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Abstract—Robust communication is vital for multi-agent robotic
systems involving heterogeneous agents like Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) operating
in dynamic and contested environments. These agents often
communicate to collaboratively execute critical tasks for perception
awareness and are faced with different communication challenges:
(a) The disparity in velocity between these agents results in rapidly
changing distances, in turn affecting the physical channel parame-
ters such as Received Signal Strength Indicator (RSSI), data rate
(applicable for certain networks) and most importantly “reliable
data transfer”, (b) As these devices work in outdoor and network-
deprived environments, they tend to use proprietary network
technologies with low frequencies to communicate long range,
which tremendously reduces the available bandwidth. This poses
a challenge when sending large amounts of data for time-critical
applications. To mitigate the above challenges, we propose DACC-

Comm, an adaptive flow control and compression sensing frame-
work to dynamically adjust the receiver window size and selectively
sample the image pixels based on various network parameters
such as latency, data rate, RSSI, and physiological factors such as
the variation in movement speed between devices. DACC-Comm

employs state-of-the-art DNN (TABNET) to optimize the payload
and reduce the retransmissions in the network, in turn maintaining
low latency. The multi-head transformer-based prediction model
takes the network parameters and physiological factors as input
and outputs (a) an optimal receiver window size for TCP, deter-
mining how many bytes can be sent without the sender waiting for
an acknowledgment (ACK) from the receiver, (b) a compression
ratio to sample a subset of pixels from an image. We propose a
novel sampling strategy to select the image pixels, which are then
encoded using a feature extractor. To optimize the amount of data
sent across the network, the extracted feature is further quantized
to INT8 with the help of post-training quantization. We evaluate
DACC-Comm on an experimental testbed comprising Jackal and
ROSMaster2 UGV devices that communicate image features using
a proprietary radio (Doodle) in 915-MHz frequency. We demon-
strate that DACC-Comm improves the retransmission rate by
≈17% and reduces the overall latency by ≈12%. The novel com-
pression sensing strategy reduces the overall payload by ≈56%.

Index Terms—Adaptive Compressive Sensing, Adaptive
Congestion Control, improved QoS.

I. INTRODUCTION

In the rapidly advancing domain of autonomous robotics,

reliable and resilient communication is essential for networked

heterogeneous agents (devices), such as Unmanned Aerial

Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs), to

collaborate effectively on tasks like path planning and enhanced

perception in network-constrained environments characterized

by low bandwidth and long-range communication [1]. Various

factors, including the nature of application data, message

frequency, synchronicity, and the operational environment, influ-

ence the performance of robotic networks [2]. Existing solutions

tackle the robustness of communication from different perspec-

tives. At the transport level, researchers suggest incorporating

dynamic window sizes at the transport layer [3] [4], compression

algorithms at the application level [5], and adaptive modulation

schemes [6] at the physical layer that alter transmission rates

based on the movement patterns of agents.

At the application level, researchers have employed tech-

niques such as (a) selective transmission to convey semantic-

level information for executing multiple tasks [5], and (b)

data compression strategies to minimize data transmission

between devices [7]. State-of-the-art methods [8] also propose

leveraging physical channel characteristics to enable semantic,

task-oriented image compression, adjusting the volume of data

transmitted based on channel constraints. At the network level,

these agents often operate in dynamic and contested envi-

ronments where fluctuating physical channel properties (e.g.,

Received Signal Strength Indicator (RSSI), data rate), influenced

by Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) condi-

tions, degrade network performance. Such challenges result in

packet loss, increased latency, and reduced network efficiency,

which negatively impact system coordination, decision-making,

and mission outcomes [9]. For example, Gorsich et al. [10]

assessed the effects of mobility (UGV speed) on latency, finding

that latency increases with the speed of UGV teleoperation.

Current state-of-the-art solutions typically focus on

optimizing a single layer of the TCP/IP stack. However, as

discussed in Section III, addressing network performance across

multiple layers, including both the application and transport

layers, can yield significantly better results. At the transport

layer, receiver window sizes allow the sender to transmit large

amounts of data without waiting for acknowledgments from

the receiver, with a larger window size enabling more data to

be sent at once. However, this approach is not well-suited for

network-constrained environments that rely on low-frequency,

low-bandwidth, long-range communication radios, such as LoRa

or proprietary radios like Doodle Radios [11]. Additionally,

these techniques struggle to adapt to the constantly changing

conditions of operational environments, leading to degraded

performance and inefficient resource allocation [12], [13].

