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Introduction: Early and accurate diagnosis of autism spectrum disorder (ASD)

is crucial for effective intervention, yet it remains a significant challenge due

to its complexity and variability. Micro-expressions are rapid, involuntary facial

movements indicative of underlying emotional states. It is unknown whether

micro-expression can serve as a valid bio-marker for ASD diagnosis.

Methods: This study introduces a novel machine-learning (ML) framework

that advances ASD diagnostics by focusing on facial micro-expressions. We

applied cutting-edge algorithms to detect and analyze these micro-expressions

from video data, aiming to identify distinctive patterns that could differentiate

individuals with ASD from typically developing peers. Our computational

approach included three key components: (1) micro-expression spotting using

Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via

Micron-BERT, and (3) classification with majority voting of three competing

models (MLP, SVM, and ResNet).

Results: Despite the sophisticated methodology, the ML framework’s ability to

reliably identify ASD-specific patterns was limited by the quality of video data.

This limitation raised concerns about the efficacy of using micro-expressions for

ASD diagnostics and pointed to the necessity for enhanced video data quality.

Discussion: Our research has provided a cautious evaluation of micro-

expression diagnostic value, underscoring the need for advancements in

behavioral imaging andmultimodal AI technology to leverage the full capabilities

of ML in an ASD-specific clinical context.

KEYWORDS

autism spectrum disorder (ASD), face videos, micro-expressions, interpretable machine

learning, Autism Diagnostic Observation Schedule (ADOS)

1 Introduction

Autism SpectrumDisorder (ASD) is a complex developmental condition characterized

by challenges in social interaction, communication, and repetitive behaviors. With its

prevalence increasing in recent years, ASD has become a significant public health concern

globally. The heterogeneity in symptoms and severity across individuals with ASD

makes early and accurate diagnosis crucial for effective intervention and management.

Current diagnostic practices for ASD primarily involve standardized assessments such

as the Autism Diagnostic Observation Schedule (ADOS) (Lord et al., 1989) and

clinical evaluations. These methods are instrumental in identifying the presence of ASD

characteristics. However, they also face limitations. The efficacy of these diagnostic tools

heavily depends on the expertise of clinicians. It also relies on more observable and overt

expressions and behaviors, which can vary significantly among individuals and may be
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influenced by subjective interpretations. Moreover, the existing

diagnostic criteria and methods may not adequately capture the

full spectrum of ASD diversity, particularly in cases with subtle or

atypical manifestations.

Recent advancements in machine learning have opened new

avenues for modeling and diagnosing ASD. Machine learning has

been effectively used to analyze eye movement patterns, revealing

subtle differences in how individuals with ASD engage with their

environment compared to typically developing (TD) peers (Xie

et al., 2019; Wang et al., 2015; Ruan et al., 2021; Yu X. et al.,

2024). Additionally, machine learning has been applied to analyze

body movement patterns, revealing distinct differences in how

individuals with ASD exhibit restricted and repetitive behaviors

(RRB) in interactive and non-interactive settings compared to TD

peers (Ruan et al., 2023; Zunino et al., 2018; Tian et al., 2019).

Additionally, machine learning techniques have been employed to

refine and enhance the scoring methodologies used in structured

diagnostic tools such as the Autism Diagnostic Interview-

Revised (ADI-R) and the Autism Diagnostic Observation Schedule

(ADOS), leading to more accurate and reliable diagnostic outcomes

(Duda et al., 2014; Wall et al., 2012). Furthermore, analyzing home

video content through machine learning algorithms has opened

new avenues for researchers and clinicians to observe and assess

behaviors in naturalistic settings, providing richer, more contextual

insights into the spectrum of ASD behaviors (Tariq et al., 2018).

Recent work has also explored the use of machine learning to

diagnose autism-associated language and speech pattern disorders,

identifying distinct linguistic features, such as atypical syntax and

semantics, as well as unique speech prosody, which can significantly

enhance the sensitivity and specificity of ASD diagnostic tools

(Hu et al., 2024a,b). Therefore, machine learning offers a vital and

effective method for identifying and comprehending the factors

that contribute to atypical behaviors in ASD.

Building on this foundation, our study seeks to expand the

application of machine learning further into the realm of facial

expression analysis. Facial expressions represent a critical domain

of non-verbal communication and emotional expression often

disrupted in individuals with ASD. Individuals with ASD often

exhibit atypical facial expressions (Webster et al., 2021; Dollion

et al., 2022; Loth et al., 2018; Yu H. et al., 2024). It is known

that they face challenges in recognition/interpretation/reading

and production/expression compared to neurotypicals. Previous

studies have demonstrated that individuals with ASD are

significantly less accurate in recognizing standard facial expressions

of fear, sadness, and disgust. Moreover, they specifically struggle

to identify fear from eye expressions and disgust from the

mouth, often confusing fearful expressions with anger (Wallace

et al., 2008). In a more recent study, misinterpretation of facial

expressions by ASD was studied in more detail (Eack et al., 2015).

It was reported that adults with ASD notably misinterpreted happy

faces as neutral and were significantly more likely than the control

group to attribute negative valence to nonemotional faces. These

findings suggest a potential negative bias toward the interpretation

of facial expressions, which may have implications for behavioral

interventions designed to remediate emotion perception in ASD.

