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Introduction: Early and accurate diagnosis of autism spectrum disorder (ASD)
is crucial for effective intervention, yet it remains a significant challenge due
to its complexity and variability. Micro-expressions are rapid, involuntary facial
movements indicative of underlying emotional states. It is unknown whether
micro-expression can serve as a valid bio-marker for ASD diagnosis.

Methods: This study introduces a novel machine-learning (ML) framework
that advances ASD diagnostics by focusing on facial micro-expressions. We
applied cutting-edge algorithms to detect and analyze these micro-expressions
from video data, aiming to identify distinctive patterns that could differentiate
individuals with ASD from typically developing peers. Our computational
approach included three key components: (1) micro-expression spotting using
Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via
Micron-BERT, and (3) classification with majority voting of three competing
models (MLP, SVM, and ResNet).

Results: Despite the sophisticated methodology, the ML framework’s ability to
reliably identify ASD-specific patterns was limited by the quality of video data.
This limitation raised concerns about the efficacy of using micro-expressions for
ASD diagnostics and pointed to the necessity for enhanced video data quality.

Discussion: Our research has provided a cautious evaluation of micro-
expression diagnostic value, underscoring the need for advancements in
behavioralimaging and multimodal Al technology to leverage the full capabilities
of ML in an ASD-specific clinical context.

KEYWORDS

autism spectrum disorder (ASD), face videos, micro-expressions, interpretable machine
learning, Autism Diagnostic Observation Schedule (ADOS)

1 Introduction

Autism Spectrum Disorder (ASD) is a complex developmental condition characterized
by challenges in social interaction, communication, and repetitive behaviors. With its
prevalence increasing in recent years, ASD has become a significant public health concern
globally. The heterogeneity in symptoms and severity across individuals with ASD
makes early and accurate diagnosis crucial for effective intervention and management.
Current diagnostic practices for ASD primarily involve standardized assessments such
as the Autism Diagnostic Observation Schedule (ADOS) (Lord et al, 1989) and
clinical evaluations. These methods are instrumental in identifying the presence of ASD
characteristics. However, they also face limitations. The efficacy of these diagnostic tools
heavily depends on the expertise of clinicians. It also relies on more observable and overt
expressions and behaviors, which can vary significantly among individuals and may be
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influenced by subjective interpretations. Moreover, the existing
diagnostic criteria and methods may not adequately capture the
full spectrum of ASD diversity, particularly in cases with subtle or
atypical manifestations.

Recent advancements in machine learning have opened new
avenues for modeling and diagnosing ASD. Machine learning has
been effectively used to analyze eye movement patterns, revealing
subtle differences in how individuals with ASD engage with their
environment compared to typically developing (TD) peers (Xie
et al., 2019; Wang et al., 2015; Ruan et al, 2021; Yu X. et al,
2024). Additionally, machine learning has been applied to analyze
body movement patterns, revealing distinct differences in how
individuals with ASD exhibit restricted and repetitive behaviors
(RRB) in interactive and non-interactive settings compared to TD
peers (Ruan et al., 2023; Zunino et al., 2018; Tian et al., 2019).
Additionally, machine learning techniques have been employed to
refine and enhance the scoring methodologies used in structured
diagnostic tools such as the Autism Diagnostic Interview-
Revised (ADI-R) and the Autism Diagnostic Observation Schedule
(ADOS), leading to more accurate and reliable diagnostic outcomes
(Duda et al., 2014; Wall et al., 2012). Furthermore, analyzing home
video content through machine learning algorithms has opened
new avenues for researchers and clinicians to observe and assess
behaviors in naturalistic settings, providing richer, more contextual
insights into the spectrum of ASD behaviors (Tariq et al., 2018).
Recent work has also explored the use of machine learning to
diagnose autism-associated language and speech pattern disorders,
identifying distinct linguistic features, such as atypical syntax and
semantics, as well as unique speech prosody, which can significantly
enhance the sensitivity and specificity of ASD diagnostic tools
(Hu et al., 2024a,b). Therefore, machine learning offers a vital and
effective method for identifying and comprehending the factors
that contribute to atypical behaviors in ASD.

Building on this foundation, our study seeks to expand the
application of machine learning further into the realm of facial
expression analysis. Facial expressions represent a critical domain
of non-verbal communication and emotional expression often
disrupted in individuals with ASD. Individuals with ASD often
exhibit atypical facial expressions (Webster et al., 2021; Dollion
et al., 2022; Loth et al,, 2018; Yu H. et al., 2024). It is known
that they face challenges in recognition/interpretation/reading
and production/expression compared to neurotypicals. Previous
individuals with ASD are
significantly less accurate in recognizing standard facial expressions