DACC-Comm addresses this challenge and proposes a novel

congestion control for multi-agent robotic communication in
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real-world settings using Doodle Radios at 915MHz.

While the transport layer can control the data flow between

the transmitter and receiver, it has to adhere to the amount of

data sent by the application layer. Reducing the amount of data

to be sent in dynamic environments is critical. We envision a

perception awareness task that requires a large amount of image

data transmission between devices. While many techniques

have been investigated in compression sensing (CS) [14], [15]

to manage the increasing data volume and alleviate transmission

difficulties, they fail to provide a unified DNN model for

different compression ratios. The state-of-the-art CS techniques

require learning independent CS matrix for each compression

ratio. Thus, a device must first train the “N” models for “N” dif-

ferent compression ratios and load them for inference. Dynam-

ically varying conditions thus will severely affect the computa-

tional performance as the device spends most of the time load-

ing and unloading a pre-trained model. DACC-Comm first trains

a DNN model to learn a universal sensing matrix. By selecting

suitable subsets of this matrix according to the required com-

pression ratio, we optimize the compression process and mini-

mize computing costs. Additionally, we improve our model by

applying post-training INT8 quantization. This method reduces

the model’s dimensions and the volume of data transferred with-

out substantially affecting performance. The quantized model

exhibits more efficiency, necessitating reduced memory and

processing capacity, which is especially advantageous for imple-

mentation on resource-constrained devices. Key Contributions

of DACC-Comm We make the following Key Contributions:

• Channel-Aware Adaptive TCP Flow Control DACC-Comm

adjust the TCP receiver window size to reduce the retransmis-

sion rate depending on the varying channel parameters such

as RSSI, velocity differences between two communicating

agents, data rate, packet loss, and payload. DACC-Comm

reduces the retransmission rate by 17% compared to default

TCP.

• Channel-Aware adaptive compression sensing DACC-Comm

employs a use-case-specific DNN-powered compressive-

sensing strategy to selectively sense the image pixels that

adapt to varying RSSI, data rates, and latency. We propose

a novel sampling strategy to sample the pixels based on

the selected compression ratio. The sampled pixels are

passed through a RESNET-18-based encoder to extract image

features. These features are further quantized to an INT8

quantization scheme to further reduce the payload. DACC-

Comm reduces the total payload by 56% compared to similar

compression-sensing strategies.

• Multi-head DNN model to select TCP receiver window and

compression ratio DACC-Comm’s pipeline engages a state-

of-the-art multi-head transformer-based DNN model [16]

to predict a suitable receiver window size and compression

ratio for given network parameters. We conducted extensive

experiments in a real-world environment to collect data

(RSSI, data rate, packet loss, latency) for varying network

conditions (LOS, NLOS, varying velocities and distance

between heterogeneous agents). The data is fed to TABNET

to optimally select the compression ratio and window size

for a given network condition.

• Extensive Real World Evaluation DACC-Comm was evaluated

in an extensive real world environment taking into account

both line-of-sight (LOS) and non-line-of-sight (NLOS) sce-

narios with varying data rate and RSSI values. DACC-Comm

improves the overall performance (with respect to latency) of

the network by 8% compared to using traditional TCP without

payload reduction and by 12% compared to using traditional

TCP with payload reduction (compression sensing).

II. RELATED WORK

In this section, we will briefly outline the existing research

techniques used to improve network performance in the

transport and application layers.