Current research on ASD diagnostics has primarily focused on

production of macro-level facial expressions. These studies (Zhang

et al., 2022; Zhang, 2023; Beary et al., 2020; Akter et al., 2021;

Lu and Perkowski, 2021; Jia et al., 2021; Wang et al., 2022, 2024;

Wang, 2023) integrating machine learning have predominantly

utilized overt facial expressions, often overlooking the rich data

present in micro-expressions. In contrast to macro-expressions,

which are easily observable and longer-lasting facial expressions

typically evaluated in ADOS, micro-expressions (Takalkar et al.,

2018) are brief, involuntary facial movements that reflect deep,

often concealed emotions. Micro-expressions could provide crucial

insights into the nuanced emotional landscape of individuals with

ASD, which are usually not apparent in their more observable

behaviors. These subtle cues might reveal the internal emotional

states that are not aligned with the external expressions typically

recorded in ASD evaluations. Despite their potential to reveal

genuine emotional states, research on micro-expression utility in

ASD diagnostics is limited. These rapid facial changes, lasting only

a fraction of a second, present a significant challenge in traditional

observational settings like the hour-long ADOS sessions. Due to

their fleeting nature, the lack of attention to these quick expressions

means that current diagnostic practices may overlook an essential

aspect of ASD symptomatology, potentially leading to gaps in our

understanding and diagnosis of the disorder.

Inspired by recent advances in computer vision (Nguyen

et al., 2023) and autism research (Rani and Verma, 2024), this

study introduces an innovative approach to ASD diagnostics by

leveraging micro-expressions as novel features for ML models. By

adopting advanced algorithms capable of detecting and analyzing

transient and subtle facial cues such as micro-expressions, we aim

to uncover patterns that differentiate individuals with ASD from

their control counterparts. The hypothesis under testing is: can

facial microexpression be a reliable biomarker for ASD diagnosis?

To the best of our knowledge, this is the first study focusing on

micro-level behavioral observations under the context of ASD.

Even if patients with ASD possess abnormal micro-expression in

theory, designing a computational platform to extract this micro-

level feature and test its discriminative power is nontrivial. As the

first step, we have leveraged the latest advances in computer vision

(e.g., transformer architecture for micro-expression detection) and

classical machine learning tools (e.g., support vector machine and

permutation tests) to our experimental design. Other system design

options, such as closed-loop (end-to-end) optimization of three

modules, will be pursued in our next study.

2 Materials and methods

2.1 Autism Diagnostic Observation
Schedule (ADOS-2)

We analyzed videos recorded during the administration of

ADOS-2 Module 4 interview. These videos feature structured

yet natural dialogues between an interviewer and the participant,

capturing various behaviors indicative of ASD in adults. Written

informed consent was obtained from all participants, following

the ethical guidelines approved by the Institutional Review Boards

(IRB) at West Virginia University (WVU), Washington University

in St. Louis (WashU), University at Albany (UAlbany), and the

California Institute of Technology (Caltech).
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TABLE 1 Demographic and clinical characteristics of the Caltech and WVU ADOS video dataset.

Characteristic ASD (mean ± SD) TD (mean ± SD) p-value

No. of subjects 33 9

Sex (M/F) 26/7 3/6

Hand (left/right) 2/31 1/8

Age 24.32± 5.77 23.6± 3.93 0.7932

FSIQ 96.23± 13.12 125.4± 5.85 0.0004

VIQ 95.38± 14.27 121.4± 10.38 0.0029

PIQ 97.69± 13.68 124.0± 8.34 0.0016

ADOS SA 8.29± 4.55 –

ADOS RRB 2.43± 1.50 –

ADOS CSS-SA 6.0± 2.52 –

ADOS CSS-RRB 5.95± 2.40 –

ADOS CSS-AL 5.64± 2.79 –

TABLE 2 Items of Reciprocal Social Interaction (RSI) in ADOS-2 coding scheme.

Items Description

B01 Unusual eye contact The quality and appropriateness of gaze or eye contact during social interactions.

B02 Facial expressions directed to

examiner

Whether the participant’s facial expressions are used to communicate affective or cognitive states to

the examiner.

B03 Language production and

linked nonverbal

communication

The extent to which vocalizations are accompanied by subtle shifts in gaze, facial expression, and

gestures.

B04 Shared enjoyment in

interaction

The participant’s directed pleasure during any tasks or conversation.

B05 Communication of own affect The participant’s ability to convey a range of his or her own emotions using words and facial

expressions, tone of voice, vocalization, and/or gestures.

B06 Comments on others’

emotions/empathy

The participant’s ability to communicate their recognition, understanding, and/or response to the

emotions of others or characters, whether real or depicted in stories or tasks.

B07 Insight into Typical Social

Situations and relationships

The participant’s ability to spontaneously provide examples demonstrating insight into the nature of

social relationships, encompassing both ongoing relationships like friendships or marriage and

situational interactions such as getting along with peers or co-workers.

B08 Responsibility The participant’s references to and descriptions of being responsible for his or her own actions in

typical daily living situations.

B09 Quality of social overtures The quality of the participant’s efforts to initiate social interaction with the examiner.

B10 Amount of social

overtures/Maintenance of

Attention

The number of participants’ attempts to get, maintain, or direct the examiner’s attention.

B11 Quality of social response The participant’s social responses throughout the ADOS-s evaluation.

B12 Amount of reciprocal social

communication

The frequency with which reciprocal interchanges occur during the course of the ADOS-2 evaluation,

using any mode of communication.

B13 Overall quality of rapport Rate that reflects the examiner’s overall judgment of the rapport established with the participant

during the ADOS-2 evaluation.

ADOS is a pivotal clinical tool and is widely regarded as the

gold standard for ASD diagnosis. It employs a series of standardized

tasks designed to prompt behaviors critical to autism diagnosis,

blending structured activities and informal interactions to observe

social and communicative behaviors within a controlled context.

During these sessions, ASD experts record participants’ reactions

to prompts that elicit specific social and communicative responses.

These interactions, lasting about an hour, are carefully scored based

on a diagnostic algorithm to aid in forming a conclusive diagnosis

of ASD.

