.1, the maximum of @ on AF is attained in the relative interior
of a face on whose affine hull Q is negative-definite. Since A* is a simplex, any
subset S C V is affinely independent, its convex hull conv(S) is a face of A¥, and
every face of A¥ is of this form. Thus, in order to find Heli)i Q(z), first compute

ek

(3.1) S ={S CV: Qlas(s) is negative-definite}.

Then, for each S € S, compute the unique point x5 € aff(S) with VQ|.g(s)(7s) = 0
and consider the set

(3.2) §' ={5€S8: x5 € relint(conv(9))}.
Finally, Proposition 3.1 implies that

3.3 = .

(3.3) max Q(z) = max Q(zs)

4. PINCHED CURVATURE OPERATORS

In this section, we establish foundational results on convex sets of d-pinched
curvature operators that are needed throughout the rest of the paper.

4.1. Projection onto Einstein curvature operators. Using the same notation
in the decomposition (2.1) of Sym?(A2R*), define the sets
Q5 = {R € Sym?(A’R?) : R is positively 5—pinched} ,

(4.1) Es:=QsnUdW),

and consider the orthogonal projection onto Einstein (modified) curvature operators
pr: Sym?(A*RY) — U e W @ A'RY

(4.2) pr(R) = R — R..

Lemma 4.1. If R € Sym*(A’R*) satisfies R > 0, then also pr(R) > 0.

Proof. Consider the decomposition A?’R* = AZR* @ A2 R* as in (2.2), and denote
by 7+: A2R* — AZR? the corresponding orthogonal projections. Since R = 0, we
have pr(R) =moRomy +m_oRom_ = 0. O

Lemma 4.2. Let R € Symj(A*R*) be an algebraic curvature operator.

(a) If secr >0, then secp.(p) > 0.
(b) If R € Qs, then pr(R) € Es.
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Proof. By the Finsler-Thorpe Trick (Lemma 2.3), if secg > 0, then there exists
S € Sym?(A2R*), S = 0, whose orthogonal projection on Sym? (A2R*) is R. Clearly,
pr(R) is the orthogonal projection on Sym? (A?R*) of pr(S). Thus, in order to prove
(a), it suffices to show that pr(S) > 0, which holds by Lemma 4.1. As secg depends
linearly on R, and secig = 1, applying (a) to R — ¢ Id and Id — R yields (b). O

Proposition 4.3. pr(Qs) = Es.

Proof. Lemma 4.2 (b) gives one inclusion, the other is clear from Definition 2.2. O
Remark 4.4. The properties of the projection (4.2) onto Einstein curvature opera-
tors in Lemma 4.2 and Proposition 4.3 do not hold for the projection onto locally

conformally flat curvature operators. Namely, there exists R € Symg (A’R*) with
secr > 0 whose locally conformally flat part Ry, + Rz does not have sec > 0.

4.2. Einstein simplices. Fix 0 < § < 1, and consider the curvature operators

(4.3) R(Wy,w_,u) := diag(u +w,u+w;) eUDW

as in (2.3), with C' = 0, and recall that W1 = (wf[, w2i7w3i) satisfy

(4.4) wE +wi +wi =0, wi < wi < wi.

By the Finsler-Thorpe Trick (Lemma 2.3), such a curvature operator R(wy,W_, u)
is positively d-pinched if and only if there exist ¢1, ¢ € R such that (2.6) holds, i.e.,

5§w:r+u+t1, w;r—i—u—f—tzgl,
(4.5) : g i=1,2,3.
d<w; tu—ti, w; fu—t2<1,

We first get rid of some redundant inequalities:

Lemma 4.5. R(Wy,w_,u) € Es if and only if there exist t1,ts € R such that

(46) 5§wf’+u+t1, w§'+u+t2§1,
‘ 6 <w] +u—ty, wy +u—ty <1

Proof. The inequalities in (4.6) are a subset of those in (4.5), so (4.6) obviously
holds if R(wy,wW_,u) € Es. For the converse, observe that § < w; +wu+t; together
with wf‘ < w;r imply that § < w;” +u+ty for i = 1,2,3. The other inequalities in
(4.5) missing from (4.6) can be obtained in the same way, using (4.4). O

The set of points (W, wW_,u,t1,t2) € R? that satisfy (4.4) and (4.6) is clearly an
intersection of linear subspaces and affine half-spaces in R°. In order to eliminate
the variables ¢; and to, we show it is actually a simplex and compute its vertices.
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Proposition 4.6. Let AT C R” be the T-simplex defined as convex hull of the rows
v1,...,Vs of the matriz:

wy wy wy Wy U 3] ta
v (2(6-1) 2(00-1) 0 0 $(20+1) 1(1-6) 2(006-1)
vy | 2(6—1) 2(1-9) 0 0 1(6+2) 2(1-¢6) i(5-1
v3 0 0 26-1) 2(6—-1) 1(20+1) 1(6-1) 2(1-9)
vy 0 0 3(6-1) 2(1-6) 1(00+2) 2(6-1) 1(1-9)
Vs 0 0 0 0 1 0—1 0
Vg 0 0 0 0 1 1-6 0
v 0 0 0 0 ) 0 0—1
vg 0 0 0 0 0 0 1-9§
and consider its image under the linear map v7: R” — R®, given by

ot = — At ot + + = o=
L7(w1,w2,w1,w2,u,t1,t2) = (wl,u)Q,fw1 — Wy , Wy , Wy , —W;

Then (W4, W—,u,t1,tz) € R is in 17(AL) if and only if it satisfies (4.4) and (4.6).

Proof. Let Ps be the set of (W, wW_,u,t1,t2) € R? that satisfy (4.4) and (4.6).
Since these are points such that R(wi,w_,u) € Es by Lemma 4.5, the set Ps is
bounded. Indeed, each entry R;;i = (R(e; Aej), er Aeg) of the matrix representing
a positively d-pinched curvature operator R € Qs, where {e;} is an orthonormal
basis, satisfies |R;jr| < 1 by Berger’s classical estimates, see e.g. [Kar70]. Thus, if
(Wy,W_,u,t1,t2) € Ps, then |u| and |Wi| are bounded, and hence so are |t1] and
|ta2| by (4.6). Therefore, Ps C R is a polytope. Moreover, Ps C t7(R”) by (4.4),
so dim P; < 7. On the other hand, ¢7 (%,O, 5%1,0, 5%1,0,0) is in the relative
interior of Py, and hence dim Py = 7. Since P; is defined by 8 inequalities, namely,
41in (4.4) and 4 in (4.6), it is a 7-simplex. Its vertices are the points where 7 of the 8
inequalities are equalities. These are exactly the points ¢7(v;), 1 < j < 8, where v;
are the rows of the matrix above. For example, ¢7(v1) saturates all inequalities in
(4.4) and (4.6) except for wy < wy. Thus, Ps = 17(A%), concluding the proof. [

w2_’u7t17t2)~

Remarkably, the 7-simplex A7 in Proposition 4.6 is such that its images under
projections that eliminate one or both of the variables t; and to are also simplices.

Proposition 4.7. Let A3 C R® be the 5-simplex defined as convex hull of the rows
P1,...,pe of the matriz:
+ + - —

wq Wy Wy W,y (7
p[206-1) 2(5-1) 0 0 $(20+1)
p2| 3(6-1) 2(1-9) 0 0 1(642)
P3 0 0 26-1) 2(6—-1) i(20+1)
P4 0 0 3(6-1) 2(1-6) 1(6+2)
D5 0 0 0 0 1
D6 0 0 0 0 §

and consider its image under the linear map v5: R® — R7, given by

+ oot o= an= ) — (T anT + + oon= ap= - —
s (wi wi wi,wy,u) = (wi,wi, —w —wi, wi,wy, —wy —wy,u).