studies have demonstrated that

of fear, sadness, and disgust. Moreover, they specifically struggle
to identify fear from eye expressions and disgust from the
mouth, often confusing fearful expressions with anger (Wallace
et al, 2008). In a more recent study, misinterpretation of facial
expressions by ASD was studied in more detail (Eack et al., 2015).
It was reported that adults with ASD notably misinterpreted happy
faces as neutral and were significantly more likely than the control
group to attribute negative valence to nonemotional faces. These
findings suggest a potential negative bias toward the interpretation
of facial expressions, which may have implications for behavioral
interventions designed to remediate emotion perception in ASD.
Current research on ASD diagnostics has primarily focused on
production of macro-level facial expressions. These studies (Zhang
et al., 2022; Zhang, 2023; Beary et al.,, 2020; Akter et al., 2021;
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Lu and Perkowski, 2021; Jia et al., 2021; Wang et al., 2022, 2024;
Wang, 2023) integrating machine learning have predominantly
utilized overt facial expressions, often overlooking the rich data
present in micro-expressions. In contrast to macro-expressions,
which are easily observable and longer-lasting facial expressions
typically evaluated in ADOS, micro-expressions (Takalkar et al.,
2018) are brief, involuntary facial movements that reflect deep,
often concealed emotions. Micro-expressions could provide crucial
insights into the nuanced emotional landscape of individuals with
ASD, which are usually not apparent in their more observable
behaviors. These subtle cues might reveal the internal emotional
states that are not aligned with the external expressions typically
recorded in ASD evaluations. Despite their potential to reveal
genuine emotional states, research on micro-expression utility in
ASD diagnostics is limited. These rapid facial changes, lasting only
a fraction of a second, present a significant challenge in traditional
observational settings like the hour-long ADOS sessions. Due to
their fleeting nature, the lack of attention to these quick expressions
means that current diagnostic practices may overlook an essential
aspect of ASD symptomatology, potentially leading to gaps in our
understanding and diagnosis of the disorder.

Inspired by recent advances in computer vision (Nguyen
et al.,, 2023) and autism research (Rani and Verma, 2024), this
study introduces an innovative approach to ASD diagnostics by
leveraging micro-expressions as novel features for ML models. By
adopting advanced algorithms capable of detecting and analyzing
transient and subtle facial cues such as micro-expressions, we aim
to uncover patterns that differentiate individuals with ASD from
their control counterparts. The hypothesis under testing is: can
facial microexpression be a reliable biomarker for ASD diagnosis?
To the best of our knowledge, this is the first study focusing on
micro-level behavioral observations under the context of ASD.
Even if patients with ASD possess abnormal micro-expression in
theory, designing a computational platform to extract this micro-
level feature and test its discriminative power is nontrivial. As the
first step, we have leveraged the latest advances in computer vision
(e.g., transformer architecture for micro-expression detection) and
classical machine learning tools (e.g., support vector machine and
permutation tests) to our experimental design. Other system design
options, such as closed-loop (end-to-end) optimization of three
modules, will be pursued in our next study.

2 Materials and methods

2.1 Autism Diagnostic Observation
Schedule (ADOS-2)

We analyzed videos recorded during the administration of
ADOS-2 Module 4 interview. These videos feature structured
yet natural dialogues between an interviewer and the participant,
capturing various behaviors indicative of ASD in adults. Written
informed consent was obtained from all participants, following
the ethical guidelines approved by the Institutional Review Boards
(IRB) at West Virginia University (WVU), Washington University
in St. Louis (WashU), University at Albany (UAlbany), and the
California Institute of Technology (Caltech).
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TABLE 1 Demographic and clinical characteristics of the Caltech and WVU ADOS video dataset.

Characteristic ASD (mean =+ SD) TD (mean + SD) p-value ‘
No. of subjects 33 9

Sex (M/F) 26/7 3/6

Hand (left/right) 2/31 1/8

Age 24324577 23.6+3.93 0.7932
FSIQ 96.23 + 13.12 1254+ 585 0.0004
VIQ 95.38 & 14.27 1214+ 10.38 0.0029
PIQ 97.69 4 13.68 124.0 £ 8.34 0.0016
ADOS SA 829 +4.55 -

ADOS RRB 243 £ 1.50 -

ADOS CSS-SA 6.0 4252 -

ADOS CSS-RRB 595+ 2,40 -

ADOS CSS-AL 564279 -

TABLE 2 Items of Reciprocal Social Interaction (RSI) in ADOS-2 coding scheme.

Items Description ‘
BO1 Unusual eye contact The quality and appropriateness of gaze or eye contact during social interactions.
B02 Facial expressions directed to Whether the participant’s facial expressions are used to communicate affective or cognitive states to
examiner the examiner.
B03 Language production and The extent to which vocalizations are accompanied by subtle shifts in gaze, facial expression, and
linked nonverbal gestures.
communication
B04 Shared enjoyment in The participant’s directed pleasure during any tasks or conversation.
interaction
BO5 Communication of own affect The participant’s ability to convey a range of his or her own emotions using words and facial
expressions, tone of voice, vocalization, and/or gestures.
BO6 Comments on others’ The participant’s ability to communicate their recognition, understanding, and/or response to the
emotions/empathy emotions of others or characters, whether real or depicted in stories or tasks.
BO7 Insight into Typical Social The participants ability to spontaneously provide examples demonstrating insight into the nature of
Situations and relationships social relationships, encompassing both ongoing relationships like friendships or marriage and
situational interactions such as getting along with peers or co-workers.
BO8 Responsibility The participant’s references to and descriptions of being responsible for his or her own actions in
typical daily living situations.
B09 Quality of social overtures The quality of the participant’s efforts to initiate social interaction with the examiner.
B10 Amount of social The number of participants” attempts to get, maintain, or direct the examiner’s attention.
overtures/Maintenance of
Attention
B11 Quality of social response The participant’s social responses throughout the ADOS-s evaluation.
B12 Amount of reciprocal social The frequency with which reciprocal interchanges occur during the course of the ADOS-2 evaluation,
communication using any mode of communication.
B13 Overall quality of rapport Rate that reflects the examiner’s overall judgment of the rapport established with the participant
during the ADOS-2 evaluation.