The ADOS-2 Module 4 consists of 15 interview sections

(scenarios), each containing a set of standardized prompts or

questions that elicit a range of responses, including verbal

communication to physical gestures. In this study, we focused
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FIGURE 1

Overview of our video-based ASD classification based on micro-expression extraction.

on seven ADOS-2 sections (5–7, 11–14) in which the examiner

directly interviews the participant, as these sections are most

relevant for our micro-expression analysis. Note that it is

far more challenging to extract micro-expression features (e.g.,

due to extreme pose or partial occlusion) for testing the

relevant hypothesis:

The seven interview sections address the following topics:

(1) Current Work or School (Scenario 5): queries about aspects of

the participant’s life related to work or education;

(2) Social Difficulties and Annoyance (Scenario 6): discussions

about social interactions and perceptions thereof;

(3) Emotions (Scenario 7): conversations about situations or

objects that evoke various emotions, asking participants to

articulate their feelings;

(4) Daily Living (Scenario 11): questions aimed at understanding

the participant’s living situation and their autonomy;

(5) Friends, Relationships, and Marriage (Scenario 12): assessing

the participant’s comprehension of these personal connections;

(6) Loneliness (Scenario 13): evaluating the participant’s grasp of

loneliness;

(7) Plans and Hopes (Scenario 14): exploring the participant’s

future aspirations and expectations.

2.1.1 Participants
The effectiveness of our model was assessed using two non-

public ADOS video datasets from Caltech and WVU, with

demographic and clinical characteristics detailed in Table 1.

Caltech ADOS video dataset. This dataset involved 33

participants, aged 16–37 years, with a composition of 26 males and

seven females, predominantly right-handed (n = 31). A subset (n

= 9) underwent two ADOS interviews ∼6 months apart, yielding

42 videos. All were diagnosed with ASD based on the Autism

Diagnostic Observation Schedule, Second Edition (ADOS-2) (Lord

et al., 1989), confirmed through expert clinical evaluation. Their

condition was quantified using calibrated severity scores from

ADOS-2: (1) Social Affect (SA): 8.29 ± 4.55; (2) Restricted and

Repetitive Behavior (RRB): 2.43± 1.50; (3) Severity Score for Social

Affect (CSS-SA): 6.0 ± 2.52; (4) Severity Score for Restricted and

Repetitive Behavior (CSS-RRB): 5.95± 2.40; and (5) Severity Score

for SA plus RRB (CSS-All): 5.64 ± 2.79. Furthermore, the ASD

group demonstrated cognitive abilities with an average Full-Scale

IQ (FSIQ) of 96.23 ± 13.12, Verbal IQ (VIQ) of 95.38 ± 14.27,

and Performance IQ (PIQ) of 97.69 ± 13.68, measured using the

Wechsler Abbreviated Scale of Intelligence-2 (WASI-II), with a

mean age of 24.32± 5.77 years. The interview videos were recorded

in a quiet room at Caltech with a high-quality video camera,

capturing detailed behavioral data, including body movements,

facial expressions, and social interactions.

WVU ADOS video dataset. This dataset involved nine TD

participants, reflecting an average age of 23.6 ± 3.93 years, with

a composition of three males and six females, predominantly

right-handed (n = 8). Participants in the TD group demonstrated

cognitive abilities within the normative range, with aWASI-II FSIQ

of 125.4 ± 5.85, VIQ of 121.4 ± 10.38, and PIQ of 124.0 ± 8.34.

Similar to the Caltech ADOS dataset, the interview videos for the

TD group were recorded in a controlled environment at WVU.

A high-quality video camera was used in a quiet room setting,

ensuring the capture of fine-grained behavioral data. This included

detailed observations of body movements, facial expressions, and

social interactions.

2.1.2 ADOS coding and items
The ADOS-2 utilizes a systematic coding scheme to assess

behaviors indicative of ASD across five key domains, consisting

of 32 items: (1) Language and Communication, (2) Reciprocal

Social Interaction, (3) Imagination/Creativity, (4) Stereotyped

Behaviors and Restricted Interests, and (5) Other Abnormal

Behaviors. Our study specifically focused on behaviors coded

in the Reciprocal Social Interaction (RSI) domain from the

original diagnostic algorithm, exploring how these interactions

in the context of micro-expressions could offer valuable insights

into subtle social and emotional cues that are often missed in

traditional observations. RSI evaluates the individual’s capacity

for social exchanges characterized by mutual give-and-take and

responsiveness—essential aspects of typical social interactions.

Assessing this domain is critical for discerning between the

ASD and TD participants, and describing the relative severity

of social impairments associated with ASD. It is examined

through structured and semi-structured tasks designed to

evoke social interactions within a controlled environment.

The key components related to facial expression in this

domain include:

• Eye contact: Evaluates the appropriateness and frequency of

eye contact relative to the social context and interaction flow.
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Poor or atypical use of eye contact is a common feature in

ASD.

• Facial expressions used to regulate social interaction: Observes

the use and appropriateness of facial expressions during social

exchanges. This item assesses whether facial expressions are

integrated into communications in a way that seems genuine

and appropriate for the context.

• Shared enjoyment in interaction: Looks at the individual’s

ability to share enjoyment, interests, or achievements with

others through typical behaviors such as showing, bringing, or

pointing out objects of interest.

• Response to social cues:Measures how the individual responds

to social initiations made by others. This includes responses to

both verbal and non-verbal cues that require social adaptation

and appropriate reactions.

• Quality of social overtures: Assesses the efforts made by

the individual to initiate social interactions with others.

This includes how the individual approaches and initiates

interactions and whether these overtures are appropriate for

the social context.

Detailed descriptions of the RSI items are provided in Table 2.

Each behavior observed during the ADOS-2 assessment is carefully

scored within these domains based on intensity and deviation from

typical development. Typically, the item scoring system ranges

from 0 to 3, where:

• 0: indicates typical behavior appropriate to the social context.

