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With the rapid increase in publicly available satellite data with high-
resolution, so did the demand on interactive visualization of this
data on a web map. This data is often high-resolution, with up-to
daily three-meter resolution data, and multi-spectral with up-to
15 bands per datasets. Users in various fields need to interactively
explore terabytes of this data via a web-based interface to choose
the right data for their projects. Unfortunately, existing systems
are either single-machine with limited scalability, or they do have
limited support for dynamic visualization. Moreover, most systems
pre-render visible bands only, i.e., RGB, and ignore other bands
even though many scientific domains are more interested in other
bands, e.g., infrared. This work introduces DynoViz, a novel system
for dynamic web-based scalable visualization of satellite data. It
visualize big satellite data on a regular web-based interface through
multilevel dynamic-resolution visualization. The design consists of
three main parts. First, a pre-generation process produces a limited
set of select static tiles stored on disk. This process is controlled
with a parameter to balance interactivity and disk usage depending
on the application needs. Second, a dynamic on-the-fly generation
technique uses a raster index to provide real-time visualization
of high-resolution regions of the map. Third, a web-based inter-
face provides client-side rendering of tiles according to the user
requirements and can handle multi-spectral data with no additional
overhead on the server. Experiments with terabyte-scale datasets
show that DynoViz is up-to an order of magnitude faster than other
distributed systems in the pre-generation phase and uses 60 times
less disk storage without sacrificing the interactivity.
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Figure 1: Browser view of the Landsat8 California imagery

1 Introduction

With the rapid growth of satellite imagery, there is an increasing
demand for data exploration across various fields. According to
NASA, its Earth Science data is expected to exceed 245 petabytes by
2025. Domain scientists in several fields, such as agriculture, climate
forecasting, disaster monitoring, and marine research [3, 13, 16, 19],
heavily rely on satellite data. One of the important features that
data scientists demand is interactive exploration of big datasets.
Consider a repository that contains daily satellite data over sev-
eral years. Data scientists would like to download subsets of this
data that match their need. One possible solution is to directly
download all data in given region and time and then visualize it
using a GIS tool, e.g., QGIS or GDAL. However, this method is
very time consuming due to the huge size of this data and the slow
visualization process of GIS tools. Eventually, scientists will only
keep a small subset that satisfies their application requirements,
e.g., low cloud coverage and certain change patterns that can be
visible in the data. Due to the variety of applications, each scientist
could be interested in specific bands of the data, e.g., land cover
or soil moisture, or computed indices, e.g., normalized difference
vegetation index (NDVI). Junior scientists and students can waste
months looking for the right dataset due to the slow process.
Figure 1 illustrates an alternative approach where users can
browse the data in a web-based interface to quickly select the
datasets of their interest. Users can easily navigate the map in real-
time, e.g., zoom in or out, and adjust the visualization style, e.g.,
RGB or NDVI, to match their needs. While there are existing tools
that follow a similar approach, e.g., USGS EarthExplorer, they suffer
from one or more limitations. First, they only support low resolution
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Figure 2: Overview of the proposed visualization process

visualization to reduce the resource demand on the server. Second,
many of these systems are not as interactive as the users desire
taking up-to tens of seconds to load a different dataset. Third, they
only provide pre-rendered images that show the visible bands (RGB)
and do not allow the user to style the images differently.

Looking into existing raster processing systems, we found that
they all suffer from one or more limitations that make them un-
suitable for a visualization system like the on in Figure 1. First,
there are several single-machine systems such as GDAL [7], Oracle
GeoRaster [17], and ArcGIS [1], but they are not scalable due to the
overhead of loading data from disk. On the other hand, there are
distributed tools including Apache Sedona [22, 25], GeoTrellis [8]
and Mapbox [15] but they are also limited. For example, Apache
Sedona process each raster file in isolation and fails to process
real satellite data that consist of thousands of files as one coherent
dataset. GeoTrellis requires pregeneration of huge amounts of im-
ages to provide the desired level of interactivity which consumes
too much processing time and disk storage. Mapbox has similar
scalability limiations for large and high-resolution satellite data.

Additionally, satellite data differ from visual RGB images as they
often store more than visible bands. For example, some of them
contain analytical data with up-to 16 bits per band and up-to 15
bands per dataset. Some of them represent non-visual data, e.g., land
cover, soil moisture, temperature, or crop type. This requires more
flexibility in the visualization system to allow the users to visualize
all this data in a user-friendly style according to the user needs.
However, existing systems [7, 8, 15], primarily support generating
RGB visual images only, limiting their utility for detailed analytical
purposes.