Then (W, wW_,u) € R is in 15(A3) if and only if R(wW,W_,u) € Es.
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Proof. By Lemma 4.5 and Proposition 4.6, we have that R(w4,W_,u) € Es if and
only if (@, w_,u) € R7 is such that (@, W_,u,t1,ts) € t7(AL) for some t1,ts € R.
In other words, if and only if (wWy,w_,u) € II(17(A])) where II: R — R7 is the
projection that eliminates the last two coordinates. The conclusion follows, since
II(t7(A])) = H(er(conv(vy, ..., vs)))
= conv(H(L7(v1)), .. ,H(L7(118)))
= conv(es(p1), - - -5 t5(ps))

= L5(Ag)’
where the third equality holds because II(¢c7(v;)) = p; if 1 < 5 < 4, II(e7(v5)) = ps
if j =5,6, and II(e7(v;)) = pe if j = 7,8. O

Proposition 4.8. Let AS C R® be the 6-simplex defined as convex hull of the rows
Q,---,q7 of the matrix:

wf w; wy Wy U t
q [2(6—1) 2(6-1) 0 0 $(20+1) £(1-96)
@|36-1) 20-8 0 0 16+ Z1-9)
a3 0 0 26-1) 2(6—-1) 2(26+1) 3(6-1)
Q 0 0 36-1) 21-6) 3(0+2) 2(6-1)
s 0 0 0 1 §—1
6 0 0 0 0 1 1-96
qr 0 0 0 0 ) 0

and consider its image under the linear map vg: RS — RS, given by

LG(wT,w;,wf,wg,u,tl) = (wf,w;,—wf —wy Wy, wy , —w] — w;,u,tl).
Then (W4, wW_,u,t1) € R® is in 15(AY) if and only if R(Wy,W_,u—38) +t1% = 0
and R(W4,W_,u) € Es.

Proof. Lemma 4.5 and Proposition 4.6 imply that R(w,,w_,u —§) +t; * = 0 and
R(Wy,w_,u) € Es if and only if (@, W_,u,t;) € 17(A) for some t2 € R, i.e.,
(Wi, wW_,u,ty) € II'(17(A])), where I': R? — R® is the projection that eliminates
the last coordinate. Similarly to Proposition 4.7, we have that II' (17(AY)) = t6(AY),
as I (t7(vy)) = ¢; f 1 <5 <6, and I (¢7(v;)) = ¢7 if j =7, 8. a

We shall refer to A3 as the Finstein simplez, and to A$ and A7 as augmented
FEinstein simplices. The rationale for this nomenclature is that, by Proposition 4.7
and (2.3), the set of conjugacy classes of positively d-pinched Einstein curvature
operators is parametrized by Ag’. Indeed, ¢: Ag — Es, where ¢ = R o5 and
R: R” — U @)W is given by (4.3), is an affine map whose image is a section for the
change of basis SO(4)-action on E; C U &W. Analogously, AY and A] parametrize
this set together with the corresponding ¢; and to for which (2.6) holds.

Remark 4.9. The vertices pq, ..., pg of the Einstein simplex Ag correspond to geo-
metrically meaningful curvature operators. Namely, using ¢ = R o 15, we have:

e(p1) = 2 Rep2 + 22 Rea,  o(ps) = 152 Repz + 25  Res,  9(p5) = Rs,
o(p2) = 132 Repe + 52Rss,  o(ps) = 52 R + 5% Res, ¢(ps) = 0Rsa,
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where Rga = Id, while Rgp2 and Repe are given in (2.7), and satisfy 1 < sec <4
and —4 < sec < —1 respectively. Recall that CP2? and CH? are the manifolds CP?
and CH? with the opposite orientation. Being positively é-pinched is invariant
under change of orientation (which interchanges @, and w_ and fixes u), so the
collection of vertices also has this symmetry. This is clear by comparing the first two
columns above and recalling that S* has orientation-reversing isometries. Finally,
note that ¢(p;) depend affinely on §, and, of course, become equal to Rga if 6 = 1.

5. TRACELESS Ri1cCI BOUNDS

The purpose of this section is to prove a new upper bound (Proposition 5.3)
on the norm of the traceless Ricci part of 4-dimensional curvature operators with
either a lower or upper sectional curvature bound. In addition to its role in the
proof of Theorem A, we believe this result is of independent interest and may have
other applications; e.g., it yields a simple proof of the algebraic Hopf question in
dimension 4, see Corollary 5.4. We begin with two algebraic lemmas.

Lemma 5.1. Let 0 < A\ < -+ < Ay and 0 < pg < -+ < . For all permutations

¢ € &, we have
Z ity < Z Aifhi-
i=1 i=1

Proof. Suppose, by contradiction, that the permutation ¢ € &,, that maximizes
> 1 Xikg(i) is not the identity. Then, there are 1 < i < j < n with ¢(i) > ¢(j).
We have

Aitto() + Ajttoeiy) = Niktgy + Aiko) = (A5 = X (o) = Ha)) > 0,
contradicting the maximality of .1 | \; He(i)- (]

Lemma 5.2. Let 0 < A\ < --- <\, 0< g < -+ < iy, and C € Mat,xn(R) be
such that

diag(Al; ceey )\n) Ct
(5.1) ( C diag(p, ... tn) =0

n
Then |C]2 < 3 Nip;.
i=1
Proof. By continuity, we shall assume 0 < A} < -+ < Ay and 0 < pg < -+ < g
Using Schur complements, we see that (5.1) holds if and only if
diag(pi1, . - ., pin) — C'diag(AT L, ..., A, O = 0.
This is equivalent to D = (d;j)1<i,j<n lying in the unit ball with respect to the

Cij

spectral norm, where d;; = e We thus want to bound
Ai g

n
(5.2) CP =3 Ao
i,j=1
from above. The extreme points of the unit ball in Mat, «,(R) with respect to
the spectral norm are orthogonal matrices (see e.g. [GM77, Thm. 4(i)]), so we may
assume D is orthogonal, as the right-hand side of (5.2) is a convex function in its
entries. In that case, the matrix Dy = (d3;)1<i j<n is doubly stochastic, i.e., each
of its rows and columns sums to 1. By the Birkhoff-von Neumann Theorem (see
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e.g. [Bar02, Thm. I1.5.2]), every doubly stochastic matrix lies in the convex hull of
permutation matrices. Thus, for bounding (5.2) from above, we may further assume
D = Dy is a permutation matrix, so the conclusion follows from Lemma 5.1. (]

We are now ready for the main result of this section. Although it solely regards
algebraic curvature operators in Symi(/\QR‘l), we state it as a pointwise estimate
on a Riemannian 4-manifold to render it more easily applicable elsewhere.

Proposition 5.3. Let (M*,g) be a 4-manifold, p € M, and k € R. Let R be the
curvature operator at p € M, and u, Wy, and C as in (2.3) and (2.4).

(i) If all 2-planes in T, M have either sec > k or sec < k, then
IO < 3(u— k)? + (g, @),
(i) Ift € R is such that £(R — k1d) 4+ t* = 0 on A*T,M, then
|C1? < 3(u — k)2 — 3t + (@4, 0_).
Proof. As elsewhere in the paper, we identify T,M = R* and assume the curvature
operator R is in the canonical form (2.3). By Finsler—Thorpe’s Trick (Lemma 2.3),
if either sec > k or sec < k, then there exists t € R such that R — kId+¢% > 0 or
—(R — kId) + ¢t * = 0, respectively; so it suffices to prove (ii).
Condition (5.1) is verified since £(R—kId)+t* > 0, so we may apply Lemma 5.2

withn=3, \;=u—k+ w;" +t,and u; = v —k +w; —t, concluding that

-

©
Il
-

IC2P <y (u—k+w!+t)(u—k+w —t)

NE

(u—k+t)(u—k—1t)+w w;,

I

w =

—~
_

u—k)? = 3% + (., @),
where the first equality uses (4.4). d

While the general case of the Hopf question asking whether closed 2d-dimensional
manifolds (M?¢, g) with sec > 0 or sec < 0 have (—1)%x (M) > 0 remains an impor-
tant open problem, its algebraic variant asking whether the Chern—Gauss—Bonnet
integrand x(R) computed at an algebraic curvature operator R € Symz(/\2IR2d)
with secir > 0 satisfies (—1)?x(R) > 0 was answered affirmatively if 2d = 4 by
Milnor [Che55, BG64], and negatively if 2d > 6 by Geroch [Ger76, Kle76]. The
former result of Milnor can be easily recovered with Proposition 5.3, which also
allows to characterize the equality case, as follows.

Corollary 5.4 (Algebraic Hopf question in dimension 4). If R € Sym?(A%R*) has
sec+r > 0, then x(R) > 0. Moreover, x(R) = 0 if and only if £R = 0, W, =W_,
and |C)? = 3u® + |W4|?; in particular, if R is Einstein, then R = 0.

