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ABSTRACT 
Robot errors during human-robot interaction are inescapable; they 
can occur during any task and do not necessarily ft human expec-
tations. When left unmanaged, robot errors harm task performance 
and user trust, resulting in user unwillingness to work with a robot. 
Existing error detection techniques often specialize in specifc tasks 
or error types, using task or error specifc information for robust 
management and so may lack the versatility to appropriately ad-
dress robot errors across tasks and error types. To achieve fexible 
error detection, my work leverages natural human responses to ro-
bot errors in physical HRI for error detection across task, scenario, 
and error type in support of efective robot error management. 
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1 INTRODUCTION 
Deployed robots are estimated to make signifcant errors every 
few hours [8]. In HRI, where efective interactions are built upon 
shared trust and task performance [11, 15, 26], unexpected robot 
errors (robot actions that stray from a user’s expectations or mental 
model of the task and the robot [29]) damage user trust and hurt 
safety and task performance [6, 32], depending on their quantity 
and severity [27, 29]. Ignoring errors outright is not viable and if 
not properly managed, errors will require more recovery time and 
users can become disinclined to collaboration [16–18, 24, 32]. 

Timely and appropriate error management can address this prob-
lem [18, 37], but necessitates an understanding of errors and their 
impact. The basis of error management—adapted from aviation 
teamwork—has four main aspects: (1) detection, (2) classifcation, 
(3) mitigation, and (4) recovery [18, 19]. 
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Prior work on error detection uses domain-specifc knowledge [4, 
9, 14, 25] and are not adaptable to new error types, scenarios, or 
tasks [20]. Their rigidity is due in part to the general information 
framework required to make a robotic system error-aware: the 
information needed limits detection to certain task structures or 
renders it inefective when applied across scenarios. In addition, 
these techniques do not account for factors such as a participant’s 
mental model of the task and robot, even though how a robot’s 
behavior strays from a user’s expectations determines whether 
the user considers the robot action an error [30]. Therefore, these 
methods cannot be easily used across person, task, or error [10]. 

However, error detection fexibility is important because errors 
are unexpected and do not ft humans’ preconceptions. Moreover, 
the nature of the task can afect whether a robot action is an error 
and the situation and team members can dictate the error’s impact 
on the collaboration [12, 30]. Thus, my overarching question: How 
can we develop an automatic error detection method for unexpected 
robot errors during human-robot interaction that is fexible enough to 
be robust across task, user, and error type? 

Errors’ unexpectedness is likely to generate social signals from 
human collaborators [13]. Through social signals, humans refex-
ively impart information about error, task, and their own mental 
model of the robot to the robot in a format common across all users 
because people exhibit more behaviors during error situations than 
error-free ones [7]. Gaze [1, 21, 22, 31], facial expressions [36], 
verbalizations [22], and body movements [4, 13, 22] have already 
been shown to efectively signal errors, including their severity and 
type [5, 22, 23]. However, this prior research used social scenarios 
with social interactions and humanoid robots. Error detection using 
social signals in physical HRI, where object manipulation is central 
(as opposed to communication in social-based interaction), has yet 
to be explored. The Media Equation theory [28] ofers that peo-
ple behave toward computers as they do in human-human social 
relationships and respond socially to technical robot actions [13], 
suggesting this is a valid area of exploration. 

By developing an understanding of how we can use instinctive 
human reactions to robot actions, we can create a model of the user, 
transfer social and contextual information to the robot, and develop 
complementary situational awareness and knowledge about user 
intent. This would allow more timely error detection and efective 
recovery. Only one prior study has illustrated the feasibility of 
this modality for detecting conversational failures and that study 
had diferent social signals indicative of errors in diferent scenar-
ios [22]. 

Through my research, I will show that in physical HRI, 
social signals exhibited in response to robot errors are good 
indicators and enable flexible automatic error detection. 
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2 OVERALL GOALS 
I focus on close-proximity, dyadic, physical HRI. My approach is 
two-fold: (1) understand and analyze social signals (facial action 
units, or AUs) in response to unexpected robot errors and (2) use 
these for fexible automatic error detection. I target application 
across task, person, and error type and execution in real-time— 
these factors efect error detection efcacy. 

3 UNDERSTANDING SOCIAL SIGNALS IN 
RESPONSE TO UNEXPECTED ERRORS 

Completed: AUs Across Person, Task, and Error Type. I ran 
two Programming by Demonstration (PbD) studies to explore users’ 
natural responses to unexpected robot errors across person, task, 
and error type. The frst study (N=23), PbD grocery unpacking, 
showed that users consistently exhibit AUs in response to unex-
pected errors and AUs hold discriminitive power to detect such 
errors (physical error type) during physical interactions in a timely 
manner across people, despite great variability in participant reac-
tions and small training set [34]. This was done with a ML based 
error detection algorithm (trained on my study data) that used AUs 
at each time step to output error detection time step. No inputs 
contained task-specifc information. 