A. Machine Learning-based strategies to mitigate packet loss

Customizing and accurate modeling of the OSI layer

components have been a popular approach to increase network

performance in diverse communication scenarios. Specially,

modifying the transport layer components, i.e., sliding window

of TCP/IP dynamically is a point of interest to the research

community Machine learning techniques [17] have become

highly effective instruments for improving and optimizing

different facets of communication networks. In order to over-

come obstacles in fields like channel coding, estimation, signal

identification, and resource allocation, researchers and engineers

have created creative solutions by utilizing machine learning

algorithms’ capacity to learn from data and spot patterns [18],

[19]. For example, deep learning has been investigated recently

for efficient channel code creation [20], [21] and for joint

channel estimation and signal detection. In wireless networks,

machine learning has also been used for resource allocation

tasks including spectrum management and power control [22],

[23]. One well-known use is the dynamic adjustment of network

settings, TCP window sizes, to correspond with the constantly

shifting circumstances of the communication environment [24].

Some of the works in this sector proposed custom TCP protocol

design using reinforcement learning [3], [25] The best settings

for these parameters can be predicted by machine learning

models, which can be trained on past data or in-the-moment

observations. This ensures effective resource use, minimizes

packet loss, and lowers network latency [26], [27].
However, these approaches often overlook the degradation of

performance in a high velocity disparity scenario. We proposed

a multi-head tabular transformer-based model to accurately

predict the sliding window size to set in such scenario.

B. Application Layer strategies for effective communication

(compression)

Reducing the amount of data to be sent in the communication

network and later reconstruct it properly is one of the most

common approaches to involve application layer in efficient

data communication. Data compression [28], [29] is essential

for efficient data exchange in bandwidth- or resource-limited

contexts [30]. Traditional compression algorithms like entropy

coding method, i.e., Huffman coding, LZW, Distributed source

coding methods, i.e., Slepian-Wolf coding [31], salient region

detection [32], multi-scale DL [33], etc. have been studied for

efficient multi-terminal compression, enabling collaborative

data compression. In addition, deep learning-based compression

are being developed for effective data representations, allowing
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larger compression ratios without losing vital information [34].

Generative adversarial networks (GANs) outperform standard

codecs [35] in image and video compression. Autoencoder-

based designs have been used to compress text, voice, and sensor

data [36]. Compressive sensing [37], [38], which uses signal

sparsity in a transform domain to reconstruct from fewer data,

is another promising method. This method is used in wireless

sensor networks, IoT [39] devices, and resource-constrained

situations. Compressive sensing reduces data storage and

transmission by compressing the signal during sampling [40].

These traditional techniques, even the state-of-the art

compressive sensing mechanism suffers from the selection of

compression parameters keeping the networks parameters in

mind and also requires multiple pretrained model to store in

the devices to choose from; increasing resource-overhead. We

develop a unified model based compressive sensing technique

integrating post-training quantization where the compression

ratio will be predict based on the existing network parameters.

III. BACKGROUND AND MOTIVATION

We evaluate the performance of (a) existing approaches

to compress image data at the application layer using

compression sensing, and (b) the default sliding window size

on latency and packet loss. State-of-the-art techniques such as

ÕPINE-Net [15] require discrete training for each compression

ratio. These models learn the compression matrix for each

compression ratio and use the same to sample pixels from

images in real-time. Of course, as the image size increases, the

compression matrix size also increases, leading to increased

model size. The models require the transmitter to send different

parameters to the receivers for reconstruction, thus increasing

the latency. We conducted experiments to gauge the trend of

latency (transmission and propagation combined) with respect

to image size. We demonstrate in Fig. 1 that when sending

an image (rather than the feature representatives), the latency

overhead increases significantly after an image size 1MB.

We also observe Fig. 1 (left) that the encoded feature size

increases exponentially in conventional compression sensing.

This motivates us to (a) send image features rather than the

raw image data and (b) develop a unified CS model for all

compression ratios. At the transport layer, we observed the

“receiver window size” under the default TCP settings. The

window size regulates how many bytes a sender can send

without having to receive an acknowledgment. As shown

Fig. 1: In conventional compressive sensing, the encoded features rise
exponentially after a certain image size (left), the latency values increase
linearly for sending image compared to sending features (middle), which is
also reflected in the transmission power (right).

in Fig 6 and 7, the window size begins small and gradually

increases. This behavior aligns with the TCP theory outlined

by Kurose [41], which suggests starting with a small window

to ensure reliable data reception. Once it is confirmed that

no packet loss has occurred, the window size is incrementally

increased to optimize throughput. However, in a dynamically

changing environment, the increase in window size can

drastically affect the performance (especially when sending

large file sizes). It is to be noted that while we reduce the

image sizes to features and reduce the data being transmitted,

there are other applications that might require sending large

file sizes (such as sending model parameters of on-the-fly fine-

tuned models).. This motivates us to vary the “receiver window

size” depending on the network parameters such as RSSI, data

rate, and measured packet loss from previous transmissions.