ADOS is a pivotal clinical tool and is widely regarded as the
gold standard for ASD diagnosis. It employs a series of standardized
tasks designed to prompt behaviors critical to autism diagnosis,
blending structured activities and informal interactions to observe
social and communicative behaviors within a controlled context.
During these sessions, ASD experts record participants’ reactions
to prompts that elicit specific social and communicative responses.

Frontiersin Neuroinformatics

These interactions, lasting about an hour, are carefully scored based
on a diagnostic algorithm to aid in forming a conclusive diagnosis
of ASD.

The ADOS-2 Module 4 consists of 15 interview sections
(scenarios), each containing a set of standardized prompts or
questions that elicit a range of responses, including verbal
communication to physical gestures. In this study, we focused
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FIGURE 1

Overview of our video-based ASD classification based on micro-expression extraction.

on seven ADQOS-2 sections (5-7, 11-14) in which the examiner
directly interviews the participant, as these sections are most
relevant for our micro-expression analysis. Note that it is
far more challenging to extract micro-expression features (e.g.,
due to extreme pose or partial occlusion) for testing the
relevant hypothesis:

The seven interview sections address the following topics:

(1) Current Work or School (Scenario 5): queries about aspects of
the participant’s life related to work or education;

(2) Social Difficulties and Annoyance (Scenario 6): discussions

about social interactions and perceptions thereof;

(3) Emotions (Scenario 7): conversations about situations or

objects that evoke various emotions, asking participants to

articulate their feelings;

Daily Living (Scenario 11): questions aimed at understanding

the participant’s living situation and their autonomy;

Friends, Relationships, and Marriage (Scenario 12): assessing

the participant’s comprehension of these personal connections;

Loneliness (Scenario 13): evaluating the participant’s grasp of

loneliness;

Plans and Hopes (Scenario 14): exploring the participant’s

future aspirations and expectations.

2.1.1 Participants

The effectiveness of our model was assessed using two non-
public ADOS video datasets from Caltech and WVU, with
demographic and clinical characteristics detailed in Table 1.

Caltech ADOS video dataset. This dataset involved 33
participants, aged 16-37 years, with a composition of 26 males and
seven females, predominantly right-handed (n = 31). A subset (n
= 9) underwent two ADOS interviews ~6 months apart, yielding
42 videos. All were diagnosed with ASD based on the Autism
Diagnostic Observation Schedule, Second Edition (ADOS-2) (Lord
et al., 1989), confirmed through expert clinical evaluation. Their
condition was quantified using calibrated severity scores from
ADOS-2: (1) Social Affect (SA): 8.29 =+ 4.55; (2) Restricted and
Repetitive Behavior (RRB): 2.43 = 1.50; (3) Severity Score for Social
Affect (CSS-SA): 6.0 £ 2.52; (4) Severity Score for Restricted and
Repetitive Behavior (CSS-RRB): 5.95 =+ 2.40; and (5) Severity Score
for SA plus RRB (CSS-All): 5.64 £ 2.79. Furthermore, the ASD
group demonstrated cognitive abilities with an average Full-Scale
IQ (ESIQ) of 96.23 & 13.12, Verbal IQ (VIQ) of 95.38 + 14.27,
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and Performance 1Q (PIQ) of 97.69 £ 13.68, measured using the
Wechsler Abbreviated Scale of Intelligence-2 (WASI-II), with a
mean age of 24.32 & 5.77 years. The interview videos were recorded
in a quiet room at Caltech with a high-quality video camera,
capturing detailed behavioral data, including body movements,
facial expressions, and social interactions.

WVU ADOS video dataset. This dataset involved nine TD
participants, reflecting an average age of 23.6 £ 3.93 years, with
a composition of three males and six females, predominantly
right-handed (n = 8). Participants in the TD group demonstrated
cognitive abilities within the normative range, with a WASI-II FSIQ
of 125.4 £ 5.85, VIQ of 121.4 £ 10.38, and PIQ of 124.0 + 8.34.
Similar to the Caltech ADOS dataset, the interview videos for the
TD group were recorded in a controlled environment at WVU.
A high-quality video camera was used in a quiet room setting,
ensuring the capture of fine-grained behavioral data. This included
detailed observations of body movements, facial expressions, and
social interactions.

2.1.2 ADOS coding and items

The ADOS-2 utilizes a systematic coding scheme to assess
behaviors indicative of ASD across five key domains, consisting
of 32 items: (1) Language and Communication, (2) Reciprocal
Social Interaction, (3) Imagination/Creativity, (4) Stereotyped
Behaviors and Restricted Interests, and (5) Other Abnormal
Behaviors. Our study specifically focused on behaviors coded
in the Reciprocal Social Interaction (RSI) domain from the
original diagnostic algorithm, exploring how these interactions
in the context of micro-expressions could offer valuable insights
into subtle social and emotional cues that are often missed in
traditional observations. RSI evaluates the individual’s capacity
for social exchanges characterized by mutual give-and-take and
responsiveness—essential aspects of typical social interactions.
Assessing this domain is critical for discerning between the
ASD and TD participants, and describing the relative severity
of social impairments associated with ASD. It is examined
through structured and semi-structured tasks designed to
evoke social interactions within a controlled environment.
The key components related to facial expression in this
domain include:

e Eye contact: Evaluates the appropriateness and frequency of
eye contact relative to the social context and interaction flow.
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Poor or atypical use of eye contact is a common feature in
ASD.