This paper introduces a new approach, DynoViz, for large-scale
satellite data visualization. It aims to overcome existing limitations
with the following features: (1) DynoViz is a distributed tool for
visualization and interactive exploration. (2) It supports loading a
single file or a folder containing multiple files. (3) It provides a fixed-
resolution visualization, one image covering the entire dataset. (4) It
also provides dynamic multi-resolution visualization with multi-
level zoom capability. (5) DynoViz equips self-halted pre-generated
static image processing and on-the-fly generation. (6) It utilizes
a user-configurable parameter to reduce disk usage during self-
halted pre-generation process. (7) DynoViz utilizes a lightweight
index to minimize on-the-fly rendering time, providing a real-time
experience with minimal disk overhead. (8) The proposed tool can
fetch and visualize 16-bit non-visual and multi-band analytical
imagery. (9) This work also enables customized front-end styling
features, such as viewing selected layers or pixel calculation results.

Figure 2 illustrates the pipeline of DynoViz. First, there is a
pre-processing step that creates two separate outputs. It generates
multi-resolution static images to boot strap the visualization with
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a configurable parameter to balance the preprocessing time and
visualization response time. It also generates a light-weight raster
index to allow real-time visualization for the regions that are not
pre-generated. Second, it contains a visualization server which
uses both static images and the raster index to provide web access
to visualized data for any region and zoom level. Third, DynoViz
contains a web-based client application that allows the user to
explore the data on an interactive map using the tiles served by the
server. It also allows the user to change the visualization style on
the client side, e.g., RGB or NDVL

To test DynoViz, we implemented a prototype that run the pre-
processing step using Apache Spark and the visualization step using
a Scala-based server and JavaScript-based client. Experiments show
that the proposed system is up-to an order of magnitude faster in
the data preparation step and uses sixty time less disk storage than
other Spark-based baselines. At the same time, it maintains the
same level of interactivity of baselines.

The rest of this paper includes: Section 2 covers the related work.
Section 3 gives the background of this work. Section 4 overviews
the proposed work. Section 5 describes the pre-generation and
on-the-fly generation strategies. Section 6 describes experimental
evaluations of the proposed work. Section 7 concludes the paper.

2 Related Work

This section reviews relevant work in spatial data visualization
through web browsers, focusing on both vector and raster data ap-
proaches. A common method for visualizing spatial data is through
platforms like Google Maps or Bing Maps, which fetches pre-
generated static images at various resolutions, allowing users to
dynamically explore the data by zooming in and out on a web
browser. Spatial data visualization can fall into two main categories:
vector and raster visualization, which can be implemented using ei-
ther a single-machine or distributed approach. Therefore, we begin
by discussing vector data visualization and optimization methods,
followed by both single-machine and distributed approaches for
raster data visualization.

There is a large body of work for visualizing vector data including
points, lines, and polygons. Single-machine systems are usually very
versatile but cannot scale to big data [4]. Recent work on distributed
systems [6, 23, 24] address this problem and can scale to large-scale
data. Some techniques use specialized indexes and query processing
methods [9, 20] to further optimize the performance. However, the
visualization of raster data presents different challenges due to its
unique file structure and query processing methods.

There are tools that visualize raster data on a single machine
including GDAL [7], Oracle GeoRaster [17] and ArcGIS [1]. How-
ever, single-machine methods face limitations in terms of efficiency
and performance. Additionally, GDAL requires processing an entire
image to create the visualization, which can be inefficient, as it
necessitates an additional step of combining multiple files into one.
This also means that GDAL cannot handle multiple files simultane-
ously. This limitation is problematic in real-world scenarios where
a coherent dataset often consists of multiple files.

There are some recent systems for distributed raster data
processing including Apache Sedona [22, 25], GeoTrellis [8] and
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Figure 3: Example of tiled web map at zoom level 0 and 1

Mapbox [15]. However, Apache Sedona is currently limited to pro-
cessing small individual images and not large multi-file datasets.
GeoTrellis faces challenges in producing images at high resolution
due to significant disk usage requirements. Both GeoTrellis and
Mapbox are limited to using only RGB bands and do not support
loading analytical satellite images or applying customized styling.
This lack of ability to load analytical imagery limits data scientists
from conducting complex analyses.

Other studies [5, 10, 26, 27] differ in scope as they focus on
visualizing query results from specific query ranges rather than on
the visualization and exploration of entire raster maps. Additionally,
works like [11] focus more on different tiling strategies, which
is also different from the pre-generation of large-scale analytical
imagery. Other studies, such as [2, 12], focus on visualizing scientific
data but do not specifically contain geographic information such
as longitude and latitude. Other work [12] only deals with RGB
images. Cloud-based solutions like [14, 18] that use formats like
OME-TIFF do not involve the process of generating static tile images,
as tiles can be directly fetched from the URL without pre-generation.
However, relying on the OME-TIFF approach limits data scientists
from the flexibly of choosing datasets or exploring any range of
data they already have in hand.

The proposed work, DynoViz, is designed specifically for scal-
able and dynamic raster visualization. It builds on Apache Spark
which addresses the limitation of single-machine systems. It build
a tile-based visualization structure that can be easily integrated
into web-based maps. To solve the scalability problem with high-
resolution data, it proposes a dynamic approach that uses a user-
configurable tuning parameter that balances preprocessing time,
storage overhead, and real-time processing overhead. Finally, it
supports visualization of analytical data by allowing the user to
define a custom visualization style in the browser depending on
the user requirements.