IV. METHODOLOGY

In this section, we describe the design details of DACC-

Comm. We illustrate the interaction among the application,

network, and channel modules in Fig. 2. The multi-head deep

model is first trained using data collected from both simulation

and real-world settings. In real-time, the model takes the

network properties as input to predict the compression ratio

and sliding window size.

Fig. 2: Design of proposed multi-head DNN based adaptive sliding window
and compression ration selection.

A. Adaptive Compression Sensing

We developed DNN-based adaptive compression sensing to

subsample image pixels from an image. Inspired by [15], we

choose a learnable sensing matrix that is employed to sample

images. Unlike the state-of-the-art that requires distinct models

for each compression ratio, DACC-Comm train one DNN model

capable of sampling the highest possible image (1920*1080).

We propose a novel subsampling technique to aggregate nearby

pixel values depending on the compression ratio. As shown in

Fig. 3, the sensing matrix first samples a large portion of the

image and then downsamples as per the compression ratio.
1) Transmitter Operation

Input Image (X) The input image is denoted as X∈R
m×n,

where m and n are the dimensions of the image (rows and

columns, respectively).
Sampling from a Measurement Matrix (A) A trained

sensing matrix A∈R
k×mn is developed following the process

of [15] and it is applied to the vectorized form of the input

image. Here, k < mn, meaning the measurement process
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Fig. 3: Illustration of Transmitter and receiver Operation.

compresses the image by projecting it onto a lower-dimensional

space:

Xvec=vec(X)

where Xvec∈R
mn is the vectorized form of the image.

To perform the sampling process based on the compression

ratio, the initial matrix X ∈ R
m×n is reduced to a sampled

matrix Xsampled∈R
p×q . The idea is to divide the initial matrix

into non-overlapping blocks of size m
p
× n

q
and then fill each

corresponding entry in the smaller sampled matrix with the

mean of the values in each block of the original matrix. This

method ensures that the maximum amount of information from

the original matrix is preserved in a more compact form by

using local averages. For a block Bij⊂X, where i=1,2,...,p
and j=1,2,...,q, the block is defined as:

Bij=
{

X(i−1)k+1:(i−1)k+k,(j−1)l+1:(j−1)l+l

}

where k= m
p

and l= n
q

are the dimensions of each block.

The average value for each block is computed as:

Xsampled(i,j)=
1

k×l

k
∑

x=1

l
∑

y=1

Bij(x,y)

Thus, each element in the sampled matrix Xsampled(i, j)
represents the average value of the corresponding blocks

from the original matrix. This approach provides a compact

representation while preserving the important structural and

statistical properties of the original image in a compressed form.

Encoded Feature Generation with Quantized Pretrained

Model After the sampling process, the compressed image is

passed through a pre-trained quantized model to extract the

encoded features. Let the function of the quantized model be

represented by fmodel(·), which extracts feature maps from the

input image. The model has been quantized to 8-bit integers

for computational efficiency. The sampled matrix Xsampled

is then fed into the first layer of the quantized model. We

extract the last convolutional layer features as the image’s

representative features for transmission.

Fconv, q=Q(fmodel(Xsampled),8)
where Q(·,8) denotes the 8-bit quantized encoded features of

last layer convolution layer Fconv in the range [−128,127].

Transmission: DACC-Comm transmits the Quantized

features Fconv, q, Quantization parameters (scale, zero-point),

and the selected compression ratio to the receiver.

2) Receiver Operation

The receiver intiates its operation with the pre-stored

learned measurement matrix (A) and the quantized model.

Dequantization: The receiver first dequantizes the received

quantized features Fconv, q back to floating-point values:

Fconv, deq=Dequantize(Fconv,q,scale,zero-point)
where the dequantization uses the scale and zero-point from

the quantization step to convert integers back to approximated

floating-point values.