e Facial expressions used to regulate social interaction: Observes
the use and appropriateness of facial expressions during social
exchanges. This item assesses whether facial expressions are
integrated into communications in a way that seems genuine
and appropriate for the context.

e Shared enjoyment in interaction: Looks at the individual’s
ability to share enjoyment, interests, or achievements with
others through typical behaviors such as showing, bringing, or
pointing out objects of interest.

e Response to social cues: Measures how the individual responds
to social initiations made by others. This includes responses to
both verbal and non-verbal cues that require social adaptation
and appropriate reactions.

e Quality of social overtures: Assesses the efforts made by
the individual to initiate social interactions with others.
This includes how the individual approaches and initiates
interactions and whether these overtures are appropriate for
the social context.

Detailed descriptions of the RSI items are provided in Table 2.
Each behavior observed during the ADOS-2 assessment is carefully
scored within these domains based on intensity and deviation from
typical development. Typically, the item scoring system ranges
from 0 to 3, where:

e 0: indicates typical behavior appropriate to the social context.
o 1:
developmental norms but not solely indicative of ASD.

mild atypical behavior not entirely consistent with

e 2: indicates behavior that is atypical and is often seen in
individuals with ASD.

e 3:is used in certain items where the behavior is markedly

and social interaction or

abnormal severely affects

communication.

2.2 Using micro-expressions for
classification

Our approach to diagnosing ASD employed a structured
framework encompassing three critical stages: spotting micro-
expressions, extracting features from micro-expressions, and
classifying micro-expressions. Figure 1 shows the framework
of our micro-expression classification model. Initially, videos
underwent a preprocessing step where frames were extracted, faces
were detected and cropped, and the motion was magnified to
accentuate relevant facial movements. This stage ensured that the
data was optimized for accurately detecting micro-expressions.
Subsequently, we applied micro-expression spotting techniques
to the preprocessed video, locating the segments that potentially
contained micro-movements indicative of underlying emotional
states. This critical step involved identifying the onset and apex of
these micro-expressions for each video segment. Once the micro-
expression intervals were identified, the next step in our framework
was to extract features from these segments. The extraction process
was designed to distill each micro-expression into a set of features,
preparing the data for classification. These features served as
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the basis for the next step, where a machine learning classifier
was employed to categorize each segment. This classification
determined whether the segment’s features corresponded to ASD-
specific behaviors or to those of TD individuals.

2.2.1 Data preprocessing

To ensure consistency and quality across all facial data used in
our study, we standardized the resolution of facial regions in each
video frame. Each frame was meticulously cropped and resized to
a uniform dimension of 128 x 128 pixels. The cropping process
began by identifying a square bounding box around the face in each
video’s initial (reference) frame. We selected an intentionally larger
bounding box to ensure complete facial inclusion throughout the
video, accommodating any participant movements.

To address the challenge of data imbalance between ASD
and TD—an issue that can significantly affect the performance
of machine learning models—we employed data augmentation
techniques on the cropped facial frames. This approach effectively
increased the size and variability of our control group dataset,
thereby enhancing the model’s ability to generalize across different
individuals and conditions. Augmentation techniques included
horizontal flipping, brightness adjustments, and histogram
equalization, each carefully chosen to simulate a wider range of
potential recording conditions without distorting the inherent
facial expressions. Initially, the ASD group contained 42 videos,
while the TD group dataset comprised only nine videos; however,
our augmentation efforts expanded this to 36 videos. This
expansion is crucial for ensuring a robust comparative analysis
between the groups. These augmentation strategies are visually
summarized in Figure 2.

2.2.2 Spotting micro-expressions

In our study, micro-expression detection leveraged the Shallow
Optical Flow Three-stream CNN (SOFTNet) technique (Liong
et al, 2021), a pioneering method for distinguishing subtle
facial movements in extended video footage. This method,
grounded in analyzing micro-expressions—subtle, involuntary
facial movements that reveal suppressed emotions, employs a novel
shallow optical flow CNN architecture to discern these fleeting
expressions. The SOFTNet model could predict the likelihood
of a frame capturing a micro-expression interval, treating the
detection challenge as a regression problem (Figure 3). This
model assigned scores to each frame, reflecting its probability of
belonging to a micro-expression. Frames with scores surpassing
a certain threshold were identified as the apex frame of a micro-
expression. Expanding on this approach, we used the model to spot
micro-expressions across all videos, delineating micro-expression
intervals. Each of these intervals spanned 30 frames, where the peak
of the micro-expression was designated as the apex, and the initial
frame marking the start of the expression was regarded as the onset.