Proof. As before, let t € R be such that =R + ¢ * > 0, see Finsler—Thorpe’s Trick
(Lemma 2.3). By Proposition 5.3 (ii) and (2.10), we obtain

8x(R) = 6u” + [Wi|> + |W_|* — 2|C|?
> 6t% + [ |* + |@- |* - 2(, @)

= 6% + |y — @_|” > 0.
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Moreover, x(R) = 0 if and only if equality holds in all above inequalities. O

6. LOWER BOUNDS

In this section, we establish a (pointwise) lower bound for the quadratic form I
in the curvature operator of an oriented 4-manifold M that integrates to

(6.1) X(M) — fo(M), x>0,
see (6.10) for details. Given 0 < § < 1, this lower bound gives sufficient conditions
on A for the integrand I, to be nonnegative on §-pinched curvature operators, hence
for (6.1) to be nonnegative if (M4, g) is 6-pinched, see Theorem 6.2. Combined with
Theorem A.1, this yields Theorem A in the Introduction.

First, we focus on the particular case A = %, to demonstrate the optimization

arguments used in the general case more concretely, and simplify the exposition for
readers mainly interested in a self-contained proof of Theorem B, given below.

Theorem 6.1. If (M*,g) is a §-pinched oriented 4-manifold, with finite volume
and § > =1HIVHS = 0156, then x(M) — 2|o(M)| > 0.

Proof of Theorem B. Since (M*,g) is positively d-pinched, § > 1+3f’ its intersec-

tion form is definite [DR19, Thm. 1]. Up to reversing orientation, we assume it is
positive-definite, i.e., b_(M) =0, so x(M) =2+ b (M) and U(M) =by (M) >0.
By Theorem 6.1, we have 0 < x(M) —2|c(M)| =2 — by (M), so by (M) =0 or 1.
Therefore, by Theorem 2.6, we conclude M is homeomorphic to S* or CP2. O

Proof of Theorem 6.1. Given a d-pinched oriented 4-manifold (M*,g) with finite
volume, up to reversing its orientation, we shall assume that (M) > 0. Moreover,
at each point p € M, its curvature operator R, € Symg(/\2R4) satisfies +R € s,
see (4.1). Writing R in the canonical form (2.3), we have from (2.9), (2.10), and
(2.11), that

(62)  Iy(R)=x(R)—20(R) = Su® — LW, > + LIW_> - L|C?

satisfies [, I (R) volg = x(M) — 20(M), and I1 (—R) = I, (R). Thus, it suffices
to prove that

(6.3) min

1(R) >0, if §> —199£9V545,
ReQs 2 71

Suppose R € g, and let t1,t € R be as in (2.6), see Lemma 2.3. From
Proposition 5.3 (ii) with k = ¢ and ¢ = ¢;, we have:
(6.4) |C? < 3(u—6)% — 3t + (wy,w_).
Therefore, we may bound (6.2) from below using (6.4) as follows:

I (R) > §u® = oWy P + g5 [Wo? = §(u—6)* + §17 — J (s, @l ).

3
Moreover, using (4.4), this lower bound can be written as the quadratic polynomial
Qs (Wi, wy,wy ,wyu,ty) = =55 ((w))? + (w3)? + wiwy)
+ l((wf)2+(w5) +wyw; )
wy Wy —|—w2w2) — i( f‘wQ_ +w3’w1_)
t2 %&L — %62,
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which depends solely on ¢; and the 5 variables w;, w3, w] ,w; ,u that determine
pr(R) = R(i5(w;,wyi, wi,wy,u)) € Es. Therefore, by Propositions 4.3 and 4.8,

(6.5) ﬁ&IQMEEQEQQ@,
where Ag = conv(qy, ..., qr) is the augmented Einstein simplex in Proposition 4.8.

In order to compute the minimum value of @ 1 RS — R on AY, we apply the
optimization method discussed in Section 3.1 to maximize —Q 1 on AS. The first
step is to compute the collection S of subsets S C {q1,...,q7} on whose affine hull
aff(S) the restriction of Q1 is positive-definite, see (3.1). Note that the restriction
of Q%: RS — R to any such affine subspace aff(S) C RS is positive-definite for
some 0 < & < 1 if and only if it is positive-definite for all 0 < § < 1. Indeed,
from Proposition 4.8, each coordinate of ¢; is a scalar multiple of (1 —J), except for

the u-coordinate, on which Q% has no degree 2 term. Therefore, the eigenvalues of

Hess(Q% |aﬂ‘(s)) are scalar multiples of (1 — 4)2.

A direct computation shows that Hess Q% has eigenvalues
%a 27 %a _%a _%7 0.
As there are d = 3 positive eigenvalues, by Corollary 3.2, it suffices to consider
subsets S consisting of at most 4 vertices, i.e., such that the face conv(S) C AY has
dimension < 3.

All O-dimensional faces of AY, i.e., singletons S = {g;}, 1 < j < 7, trivially
belong to S. Regarding 1-dimensional faces, it is straightforward to verify that 18
of the 21 = (;) subsets S = {qj,,q;,} of 2 vertices belong to S; namely, all except
for {q1,q2}, {q1,q97} and {g2,q6}. For instance, the Hessian 1 x l-matrix of the
restriction of Q1 to aff(qy, g2) is — (1 —6)2, while to aff(qy,q3) it is L2(1 — §)2.
Similarly, concerning 2-dimensional faces, 18 of the 35 = (1) subsets of 3 vertices
S ={¢j,, 4., } belong to S; namely,

{q17Q37q4}7 {qlaq37q5}7 {qlaq37Q6}a {q17q47Q5}a {Q17Q4a(16}» {qQ7Q37q4}7

(66) {q27q37q5}7 {q2aq37q7}a {qQaQ47q5}a {Q3aQ4aq5}a {Q37q4aQ6}7 {q37q47q7}7
{a3.45,96}: {a3:45,97}, {a3.46,a7}, {94,405, 06}, {94,405, 07}, {a4. 96,07}

For example, the Hessian 2 x 2-matrix of the restrictions of Q% to aff(q1, ¢2,¢3) and

aff (q1, g3, q4) have eigenvalues % VT3 (1—6)? and % V8473 (1 — §)2, respectively.
Finally, in regard to 3-dimensional faces, 6 of the 35 = (Z) subsets of 4 vertices

S =1{4j,, 9,4, } are in S; namely
(6 7) {Q1aq37q47q5}7 {Q17q3aq4aq6}a {QQaq37q47q5}7
{QSaQ47Q5»(I6}7 {QS7Q4,(157Q7}, {QS,CI4,QG,(I7}~

For instance, the Hessian 3 x 3-matrix of the restriction of Q% to aff(¢1, 42,93, q4)
and aff(¢1, g3, g4, ¢5) have eigenvalues

(1 -06)% (107 $(1-07° and F(1-0)% (10 &(1-06)7

respectively, where a; = 109.22, as = 20.12, and a3 = —7.34 are the roots of
the polynomial 23 — 12222 + 1248z + 16128, and B; =2 134.65, 3, = 19.27, and
B3 =2 13.06 are the roots of the polynomial 23 — 16722 + 4608z — 33936.
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The second step in the optimization procedure is to compute the unique critical
point zg € aff(S) of Q%|aﬂ‘(s) for each of the above 49 subsets S € S, and build
the subcollection 8’ C S consisting of the S € S such that zg is in the relative
interior of the face conv(S), see (3.2). Differently from the above, this step depends
on the value of 0 < ¢ < 1, and several S € S only join the collection S’ for
0 > 0 sufficiently small. Explicitly parametrizing each face conv(S) for S € S with
a standard simplex, and solving the corresponding inequalities in § to determine
if g € relint(conv(S)), we compute the conditions for which S € S’ and the
corresponding list of values Q1 (xg) where the minimum of Q1 |agi(s) is achieved.

All singletons S = {g;} trivially belong to &’ for all 0 < § < 1, and have zg = ¢;.
The value Q1 (zs) = Q1 (g;) for each of these points is listed in Table 6.1.

S | Qi(zs) S| Qy(xs)
{o} [§02+30 -5 || {as} |}
loah | =360+ 5945 || (4o} | 3
lish | 9% =504 55 | gy | a2
{aa} | 550° — G0+ ¢

TABLE 6.1. Values of @ 1 on the 0-dimensional faces of A§.

In 12 of the 18 subsets S € S with 2 vertices, the critical point zg € aff(S) of
Q1 |agi(s) lies in the relative interior of the 1-dimensional face conv(S) for some value
of 0 < § < 1, as listed in Table 6.2. For instance, the critical point of Q%|aﬂ(ql7q3)
IS T(4,.45} = 22 1 + 55 g3, which clearly lies in relint(conv(qy, g3)) for all 0 < § < 1.