Initial Image Estimation: The initial estimation of the

image is done using the pseudo-inverse of the measurement

matrix A
T . This operation computes an approximate

reconstruction of the vectorized image Xest as follows:

Xest=A
T
Fconv, deq

Here, AT is the transpose of the measurement matrix, and it

helps to approximate the inverse transformation to recover the

original high-dimensional image from the compressed features.

Refinement via Model (fmodel(·)):
After the initial estimation, the estimated image Xest is

fed into the pretrained model for refinement, which enhances

the reconstructed image. Here, fmodel(Xest) represent this

refinement function:

Xrec=fmdodel(Xest)
where Xrec∈R

m×n is the final reconstructed image.

B. TCP Flow Control

DACC-Comm employs a straightforward data-driven model

to adjust the “receiver window size”. We first collect data for

different window sizes and varying network conditions from

our extensive real-world experiments. This data is then used to

train the multi-head DNN model to output an optimum window

size.

C. Multi-head DNN Model with channel constraints

To predict both the suitable sliding window size (W ) to

minimize packet loss and the suitable compression ratio (C) to

optimize latency while ensuring data fits within the available

bandwidth, we need to extend our machine learning model. This

model will need to account for both the transport layer (sliding

window size) and the presentation layer (compression ratio).

Notations and Inputs
Symbol Description Units

Vi Velocity of the robotic agents m/s
d Distance between agents meters
Rs Received Signal Strength Indicator dB
Dr Data rate bps (bits per second)
W Sliding window size Bytes
C Compression ratio Dimensionless
Lp Packet loss Fraction
Tp Latency s (seconds)

Bmax Maximum Receiver Buffer Bytes

TABLE I: Parameter definitions and units used in the algorithm.

Tasks of the DNN model: (a) Minimize packet loss (Lp) by

predicting the optimal sliding window size (W ). (b) Optimize

latency (Tp) by predicting the suitable compression ratio (C),

ensuring data fits within the available bandwidth.

Multi-head Deep Learning Model We develop a multi-head

Multi-Layer Perceptron (MLP) to predict both W and C

based on the input features Vi,di,Dri,Rsi. Let:

X=[V,d,Dr,Rs]
be the input features vector.

W =fW (X;θW )
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is the machine learning model predicting the sliding window

size, where θW represents the parameters of the model.

C=fC(X;θC)
is the machine learning model predicting the compression

ratio, where θC represents the parameters of the model.

Loss Function for Training the Model To train the model,

we need two loss functions: one for minimizing packet loss

and another for optimizing latency. The total loss function

will be a weighted sum of these two losses.

Packet Loss Prediction We have collected a dataset and

observed packet loss for different window sizes under various

network conditions, we then train the model to minimize the

packet loss. The reference packet loss values are generated

using the following equation: Packet loss,

i
nLp=1−

i
nDs

i
nDp

(1)

Here, i
nDs is the number of data packets delivered to the

total number of subscribers and i
nDp is the number of data

packets transmitted from the publishers. The average value

is reported after the data transmission is complete between

each publisher-subscriber pair.

Latency Prediction Similarly, we procured a dataset with

observed latency for different compression ratios under various

network conditions. While recording the latency values, we

considered the following parameters: Average packet delay,

PDa=Dpr+Dt+Dpg (2)

Here, Dpr is processing delay Dt is transmission Delay, and

Dpg , Dq represent propagation delay respectively.

Training Dataset Predictor variables = (Vi,di,Dri,Rsi)
Target variables = (Ci,Wi)
Response variables = (Lpi,Tpi)
represents the observed agents velocity, distance, data rate,

window sizes, signal strength, packet loss, compression ratio,

and latency for sample i.
Model Training We minimize the combined loss function:

L(θW ,θC)=αLP (θW )+βLL(θC)
where:

LP (θW )=
1

n

n
∑

i=1

(Lp,i−L̂p,i)
2

LL(θC)=
1

n

n
∑

i=1

(Tp,i−T̂p,i)
2

α and β are weighting factors that balance the importance of

packet loss and latency. L̂p,i is the predicted packet loss given

the network conditions and predicted window size. T̂p,i is the

predicted latency given the network conditions and predicted

compression ratio.