2.2.3 Extracting features from micro-expressions

For each of the micro-expression intervals detected from
SOFTNet, we leveraged the Micron-BERT technique (Nguyen
et al, 2023) to extract micro-expression features. This approach
was specifically designed to recognize and analyze subtle facial
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FIGURE 2
Data augmentation results of (A) raw data by (B) horizontal flipping, (C) brightness changing, and (D) histogram equalization.
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FIGURE 3

SOFTNet framework for micro-expression spotting (Liong et al,, 2021).

movements that are generally difficult for human observers to  comprehensive framework of Micron-BERT is illustrated in
detect. Micron-BERT employs a sophisticated framework that  Figure 4.

incorporates several key modules: Blockwise Swapping, Patch Patch-wise swapping. This technique involved strategically
of Interest (PoI), and Diagonal Micro Attention (DMA). The  swapping blocks of pixels, known as “patches” between the
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FIGURE 4
Micron-BERT framework for micro-expression feature extraction.
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FIGURE 5
Samples of Patch-wise Swapping result with different swapping ratios: (A) 0, (B) 0.3, (C) 0.5, (D) 0.7, (E) 1.0.

apex and onset frames of a micro-expression. Each frame was
divided into multiple patches, each with an 8 x 8 pixel block.
These small, contiguous regions of the image were treated as
individual units for analysis and manipulation, enabling precise
control over the image data. By altering the content of these
patches, we forced the model to concentrate on the differences
these swaps introduce rather than on the original unaltered image
context. This manipulation significantly challenged Micron-BERT
to detect and adapt to the most subtle changes in facial expressions,
which is crucial for accurately identifying micro-expressions. The
swapping ratio, a critical parameter in this process, specified the
proportion of the frame that underwent this swapping, influencing
the model’s sensitivity to dynamic changes in facial expressions.

Frontiersin Neuroinformatics

We experimented with swapping ratios—0, 0.3, 0.5, 0.7, and 1.0—
to determine their impact on model performance. A swapping
ratio of 0 means that the swapped frame was identical to the
onset frame, while a ratio of 1.0 means that the swapped frame
was identical to the apex frame. Adjusting this ratio allowed us
to control the intensity of the disturbance and thereby control
the model’s sensitivity to dynamic facial changes. This method
enhanced the robustness of the feature detection and helped better
differentiate significant facial movements from normal variations.
Figure 5 shows the swapping result with different ratios.

Patch of Interest (Pol) module. This module selectively
focused on areas of the face that were most likely to exhibit micro-
expressions. By isolating these regions, the Pol module effectively
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reduced background noise and distractions, enhancing the clarity
and accuracy of the feature extraction process.

Diagonal Micro Attention (DMA) module. This mechanism
was essential for detecting minute differences between the apex and
swapped frames. It focused on these micro-variations by analyzing
diagonal patterns in the attention maps, which helped pinpoint the
precise location of micro-expressions within the facial regions.

By incorporating these elements, Micron-BERT effectively
captured and analyzed the fleeting and subtle facial movements that
characterized micro-expressions. The swapping between apex and
onset frames enriched the model’s training data, providing a robust
basis for recognizing and classifying micro-expressions across
different scenarios and individuals. This methodology elevated
the precision of detecting micro-expressions and enriched the
understanding of the emotional nuances expressed during these
brief facial movements.

2.2.4 Classification
2.2.4.1 Defining classification problems

Our study focused on the following two primary binary
classification tasks.

ASD vs. This task
distinguishing between individuals diagnosed with ASD and

controls. classification involved
TD samples. This binary classification was crucial for evaluating
how effectively our feature extraction method could identify
behavioral markers that are diagnostically significant.

RSI symptom item. This classification task within the study
was more nuanced, focusing on the presence or absence of specific
symptoms within the ASD sample, as indicated by scoring on the
respective ADOS-2 RST items. In this task, we categorized the scores
into two groups:

e Zero score (ZS): It represented RSI items scored as
0, indicating typical or near-typical behavior in social
interactions. This suggested lesser or no signs of ASD-related
impairments in the assessed interaction.

e Non-zero score (NZS): It represented RSI items scored as
anything other than 0. This indicated atypical behavior,
with scores reflecting varying degrees of social interaction
challenges characteristic of ASD.

This classification task aimed to uncover underlying patterns in the
RSI scores that could potentially indicate distinct ASD profiles or
variations in characteristics.

2.2.4.2 Comparison of MLP, SVM, and ResNet classifiers
We have compared three classifiers: multi-layer perception
(MLP) (Werbos, 1974), support vector machine (SVM) (Cortes,
1995), and ResNet (He et al., 2016) with a linear kernel to classify
features extracted by the DMA component of our Micron-BERT
model. These three models have varying complexity for handling
high-dimensional data. Depending on the resource constraints
in practice, it is often unclear which model is the best for
processing the nuanced features extracted by DMA, which captured
subtle facial expressions indicative of emotional states and social
responsiveness by linear kernels. In addition to the efficiency and
effectiveness of the linear kernel in handling linearly separable data,
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another critical aspect that influenced our choice of using a linear
kernel along with three classification models was its interpretability.
This is particularly valued in clinical and diagnostic settings because
it facilitates a clear understanding of the decision-making process,
essential for clinical acceptance and further research implications.

The comparison between MLP, SVM, and ResNet with a linear
kernel to classify features extracted by the DMA component of
our Micron-BERT model can be found in Table 5 of experimental
results. To determine the final classification of a participant, we
used a majority voting system: if more than half of a participant’s
intervals were classified as ‘positive”, then the overall diagnosis for
the participant was ASD or NZS. Conversely, if most intervals were
“negative”, the participant was classified as TD or ZS. This majority
rule could be adjusted in its threshold to improve the sensitivity
and specificity of the model, ensuring that our classification
process aligned with the necessary clinical accuracy for diagnosing
ASD. This voting mechanism consolidated findings from multiple
intervals and enhanced the diagnostic outcome’s robustness and
reliability.