To explore diferent tasks and error types, I ran a study (N=5) 
evaluating AUs on PbD pipe sorting and physical, conceptual, and 
generalization errors types [34]. Evaluation showed that modeling 
AUs (with model only trained on prior study data) may be useful 
in error detection across PbD tasks and error types. The algorithm 
performed similarly with physical and conceptual errors but was 
delayed when considering generalization errors. 

This work was extended beyond PbD to human-robot collabora-
tion by creating and analyzing an open-source dataset from three 
HRI studies [35]. The dataset contains 7hrs 37min of interaction 
video across 73 participants, with calculated facial AUs. The frst 
scenario was human-robot collaboration (HRC): participants com-
pleted an assembly task alongside the autonomous robotic system. 
The second scenario was also HRC: cooking tasks where the robot 
provided ingredients and the human cooked. The third scenario 
was the same as the prior PbD studies. Analysis showed that social 
signals are widespread and prompt across error, task, and scenario, 
potentially enabling earlier error detection. I postulate that social 
signals are a pivotal input source for fexible, timely error detection. 

Completed: Understanding AUs and Error Context. My pre-
liminary study (N=7) exploring users’ responses to errors of varying 
severity (context) found that more severe errors caused faster, more 
intense reactions; these behaviors escalated over time [33]. This 
work used a subset of the data collected in [35], where I showed that 
I can model and distinguish between social and non-social contexts 
using AUs; therefore, one should potentially consider including 
contextualization in order to efectively employ social signals. 

Ongoing: AUs Across Machine Embodiments and Interac-
tion Paradigms. My prior explorations have had users interact 
with a non-anthropomorphic robot arm in both uni-directional 
(user tells robot to do something) and bi-directional (collaboration 
between user and robot) interactions; I am extending this across 
embodiments for error detection. I am assembling a corpus of data, 

including the previous dataset [35] and data collected from labora-
tory studies with organic and inorganic errors during user interac-
tions with smart speakers. The corpus varies across embodiments 
(robot arm, social robot, smart speaker), interaction paradigms (uni-
and bi-directional), and AUs. I will initially use inferential statistics 
to examine embodiment efects, explore AU modeling to determine 
if these models can be used across embodiments, and determine via 
modeling if error detection performance improves by incorporating 
interaction paradigm information to provide context for AUs. 

Proposed: AUs in the Wild. All previous studies were con-
ducted in laboratory settings and so I am planning to deploy a robot 
arm that makes cofee (service robot) and collect video and audio 
data to explore what social signals are exhibited during natural 
user interactions. At the end of each interaction, participants will 
be surveyed to collect information about their perception of that 
robot and its services. The study will encourage repeat interactions 
to explore how social signals change over time by providing punch 
cards for free cofee. 

4 FLEXIBLE AUTOMATIC ERROR DETECTION 
Completed: Framework for Flexible Error-Aware HRI. I have 
shown that natural AUs can be used to detect and temporally local-
ize errors with reasonable accuracy and timeliness across diferent 
tasks, error types, and people. However, I also observed that social 
signals may not be sufcient as not everyone exhibits social reac-
tions and others may overreact [34]. In addition, social signals may 
need to be contextualized for appropriate error detection [33]. 

To improve my method’s robustness and traditional error detec-
tion’s fexibility, I introduced a three-layer conceptual error-aware 
framework: explicit indicators (e.g., human manual reporting [14]), 
implicit domain-specifc indicators (e.g., task tracking [4]), and im-
plicit social signal indicators (my modifcation [35]). This fnal layer 
provides information shown in prior studies to potentially ofer 
fexibility, capturing unexpectedness and variability in HRI. 

Ongoing: Proactive Flexible Error Detection System and 
Validation. I am using the above framework—as an integrated ro-
bot error detection system [35]—to explore the benefts of proactive 
error detection using AUs across tasks. I created a robotic system, 
built on Microsoft’s Platform for Situated Intelligence (\psi) [3], 
that inputs two synchronized video streams, calculates AUs (using 
OpenFace [2]) per stream, selects the AUs from the more confdent 
facial detection, and logs them. This process was used for all of the 
data collection in section 3. Additionally, using speech-to-text and 
LLMs (allowing more fuid verbal interaction), potential errors can 
also be detected via speech and non-lexical utterances. The \psi 
interface communicates with a robot to control its actions, feeds 
AUs in real time to the error detection model described in section 3, 
and handles these speech cues. Upon error detection, the robot will 
automatically recover based on pre-programmed recovery behav-
ior. I will run a between-subjects study to compare the efects of 
this method with a reactive one on perceived trust and teamwork 
metrics. The goal is to validate that proactive error detection using 
social signals promotes efective HRI. 
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