3 Background

This section provides background information about the tiled web
maps, which are widely used in web map visualization, and raster
data.

3.1 Tiled Web Map

The visualization of maps through a web browser generally em-
ploys tiled web maps. A tiled web map consists of billions of tiles,
each measuring 256x256 pixels. At zoom level 0, the entire map is
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Figure 4: Example of raster data and tile

represented by a single tile. As the zoom level increases, the number
of tiles multiplies by 4 each time, so it contains 4 tiles at zoom level
1, as shown in Figure 3. A coordinate system identifies each tile
denoted as z, x, y, where z represents the zoom level, and x and
y mark the location of each tile on the grid on that level. During
visualization, the system locates the corresponding x, y coordinates
for a specific zoom level and arranges them adjacently within the
browser window. For this system to work efficiently, the server
should be able to deliver any tile in a fraction of a second.

3.2 Raster Data

A raster file can be represented as a two-dimensional array, starting
from the top-left corner at (0,0) and extending to the bottom-right
corner with width and height (W, H), as shown in Figure 4. Each
pixel is located in the grid space at its top-left corner, denoted as
(x,y). Additionally, each pixel represents a rectangular region of
the Earth’s surface. A coordinate reference system (CRS) defines
the geographical projection that maps between grid pixels and the
Earth surface. This geographical relation differentiates it from other
scientific datasets, such as biomedical images. A single file is inter-
nally organized as a set of non-overlapping tiles, each containing
a group of pixels within the raster data, and the figure illustrates
the concept of tiles. Each tile has its own starting (x, y) location.
Real raster data consists of tens of thousands of raster files, each
representing a different geographical region and with a different
CRS.

4 Overview of DynoViz

This section gives an overview of the proposed work, as illustrated
in Figure 2. We discuss the challenges and motivations that led to
this approach. The dynamic multi-resolution process consists of
two parts: self-halted pre-generation of static images and on-the-fly
image generation. A threshold value is defined to determine when
to halt the pre-generation process. For the on-the-fly generation,
we use an index that efficiently identifies the corresponding im-
age and its geographical extent, which accelerates the rendering
process. Finally, this work supports customized styling on the front-
end. Below, we provide an overview of those components and the
subsequent section delves into the details.

4.1 Dynamic Multi-Resolution Viewer

In this work, we introduce the dynamic multi-resolution viewer
approach to tackle the challenges of visualizing large-scale and
high-resolution satellite images. Our approach emphasizes dynamic
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Figure 5: Example of the two-phase process for generating
images from zoom levels 0 to 2

multi-resolution, allowing multilevel zoom functionality for web-
based visualization. The process is divided into two strategies: self-
halted pre-generation of multi-resolution static images and on-
the-fly generation during real-time browsing. Several factors led
to the adoption of the two-phase approach. The first is the time-
consuming process of generating all levels of static images, and the
second challenge is the significant disk usage required to store the
exponentially growing number of images.

Large data size and higher resolution introduce significant com-
putational challenges. Reprojecting all images to the Web Mercator
reference becomes increasingly time-consuming as data size, cov-
erage, and resolution increase. Various of Coordinate Reference
Systems (CRS) within a single dataset is one of the factors contribut-
ing to this time-consuming process. It is necessary to understand
that raster images in the same dataset can have different CRSs. As
described previously, a CRS defines a geographical projection that
maps a region of the Earth surface to a two-dimensional space cor-
responding to a raster dataset. A single raster product might have
multiple CRSs depending on the geographical location, such as UTM
zones, due to how satellites scan the Earth surface. Projecting all
raster files into the Web Mercator CRS to ensure an accurate display
of these images on a web browser within a unified map is necessary.
Failing to unify the CRS could result in displaying raster images
in the incorrect order. This process involves applying geographic
transformations to each raster image and requires resampling meth-
ods, such as nearest neighbor, average, or bilinear interpolation. As
data size and pixel resolution increases, these interpolation methods
become more time-consuming to apply. Consequently, generating
all levels of images onto disks becomes inefficient.

Disk usage is another significant challenge. Generating all levels
of images onto disks demands significant disk space to store the
exponentially growing number of images as zoom levels increase.
Moreover, with large datasets, moving and sharing these images be-
comes inconvenient. In section 5, we will discuss more details about
how this work is designed to address the mentioned challenges.
Therefore, in this work, we introduce an innovative self-halted
multi-resolution static image generation process. This method is a
step forward in minimizing computational time and disk storage.