2.3 Statistical analysis and permutation
tests

In evaluating the effectiveness of our model, we utilized the
F1 score and accuracy as the primary metrics to ensure the
reliability and accuracy of our findings. To ensure robustness
and avoid overfitting, we implemented 10-fold cross-validation,
where the dataset was divided into ten subsets, and the model
was trained and tested across these subsets in a rotating fashion.
This approach helped to provide a more generalized performance
estimate. Additionally, to confirm that the model’s predictive
success was statistically significant and not due to random chance,
we conducted permutation tests by shuffling the labels and
comparing the model’s performance under this scenario with the
original unshuffled data. This statistical framework ensured that
our model was reliable and effective in distinguishing between ASD
vs. TD (or NZS vs. ZS) individuals, supporting its potential utility
in clinical diagnostics.

2.4 Model explainability

2.4.1 Significant patch visualization

In our analysis, we introduced the Significant Patch
Visualization (SVP) technique to highlight areas within our
data that significantly impacted our classification outcomes. This
technique utilized the coefficients of a linear kernel SVM, which
served as our classification model. By focusing on these coeflicients,
we could identify and visualize the top 1,000 features that played a
crucial role in distinguishing between classes, specifically ASD vs.
TD (or NZS vs. ZS) individuals.

SPV. We started by analyzing the weights assigned to each
feature in the linear SVM. These weights indicated the importance
of each feature in the classification process, with higher absolute
values suggesting greater significance. From this analysis, we
selected the top 1,000 features based on the absolute values of their
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FIGURE 6

Significant patch visualization of the ASD vs. controls classification with and without masking. (A, B) Without mask test. (C, D) Central mask test
(C-MT). (E, F) Non-central mask test (NC-MT). (G, H) Accuracy and F1 Score performance with 0.7 swapping ratio, “Sce.” indicates scenario. (A, C, E)
Samples of input frames with and without mask. (B, D, F) Samples of significant patch visualization from ASD and controls. The red boxes in (D)
highlight the absence of a significant patch in C-MT.
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TABLE 4 Accuracy (%) and F1 Score of the individual RSI item classification on Caltech ADOS video datasets.

Scenario

Scenario

5 83.33 0.81 38.33 0.36 83.33 0.81 61.94 0.55 42.78 0.40
6 85.56 0.79 43.06 0.41 85.56 0.79 67.22 0.64 50.28 0.50
7 83.93 0.80 52.82 0.53 83.93 0.80 72.42 0.66 50.67 0.46
11 87.78 0.82 44.48 0.44 87.78 0.82 65.95 0.61 51.79 0.53
12 85.83 0.82 40.83 0.40 85.83 0.82 64.17 0.56 54.44 0.53
13 87.70 0.82 51.98 0.51 87.70 0.82 61.15 0.57 51.98 0.49
14 87.22 0.81 34.33 0.27 87.22 0.81 68.17 0.66 41.63 0.42
Top3 83.06 0.78 45.00 0.45 83.06 0.78 68.89 0.65 52.50 0.53
Top5 85.28 0.81 45.28 0.43 85.28 0.81 61.94 0.58 50.28 0.52
All 85.28 0.81 45.28 0.45 85.28 0.81 59.44 0.56 50.00 0.51

5 56.39 0.55 56.94 0.56 36.11 0.33 63.33 0.62 55.00 0.55
6 47.22 0.46 63.89 0.62 45.28 0.42 63.61 0.60 58.61 0.58
7 34.60 0.31 73.85 0.70 34.05 0.33 63.85 0.58 52.18 0.52
11 45.71 0.46 68.53 0.65 41.63 0.39 61.51 0.57 59.96 0.56
12 54.44 0.54 61.39 0.59 49.44 0.46 64.44 0.61 52.22 0.51
13 42.94 0.43 69.05 0.67 45.52 0.42 74.76 0.68 47.34 0.43
14 45.79 0.45 67.34 0.65 58.10 0.56 65.04 0.59 50.32 0.48
Top3 42.78 0.41 66.39 0.65 49.44 0.47 64.44 0.61 51.94 0.51
Top5 52.50 0.53 66.67 0.64 47.50 0.47 68.89 0.66 47.50 0.47
All 54.72 0.55 59.67 0.58 40.56 0.40 61.67 0.60 52.20 0.51
(Continued)
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“Top3” includes the scenario 6 (social), 11 (daily living), and 13 (loneliness), and “Top5” additionally includes scenario 5 (work/school) and scenario 14 (plans/hopes). The best results are highlighted by bold.
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fluctuations in accuracy and F1 scores, maintaining above 93.57%
and 0.93, respectively.

To clarify the underlying factors guiding our micro-expression
model’s classification decisions, we utilized SPV to highlight the
specific areas the model prioritizes during classification. However,
as illustrated in Figures 6A, B it became apparent that the model
did not primarily rely on facial details for classification; instead, it
concentrated on the peripheral regions of the images. To further
verify whether the high performance of our model was genuinely
associated with facial information, we conducted a mask test
as shown in Figures 6C-F. The mask test results showed that
masking the facial regions only slightly impacted the model’s
performance. As shown in Figures 6G, H, both the C-MT and
the NC-MT resulted in the model maintaining high-performance
levels comparable to those observed in the unmasked condition.
This unexpected reliance on background features suggested that
the model might not be learning the underlying patterns specific
to ASD and control distinctions but exploiting dataset biases.

