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ABSTRACT

Robot errors during human-robot interaction are inescapable; they
can occur during any task and do not necessarily fit human expec-
tations. When left unmanaged, robot errors harm task performance
and user trust, resulting in user unwillingness to work with a robot.
Existing error detection techniques often specialize in specific tasks
or error types, using task or error specific information for robust
management and so may lack the versatility to appropriately ad-
dress robot errors across tasks and error types. To achieve flexible
error detection, my work leverages natural human responses to ro-
bot errors in physical HRI for error detection across task, scenario,
and error type in support of effective robot error management.
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1 INTRODUCTION

Deployed robots are estimated to make significant errors every
few hours [8]. In HRI, where effective interactions are built upon
shared trust and task performance [11, 15, 26], unexpected robot
errors (robot actions that stray from a user’s expectations or mental
model of the task and the robot [29]) damage user trust and hurt
safety and task performance [6, 32], depending on their quantity
and severity [27, 29]. Ignoring errors outright is not viable and if
not properly managed, errors will require more recovery time and
users can become disinclined to collaboration [16-18, 24, 32].

Timely and appropriate error management can address this prob-
lem [18, 37], but necessitates an understanding of errors and their
impact. The basis of error management—adapted from aviation
teamwork—has four main aspects: (1) detection, (2) classification,
(3) mitigation, and (4) recovery [18, 19].
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Prior work on error detection uses domain-specific knowledge [4,
9, 14, 25] and are not adaptable to new error types, scenarios, or
tasks [20]. Their rigidity is due in part to the general information
framework required to make a robotic system error-aware: the
information needed limits detection to certain task structures or
renders it ineffective when applied across scenarios. In addition,
these techniques do not account for factors such as a participant’s
mental model of the task and robot, even though how a robot’s
behavior strays from a user’s expectations determines whether
the user considers the robot action an error [30]. Therefore, these
methods cannot be easily used across person, task, or error [10].

However, error detection flexibility is important because errors
are unexpected and do not fit humans’ preconceptions. Moreover,
the nature of the task can affect whether a robot action is an error
and the situation and team members can dictate the error’s impact
on the collaboration [12, 30]. Thus, my overarching question: How
can we develop an automatic error detection method for unexpected
robot errors during human-robot interaction that is flexible enough to
be robust across task, user, and error type?

Errors’ unexpectedness is likely to generate social signals from
human collaborators [13]. Through social signals, humans reflex-
ively impart information about error, task, and their own mental
model of the robot to the robot in a format common across all users
because people exhibit more behaviors during error situations than
error-free ones [7]. Gaze [1, 21, 22, 31], facial expressions [36],
verbalizations [22], and body movements [4, 13, 22] have already
been shown to effectively signal errors, including their severity and
type [5, 22, 23]. However, this prior research used social scenarios
with social interactions and humanoid robots. Error detection using
social signals in physical HRI, where object manipulation is central
(as opposed to communication in social-based interaction), has yet
to be explored. The Media Equation theory [28] offers that peo-
ple behave toward computers as they do in human-human social
relationships and respond socially to technical robot actions [13],
suggesting this is a valid area of exploration.

By developing an understanding of how we can use instinctive
human reactions to robot actions, we can create a model of the user,
transfer social and contextual information to the robot, and develop
complementary situational awareness and knowledge about user
intent. This would allow more timely error detection and effective
recovery. Only one prior study has illustrated the feasibility of
this modality for detecting conversational failures and that study
had different social signals indicative of errors in different scenar-
ios [22].

Through my research, I will show that in physical HRI,
social signals exhibited in response to robot errors are good
indicators and enable flexible automatic error detection.
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2 OVERALL GOALS

I focus on close-proximity, dyadic, physical HRI. My approach is
two-fold: (1) understand and analyze social signals (facial action
units, or AUs) in response to unexpected robot errors and (2) use
these for flexible automatic error detection. I target application
across task, person, and error type and execution in real-time—
these factors effect error detection efficacy.

3 UNDERSTANDING SOCIAL SIGNALS IN
RESPONSE TO UNEXPECTED ERRORS

Completed: AUs Across Person, Task, and Error Type. I ran
two Programming by Demonstration (PbD) studies to explore users’
natural responses to unexpected robot errors across person, task,
and error type. The first study (N=23), PbD grocery unpacking,
showed that users consistently exhibit AUs in response to unex-
pected errors and AUs hold discriminitive power to detect such
errors (physical error type) during physical interactions in a timely
manner across people, despite great variability in participant reac-
tions and small training set [34]. This was done with a ML based
error detection algorithm (trained on my study data) that used AUs
at each time step to output error detection time step. No inputs
contained task-specific information.