• 1: mild atypical behavior not entirely consistent with

developmental norms but not solely indicative of ASD.

• 2: indicates behavior that is atypical and is often seen in

individuals with ASD.

• 3: is used in certain items where the behavior is markedly

abnormal and severely affects social interaction or

communication.

2.2 Using micro-expressions for
classification

Our approach to diagnosing ASD employed a structured

framework encompassing three critical stages: spotting micro-

expressions, extracting features from micro-expressions, and

classifying micro-expressions. Figure 1 shows the framework

of our micro-expression classification model. Initially, videos

underwent a preprocessing step where frames were extracted, faces

were detected and cropped, and the motion was magnified to

accentuate relevant facial movements. This stage ensured that the

data was optimized for accurately detecting micro-expressions.

Subsequently, we applied micro-expression spotting techniques

to the preprocessed video, locating the segments that potentially

contained micro-movements indicative of underlying emotional

states. This critical step involved identifying the onset and apex of

these micro-expressions for each video segment. Once the micro-

expression intervals were identified, the next step in our framework

was to extract features from these segments. The extraction process

was designed to distill each micro-expression into a set of features,

preparing the data for classification. These features served as

the basis for the next step, where a machine learning classifier

was employed to categorize each segment. This classification

determined whether the segment’s features corresponded to ASD-

specific behaviors or to those of TD individuals.

2.2.1 Data preprocessing
To ensure consistency and quality across all facial data used in

our study, we standardized the resolution of facial regions in each

video frame. Each frame was meticulously cropped and resized to

a uniform dimension of 128 × 128 pixels. The cropping process

began by identifying a square bounding box around the face in each

video’s initial (reference) frame. We selected an intentionally larger

bounding box to ensure complete facial inclusion throughout the

video, accommodating any participant movements.

To address the challenge of data imbalance between ASD

and TD—an issue that can significantly affect the performance

of machine learning models—we employed data augmentation

techniques on the cropped facial frames. This approach effectively

increased the size and variability of our control group dataset,

thereby enhancing the model’s ability to generalize across different

individuals and conditions. Augmentation techniques included

horizontal flipping, brightness adjustments, and histogram

equalization, each carefully chosen to simulate a wider range of

potential recording conditions without distorting the inherent

facial expressions. Initially, the ASD group contained 42 videos,

while the TD group dataset comprised only nine videos; however,

our augmentation efforts expanded this to 36 videos. This

expansion is crucial for ensuring a robust comparative analysis

between the groups. These augmentation strategies are visually

summarized in Figure 2.

2.2.2 Spotting micro-expressions
In our study, micro-expression detection leveraged the Shallow

Optical Flow Three-stream CNN (SOFTNet) technique (Liong

et al., 2021), a pioneering method for distinguishing subtle

facial movements in extended video footage. This method,

grounded in analyzing micro-expressions—subtle, involuntary

facial movements that reveal suppressed emotions, employs a novel

shallow optical flow CNN architecture to discern these fleeting

expressions. The SOFTNet model could predict the likelihood

of a frame capturing a micro-expression interval, treating the

detection challenge as a regression problem (Figure 3). This

model assigned scores to each frame, reflecting its probability of

belonging to a micro-expression. Frames with scores surpassing

a certain threshold were identified as the apex frame of a micro-

expression. Expanding on this approach, we used the model to spot

micro-expressions across all videos, delineating micro-expression

intervals. Each of these intervals spanned 30 frames, where the peak

of the micro-expression was designated as the apex, and the initial

framemarking the start of the expression was regarded as the onset.

2.2.3 Extracting features from micro-expressions
For each of the micro-expression intervals detected from

SOFTNet, we leveraged the Micron-BERT technique (Nguyen

et al., 2023) to extract micro-expression features. This approach

was specifically designed to recognize and analyze subtle facial
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FIGURE 2

Data augmentation results of (A) raw data by (B) horizontal flipping, (C) brightness changing, and (D) histogram equalization.

FIGURE 3

SOFTNet framework for micro-expression spotting (Liong et al., 2021).

movements that are generally difficult for human observers to

detect. Micron-BERT employs a sophisticated framework that

incorporates several key modules: Blockwise Swapping, Patch

of Interest (PoI), and Diagonal Micro Attention (DMA). The

comprehensive framework of Micron-BERT is illustrated in

Figure 4.

Patch-wise swapping. This technique involved strategically

swapping blocks of pixels, known as “patches,” between the
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FIGURE 4

Micron-BERT framework for micro-expression feature extraction.

FIGURE 5

Samples of Patch-wise Swapping result with different swapping ratios: (A) 0, (B) 0.3, (C) 0.5, (D) 0.7, (E) 1.0.

apex and onset frames of a micro-expression. Each frame was

divided into multiple patches, each with an 8 × 8 pixel block.

These small, contiguous regions of the image were treated as

individual units for analysis and manipulation, enabling precise

control over the image data. By altering the content of these

patches, we forced the model to concentrate on the differences

these swaps introduce rather than on the original unaltered image

context. This manipulation significantly challenged Micron-BERT

to detect and adapt to the most subtle changes in facial expressions,

which is crucial for accurately identifying micro-expressions. The

swapping ratio, a critical parameter in this process, specified the

proportion of the frame that underwent this swapping, influencing

the model’s sensitivity to dynamic changes in facial expressions.

We experimented with swapping ratios—0, 0.3, 0.5, 0.7, and 1.0—

to determine their impact on model performance. A swapping

ratio of 0 means that the swapped frame was identical to the

onset frame, while a ratio of 1.0 means that the swapped frame

was identical to the apex frame. Adjusting this ratio allowed us

to control the intensity of the disturbance and thereby control

the model’s sensitivity to dynamic facial changes. This method

enhanced the robustness of the feature detection and helped better

differentiate significant facial movements from normal variations.