We introduce an quick response on-the-fly generation for the
rest of the high zoom levels. The on-the-fly generation strategy aims
to provide a real-time browsing experience when users zoom in to
explore more details. We optimize the on-the-fly process with an
index file. The challenge with on-the-fly generation is the rendering
time. Considering an end-to-end user experience, users expect real-
time visualization with a tolerance of up to 0.5 seconds of delay.
This tolerance allows us to generate some images on-the-fly in the
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browser rather than relying only on pre-generation. To meet this
requirement, the on-the-fly generation must be efficient, taking no
longer than 0.5 seconds to create an image. We have adopted the
use of an index to speed up this process. With the help of the index,
we can exclusively query the requested region of the dataset. This
technique enables us to offer the real-time visualization feature that
users expect. The Figure 5 illustrates an example of how these two
phases manage to generate and visualize all required images for all
levels. The self-halted multi-resolution static images process creates
images for different zoom levels. A threshold value is defined to halt
the process at a certain zoom level, which helps to reduce storage
usage. For example, in the figure, we only pre-generate images
from zoom level 0 to 1 based on the threshold value. Following this,
as shown in the figure, we use on-the-fly generation to visualize
images at zoom level 2. The index file helps determine the query
range (z,x, y) from the entire dataset and only loads the required
parts. More details are described in section 5.

4.2 Customized Style for Analytical Imagery

DynoViz goes beyond generating traditional PNG or JPEG visual
images. It supports loading both RGB visual raster images and multi-
band analytical imagery, allowing users to customize the frontend
style. Users can choose any layer from the image for viewing, such
as the near-infrared band from the Landsat8 dataset. They can also
view results from pixel calculations, such as the NDVI (Normalized
Difference Vegetation Index), which is widely used in agriculture
and determined through pixel-wise calculations. Additionally, since
the data used for calculating NDVI typically comes from analytical
satellite imagery where each pixel is represented by 16-bit numbers
rather than 8-bit RGB images, DynoViz is designed to handle and
visualize 16-bit data on the web, extending its capabilities beyond
just RGB visual images. The implementation details are discussed
inin section 5.

5 Dynamic Multi-Resolution Viewer Technique

In this section, we detail the strategy for dynamic visualization.
This section describes the motivations. Then we discuss the steps
involved in creating pre-generated static images and methods for re-
ducing disk usage. Additionally, we introduce the on-the-fly process
and discuss optimization techniques using an index file.

5.1 Natural Properties of Raster Data

Existing work in vector visualization [20] utilizes a threshold to
avoid pre-generating all data based on predicting the emptiness of
the query result. However, a similar tool for raster visualization
is still lacking. Raster data differs from vector data in that raster
data can have different distributions. This difference necessitates
a distinct metric for measurement. To develop a new metric, it is
essential first to understand the natural properties of raster data.
Unlike vector data, such as points, which can be skewed (e.g., traffic
data in Los Angeles is dense while suburban areas are sparse), raster
data tends to show binary skew, with 1 indicating data presence
and 0 indicating no data. For example, in satellite images covering
multiple countries, land areas contain data, while oceans and other
excluded countries are typically blank.
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5.2 Self-Halted Multi-Resolution Static Images

Recall that pre-generating all levels of static images is time-
consuming. To reduce computation time, we designed this process
to run in parallel. This approach uses Spark, a distributed system, to
handle the pre-generation process by simultaneously reprojecting
and generating result images.

Since the fixed-resolution view is straightforward, we will de-
scribe the technical details at a high level. We read all raster images
and reproject them to the Web Mercator reference. During this
process, we also ensure all raster images have the same resolution.
The resolution can match the original source data or be a lower res-
olution or customized value. The output is an image that represents
the entire dataset.

The process of generating dynamic multi-resolution images be-
gins by taking the maximum zoom level from the user input and
generating all the necessary metadata for each zoom level, starting
from 0. This metadata includes the geographical extent, tile size,
and pixel resolution for each zoom level in Web Mercator. To ensure
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that all images at the same level have consistent pixel resolution,
we first calculate the total raster width and height in pixels for the
entire dataset. Then, we determine the pixel resolution by dividing
the raster width and height by the geographical extent in the Web
Mercator reference system. Finally, we store all the metadata in
a list. We resample the original dataset into required zoom levels
simultaneously as illustrated in Figure 6. The figure shows how this
method takes multiple raster files and a list of metadata as input.
It generates all output tiles at various zoom levels concurrently,
with each tile being 256 by 256 pixels in size. Finally, it simultane-
ously writes all tiles to disk as pre-generated static images, ensuring
efficiency and scalability.

This work introduces a new metric to further reduce computation
time and address the issue of heavy disk storage usage. Building
on the natural properties of binary skewed raster data described
earlier, we define a metric that helps determine the maximum pre-
generation level based on raster geographical coverage, input raster
pixel numbers, and output raster pixel numbers. The following
content defines this metric in detail.