To explore different tasks and error types, I ran a study (N=5)
evaluating AUs on PbD pipe sorting and physical, conceptual, and
generalization errors types [34]. Evaluation showed that modeling
AUs (with model only trained on prior study data) may be useful
in error detection across PbD tasks and error types. The algorithm
performed similarly with physical and conceptual errors but was
delayed when considering generalization errors.

This work was extended beyond PbD to human-robot collabora-
tion by creating and analyzing an open-source dataset from three
HRI studies [35]. The dataset contains 7hrs 37min of interaction
video across 73 participants, with calculated facial AUs. The first
scenario was human-robot collaboration (HRC): participants com-
pleted an assembly task alongside the autonomous robotic system.
The second scenario was also HRC: cooking tasks where the robot
provided ingredients and the human cooked. The third scenario
was the same as the prior PbD studies. Analysis showed that social
signals are widespread and prompt across error, task, and scenario,
potentially enabling earlier error detection. I postulate that social
signals are a pivotal input source for flexible, timely error detection.

Completed: Understanding AUs and Error Context. My pre-
liminary study (N=7) exploring users’ responses to errors of varying
severity (context) found that more severe errors caused faster, more
intense reactions; these behaviors escalated over time [33]. This
work used a subset of the data collected in [35], where I showed that
I can model and distinguish between social and non-social contexts
using AUs; therefore, one should potentially consider including
contextualization in order to effectively employ social signals.

Ongoing: AUs Across Machine Embodiments and Interac-
tion Paradigms. My prior explorations have had users interact
with a non-anthropomorphic robot arm in both uni-directional
(user tells robot to do something) and bi-directional (collaboration
between user and robot) interactions; I am extending this across
embodiments for error detection. I am assembling a corpus of data,
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including the previous dataset [35] and data collected from labora-
tory studies with organic and inorganic errors during user interac-
tions with smart speakers. The corpus varies across embodiments
(robot arm, social robot, smart speaker), interaction paradigms (uni-
and bi-directional), and AUs. I will initially use inferential statistics
to examine embodiment effects, explore AU modeling to determine
if these models can be used across embodiments, and determine via
modeling if error detection performance improves by incorporating
interaction paradigm information to provide context for AUs.

Proposed: AUs in the Wild. All previous studies were con-
ducted in laboratory settings and so I am planning to deploy a robot
arm that makes coffee (service robot) and collect video and audio
data to explore what social signals are exhibited during natural
user interactions. At the end of each interaction, participants will
be surveyed to collect information about their perception of that
robot and its services. The study will encourage repeat interactions
to explore how social signals change over time by providing punch
cards for free coffee.

4 FLEXIBLE AUTOMATIC ERROR DETECTION

Completed: Framework for Flexible Error-Aware HRI. I have
shown that natural AUs can be used to detect and temporally local-
ize errors with reasonable accuracy and timeliness across different
tasks, error types, and people. However, I also observed that social
signals may not be sufficient as not everyone exhibits social reac-
tions and others may overreact [34]. In addition, social signals may
need to be contextualized for appropriate error detection [33].

To improve my method’s robustness and traditional error detec-
tion’s flexibility, I introduced a three-layer conceptual error-aware
framework: explicit indicators (e.g., human manual reporting [14]),
implicit domain-specific indicators (e.g., task tracking [4]), and im-
plicit social signal indicators (my modification [35]). This final layer
provides information shown in prior studies to potentially offer
flexibility, capturing unexpectedness and variability in HRI.

Ongoing: Proactive Flexible Error Detection System and
Validation. I am using the above framework—as an integrated ro-
bot error detection system [35]—to explore the benefits of proactive
error detection using AUs across tasks. I created a robotic system,
built on Microsoft’s Platform for Situated Intelligence (\psi) [3],
that inputs two synchronized video streams, calculates AUs (using
OpenFace [2]) per stream, selects the AUs from the more confident
facial detection, and logs them. This process was used for all of the
data collection in section 3. Additionally, using speech-to-text and
LLMs (allowing more fluid verbal interaction), potential errors can
also be detected via speech and non-lexical utterances. The \psi
interface communicates with a robot to control its actions, feeds
AUs in real time to the error detection model described in section 3,
and handles these speech cues. Upon error detection, the robot will
automatically recover based on pre-programmed recovery behav-
ior. I will run a between-subjects study to compare the effects of
this method with a reactive one on perceived trust and teamwork
metrics. The goal is to validate that proactive error detection using
social signals promotes effective HRI.
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