Figure 5 shows the swapping result with different ratios.

Patch of Interest (PoI) module. This module selectively

focused on areas of the face that were most likely to exhibit micro-

expressions. By isolating these regions, the PoI module effectively
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reduced background noise and distractions, enhancing the clarity

and accuracy of the feature extraction process.

Diagonal Micro Attention (DMA) module. This mechanism

was essential for detecting minute differences between the apex and

swapped frames. It focused on these micro-variations by analyzing

diagonal patterns in the attention maps, which helped pinpoint the

precise location of micro-expressions within the facial regions.

By incorporating these elements, Micron-BERT effectively

captured and analyzed the fleeting and subtle facial movements that

characterized micro-expressions. The swapping between apex and

onset frames enriched the model’s training data, providing a robust

basis for recognizing and classifying micro-expressions across

different scenarios and individuals. This methodology elevated

the precision of detecting micro-expressions and enriched the

understanding of the emotional nuances expressed during these

brief facial movements.

2.2.4 Classification
2.2.4.1 Defining classification problems

Our study focused on the following two primary binary

classification tasks.

ASD vs. controls. This classification task involved

distinguishing between individuals diagnosed with ASD and

TD samples. This binary classification was crucial for evaluating

how effectively our feature extraction method could identify

behavioral markers that are diagnostically significant.

RSI symptom item. This classification task within the study

was more nuanced, focusing on the presence or absence of specific

symptoms within the ASD sample, as indicated by scoring on the

respective ADOS-2 RSI items. In this task, we categorized the scores

into two groups:

• Zero score (ZS): It represented RSI items scored as

0, indicating typical or near-typical behavior in social

interactions. This suggested lesser or no signs of ASD-related

impairments in the assessed interaction.

• Non-zero score (NZS): It represented RSI items scored as

anything other than 0. This indicated atypical behavior,

with scores reflecting varying degrees of social interaction

challenges characteristic of ASD.

This classification task aimed to uncover underlying patterns in the

RSI scores that could potentially indicate distinct ASD profiles or

variations in characteristics.

2.2.4.2 Comparison of MLP, SVM, and ResNet classifiers

We have compared three classifiers: multi-layer perception

(MLP) (Werbos, 1974), support vector machine (SVM) (Cortes,

1995), and ResNet (He et al., 2016) with a linear kernel to classify

features extracted by the DMA component of our Micron-BERT

model. These three models have varying complexity for handling

high-dimensional data. Depending on the resource constraints

in practice, it is often unclear which model is the best for

processing the nuanced features extracted by DMA, which captured

subtle facial expressions indicative of emotional states and social

responsiveness by linear kernels. In addition to the efficiency and

effectiveness of the linear kernel in handling linearly separable data,

another critical aspect that influenced our choice of using a linear

kernel along with three classificationmodels was its interpretability.

This is particularly valued in clinical and diagnostic settings because

it facilitates a clear understanding of the decision-making process,

essential for clinical acceptance and further research implications.

The comparison between MLP, SVM, and ResNet with a linear

kernel to classify features extracted by the DMA component of

our Micron-BERT model can be found in Table 5 of experimental

results. To determine the final classification of a participant, we

used a majority voting system: if more than half of a participant’s

intervals were classified as ‘positive”, then the overall diagnosis for

the participant was ASD or NZS. Conversely, if most intervals were

“negative”, the participant was classified as TD or ZS. This majority

rule could be adjusted in its threshold to improve the sensitivity

and specificity of the model, ensuring that our classification

process aligned with the necessary clinical accuracy for diagnosing

ASD. This voting mechanism consolidated findings from multiple

intervals and enhanced the diagnostic outcome’s robustness and

reliability.

2.3 Statistical analysis and permutation
tests

In evaluating the effectiveness of our model, we utilized the

F1 score and accuracy as the primary metrics to ensure the

reliability and accuracy of our findings. To ensure robustness

and avoid overfitting, we implemented 10-fold cross-validation,

where the dataset was divided into ten subsets, and the model

was trained and tested across these subsets in a rotating fashion.

This approach helped to provide a more generalized performance

estimate. Additionally, to confirm that the model’s predictive

success was statistically significant and not due to random chance,

we conducted permutation tests by shuffling the labels and

comparing the model’s performance under this scenario with the

original unshuffled data. This statistical framework ensured that

our model was reliable and effective in distinguishing between ASD

vs. TD (or NZS vs. ZS) individuals, supporting its potential utility

in clinical diagnostics.

2.4 Model explainability

2.4.1 Significant patch visualization
In our analysis, we introduced the Significant Patch

Visualization (SVP) technique to highlight areas within our

data that significantly impacted our classification outcomes. This

technique utilized the coefficients of a linear kernel SVM, which

served as our classification model. By focusing on these coefficients,

we could identify and visualize the top 1,000 features that played a

crucial role in distinguishing between classes, specifically ASD vs.

TD (or NZS vs. ZS) individuals.

SPV. We started by analyzing the weights assigned to each

feature in the linear SVM. These weights indicated the importance

of each feature in the classification process, with higher absolute

values suggesting greater significance. From this analysis, we

selected the top 1,000 features based on the absolute values of their
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coefficients. This subset of features was considered to have the most

impact on the model’s decision-making process. Each of these top

features was traced back to their original location in the input data,

allowing us to identify which patches of the data these features

were derived from. We then created a heatmap representation of

the input data, where each patch was colored based on the count

of top features it contains. Patches with a higher concentration of

significant features were highlighted more prominently.