3.2 RSl symptom item classification

Table 4 shows the performance of classifying RSI items across
various scenarios on the Caltech ADOS video datasets. Overall, the
aggregated results for the “Top3” and “Top5” scenarios maintain
higher average accuracy and F1 scores across all classifications,
confirming the importance of these scenarios in the effective
classification of ASD-related micro-expressions. Unlike the ASD
vs. controls classification task, in this experiment, “Top3” includes
the scenario 6 (social), 11 (daily living), and 13 (loneliness),
and “Top5” additionally includes scenario 5 (work/school) and
scenario 14 (plans/hopes). Across all RSI behaviors (B01-B13),
scenario 11 (daily living) consistently achieves high accuracy and F1
scores, indicating its significance in identifying ASD-related micro-
expressions. Additionally, RSI items BO1 (unusual eye contact) and
B03 (language production and linked nonverbal communication)
achieve higher accuracy than other items.

However, constrained by the issue of data imbalance, especially
in items BO1 and B03, we further utilized SPV to highlight the
specific areas that the model prioritizes during classification, as
shown in Figure 7A. As the SPV experimental results indicate,
we found that the basis for classifying RSI items was relatively
random and not concentrated on facial areas. Additionally, we
employed permutation tests to examine the model’s validity, as
shown in Figure 7B. According to the permutation tests, the
model’s performance in micro-expression classification for most
items was comparable to the permutation test results, with item
BO07 (insight into typical social situations and relationships) being
the only exception demonstrating a relatively higher performance
improvement.

The superior performance in item B07 can be attributed to
several factors. First, BO7 involves a deep understanding of social
situations and relationships, which requires processing subtle social
cues and emotions. Micro-expressions, as brief facial expressions
that reveal genuine emotions, provide critical insights into
spontaneous reactions and understanding of these social dynamics.
This makes micro-expressions a valuable biomarker for evaluating
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(A) Significant patch visualization of the individual RSI item classification. (B) Performance comparison between the permutation test (PT) and
without the permutation test, showing the accuracy from “Top3" includes the scenario 6 (social), 11 (daily living), and 13 (loneliness).
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insight into social relationships. Second, understanding social
situations often involves recognizing and interpreting complex
emotional states. Individuals with ASD may display distinct micro-
expressions that reflect their differences in emotional processing.
The model’s ability to capture these subtle variations enhances the
accuracy of ASD diagnosis, particularly for an item like BO7, which
relies heavily on emotional and social cognition. Lastly, providing
examples of social insight spontaneously means that individuals
will likely show genuine emotional responses. Micro-expressions
are less likely to be masked or controlled than other forms of
expression, reflecting more accurately the participant’s true social
understanding. This authenticity in emotional response is crucial
for distinguishing between typical and atypical social cognition,
thereby improving the model’s performance for item B07.

We also compared the SVM with other classifiers for individual
RSI item classification on the Caltech ADOS video datasets
using the “Top3” scenario fusion, as shown in Table 5. SVM
achieved the highest average accuracy across items (MLP: 58.50%,
ResNet50: 59.10%, SVM: 59.89%), outperforming both MLP
(Werbos, 1974) and ResNet50 (He et al, 2016) in some RSI
items, particularly in BO1 (unusual eye contact), B03 (language
production and linked nonverbal communication), B04 (shared
enjoyment in interaction), BO7 (insight into typical social situations
and relationships), and B13 (overall quality of rapport), where
it recorded the highest accuracy and F1 scores. While ResNet50
demonstrated competitive accuracy in some items like B06
(comments on others’ emotions/empathy) and B09 (quality of
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social overtures), MLP generally underperformed compared to
SVM and ResNet50, especially in items like B02 (facial expressions
directed to examiner), B06, and B08 (responsibility). Overall, SVM’s
superior performance highlights its suitability for this classification
task.

3.3 Remove input data background

From Figure 7A, we observed that background information
still affected our model’s classification. To further improve
the performance of our model, we removed the background
information from the input data of Caltech and WVU ADOS
video datasets. After this adjustment, the experimental results are
shown in Figure 8. As shown SPV in Figures 8A, B, the model
focused more on human regions in both classification tasks, as
indicated by the clear outlines of people. This suggests that our
model’s classification basis is concentrated on human areas, due
to the removal of background information, allowing it to better
target relevant human features. However, as shown in Figures 8C,
D, despite this adjustment, the comparison of model performance
in both classification tasks revealed that removing background
information did not consistently improve accuracy. In some
experimental settings, it even lowered performance, particularly
in the ASD vs. controls classification task, where most scenarios
showed a decline in accuracy.
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TABLE 5 Accuracy (%) and F1 Score comparison of the SVM with other classifiers for individual RSI item classification on Caltech ADOS video datasets using “Top3" scenario fusion.