The input and output raster size in pixels is important because,
for instance, when downscaling an image, more pixels from the
input raster are needed to generate a single pixel in the lower-
resolution output image. Conversely, if the input and output pixels
are similar in size, we may only need one input pixel to resample the
corresponding output pixel. As shown in the Figure 7, generating
one output tile at zoom level 0 necessitates using the entire raster.
The colored cells indicates the number of pixels needed to generate
the lower right corner tile in the output layer. As the zoom level
increases, the number of pixels required from the input raster to
produce each output tile decreases. For instance, at level 2, only a
small number of pixels from the input raster are needed to generate
one output tile. Thus, we can halt the pre-generation process at the
point where roughly needs one input pixel is required to produce
each output pixel.

Additionally, the actual raster data coverage area also impacts the
metric. For example, we might have high resolution data that covers
only a small region, such as California, and low resolution data that
covers the entire world, yet both datasets have the same total raster
width and height. In this case, the high resolution California data
would require more levels of pre-generated static images compared
to the globally expansive low resolution data. Similarly, even with
the same resolution, a larger geographical extent would require
more pre-generated static images. We define this new metric as a
density value that helps select the maximum zoom level for pre-
generation.

Density is defined as the number of pixels needed from the
input rater in order to create one pixel in the output raster with the
effect of the raster data geographical coverage. We have calculated
the number of pixels in the entire raster dataset as it in the Web
Mercator reference and this result is defined as IRasterSize.

We define the output tile size as OTileSize, and in a constant size
256 by 256 pixels. Note that the total number of tiles in the web
browser increases by a factor of four as the zoom level increases,
and the total pixel numbers for each level should be OTileSize * 4'.
The effect of the raster data geographical coverage is defined as
GeoCoverage%, which is calculated as the percentage of geographi-
cal area of the input raster data relative to the entire world at zoom
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Figure 8: Example of raster file with EPSG:32611, and its
index record. The raster contains 6 tiles, each has tile ID.

level 0. This is also a fixed value. Therefore, we calculate the density

as:
IRasterSize * GeoCoverage%

OTileSize * 4!
where i is the zoom level, and i > 0.

From this equation, it is straightforward to determine the density
for any zoom level. The input raster size, IRasterSize, remains fixed
within the same dataset, and the output tile size, OTileSize, is also
constant. The GeoCoverage% can be calculated by dividing the
geographical extent values of the raster data in Web Mercator by
the total area of the entire world. The pixel resolution for each level
in a web map is based on dividing the Earth’s circumference in
meters by the tile size in pixels at each zoom level, as demonstrated
below:

Earth’s Circumference
(256 = 21)
where Earth’s Circumference is 40,075,000 in meters, and i is the
zoom level, i > 0. For example, the calculations show that at level
12, the pixel size on Web Mercator is approximately 38 meters,
which is close enough to Landsat8 resolution.

It is important to note that DynoViz does not render upsam-
pled images, as upsampling during the pre-generation process is
unnecessary. It is acceptable to stop generating images at a max-
imum zoom level that closely matches the original pixel size. For
example, a 38 meter resolution is sufficient compared to a 30 meter
resolution. Since mapping services like OpenLayers can perform
upsampling on the browser side, there is no need to generate these
upsampled or higher-resolution images in advance. According to
the pixel resolution formula, zoom level 13 yields a 19-meter resolu-
tion, which would require upsampling and is therefore unnecessary
if the original resolution is 30 meters.

5.3 Lightweight Geo-Shadow Index

Before jumping into the on-the-fly generation process, we first
build an index on the raster dataset. The index is created by reading
the header of each raster file and generating a record for each one.
As illustrated in Figure 8, it provides a raster file with geographical
extent in longitude and latitude with CRS in 32611. Each index
record includes the file name, the default CRS of the original file
(32611 in this case), its extent in the original CRS, and its coverage
as a minimum bounding rectangle (MBR) in the CRS:4326 reference.
The MBR in CRS:4326 is in case the original raster is not in the
standard geographical reference system. Figure 9 offers a clearer
representation of the index structure. In the figure, we have multiple
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files that cover the entire state of California, and each raster file is
associated with a corresponding rectangular shape, indicating that
the index is built based on the geographical extent rather than the
actual data content. The index building time is just few seconds.

The index helps to filter out query ranges. For example, in Fig-
ure 10, we have a query range of 6 (z, x,y) tiles. We can go over
the index file quickly to find the overlapping rasters. By applying
CRS transformation on the MBR extent of longitude and latitude to
Web Mercator (x,y), we can easily check for overlap. This index
file avoids opening the raster file multiple times and only requires
reading a few bytes of text data. We also adapt the default index
structure in raster data, which uses tiles, to help filter and retrieve
only the necessary parts of the data. This approach will be explained
further when discussing on-the-fly rendering.

5.4 On-the-fly Hawk Render Tiles

The on-the-fly process occurs on a local machine, generating the
required images as the user explores using a web browser. DynoViz
can render the raster images in the web browser within 0.5 seconds
as users zoom in or hover around. The following content describes
the method used to achieve this performance.