Mask test. To further validate the effectiveness of ourmodel, we

conducted amask test based on the SPV. In this test, specific regions

of the input frames were deliberately obscured—the central facial

area (Central Mask Test, C-MT) and the areas outside the central

region (Non-Central Mask Test, NC-MT)—to remove targeted

visual information. We could compare the outcomes by masking

these areas separately and then classifying the modified frames with

our model. This experiment helped us assess whether facial regions

enhanced the accuracy of our classification.

2.4.2 t-distributed Stochastic Neighbor
Embedding

We also used t-SNE to explain our machine-learning model

for ASD diagnosis. This technique reduces the high-dimensional

data derived from the model into a two- or three-dimensional

space, making it visually interpretable. By observing the clusters

formed in the t-SNE plot, we gained valuable insights into the

effectiveness of our feature extraction techniques. Well-defined

clusters indicated that the model captures meaningful patterns

distinguishing between various classes.

3 Results

3.1 Diagnostic classification: ASD vs.
controls

The results of our study, as summarized in Table 3, demonstrate

the effectiveness of machine learning models in distinguishing

between individuals with ASD and TD controls across different

swapping ratios. The table presents the accuracy (Accu.) and F1

Score (F1) for ASD vs. controls classification across five swapping

ratios (0, 0.3, 0.5, 0.7, and 1.0) for various scenarios. The “Top 3”

and “Top 5” indicate the scenario-level fusion based on the top

three or five best-performing scenarios. In this experiment, “Top3”

includes scenario 5 (work/school), scenario 11 (daily living), and

scenario 13 (loneliness), and “Top5” additionally includes scenario

7 (emotions) and scenario 12 (relationships).

The data shows that the machine learning models maintained

relatively high accuracy and F1 scores across most interview topics

and swapping ratios. Topic 5 (work and school) consistently shows

high performance, with the highest accuracy and F1 score peaking

at 94.82%. Additionally, the performance peaks in the “Top 3”

and “Top 5” scenario fusion underscore the highlighting of the

model, especially at higher swapping ratios. The “Top 3” category

achieved the highest recorded F1 score of 0.97 at a swapping

ratio of 0.7, suggesting optimal performance when more facial

features are swapped. In comparison, the overall performance

across all scenarios (“All”) indicates consistent results with minor T
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FIGURE 6

Significant patch visualization of the ASD vs. controls classification with and without masking. (A, B) Without mask test. (C, D) Central mask test

(C-MT). (E, F) Non-central mask test (NC-MT). (G, H) Accuracy and F1 Score performance with 0.7 swapping ratio, “Sce.” indicates scenario. (A, C, E)

Samples of input frames with and without mask. (B, D, F) Samples of significant patch visualization from ASD and controls. The red boxes in (D)

highlight the absence of a significant patch in C-MT.
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TABLE 4 Accuracy (%) and F1 Score of the individual RSI item classification on Caltech ADOS video datasets.

Scenario B1 B2 B3 B4 B5

Accu. F1 Accu. F1 Accu. F1 Accu. F1 Accu. F1

5 83.33 0.81 38.33 0.36 83.33 0.81 61.94 0.55 42.78 0.40

6 85.56 0.79 43.06 0.41 85.56 0.79 67.22 0.64 50.28 0.50

7 83.93 0.80 52.82 0.53 83.93 0.80 72.42 0.66 50.67 0.46

11 87.78 0.82 44.48 0.44 87.78 0.82 65.95 0.61 51.79 0.53

12 85.83 0.82 40.83 0.40 85.83 0.82 64.17 0.56 54.44 0.53

13 87.70 0.82 51.98 0.51 87.70 0.82 61.15 0.57 51.98 0.49

14 87.22 0.81 34.33 0.27 87.22 0.81 68.17 0.66 41.63 0.42

Top3 83.06 0.78 45.00 0.45 83.06 0.78 68.89 0.65 52.50 0.53

Top5 85.28 0.81 45.28 0.43 85.28 0.81 61.94 0.58 50.28 0.52

All 85.28 0.81 45.28 0.45 85.28 0.81 59.44 0.56 50.00 0.51

Scenario B6 B7 B8 B9 B10

Accu. F1 Accu. F1 Accu. F1 Accu. F1 Accu. F1

5 56.39 0.55 56.94 0.56 36.11 0.33 63.33 0.62 55.00 0.55

6 47.22 0.46 63.89 0.62 45.28 0.42 63.61 0.60 58.61 0.58

7 34.60 0.31 73.85 0.70 34.05 0.33 63.85 0.58 52.18 0.52

11 45.71 0.46 68.53 0.65 41.63 0.39 61.51 0.57 59.96 0.56

12 54.44 0.54 61.39 0.59 49.44 0.46 64.44 0.61 52.22 0.51

13 42.94 0.43 69.05 0.67 45.52 0.42 74.76 0.68 47.34 0.43

14 45.79 0.45 67.34 0.65 58.10 0.56 65.04 0.59 50.32 0.48

Top3 42.78 0.41 66.39 0.65 49.44 0.47 64.44 0.61 51.94 0.51

Top5 52.50 0.53 66.67 0.64 47.50 0.47 68.89 0.66 47.50 0.47

All 54.72 0.55 59.67 0.58 40.56 0.40 61.67 0.60 52.20 0.51

(Continued)
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fluctuations in accuracy and F1 scores, maintaining above 93.57%

and 0.93, respectively.

To clarify the underlying factors guiding our micro-expression

model’s classification decisions, we utilized SPV to highlight the

specific areas the model prioritizes during classification. However,

as illustrated in Figures 6A, B it became apparent that the model

did not primarily rely on facial details for classification; instead, it

concentrated on the peripheral regions of the images. To further

verify whether the high performance of our model was genuinely

associated with facial information, we conducted a mask test

as shown in Figures 6C–F. The mask test results showed that

masking the facial regions only slightly impacted the model’s

performance. As shown in Figures 6G, H, both the C-MT and

the NC-MT resulted in the model maintaining high-performance

levels comparable to those observed in the unmasked condition.