Meanwhile, the critical point of Q%|ag(q1,q4) I8 T(g, .0y = 5332(71%366) qQ + 61?}(]2_05‘5) q4,

which lies in relint(conv(gi, q4)) if and only if 0 < § < 5.

S Q1(ws) ds S Q1(ws) ds
{a1, 43} 5741052 + %5 - 11365 1 {43, 94} %52 - %5 + % %
{q1,q4} %52 + % - % % {43, 05} % %
o} |5+ 50— | 55 |[{ea) | -0+ 50+ 5% | 3
{q2,03} | =550 + 3220 + 255 | 25 || {aa, a5} | 5t z
{g2, 4} | —562+ 310 — & 1 {aa,q6} | —256% + 950+ 2 | B
{g2,05} | —336% + 996 — & 2 || {asrq6} | —30>+ 36 1

TABLE 6.2. Minimum of Q% lagt(s), attained at x5 € aff(S), which
is in the relative interior of conv(S) if and only if 0 < 0 < dg,
for each S € S such that conv(S) is a 1-dimensional face of AS.
If zg ¢ relint(conv(S)) for all 0 < § < 1, then the corresponding
entry S € § is suppressed.

Among the 18 subsets S € S with 3 vertices, listed in (6.6), only 9 are such that
the critical point zg of Q%|aﬁ‘( s) lies in the relative interior of the 2-dimensional
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face conv(S) for some value of 0 < § < 1, as listed in Table 6.3. For example, the
critical point of the restriction of Q% to aff(q1, 43, q4) is

_ 3(212-1919) 1954188 4-1396
T{q1,qs,0s} = —w32(1=08) 41 Tt 832(1-0) 43 1 Tr6(1-0) I
which lies in the relative interior of conv(qi, g3, ¢q4) if and only if 0 < 6 < ﬁ.

S Q% (m5> dg
{a01,a3, 04} | $550° + 3930 — 535 e
{01, 03,45} | —5550° + 3556 — 1= &
(g} | 0+ - e |
{2, q3,q4} | 125296 + 2506 — 2L S<i< B
{42, 43,45} | —3533010” + S301080 — Torsioed | s
(oo 00,00 | A7 + BBEAS + 8
{a3, a1, q6} | 1oy 6% + 12256 + 22 &
{as,q5,q6} | —2356% + 3386+ 24 %
{94, 45,06} | 1552107 + 510 + 15 2

TABLE 6.3. Minimum of Q%'aff(s), attained at zg € aff(S), which
is in the relative interior of conv(S) if and only if 0 < § < dg, for
each S € S such that conv(S) is a 2-dimensional face of AY; except
for S = {q2,q3,q4}, for which zg € relint(conv(S)) if and only if
& <6< 2B If zg ¢ relint(conv(S)) for all 0 < § < 1, then the
corresponding entry S € S is suppressed.

Lastly, of the 6 subsets S € S with 4 vertices, see (6.7), only S = {g2, ¢3, 44,95}
is such that the critical point xg of Q%|aﬂ‘(s) lies in the relative interior of the
3-dimensional face conv(S) for some 0 < § < 1. Namely, we have that

_ 63(19—205) 9(575—8) 27(19—205) 4(35—1345)
T{q2,q5.q1.95} — 1846(1—08) 92 T 923(1=0) 43 T Teae(1i=0) 94 + ~v2371=05) &5
is in the relative interior of conv(qa, g3, g4, ¢5) if and only if 5% << %, and

_ 634359 52 | 3727715 _ 309393
(6.8) Qé (I{Q27q3;Q47QS}) = S510290 T 5519290 — T3630861"

Altogether, it follows that the minimum of @ 1 Ag — R is equal to the smallest
Q1 (xs) among the S € S that are in the subcollection S’ for the given value of 4, as

listed in Tables 6.1 to 6.3 and (6.8). By direct inspection, setting § = % V545
all Q%(Is) for which S € &' are strictly positive, except for Q (as{qhq?)}) = 0.

1

3
Furthermore, subsets S € S only enter or leave the subcollection S’ at one of
finitely many possible values of §, so provided ¢ > 0 is sufficiently small,

2167 + 1995 — 18 for all ‘5 — S19900V585 )

felglg Q%(x) = Q%(I{qhqs}) = 540 270 1357
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and, linearizing this quadratic polynomial at § = _199+9V 245 one easily sees that

min Q1 (x) > 0 for SL99EIVIL  § < LIV 4 ¢ The above combined with
TEAY

the fact that AS C AY, if 6 < § and hence min ()1 (z) is a monotonically increasing
TEAY
function of 0 < § < 1, implies that

—199+9+/545
;IGHA%Q2( x) >0, foral §> = .

The above inequality and (6.5) imply (6.3), concluding the proof. O

We now proceed to the case of general A > 0, leading to Theorem A in the
Introduction. The method of proof follows the same outline of Theorem 6.1.

Theorem 6.2. If (M*,g) is a d-pinched oriented 4-manifold with finite volume,
then
o (M) < A*(8) x(M),

where X\*(9) is the continuously differentiable function given by

V34885 +62+6—4
63 =9 ,  if0< <oy,
3v15\/6(5 +2) yor <0<k,
8(1 — 4)2 e
2462 — 120 + 15’ oz <0<l

and
(i) 07 =20.069 is the smallest real root of the polynomial 25° — 4062 + 895 — 6,
(ii) 05 =4 — 28 = 0.326.

Remark 6.3. The above semialgebraic function A\* is C'', but not C2.

Proof. Just as in the proof of Theorem 6.1, up to reversing orientation, we may
assume o (M) > 0; and, at every point p € M, we have that £R € Q5. Writing R in
the canonical form (2.3), we have from (2.9), (2.10), and (2.11), that for all A > 0,
I\(R) == x(R) - 3o(R)

= qu Jr(%* 2x) IWal? + (5 + 2x) W= = 11O

satisfies [,, In(R) voly = x(M) — o(M), and Ix(—R) = I\(R). Thus, it suffices
to prove that for all 0 < § < 1,

(6.11) frirélﬁn(s I(R) >0, if A= \*(9).

(6.10)

Note that the conclusion holds in the trivial case 6 = 1 and A*(1) =0, as (M) =0
if (M*,g) is 1-pinched, i.e., has constant curvature; so we shall assume 0 < § < 1.

Given R € Qs, let t1,t2 € R be as in (2.6), see Lemma 2.3. Using Lemma 5.2
and arguing exactly as in (6.4), we may bound (6.10) from below:

LR > 302 + (& — o) WP 4 (4 ghy) WP = $(u— 6 + 388 — L, i),
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and, using (4.4), this lower bound can be written as the quadratic polynomial
Qxut w7 g ) = (4 — ) (@) + (wF)? +wibus)
+ (5 + ax) ((W0)? + (w3)? +wpwy)
— 5 (wiwy +wywy ) — 3 (wiwy +wywy)
+ 33 4 36u — 362
in t;, and wli,wét,u, which determine pr(R) = R(is5(w), wy,wi,wy,u)) € Es.
Thus, analogously to (6.5), Propositions 4.3 and 4.8 imply that for all A > 0,

(6.12) min I\(R) > iéuAng Qx(2),

where Ag = conv(qy, ..., qr) is the augmented Einstein simplex in Proposition 4.8.

Once again, we apply the optimization method in Section 3.1 to maximize —Q)
on AY. The first step is to determine the collection Sy of subsets S C {q1,...,q7}
on whose affine hull aff(S) the restriction of @, is positive-definite, see (3.1). As
observed in the proof of Theorem 6.1, since the coordinates of ¢; are scalar multiples
of (1 —9), except for the u-coordinate, on which @, has no degree 2 term, the
eigenvalues of Hess (Qﬂag(s)) are scalar multiples of (1 — )2 for any subset S C
{q1,--.,q7}. Thus, the restriction of @»: R® — R to aff(S) C RS is either positive-
definite for every 0 < 6 < 1, or for no 0 < § < 1 at all. However, for a fixed S, the
restriction Qx|agr(s) may be positive-definite for some values of A > 0, and indefinite
or negative-definite for other values of A > 0. Thus, even though the collection Sy
is independent of J, it does depend on .

A simple computation shows that Hess Q) has the following eigenvalues:

3A+VONZF4  3A+VONZF4 3A=VOA2+4  3A—VI9N2+4 0
12X ’ 5N 4 ’ 12X »

3
I R]
so, for all A > 0, there are exactly d = 3 positive eigenvalues. Thus, by Corollary 3.2,
it suffices to inspect faces of A§ that have dimension < 3.