Classifier

Classifier

MLP (Werbos, 1974) 78.33 0.75 4056 0.39 78.06 0.75 59.44 0.55 61.67 0.61
ResNet50 (FHe et al., 78.61 0.75 47.78 0.44 78.89 0.75 61.67 0.54 57.50 0.56
2016)

SVM (Cortes, 1995) 83.06 0.78 45.00 0.45 83.06 0.78 68.89 0.65 52.50 0.53

Classifier

MLP (Werbos, 1974) 37.78 0.38 64.17 0.65 50.28 0.49 61.94 0.61 56.94 0.57
ResNet50 (He et al., 57.22 0.53 59.44 0.58 47.78 0.40 71.11 0.64 42.22 0.40
2016)

SVM (Cortes, 1995) 42.78 0.41 66.39 0.65 49.44 0.47 64.44 0.61 51.94 0.51

MLP (Werbos, 1974) 69.17 0.65 50.00 0.50 52.22 0.52
RestNet50(He et al., 2016) 64.44 0.58 47.22 0.44 54.44 0.55
SVM (Cortes, 1995) 66.94 0.63 47.50 0.48 56.67 0.57

The best results are highlighted by bold.
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FIGURE 8

Significant patch visualization of the RSI item classification with or without background. (A, C) ASD vs. controls classification. (B, D) Individual RSI item
classification. (C) Performance comparison across different RSl items, showing the average accuracy calculated across the seven scenarios for each
item. (D) Performance comparison on the 13 individual RSI items.

3.4 t-SNE Several issues are evident for the individual RSI item
classifications (Figures 9B-N). There is a significant overlap
Figure 9 provides t-SNE visualizations for the extracted micro-  between zero score points (purple) and non-zero score points
expression features, comparing ASD vs. controls classification  (orange) for all RSI items. This indicates that the features
(Figure 9A) and individual RSI item classifications (Figures 9B-N).  extracted for these items are not distinct enough to provide
In the ASD vs. controls classification (Figure 9A), we observe  a clear separation between zero and non-zero item scores.
a clear separation between ASD (red points) and controls (blue  Such overlap suggests that the model struggles to effectively
points). This indicates that the model can distinguish between  differentiate between the micro-expressions associated with the
these two groups but for reasons likely unrelated to the true  behaviors reflected in these score. Specifically, in Figure 8B (Bl
differences in micro-expressions. The t-SNE visualizations and  unusual eye contact item), clustering non-zero score points
accuracy comparisons with the mask test reveal that the model’s  around zero score points leads to a lack of clear feature
high performance in ASD vs. controls classification is primarily = separation, likely leading to classification challenges. Similar
due to learning the biases between the two databases rather  overlap patterns are observed in other items, where the indistinct
than capturing the underlying micro-expression patterns that  clustering further explains the lower performance in these
differentiate ASD individuals from controls. classifications.
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FIGURE 9

Visualization in the t-SNE space for extracted micro-expression features. (A) ASD vs. controls classification. (B—N) Individual RSI item classification
(B1-B13 item).

4 Discussion However, as sensing and computing technologies co-evolve,
micro-expression datasets with higher quality and resolution might
Can micro-expressions be used as a biomarker for ASD?  change our view in the future. Here, we suggest a few lines of
Experimental findings in this report seem to support the negative  research for future study of ML for autism video.
answer for the following reasons.

e Video data quality: High-resolution and high-frame-rate

e Reliability of micro-expression detection: Despite the use of videos are essential for capturing micro-expressions, which

Micron-BERT (Nguyen et al,, 2023) (the current SOTA), its
reliability in detecting micro-expressions depends on various
uncertainty factors such as video quality and inductive bias.
Without fine-tuning the Micron-BERT on our prioritized
dataset, its performance has not been optimized.

e Expression vs. micro-expression: It is important to contrast
the experimental results in this report with our previous
work for facial expressions (Zhang et al., 2022; Zhang, 2023).
Due to the transient nature and short duration of micro-
expressions, it is plausible that facial expressions contain more
discriminative information needed to distinguish ASD from
the control group.

e Clinical relevance of micro-expressions to ASD: Micro-
expressions have not been clinically shown to be directly
related to autism. It was hypothesized that the non-stationary
stochastic patterns of minute fluctuations (micro-movements)

2013) might facilitate the diagnosis of ASD.

However, the subtle patterns in micro-expressions of infants

(Torres et al.,

with ASD (e.g., the smiling-related) are often beyond
layperson’s naked eyes (Alvari et al., 2021).
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are brief and subtle (typically spanning only 1/25 to 1/5 of a
second). If the video quality is poor, critical details may be
missed, reducing the ability of machine learning models to
detect and analyze these expressions accurately.

Variability in expressiveness: Individuals with ASD exhibit a
wide range of expressiveness. Some may display fewer facial
expressions naturally, or their micro-expressions may differ
from typical patterns, making standard detection algorithms
less effective. Future research should focus on developing
detection algorithms that are more sensitive and tailored
to these unique patterns of expressiveness in individuals
with ASD.

Complexity of micro-expressions: Micro-expressions are
complex and can be extremely subtle, often requiring
advanced imaging techniques and sophisticated analytical
tools for detection, which may not yet be refined enough
for clinical ASD diagnostics. Future research should focus
on refining these tools and techniques to improve their
sensitivity and reliability, making them more suitable for
clinical ASD diagnostics.
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e Multimodal collaboration: Micro-expression alone might not
be qualified as a biomarker. Still, it does not necessarily imply
that it cannot be used in conjunction with other known
biomarkers to facilitate the diagnosis of ASD. For example,
children with ASD are known for the lack of response to
name-calling—we hypothesize that a multimodal system that
focuses on micro-expression following the event of name-
calling might convey more discriminative information about
the children’s behavior in joint attention settings.
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