This unexpected reliance on background features suggested that

the model might not be learning the underlying patterns specific

to ASD and control distinctions but exploiting dataset biases.

3.2 RSI symptom item classification

Table 4 shows the performance of classifying RSI items across

various scenarios on the Caltech ADOS video datasets. Overall, the

aggregated results for the “Top3” and “Top5” scenarios maintain

higher average accuracy and F1 scores across all classifications,

confirming the importance of these scenarios in the effective

classification of ASD-related micro-expressions. Unlike the ASD

vs. controls classification task, in this experiment, “Top3” includes

the scenario 6 (social), 11 (daily living), and 13 (loneliness),

and “Top5” additionally includes scenario 5 (work/school) and

scenario 14 (plans/hopes). Across all RSI behaviors (B01–B13),

scenario 11 (daily living) consistently achieves high accuracy and F1

scores, indicating its significance in identifying ASD-related micro-

expressions. Additionally, RSI items B01 (unusual eye contact) and

B03 (language production and linked nonverbal communication)

achieve higher accuracy than other items.

However, constrained by the issue of data imbalance, especially

in items B01 and B03, we further utilized SPV to highlight the

specific areas that the model prioritizes during classification, as

shown in Figure 7A. As the SPV experimental results indicate,

we found that the basis for classifying RSI items was relatively

random and not concentrated on facial areas. Additionally, we

employed permutation tests to examine the model’s validity, as

shown in Figure 7B. According to the permutation tests, the

model’s performance in micro-expression classification for most

items was comparable to the permutation test results, with item

B07 (insight into typical social situations and relationships) being

the only exception demonstrating a relatively higher performance

improvement.

The superior performance in item B07 can be attributed to

several factors. First, B07 involves a deep understanding of social

situations and relationships, which requires processing subtle social

cues and emotions. Micro-expressions, as brief facial expressions

that reveal genuine emotions, provide critical insights into

spontaneous reactions and understanding of these social dynamics.

This makes micro-expressions a valuable biomarker for evaluating
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FIGURE 7

(A) Significant patch visualization of the individual RSI item classification. (B) Performance comparison between the permutation test (PT) and

without the permutation test, showing the accuracy from “Top3” includes the scenario 6 (social), 11 (daily living), and 13 (loneliness).

insight into social relationships. Second, understanding social

situations often involves recognizing and interpreting complex

emotional states. Individuals with ASDmay display distinct micro-

expressions that reflect their differences in emotional processing.

The model’s ability to capture these subtle variations enhances the

accuracy of ASD diagnosis, particularly for an item like B07, which

relies heavily on emotional and social cognition. Lastly, providing

examples of social insight spontaneously means that individuals

will likely show genuine emotional responses. Micro-expressions

are less likely to be masked or controlled than other forms of

expression, reflecting more accurately the participant’s true social

understanding. This authenticity in emotional response is crucial

for distinguishing between typical and atypical social cognition,

thereby improving the model’s performance for item B07.

We also compared the SVMwith other classifiers for individual

RSI item classification on the Caltech ADOS video datasets

using the “Top3” scenario fusion, as shown in Table 5. SVM

achieved the highest average accuracy across items (MLP: 58.50%,

ResNet50: 59.10%, SVM: 59.89%), outperforming both MLP

(Werbos, 1974) and ResNet50 (He et al., 2016) in some RSI

items, particularly in B01 (unusual eye contact), B03 (language

production and linked nonverbal communication), B04 (shared

enjoyment in interaction), B07 (insight into typical social situations

and relationships), and B13 (overall quality of rapport), where

it recorded the highest accuracy and F1 scores. While ResNet50

demonstrated competitive accuracy in some items like B06

(comments on others’ emotions/empathy) and B09 (quality of

social overtures), MLP generally underperformed compared to

SVM and ResNet50, especially in items like B02 (facial expressions

directed to examiner), B06, and B08 (responsibility). Overall, SVM’s

superior performance highlights its suitability for this classification

task.

3.3 Remove input data background

From Figure 7A, we observed that background information

still affected our model’s classification. To further improve

the performance of our model, we removed the background

information from the input data of Caltech and WVU ADOS

video datasets. After this adjustment, the experimental results are

shown in Figure 8. As shown SPV in Figures 8A, B, the model

focused more on human regions in both classification tasks, as

indicated by the clear outlines of people. This suggests that our

model’s classification basis is concentrated on human areas, due

to the removal of background information, allowing it to better

target relevant human features. However, as shown in Figures 8C,

D, despite this adjustment, the comparison of model performance

in both classification tasks revealed that removing background

information did not consistently improve accuracy. In some

experimental settings, it even lowered performance, particularly

in the ASD vs. controls classification task, where most scenarios

showed a decline in accuracy.

Frontiers inNeuroinformatics 13 frontiersin.org



R
u
a
n
e
t
a
l.

1
0
.3
3
8
9
/fn

in
f.2

0
2
4
.1
4
3
5
0
9
1

TABLE 5 Accuracy (%) and F1 Score comparison of the SVM with other classifiers for individual RSI item classification on Caltech ADOS video datasets using “Top3” scenario fusion.