All singletons S = {g;}, 1 < j <7, ie., 0O-dimensions faces, trivially belong to
Sy, for all A > 0. Regarding 1-dimensional faces, all of the 21 = (;) subsets of 2
vertices belong to Sy for large enough A > 0. For instance, the Hessian 1 x 1-matrix
of the restriction of @y to aff(qi, g2) is 1%;8(1 — 6)2, which is positive if and only
if A > %. In general, S = {g;,,q;,} € Sx if and only if A > };, ;,, where

8
A2 =A7=X6=15 M1

8

1 2
6 =MX27=73, M5 = 75, A25 = 37

)

and Aj, j, = 0 for all other 1 < j; < j» < 7. Regarding 2-dimensional faces, 32 of
the 35 = (g) subsets of 3 vertices belong to Sy for large enough A > 0. Namely,
{¢1,93,97}, {g2, 94,97}, and {gs, gs, g7} do not belong to S for any A > 0, and the
remaining S = {q;,, ¢j,, ¢;, } belong to Sy if and only if A > A, j, ;,, where

Mag =200 g = =B N o, =GR Ny, = SRR
A1,3,5 = 771?;‘/57 M6 = 55, AMas = 7715%\/@, A2,3,6 = 71“7‘5@7
Mg = BELIIS - Ny 5 g = S2HIIS ) 0= 35VI05 ), 57 = =34YI05,
A2a5 = _Q%M, A246 = %;

2
Al25 =A26=A127=A156=A157=A167=AN256=A257=Ne67=73,



GEOGRAPHY OF PINCHED FOUR-MANIFOLDS 25

and Aj, j, 5, = 0 for all other 1 < j; < jo < jg < 7. For instance, the eigenvalues of

. . _8£/2T6ONZ T 528 AT 128 .
the Hessian 2 x 2-matrix of Qxaft(g,,q2,q) aT€ ToA-8% 21221‘\ +528A+128 (1 _ )2 which

are positive if and only if A > Aj 23 = 9"'37 V6105. Finally, regarding 3-dimensional
faces, 20 of the 35 = (D subsets of 4 vertices belong to Sy for large enough A > 0.
Namely, S = {q;,, ¢j», ¢, 25, } belongs to Sy if and only if A > A, j, s 4., where

2 —14V5
A1,236 = A1,2,56 = A1,2,57 = AM1,2,6,7 = 55 A,3,4,5 = 73‘[

A1,456 = A1,4,5,7 = A1,4,6,7 = A2,3,5,6 = A2,3,5,7 = A2,3,6,7 = 34%,
A1,2,35 = 0.818 is the largest real root of 2433 — 108\% — 84\ + 8,
A1,2,37 = 0.701 is the largest real root of 243)\3 — 5402 — 93\ + 8,
A12,4,6 = 0.795 is the largest real root of 2433 — 270\% + 51\ + 8,
A12,46 = 0.461 is the largest real root of 24323 + 10802 — 84\ — 8,
A2.3,4,5 = 0.0996 is the largest real root of 243\3 + 27002 + 51\ — 8,
A2.3,46 = 0.562 is the largest real root of 243)\3 + 5402 — 93\ — 8,
A3,456 = A3,.4,5,7 = A3.4,6,7 = 0,

and the remaining 15 subsets do not belong to Sy for any A > 0.

The second step is to compute the critical point x5 € aff(S) of Qxla(s) for each
of the above subsets S € Sy, and determine the values of 0 < 6 < 1 and A > 0
such that zg is in the relative interior of the face conv(S). These subsets S define
a subcollection S} of Sy, which depend on both ¢ and A, such that (cf. (3.3))
6.13 i = mi .
(6.13) mip Qx min Qx(zs)

All singletons S = {g;} belong to S} for all 0 < § <1 and A > 0, and zg = ¢;.
The value Qx(zs) = Qa(g;) for each of these points is listed below in Table 6.4.

S | Qx(zs) S| Qxa(zs)
232 —1 _ —

{a1} (9>\ 152 — Srto+ 5t || fes) | 3
15A—852 _ 3A—ds | 240—8

{g2} 2(336A/\+1(§ —“ox 0+ 56 {a6} %

2 _ 3a+4 15A+8

{as} ox 07— “ox 0+ T3 {q7} %
150+8 3A+4 s | 24M+8

{as} | 55535°0° — 35500 + 2%

TABLE 6.4. Values of Q) on the 0-dimensional faces of AS.

There are 15 of the 21 subsets S € Sy with 2 vertices for which the critical point
rs € aff(S) of Qalam(s) lies in the relative interior of conv(S) for some value of
0<déd < 1land A > 0, as listed in Table 6.5. Similarly, there are 15 of the 32 subsets
S € Sy with 3 vertices, and 4 of the 20 subsets S € S, with 4 vertices for which that

happens. For instance, S = {q1,¢2,¢5} € S} if and only if § < % and \ > 32((11:365)),

in which case Qx|aft(g,,q2,q5) Nas minimum

_9A(B=21\) 2 | 45\ 6-9\
(T {g1.0005)) = 8(36)\2—27>\+2)5 + w19+ sooen
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S Qx(zs) Conditions for S € 84
1I8A—DA+4 52 | (9(A=2)A+8) 18(A—1)A+4 1 4(1-9)
{a 2} | Sxmacsr 07+ SE=mor 0 T Sy 0<7, A> 35738
1 4 2 8 1 4 4
{a1, a3} (Z - 135)\2) 0% + (135)\2 + 5) 0 — 13532 A> g5
18A(3A+1)—16 2 32 11 18A(BA—1)—16 3 8(1-0)
{01, 04} soa2 0+ (567A2 +37)0+ 567N 0 <3, A> 55
9N 52 9\ 69 4 4(1-9)
{01,065} | 5=60x0" + 15559 + 5-60x 0<%, A> o5
“ox 4(1-5
{Q17QG} 86,294)\ 6 < i’ A> 3(7125)
18A(3A—1)—16 32 1 18A(3A+1)—16 §< 3 A> ?(gl;gzs
3A—1)—16 ¢2 : 1 : — > 36—
{92, 43} s 00+ (o= +a7) 0+ 56712 2 8(1—6 8(1—§
§>3, S8 o) < B
1 36-276 36527
1 1\ 52 1 1 1
{20} |~ (Gie+ 1)+ (G +1)0— 5 A>3g
36M £2 , 90\ 6-9) 14 8(1-0)
{9205} | 557x0” + 5280 T 5=smx 0 <137, A> Hg1s
S 8(1-»
{92, ¢6} 30_195,\ 6 < %7 A> 6(—156)
§< 1
18A(A+1)+4 ¢2 1 9 5 — 4
{g3, qa} SA(1573+8) 0"+ 15 (15)\+8 -3 3)5 + 1 4(1-8)
0> 3, A< 353
- §< i
6492 <7
{q37QS} 8F24X s>1 4(1-9)
> 1 < T35=3
§< 2
9N 2 9A 9A+6 =7
{43,496} _60/\+86 + 15>\+26+ 60X+38 4 4(1-6)
o> 7 A< 216—12
X §< 2
6497 =5
{94, ¢5} 8F16X\ 52 ) 8(1—3)
> 5 A< 1556
s<id
36M 52 90\ 9A+6 S 97
{as,q6} _87/\+86 + 87>\+86+ 87TA+8 5> 14 8(1—9)
> 17 A< 516—42
{g5,q6} | =36+ 36 0<d5<1,A>0

TABLE 6.5. Minimum of Qxlag(s), attained at zg € aff(S), with
necessary and sufficient conditions on § and A for Qxlag(s) to be
positive-definite and xzg € relint(conv(S)), i.e., for S € S4.

/28962 —3365+48

while S = {q2, 93, g5, g6 } belongs to S} if and only if § < % and A > 2+ 5(1=60)

in which case Qx|aff(g5,q5,q5,q5) NS minimum

3(3321A* 42700 — 128727 —1447+64)

6% +

3(36A%—3X+8)

Qx (x{qz,qs,qs«,qe}) = 4(16—2722)2

The remaining values Q(zg) are omitted to simplify the exposition, but the reader

3
64—108\2 0+ 16°

may find them in the particular case A = § in Table 6.3 and (6.8).