Frstly, it checks whether the raster image within the current
browser window exists on disk as a pre-generated static image.
If it does, the web can fetch the required static images directly;
otherwise, it generates the missing images on-the-fly. Figure 10
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illustrates an example of this process. It first looks for a static image
on disk with the required (z, x,y) tile name. If a match is found,
the web browser fetches the static image. Otherwise, it invokes
on-the-fly generation.

When processing images on-the-fly, we obtain the required
(z,x,y) coordinates from the web browser. We then refer to the
index file to identify overlapping images by checking if the MBR
overlaps with the required range. If the file needs processing, we
determine which parts of the tiles need to be loaded from the entire
raster file. This method ensures that we only load the necessary
parts of the raster data, reducing the processing time, improving
efficiency and lessening memory usage.

We take advantage of the raster file format and manage to re-
trieve only the required tiles. In Figure 8, it shows a raster with 6
tiles, each associated with a tile ID. A tile is a group of pixels and is
usually the same size across the entire raster file. Since raster tiles
are located adjacently in an orderly manner, it is easy to calculate
the tile ID from its extent location, tile size, and the number of tiles
in its row and column order. We then store all required tile IDs into
a list. After obtaining all the required tile IDs, we start reading the
tiles based on these IDs. A typical raster file includes a header that
stores location information, indicating where each tile offset starts
within the file. The tile ID can determine this offset, allowing us to
access the tile starting point and read the necessary tiles directly
instead of scanning the entire file.

The last step involves reprojecting the images to the current
exploring zoom level with the corresponding pixel resolution in
the Web Mercator reference. The on-the-fly generated result is
represented as an array. The web browser can directly render these
values from the array buffer, and we also save the images to disk.

5.5 Personalized Frontend Styling

Instead of generating PNG or JPEG static image formats, Dynoviz
creates npy files from raster data. These npy files can be fetched
using an array buffer, allowing users to select which layers to visu-
alize directly in the web browser. Using an array buffer not only
supports the visualization of different bands but also enables pixel
calculations in the browser directly. For example, the frontend can
efficiently perform pixel-wise NDVI calculations using the array
data. This eliminates the need for extensive preprocessing and
provides a more dynamic and interactive user experience. By lever-
aging npy files, DynoViz allows for real-time data manipulation and
analysis, enhancing the capability to work with detailed and com-
plex satellite imagery datasets. DynoViz also offers personalized
frontend styling tailored to specific domains

6 Experiments

This section presents an experimental evaluation that compares
DynoViz with the distributed system GeoTrellis [8]. We utilized
GDAL command-line tools for comparison and found that it is inef-
ficient, and distributed methods proved to be over 100 times faster.
It requires 484 seconds to generate completed pyramid images on
the Landsat8 California dataset, while DynoViz only costs 36 sec-
onds. Furthermore, GDAL also require user to merge all files into
one large file so that is can generate the pyramid, which is not
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Table 1: Landsat8 Raster Datasets

Dataset # pixels Size Resolution
Riverside 237.97~M | 689.86~MB 30~m
California 1.57~B 4.40~GB 30~m
us 52.53~B | 146.78~GB 30~m
World 798.47~B 2.18~TB 30~m

piratical if have large scale of data. Apache Sedona [23] only gener-
ates images at one zoom level, lacking the dynamic visualization
capabilities offered by this work. It also fails to take multiple files as
one entire coherent image. Mapbox [15] does is not open-sourced
for uploading large scale raster data, making it incomparable in
this study.

The following sections detail the datasets first. The analysis
starts with an end-to-end user experience, focusing on the overall
performance and disk usage of the entire process. Subsequently,
a detailed examination studies the performance and disk usage of
the pre-generation process and on-the-fly generation. This section
also analyzes the density at various levels and the time required
to build indexes. For the pre-generation experiments, all tests are
conducted in parallel, while the on-the-fly generation tests are run
on a single machine. Lastly, we demonstrate a real-world case of
visualizing satellite images on web browsers using both DynoViz
and GeoTrellis, providing a more direct insight into actual scenarios.

Section subsection 6.2 presents the overall performance of the en-
tire end-to-end user experience study, including time performance
and disk usage. The time metrics encompass the entire process,
while disk usage is calculated based on the size of pre-generated im-
ages. Section subsection 6.3 further delves into the detailed analysis
of each process phase in DynoViz, including pre-generation, index
building, and on-the-fly generation. This section examines how the
choice of density impacts the entire end-to-end user experience.
Lastly, section subsection 6.4 demonstrates the rendering results
on a web browser, indicating a real-use environment. This section
also tests the systems ability to visualize analytical raster imagery
and apply customized styling.

6.1 Datasets and Hardware

Table 1 includes the datasets used in this experiment. In this exper-
iment, Landsat8 [21] data covers varying geographic scales, from
cities to the global scale. Landsat8 has a resolution of 30 meters.
The table also lists the total number of pixels and the data size for
each dataset.