Classifier B01 B02 B03 B04 B05

Accu. F1 Accu. F1 Accu. F1 Accu. F1 Accu. F1

MLP (Werbos, 1974) 78.33 0.75 40.56 0.39 78.06 0.75 59.44 0.55 61.67 0.61

ResNet50 (He et al.,

2016)

78.61 0.75 47.78 0.44 78.89 0.75 61.67 0.54 57.50 0.56

SVM (Cortes, 1995) 83.06 0.78 45.00 0.45 83.06 0.78 68.89 0.65 52.50 0.53

Classifier B06 B07 B08 B09 B10

Accu. F1 Accu. F1 Accu. F1 Accu. F1 Accu. F1

MLP (Werbos, 1974) 37.78 0.38 64.17 0.65 50.28 0.49 61.94 0.61 56.94 0.57

ResNet50 (He et al.,

2016)

57.22 0.53 59.44 0.58 47.78 0.40 71.11 0.64 42.22 0.40

SVM (Cortes, 1995) 42.78 0.41 66.39 0.65 49.44 0.47 64.44 0.61 51.94 0.51

Classifier B11 B12 B13

Accu. F1 Accu. F1 Accu. F1

MLP (Werbos, 1974) 69.17 0.65 50.00 0.50 52.22 0.52

RestNet50(He et al., 2016) 64.44 0.58 47.22 0.44 54.44 0.55

SVM (Cortes, 1995) 66.94 0.63 47.50 0.48 56.67 0.57

The best results are highlighted by bold.
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FIGURE 8

Significant patch visualization of the RSI item classification with or without background. (A, C) ASD vs. controls classification. (B, D) Individual RSI item

classification. (C) Performance comparison across different RSI items, showing the average accuracy calculated across the seven scenarios for each

item. (D) Performance comparison on the 13 individual RSI items.

3.4 t-SNE

Figure 9 provides t-SNE visualizations for the extracted micro-

expression features, comparing ASD vs. controls classification

(Figure 9A) and individual RSI item classifications (Figures 9B–N).

In the ASD vs. controls classification (Figure 9A), we observe

a clear separation between ASD (red points) and controls (blue

points). This indicates that the model can distinguish between

these two groups but for reasons likely unrelated to the true

differences in micro-expressions. The t-SNE visualizations and

accuracy comparisons with the mask test reveal that the model’s

high performance in ASD vs. controls classification is primarily

due to learning the biases between the two databases rather

than capturing the underlying micro-expression patterns that

differentiate ASD individuals from controls.

Several issues are evident for the individual RSI item

classifications (Figures 9B–N). There is a significant overlap

between zero score points (purple) and non-zero score points

(orange) for all RSI items. This indicates that the features

extracted for these items are not distinct enough to provide

a clear separation between zero and non-zero item scores.

Such overlap suggests that the model struggles to effectively

differentiate between the micro-expressions associated with the

behaviors reflected in these score. Specifically, in Figure 8B (B1

unusual eye contact item), clustering non-zero score points

around zero score points leads to a lack of clear feature

separation, likely leading to classification challenges. Similar

overlap patterns are observed in other items, where the indistinct

clustering further explains the lower performance in these

classifications.
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FIGURE 9

Visualization in the t-SNE space for extracted micro-expression features. (A) ASD vs. controls classification. (B–N) Individual RSI item classification

(B1–B13 item).

4 Discussion

Can micro-expressions be used as a biomarker for ASD?

Experimental findings in this report seem to support the negative

answer for the following reasons.

• Reliability of micro-expression detection: Despite the use of

Micron-BERT (Nguyen et al., 2023) (the current SOTA), its

reliability in detecting micro-expressions depends on various

uncertainty factors such as video quality and inductive bias.

Without fine-tuning the Micron-BERT on our prioritized

dataset, its performance has not been optimized.

• Expression vs. micro-expression: It is important to contrast

the experimental results in this report with our previous

work for facial expressions (Zhang et al., 2022; Zhang, 2023).

Due to the transient nature and short duration of micro-

expressions, it is plausible that facial expressions contain more

discriminative information needed to distinguish ASD from

the control group.

• Clinical relevance of micro-expressions to ASD: Micro-

expressions have not been clinically shown to be directly

related to autism. It was hypothesized that the non-stationary

stochastic patterns of minute fluctuations (micro-movements)

(Torres et al., 2013) might facilitate the diagnosis of ASD.

However, the subtle patterns in micro-expressions of infants

with ASD (e.g., the smiling-related) are often beyond

layperson’s naked eyes (Alvari et al., 2021).

However, as sensing and computing technologies co-evolve,

micro-expression datasets with higher quality and resolution might

change our view in the future. Here, we suggest a few lines of

research for future study of ML for autism video.

• Video data quality: High-resolution and high-frame-rate

videos are essential for capturing micro-expressions, which

are brief and subtle (typically spanning only 1/25 to 1/5 of a

second). If the video quality is poor, critical details may be

missed, reducing the ability of machine learning models to

detect and analyze these expressions accurately.

• Variability in expressiveness: Individuals with ASD exhibit a

wide range of expressiveness. Some may display fewer facial

expressions naturally, or their micro-expressions may differ

from typical patterns, making standard detection algorithms

less effective. Future research should focus on developing

detection algorithms that are more sensitive and tailored

to these unique patterns of expressiveness in individuals

with ASD.

• Complexity of micro-expressions: Micro-expressions are

complex and can be extremely subtle, often requiring

advanced imaging techniques and sophisticated analytical

tools for detection, which may not yet be refined enough

for clinical ASD diagnostics. Future research should focus

on refining these tools and techniques to improve their

sensitivity and reliability, making them more suitable for

clinical ASD diagnostics.
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• Multimodal collaboration: Micro-expression alone might not

be qualified as a biomarker. Still, it does not necessarily imply

that it cannot be used in conjunction with other known

biomarkers to facilitate the diagnosis of ASD. For example,

children with ASD are known for the lack of response to

name-calling—we hypothesize that a multimodal system that

focuses on micro-expression following the event of name-

calling might convey more discriminative information about

the children’s behavior in joint attention settings.
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