Altogether, there are 41 subsets S that belong to the collection S} for some
(8,\) € H, where H = (0,1) x (0, +00) is a vertical strip in R%. The corresponding

sentences “if S € S}, then Qx(zg) > 0” give a description of the semialgebraic set

X:= {(57)\) €EH: é{reusqA Qx(zg) > O}

involving (finitely many) polynomial inequalities in (4, A), connected by “and” and

“ 99

or”. Using Cylindrical Algebraic Decomposition, see e.g. [BPR06, Sec 5.1], any

)
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semialgebraic set in R? can be written as a finite disjoint union of 2-cells, i.e., points,
vertical open intervals, graphs of the form {(5, NeR?:a<d<b A= @(5)}, and
bands of the form {(§,\) € R* : a < 6 < b, ¢(6) < XA < ¥(0)}, where a,b € R,
and ¢,v: (a,b) = [—00,400] are continuous semialgebraic functions. (The latter
are similar to what Calculus textbooks often call regions of type I in integration of
functions of two variables.) Applied to the semialgebraic set X in the (4, A)-plane,
cylindrical algebraic decomposition yields:

+8—80+0240—4
t- {seomns EEEE U s i )

* 75
U {5 €[05,1), A > 24582(i12§+15}7

ie, X = {5 €(0,1), A > )\*(6)}, where A*: (0,1) — R is the piecewise continuous

function defined in (6.9). From (6.12) and (6.13), we have that (§, \) € X implies

Ir%niél I (R) > 0, so (6.11) holds, concluding the proof. O
€8s

Proof of Theorem A. Consider the functions A\*: (0,1] — R and AV: [5(\)/, 1] — R,
defined in (6.9) and Theorem A.1, respectively. Define A: (0,1] — R as follows

A 0), if 6 € (0,8)],
A0) = {min{)\*(é),)\v(d)}, if § € [50V,01] .

Routine computations show that A agrees with (1.5), and satisfies ;i\r"% A(6) = +o0,

)‘(1+3f) <3 )\(i) = %, and A(1) = 0. From Theorems 6.2 and A.1, a §-pinched
oriented 4—man1fold (M*,g) with finite volume satisfies |o(M)| < A(6) x(M). O

Remark 6.4. Polombo [Pol78, Thm II.13] proved a similar explz'cit inequality for
S-pinched 4-manifolds, with 0 < § < 1; namely |0( <& (5 —145) x(M). It
is straightforward to check that A(0) < & (& — £ +5) forall 0 <6 < 1.

7. UPPER BOUNDS

In this section, we discuss further applications of the optimization methods from
Section 3, proving upper bounds for x(M) and o(M) if M is a §-pinched oriented
4-manifold with finite volume.

7.1. Weyl tensor. A key step towards the above goal is to establish an upper
bound on |[W|? for a é-pinched curvature operator R. By Proposition 4.3, no gen-
erality is lost if we assume that R is Einstein. This pointwise problem has received
great attention in the literature, see e.g. [Yan00, Lemma 4.1], [GL99, Lemma 1],
and [CT18, Lemma 3.1]. The following result provides a useful sharp upper bound
for any linear combinations of |[W.|? when R is a d-pinched curvature operator.

Proposition 7.1. Forall -1 <n<1and 0< 9 <1, if R is d-pinched, then
(7.1) Wl 4 W_|? < 51— 6)2,

For m # 1, equality in (7.1) holds if and only if pr(£R) = ti5(p1) + (1 — t) t5(p2),
€ [0,1], and, for n = 1, if and only if pr(£R) is in the convex hull of v5(p;),
1 <j <4, where £R € Qs, using the notation in (4.1), (4.2), and Proposition 4.7.
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Proof. For all —1 <n <1, given R in the canonical form (2.3), by (4.4),
W+ 0 [Wo | = Qq(wi, w3, wi,wy ),
where @Q),,: R® — R is the quadratic polynomial
Qn(wi’wd w s wy,u) = 2((w)? + (w))? + wiwy)
+2n((wy)? + (wg )? + wywy).
Given R € s, let pr(R) = R(W4,W_,u) € Es, see Lemma 4.2, (4.2), and (4.3).

By Proposition 4.7, we have that (wj", wy ,wi,w; ,u) € A3 = conv(ps,...,ps). By
a straightforward computation, the eigenvalues of Hess @), are

1, 3, n, 3n, 0,

so the number of negative eigenvalues is either 0 or 2, according to whether n > 0
or 1 < 0, respectively. By Corollary 3.2, this means max,ca3 @y(z) is achieved at
some vertex p; if > 0, while we must inspect faces of dimension < 2, i.e., convex
combinations of up to 3 vertices p;’s, if n < 0. The values assumed by @Q,, at p; are:

Qn(pl) = Qn(p2) = %(1 - 5)23
(7:2) Qn(p3) = Qunlps) = 2(1 - 0)%,
Qn(p5) = Q’r](pfi) =0,

so the inequality Q,(z) < 3(1 — §)? clearly holds for all z € A} and 0 < 5 < 1,
with equality achieved if and only if z € conv(p;), where 1 < j <21if 0 <n <1,
and 1 < 57 < 4 if n = 1. Thus, let us now assume —1 < 1 < 0, and follow the
optimization procedure in Section 3.1.

The first step is to determine the collection S of subsets S C {pi,...,ps} such
that the restriction of @, to the affine hull aff(S) is negative-definite, see (3.1).
All singletons S = {p;}, 1 < j < 6 trivially belong to S. Regarding 1-dimensional
faces, we find that @, |ag(s) is negative-definite if and only if S = {p;,,p;,} is one
of the following;:

(7.3) {ps;pa}, {ps: s}, {ps. e}, {pa,ps}, {ps,p6}-

In all cases, the single entry of Hess(Qy|agi(s)) is 8?77(1—(5)2. Regarding 2-dimensional
faces, Qylag(s) is negative-definite if and only if S = {ps, ps, ps} or S = {p3, p4,ps}.
In both cases, its eigenvalues of Hess(Q|afr(s)) are 4n(1 — §)? and 4%7(1 —9)2.

The second step is to extract the subcollection S’ C S such that the unique
critical point xg € aff(S) of @ |am(s) is in the relative interior of the face conv(S),
see (3.2). Every singleton S = {p;} is trivially in &’ and has zg = p;; recall that
the values of @, (p;) are given in (7.2). Among the subsets (7.3), only {p3,ps} € &',
since T yp, p,y = %pg + %p4 € relint(conv(ps, p4)), and Q,, assumes the value

(7.4) Qn<x{ps’p4}) =2n(1 - 9)%

In all other S = {pj,,pj,}, j1 < j2, one has w,. .y = pj, ¢ relint(conv(pj,,pj,))-
Similarly, neither {ps,p4,ps} nor {ps,ps,ps} belong to &', since a direct compu-
tation shows that @y, », »3 = Ps and Ty, . ps3 = Pe- Thus, by Corollary 3.2,
see also (3.3), max,eas Qy(2) = Qy(p1) = Qy(p2) = 8(1 - 6)? is the largest value
among (7.2) and (7.4). This concludes the proof of (7.1) and its equality case. O
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Remark 7.2. Equality in (7.1) is achieved by d-pinched curvature operators whose
projection onto the set of Einstein §-pinched curvature operators can be written as
certain linear combinations of Rga, Rgpz, and Rgyz, see Remark 4.9.

Remark 7.3. Proposition 7.1 is reminiscent of a bound obtained by Yang [Yan00,
Lemma 4.1(a)] for Einstein 4-manifolds. Namely, replacing 6 < sec < 1 with
§ < sec < A, inequality (7.1) with 5 = 1 yields [W|?> < § (A — §)*. Furthermore, if
Ricg = g, then A <1 — 24, hence [W[? < §(1 —36)?, cf. [Yan00, Equation (4.6)].

7.2. Euler characteristic and signature. We now use the bounds in Proposi-
tion 7.1 and Comparison Geometry to prove Theorems C and E, and Corollary D.