We run DynoViz and GeoTrellis on a cluster with one head node
and 12 worker nodes running Spark 3.5.0. The header node has 128
GB of RAM, 2 X 8 core processors, and Intel(R) Xeon(R) CPU E5 -
2609 v4 1.70GHz processor. Each worker node has 64 GB of RAM
and 2 X 6 core Xeon processors on CentOS Linux.

6.2 End-to-end User Experience Study

The Table 2 investigates the overall time required for both methods
to deliver the final results, and it contains two parts, one detailing
the pre-generation time, and the other describing the fetch time
from the web browser. The pre-generation phase also includes the
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Table 2: Pre-generation performance comparison between
DynoViz and GeoTrellis; Max zoom level = 12; Density
for DynoViz on Riverside:0.14; California:0.4; US:10.61;
World:185.

Pre-generation time (s) Tile fetch time (ms)
Dataset DynoViz GeoTrellis DynoViz GeoTrellis
level time level time level | time time
. . 0-2 21.4 0-2 0.83
Riverside 312 90 0-12 | 205.9 312 | 4844 0.94
0-4 27.7 0-4 0.96
liforni -12 231. 9
California ST 90 0 31.8 =1 oLz 0.97
0-6 189.4 0-6 0.88
Us 712 08 0-12 | 1793.9 712 163 0.85
0-8 6284.4 0-8 0.81
World 9 12 373 0-12 | Error o 1z | 4z Error

Table 3: Pre-generation disk usage comparison between
DynoViz and GeoTrellis; Max zoom level = 12; Density
for DynoViz on Riverside:0.14; California:0.4; US:10.61;
World:185.

# of files size (mb)
Dataset - - - -
DynoViz | GeoTrellis | DynoViz | GeoTrellis
Riverside 3 3,184 0.035 37.31
California 7 35,116 0.082 411.52
uUs 119 337,022 1.39 3,949.48
World 43,581 Error 510.71 Error

construction of indexes for DynoViz with all details provided in Ta-
ble 5, and it indicates that the index building time remains fast,
even with millions of files. In this experiment, DynoViz terminates
the pre-generation process when when specific density thresholds
are reached for different datasets, whereas GeoTrellis pre-generates
images at all levels. The termination point is chosen based on the
web browser rendering time, which should be less than 0.5 seconds.
A detailed breakdown of this is provided in later studies. The fetch
time encompasses both on-the-fly generation and direct fetch from
the disk. Our observations indicate that DynoViz is up to 89% faster
than GeoTrellis in the pre-generation phase. The on-the-fly genera-
tion takes longer when it has to process more levels, resulting in
the Riverside dataset requiring more time than both the California
and US datasets. As the level and data size coverage expand for
world dataset, DynoViz also takes longer for on-the-fly generation
as writing more images, yet the time remains under 0.5 seconds or
500 milliseconds. Variation in density across different datasets also
results that both the US and World datasets having higher densi-
ties at their respective halt levels, thereby increasing the running
time. Additionally, the disk fetch time is almost negligible for both
methods. The slight differences in running times are caused by vari-
ations in cluster performance.The table also show the GeoTrellis is
not robust that it has error when reprojecting to the Web Mercator
reference. Moreover, the baseline requires first to reproject all data
into zoom level 13 then can provide the reprojection for different
customized levels to the correct geographic extent, resulting takes
longer time.
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Figure 12: Density study on Landsat8 dataset

Disk usage results are shown in Table 3. Since GeoTrellis gen-
erates all 12 levels, users must pre-generate all images, resulting
in a massive number of files, approximately 60 times more than
this proposed work requires. It also produces unnecessary blank
images, as evident in Figure 13 (b), which displays black images,
and this is the other reason that it requires more disk usage.

6.3 DynoViz Break-down Study

We further experiment with different strategy combinations within
DynoViz. This study first breaks down performance and disk usage
requirements for each phase. It aims to find the optimal balance that
minimizes pre-generation time and disk usage while still providing
a real-time experience in on-the-fly rendering. Using the US dataset
as a case study, this experiment measures the time required to
pre-generate images at various zoom levels and the corresponding
file sizes output to disk. It also examines on-the-fly rendering and
density at different levels.
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Table 4: On-the-fly performance study on US dataset

Zoom level | Density Tile fetch time (s)
on-the-fly
0 43474.14 30.5
1 10868.53 25.1
2 2717.13 9.75
3 679.28 4.7
4 169.82 3.6
5 42.46 1.0
6 10.61 0.29
7 2.65 0.1
8 0.66 0.1
9 0.166 0.035
10 0.041 0.02
11 0.0000034 0.017
12 0.00000021 0.016

Table 5: Index build process performance over all datasets

Dataset | # files | time (s)
Riverside 5 8.9636
California 27 9.0404
UsS 861 9.8343
World 15,135 | 37.3326

The results of the pre-generation study are displayed in Fig-
ure 11. As more image levels are produced, the total number of files
increases exponentially, and this number remains constant once
pre-generation is halted at a specified density threshold. In this
study, we halt the process at level 6, so the number of files remains
constant beyond this point. The time required for generation also
increases with the number of files produced. Index building time
remains consistent throughout, as it is conducted once for the entire
dataset. It is important to note that index building is only needed
when on-the-fly generation is required, which is why the figure
includes the index building time starting from zoom level 7. This
figure also illustrates that users have the flexibility to customize
the zoom level according to their requirements.