Combined Optimization Let g(V,d,Dr,Rs,W ) be a func-

tion that models the packet loss based on the network conditions

and window size and h(V,d,Dr,Rs,C) be a function that mod-

els the latency based on the network conditions and compression

ratio. So, the combined approach can be formulated as:

min
θW ,θC

(

α
1

n

n
∑

i=1

(PL,i−g(fW (Xi;θW )))
2

+β
1

n

n
∑

i=1

(Li−h(fC(Xi;θC)))
2

)

Algorithm 1 elaborates DACC-Comm pipeline to send

and receive data using the Robotic Operating System (ROS)

Algorithm 1 Pseudo-code for adaptive sliding window size

and compression sensing selection

1: Initialization:

2: Registering publisher and subscriber, P,S∈N

3: t←0, w←w0 ▷ Start with default window size

4: X← [V,d,Dr,Rs] ▷ Feature vector

5: [Wi,Ci]←DL Model(X) ▷ Predict initial window size

and compression ratio

6: Wi←min(Wi,Bmax) ▷ Ensure window size is within

receiver buffer

7: Adaptation:

8: if network event occurs then

9: Lp←fL(D,w,V,d,Rs) ▷ Calculate packet loss

10: Tp←fT (D,w,V,d,Rs) ▷ Calculate latency

11: if Lp>LpT and Tp>TpT then

12: Lp←fL(D,w,V,d,Rs)
13: Tp←fT (D,w,V,d,Rs)
14: w←Wi ▷ Update window size

15: w←min(w,Bmax)
16: C←Ci ▷ Update compression ratio

17: end if

18: end if

framework incorporated with the proposed compression

sensing and sliding window strategy. It is noted that the

primary objective of DACC-Comm is to reduce the payload

for transmission and control the data flow between the sender

and receiver. DACC-Comm do not take into optimization the

computational and communication complexities that might

arise due to (a) executing a compression-sensing module and

(b) multi-head DNN. However, the recommendation for any

system adopting DACC-Comm would be to consider the image

size before executing the compression-sensing model. If the

image size is smaller, any system can decide to send the image

directly rather than execute the compression-sensing module.

V. EXPERIMENTAL DETAILS

A. Data Collection

We have collected data from both real-world scenario with

robots including a Clearpath Jackal, ROSMaster X3 and

a Jetson Xavier mounted on car, and also the simulation

environment where we have arranged a specific co-simulation

setup using Gazebo as physics simulator, ns-3 as network

simulation and a customized ROS-based middleware [42] to

synchronize those twos simulators with different operating

principle. We have used the image data streamed from the

integrated camera of the robotics agents as the data modality to

be sent across agents. The collected data samples can be found

in Table II. We start with a pre-calculated default window size

based on the selective ARQ process and developed on top it. We

vary the interval by 8 KB to find the five different neighbouring

window sizes. Among those, the one for which we find the

lowest packet loss and latency, we mark that window as ground

truth. While collecting the data we kept the velocity difference

and distance constant for different iterations and varied the

other network parameters to record the latency and packet loss.

B. Details on the Deep Learning Model

We engaged the pre-trained weights of the TabNet [16] model

and performed a supervised fine-tuning on top of it for our use
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Velocity diff
(m/S)

Distance
(m)

Data rate
(MBps)

RSSI
Sliding window

(KB)
Packet loss

(%)
Latency

(s)
5 55 2.3 -58 156.34 4.8 0.892

10 55 2.1 -52 148.12 5.2 1.345
15 55 1.8 -48 140.56 7.2 2.223

TABLE II: Training data samples for real-robot scenario using Doodle radio
(915MHz).

case. TabNet uses Transformer architecture for tabular data

and employs a sequential attention mechanism, which provides

better interpretability. The model architecture is modified to

host the multi-head nature of our work, i.e., learn the features

to predict both sliding window size and compression ratio. The

model is fine-tuned for 150 epochs with adjust weight decay

enabled, and ‘RMSE’ is used as the performance metric. The

train-split of the dataset contained specific network scenarios

and while testing we enforced similar but unique cases.