Proof of Theorem C. Suppose (M*,g) is positively d-pinched, so that R € s at
all points, and not diffeomorphic to S*. We may then apply Lemmas 2.9 and 2.10,
and Proposition 7.1 with n = 1, obtaining:

18 ar? 8 (1 \°
Wi |? + [W_|* voly < 1-0yP—5=-(=-1) .
<oz [ WR W vol, < 5 50 -0 35 = 5 (5
Up to reversing orientation, we assume without loss of generality that o(M) > 0.
Using (2.11) instead of Lemma 2.9, and Proposition 7.1 with n = —1, we have:

1 ) ) 18 ,4r 8 (1 2
= — < (1= - — [z .
o(M) = 5 /M W2 = W2 voly < o5 2(1-6)" o5 = o= (5~ 1 O

Remark 7.4. Given the generality afforded by —1 < n < 1 in Proposition 7.1, it is
tempting to re-examine the proof of Theorem C with upper bounds of the form

b

ax(M) +5lo0D| < 5 (a5 [ WP+ WP vol,
47T2 3 M

8 b\ /1 2
< = e i
9(a+3>(a 1)

where a,b > 0 are not both zero, and n = 3a +b However, all such bounds (7.5) are
directly implied by the extreme cases (a,b) = (1,0) and (a,b) = (0,1), which form
the statement of Theorem C. Indeed, the intersection of all affine half-spaces (7.5)

x(M) <

(7.5)

in the (|o|, x)-plane is precisely the rectangle y < % (% — 1)2 and |o| < 2% (% — 1)2.

Remark 7.5. By a celebrated result of Gromov [Gro81], closed n-manifolds with
sec > 0 have bounded total Betti number Y, bx(M) < C(n). Thus, if (M*,g) is a
closed oriented 4-manifold with sec > 0, then x (M) < C(4), as bo(M) = by(M) =1
and by (M) = b3(M) = 0, hence x(M) = 2+ ba(M) = 3, bp(M). In particular,
this also gives an upper bound |o(M)| < x(M) —2 < C(4) — 2 by (2.8).

Although Gromov conjectured that C(n) = 2", which would be sharp since the
torus T has >, bi(T™) = 2", the best known estimates for C'(n) grow exponen-
tially in n®, see Abresch [Abr87]. Using [Abr87, p. 477], we have that the Poincaré
polynomial P;(M) = 1+ by(M)t? 4 t* of (M*, g) satisfies Pyq)-1(M) < %, where
t(4) = 5'684¢8/15, Thus, by(M) < t(4)%(e?9° — 1) + t(4)2 < 2.731 x 10?32, s0 also

(7.6) (M) < 2.731 x 10232,

Therefore, the upper bound x(M) < & (3 — 1) in Theorem C is smaller than (7.6)
only if 6 > 5.705 x 107117, Nevertheless it is hundreds of orders of magnitude
smaller than (7.6) for larger §; e.g., it gives x(M) < 10% if § > 0.086.
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Proof of Corollary D. Given § > 0, combining Theorem C and Theorem 2.6, it fol-
lows that an orientable positively -pinched 4-manifold (M*#, g) is homeomorphic to

(i) # CP?#°CP?, r+s+2<5(+ —1)% |r—s| < (3 — 1), if M is non-spin;
(ii) #7(S? x §2), 2r +2 < 5(5 — 1)? if M is spin.
Instead, a non-orientable positively d-pinched 4-manifold (M*, g) has 7 (M) = Zs,

by Synge’s Theorem. Applying Theorem C to its double-cover (]Téf ,€), endowed with

the pullback metric, we have x(M) = 1 x(M) < 5(3 — 1)%. According to [HKT94,
Thm. 1], for each given value of x(M), the homeomorphism type of such M is
completely determined by topological invariants that can only take finitely many
different values. Moreover, an explicit list of closed non-orientable 4-manifolds with

w1 (M) = Zs realizing these homeomorphism types is given in [HKT94, Thm. 3]. O

Proof of Theorem E. The statement about o (M) follows exactly as in the proof of
Theorem C. Without loss of generality, assume o(M) > 0. Since —R € Qs at all
points of (M*,g) and o(—R) = o(R), from (2.11) and Proposition 7.1 with n = —1,

1 2
o(M) = @/M [Wi|? — [W_|? volg < 9?(1 —6)?Vol(M, g).

Regarding x(M), due to the absence of a negatively pinched counterpart to
Lemma 2.9, we use the optimization methods of Section 3.1 directly on (2.10). In
order to have a quadratic form defined on a simplex, given R in the canonical form
(2.3), we discard the nonpositive term —1|C|? in (2.10), and consider the quantity
Su? + HWL? + W_|? = Q(w), wi, wi ,wy ,u), where Q: R® — R is given by

Q(wi‘rvw;vwl_’w;’ u) = i((wf)z + (w;)2 + wf‘w;)
+ 3 (WD) + (wy)? +wiwy) + fu.

For R € Qs, let pr(R) = R(Wy,W_,u) € Es, see Lemma 4.2 and (4.3). By
Proposition 4.7, we have that (w)", wi,w,wy,u) € A? = conv(py,...,ps). Since

@ is evidently positive-definite, Corollary 3.2 implies that its maximum is achieved
at a vertex p;, and is hence the largest among the following values:

Qp)=Qp3) =282 -5+ 3,  Qp)=Qps) = 36216+ 2,

7.7
(1) Qps) = 2, Q(ps) = 362,
Therefore, we have

: < — 3= _3
(7.8) max x(R) < meax Q(z) Joax, Q(pj) = Qps) = 3

Thus, as —R € Q; at all points of (M*,g) and x(—R) = x(R), from (7.8) and
(2.10),

1 3
(7.9) x(M) = —2/ X(R) volg < —5 Vol(M, g).

T S 4
Clearly, equality in (7.9) holds if and only if x(R) = 3 at all points of (M*,g),
which, by (7.7) and (7.8) is equivalent to —R = t5(p5) = Rg4, i.e., secyy = —1. O

Remark 7.6. As stated in the Introduction, (7.9) was also observed by Ville [Vil87].
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APPENDIX A. REVISITING VILLE’S ESTIMATES

The seminal works of Ville [Vil85, Vil89] on the geography of pinched 4-manifolds
has been partially extended by several authors, see e.g. [Ko05, DRR]. In this
Appendix, we give a uniform and general treatment of Ville’s estimates, that pushes
the method to its natural limit, yielding the following result.

Theorem A.1. If (M* g) is a 6-pinched oriented 4-manifold, with finite volume
and 6 > 68/, then

lo(M)] < AV(8) x(M),

where AV : [0y, 1] — R is given by
762 +106 + 1 — \/3\22115_4 (;326853 + 662 + 286 — 5, ifae [o),0V],
AV (8) = ;1362+45:—1—\/§\(/1556;;4063+662+86— 1, i€ [oY,aY],
245523(i I2f5)+ 15’ if o € [65,1],

and

(i) 0y =20.163 is the smallest real Toot of the polynomial §* — 1853 +26% — 65 + 1,
(i) (5V =~ (.166 is the only real Toot of the polynomial 315 + 62 + 55 — 1,

(iii) 0y =2 0.211 s the largest real root of the polynomial 1405*+405° —6524885—19.

Remark A.2. The original instances of Theorem A.1 that appear in the works of
Ville [Vil85, Vil89] are that negatively 411 pinched oriented 4-manifolds with finite

volume satisfy |0(M )| < % x(M), and positively 5-pinched oriented 4-manifolds

satisfy |o(M)| < & x(M). These statements derlve respectively, from AV () = %

3
and /\v(%) _ 2(97-7v141) 7\/14) <

Proof of Theorem A.1. Given a é-pinched oriented 4-manifold (M*,g) with finite

volume, up to reversing its orientation, we shall assume (M) > 0. Moreover, at

each p € M, its curvature operator R, € Symj(A?R*) satisfies £R € Qj, see (4.1).
For each A > 0, consider the quadratic form A, : Symj(A’R*) — R defined as

A\(R) =8 (x(R) - 3 a(R))

where x and ¢ are given by (2.10) and (2.11). That is, A, (R) = 8Ix(R), where Iy
is defined in (6.10), so writing R in the canonical form (2.3), we have:

(A1) BaR) = 6+ (1— ) W+ (14 ) (W_J? — 2l
Clearly, Ay (—R) = A,(R). Therefore, it follows from (2.9) that if
. i >
(A2) in A(R) > 0,
then o(M) < A-x(M). Thus, it suffices to prove (A.2) holds if A = AV (§), cf. (6.11

A1).
Fix R € Q5. Using the same notation as [Vil85, Vil89], let H; € AAR*, i =1,2,3,
be an orthonormal basis that diagonalizes W, and set

(A.3) wi = (W, H;, H), i=1,23,
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where wi < wi < wy. Consider the traceless Ricci component of R as a linear

map C: A2 R* - A2R*, which is denoted Z; in [Vil85, Vil89]. Let K; € A2R* be
unit vectors such that' CH; = ¢;K;, where ¢; € R, i = 1,2, 3, and set
w;, = (W_K; K;), i=1,2,3,

o= max |w; |.
C1<i<3

(A.4)

We stress that while w;" are the eigenvalues of W, as in (2.4), the numbers @;
defined in (A.4) in general do not agree with the eigenvalues w; of W_. Still,
arguing as in [Vil85, Lemma 4] and [Vil89, Lemme 1.4], it follows from (A.4) that
(A.5) W_|> > %az
Since the oriented Grassmannian (2.5) can be written as

H+K
A.6) Gri(R* :{
(A.6) Gry (R7) 7

it follows from R € Qs and (A.3) that the quantities

(A7) v = U+ wl _ oy 0i) + (Rxow, *Ui>7
2 2

where 0; = %(Hz + Kjp) € Gry (R*) and Ky € A2R* is a unit vector chosen so

that (W_Kj, Ko) = 0, satisfy

eAw#;HeAaw,KeAammm|=ww=1},

i=1,2,3,

3
(A.8) 0<v; <1, and > v;=3u.