This experiment also explores the density threshold to find
the optimal balance between disk storage usage and on-the-fly
generation. As illustrated in Figure 12, the stop level varies, and
larger datasets and broader geographic coverage requires the pre-
generation of more levels of images. This study reveals that the
density value is influenced not only by the pixel size of the images
but also by the geographic extent of the entire dataset.

For the index building study, we can notice from the Table 5
that the process takes only a few seconds, even for the largest
dataset, which requires just 37 seconds. This efficiency is because
the process only reads header files, which are just a few kilobytes
in size, and the index is stored in a simple text format.

For the on-the-fly experiment, we run all tasks on local machine.
We study the time for viewing the entire dataset on browser side.
The Table 4 shows the density of each zoom level along with the
time for fetching one image on that level. The tile fetching time is
divided into two ways, the time taken to generate one tile on-the-fly
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(a) DynoViz visualization of California from Landsat8

L =
Inaccurate visualization
at tile boudaries

(b) GeoTrellis visualization of California from Landsat8

Figure 13: Visualization on web browser

and the time to retrieve one tile directly from disk. The on-the-fly
generation time is calculated by averaging the time usage of creating
at most 1,000 non-empty images. Direct fetch experiments measure
the average time taken to read images from the folder. As showing
in the table, it requires more time to generate with low zoom level
since it requires more pixels from input in order to produce on
pixel in the output. We can find that as density goes close smaller,
it requires less time. Meanwhile, the disk fetch time is not affected
by levels and is negligible.

By analyzing this table and assuming users can tolerate a latency
of 0.5 seconds, we can terminate the pre-generation process at a
density greater than 1. In this study, the halt occurs at zoom level
6 with a density value of 10.61 while still providing a real-time
rendering experience in the browser. Thus, we can pre-generate all
levels from 0 to 6 and then create levels 7 to 12 on-the-fly. From
the Figure 11 we know that the pre-generation time for levels 0
to 6 results in 189 seconds with a bit of disk usage. The Table 5
shows that the index building time is only 9 seconds. The Table 4
indicates that the tile fetching time is approximately 0.1 seconds.
Combining all these, the total time for this approach is 198.1 seconds,
which significantly reduces the overall end-to-end user experience
compared to GeoTrellis, which requires 1,793 seconds.

6.4 Visualization on Web Browser

The Figure 13 demonstrates how both methods render California
dateset from Landsat8 using OpenLayers. From the figure, it is
apparent that GeoTrellis not only produces more unnecessary blank
images, but also fails to correctly generate images. The right part
of the figure provides a zoomed-in view, revealing black strips in
the images generated by GeoTrellis. These are caused by incorrect
reprojection, as it processes only within individual tiles and neglects
the pixels at the borders that require reading from adjacent tiles,
resulting in the observed empty spaces in the images.
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(a) DynoViz visualization of analytic satellite imagery,
with layer viewing RGB or NDVI

Incorrect visualization result

(b) GeoTrellis visualization of
analytic satellite imagery

Figure 14: Visualization analytic satellite imagery

The Figure 14 illustrates how both methods render analytical
satellite images, each pixel containing four values: blue, green,
red, and near-infrared (NIR). Each value is with the 16 bit data
type. Figure 14(b) shows that GeoTrellis fails to create and visualize
the RGB versions of multi-band images because it creates the PNG
files, which do not support 16-bits data. Figure 14(a) demonstrates
how DynoViz visualizes analytical satellite images and also allows
for styling by selecting different layers or NDVI to display. The
NDVI is calculated using the following pixel-wise formula:

(NIR — RED)
(NIR + RED)

, where the results range from 0 to 1. All these styling operations
are performed on the browser side without any preprocessing.

7 Conclusion

In this work, we introduce DynoViz, a novel approach for visual-
izing large-scale satellite imagery. This method includes both a
pre-generation phase and on-the-fly generation. It allows for stop-
ping the pre-generation at a specific zoom level to minimize disk
usage while still providing a real-time web browser experience.
Additionally, this approach offers customized styling options, even
for analytical imagery. The experiment results demonstrate that
this new approach is 89% faster than the baseline in terms of the
overall end-to-end user experience. Additionally, the on-the-fly
generation ensures real-time rendering in the web browser, with
times below 0.5 seconds. The customized styling is also meaningful,
as it is completely handled in-browser without any preprocessing
and delivers more accurate visualizations than the baseline. In the
future, this work could include the capability to dynamically predict
the optimal density point at which to halt pre-generation based on
the resolution and geographical extent of the dataset.
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