=
Similarly, using that R € Q5 and f(H + K;) € Grg (R*), we have

~—

(A.9) d < and |ci§m<vi—|—w2i>, i=1,2,3,

where m is the piecewise affine function
m: [6,1] — [0, 152]
m(z) = min{l —z,z — J§}.
Thus, from (A.4) and (A.9),
s &, 3 a-\2 o1\ 2
CP=y < ymlvi+ %) <3 (mw)+ %)
i=1 i=1 j
(A.11) X 5
< 2 (m(vi)® + am(v) + 3a%) = 32 m(v;)? +042 m(v;) + 30,

=1 L
Combining (A.5), (A.7), (A.8), and (A 11), we arrive at Ville’s main estimate:
$AL(R) =3u®+ (5 —

(A.10)

I
—
=}
Sl

|
W=
SN—"

7 N\

+(3+ %) WP = [C]?

e [ $\~
<
~
[ V]
=
\_/

vV
—
©
e

|
W=
SN—"
N
Il
A
<
&
N———
[ V]
/—\
\_/

2AO‘ Zz: m(v )‘lim(vi)Q

n other words, K; = i% if CH; # 0, but K; can be chosen arbitrarily if CH; = 0.
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3

= (& -1) (Z) re-# -3 (2 m(w>)2 — 3% m(w)?

i=1

+(Ho-vix m(w))Q

i=1
> Fy(vi,v2,v3),

where F: Vs — R is the piecewise quadratic function

Fy(v1,02,03) = (55 — 3) (23: ”i)z +(2-55) Ei: (lg m(vi)>2—§:1 m(v;)?

i=1 1

on the polyhedron Vj := {(vl,vg,vg) ER3:6<v; <vy<wy< 1}. More precisely,
from (A.10), the restriction F} := (F))|y; of the above to each of the subpolyhedra

Vi o= {(v1,v2,v3) € V5 : T <uy <wp <wg <1,
VZ = {(v1,v2,03) € V516 <vp < T <oy <y <1},
V53 —{Ul,vz,vg)6V5:5§U1§U2<5+Tl<1)3<1 ,
Vit o= {(v1,v2,03) € Vs : 6 < vy <wg <wg < HLY

(A.12)

is a quadratic form F}\ K} — R; and, clearly, V5 = U?Zl Vg. Therefore, in order
to show that A = AV () implies (A.2), it suffices to show that it implies
(A.13) min Fi >0, 1<i<4;
Vi
which we shall now prove using Corollary 3.2 with Q = —F} and K = V.
According to (A.12), we have that the vertices q; of the polyhedron V{, where
1<j<4ifie{l,4},and 1 <j <6 if i€ {2,3}, are given as follows:

al = (51,540, 58), g = (551,580 1), g = (3. 1,1), af = (1,1,1),
q%:(&%aé%l)a q%:(évﬂ?l,:l% 3:(57171)3 Q4:(I1a Q§:(I%7 qg:q?ln

q%:(57677)7 QS:((S? 71)a Qg:(ﬁ7 QEZQS7 Qg’:‘ﬁ» QS:CI%7

Note that V' and V;* are 3-simplices (i.e., tetrahedra), but V2 and V3 are convex
hulls of 6 distinct points in R®. However, it is easy to see that V2 and V3 are prisms,
i.e., isometric to a product of a 2-simplex (the convex hull of 3 of its vertices) and a
1-simplex (the convex hull of 2 of its vertices). Thus, it is straightforward to check
which subsets of q] and q] determine faces of VZ and V2, respectively.

Routine computations show that the Hessian of each F} is negative-definite if
A< %, and has exactly d = 2 positive eigenvalues if \ > %; so it suffices to inspect
faces of Vj = conv(q}) that have dimension < 2, i.e., convex hulls of no more than
3 different q}’s. By direct inspection, we find that, for all 0 < § < 1, A > 0, and
1 <i < 4, the Hessian of the restrictions of F/{ to all 1- and 2-dimensional faces of K}
is not positive-definite. Thus, by Corollary 3.2, we have that miny; F{ = min F3(q})
is the smallest among the values assumed by F} on the vertices ¢} of V', which are
given in Table A.1.

Similarly to the last step in the proof of Theorem 6.2, applying Algebraic Cylin-
drical Decomposition to the semialgebraic set of R? given by

Vi={(0,A\) € H: F(¢}) >0, forall i,5},
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g | Fi(
a | =+ (F+3)o-%

Gl GE-3-H)P+E+A+x)0+§— 35
I I T
ai | 3
dl(E-2-)+E+A+55)0+5- 25
BlG-2 2P G-t

8 3
G- riE-90+5-&
A

@ (T8 +E+i+am)0+5-5 5
| (5-ox)0+5(x-3)0+3—ox
qi | 36°

@ | (F-5-)P+E+i+5x)0+5-5 %

TABLE A.1. Values of F} on the vertices ¢} of Vy, 1 < i < 4.
The suppressed entries are equal to some other entry in the table,
namely F*(q3) = F°(q}), F°(q}) = F?(a3), F*(q3) = F'(a3),
Fi(qi) = F*(¢3) = F*(q3) = F'(a1), F*(q3) = F*(q3) = F'(3),
and F*(g3) = F*(q3) = F*(q7)-

where H = (0,1) x (0, +00), we obtain that XV = {6 € [y, 1) : AV(6) < A < X(0)},
where \V: [53/ , 1} — R is the piecewise continuous function in the statement, and
A(6) = 3(18%5)2. Note that AV(3)) = A(&y), and at least one among Fi(gi) and
F3}(q}) is negative if § < &y, so (A.13) does not hold. However, if § € [6y,1), then
(8,AV(8)) € XV implies that (A.13) and hence (A.2) hold. The desired conclusion
also holds at the right endpoint § = 1, where AV (1) = 0, since constant curvature
manifolds are locally conformally flat, and thus have zero signature. (|

Remark A.3. There are two noteworthy differences between the semialgebraic sets
X and XV of (6, \) for which the crucial lower bounds in the proofs of Theorems 6.2
and A.1, respectively, yield nonnegative quantities (as desired). First, the projection
of X onto 0 < § < 1 is surjective, which does not hold for XV. Second, for any
given 4 in this projection, the interval of A > 0 for which (4, ) € X is not bounded
from above, while it is for XV. Clearly, both stem from the presence of the upper
bound A(d) in the cylindrical decomposition of XV, which on X it is simply +oc.

Remark A.4. It was uncovered in our communications with Ville that there is a
small mistake in [Vil85, p. 333-334] and [Vil89, p. 152], where the coefficient —1,

respectively —%, of the term ( 2?21 m(vi)) 2, should be replaced by —%, respectively
fi; i.e., this coefficient should be equal to f%, as in the definition of F). This
arises from erroneously assuming that the sum of the numbers @, in (A.4) vanishes,
which would imply that the sum of their squares is bounded above by 2a2. This

need not be the case, and the sum of (@; )? is only bounded above by 3a?. Indeed,



GEOGRAPHY OF PINCHED FOUR-MANIFOLDS 35

denoting by K € Matgx3(R) the matrix whose columns are the coordinates of K;
with respect to a fixed orthonormal basis of A2 R*, we have that

3
0= w; =trW_ =tr (KW_K") = tr (W_(K"'K)),
i=1
since K*K = Id; however
3
S @y = tr (KTW_K) = tr (W_(KK"))
i=1

may not vanish, as KK*® may not be equal to Id. Fortunately, the rest of the
proofs in [Vil85, Vil89] can be modified accordingly, e.g., following the above proof
of Theorem A.1, without any impact on the main result.
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