C. Parameter Selection

In this section we analyze the characteristics that significantly

affect latency and packet loss, as indicated in fig. 4. We

provide justification of choosing data Rate, distance, RSSI, and

sliding window as key parameters to understand the network

performance and enhancing it by dynamically modifying the

sliding window size. As performing extensive experiments in a

real-world environment is challenging, we analyzed the effects

of these parameters in a simulation environment to gauge the

effect of these parameters. We varied the network parameters

such as RSSI, data rate, and mobility, to mimic the real-world

communication. As shown in plot ‘a’ of fig. 4 increased

Fig. 4: Latency and packet loss trend based on individual predictors.

data rate reduces delay, indicating more efficient transmission.

Beyond a certain point, increasing the data rate sharply increases

the latency and packet loss. This can be attributed to the

default TCP sliding window increasing the window size, leading

to higher re-transmissions. Also, transmitter-receiver distance

strongly affects latency and packet loss. Latency and packet

loss increase gradually with distance (plot ‘b’). Distance usually

weakens signals and increases error risk, requiring additional

re-transmissions. Adjusting the sliding window size based on

distance can help alleviate these impacts by allowing delays

without increasing network congestion. Another parameter we

investigated is RSSI value where we can notice the inverse re-

lationship between latency and packet loss with RSSI (plot ‘c’).

This emphasizes signal strength’s relevance in a reliable and

efficient connection. In settings with fluctuating signal strength,

RSSI-based sliding window size modification can optimize

performance. The last plot (‘d’) shows how sliding window size

affects network performance. Latency and packet loss increases

with sliding window size. Bigger window sizes can increase la-

tency due to acknowledgment delays by enabling more packets

to be in transit, but it can also increase the retransmission rate.
Impact of variable Velocity: We have experimented the

impact of varying velocity on the packet loss performance

using a Doodle radio LoRA network. Fig. 5 demonstrates

that at 15 m/s, the packet loss remains relatively low, staying

below 60% even at 100 meters, while latency remains under 6

seconds. However, as velocity increases to 25 m/s, packet loss

becomes significantly more prominent, exceeding 60% at 100

meters, and latency grows to 7 seconds. By the time velocity

reaches 35 m/s, the packet loss nears 80%, and latency peaks

at 8 seconds within the same distance. This indicates that

higher velocities lead to greater challenges in maintaining

reliable communication, mainly due to fading effects, Doppler

shifts, and synchronization issues caused by rapid movement.

Fig. 5: Packet loss and Latency trend of DACC-Comm with varying distance
for three different velocity differences.

D. Device Implementation Details

For the deployment of DACC-Comm we have chosen two

UGVs and one edge device (Jetson Xavier) mounted on a car;

mainly to test out the effects of variable velocity. To evaluate

DACC-Comm for long-range, we engage Doodle Radios [11]

at 915MHz frequency (also the frequency used by LoRa) and

microhard radios for Wi-Fi. Two Doodle Labs Mesh Rider

Radios (model RM-1700-22M3) were integrated with robotic

devices to carry out data transmission over the 915 MHz band.

VI. RESULT ANALYSIS

A. Prediction Performance

We evaluate DACC-Comm under varying network conditions

(LOS and NLOS). Notably, we analyzed the performance of

DACC-Comm with respect to transmission and propagation

latency, sliding window selection trend, communication

frequency, variable velocity, and distance.
Sliding Window Selection Trend: We first analyze the

performance of DACC-Comm to validate the efficacy of the

sliding-window approach. We have chosen two different image

sizes; 500KB and 8MB. We have illustrated the trend of sliding

window selection using both the default algorithm inside

Doddle radio (915MHz) and DACC-Comm. We observed a

significant difference in placing the suitable window size for

different stages of transmission as shown in Fig. 6. Also,

while comparing the default approach to set sliding windows,

we achieved about 17% improvement in re-transmission rate,

12% to 15% improvement in transmission latency, and also
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4.5% less packets to be sent across transmitter and receiver.

At 6th and 9th rounds, we observe a steep drop and then

increase in the sliding window size. To further investigate the

reason, we found out as the robotic agent was mobile, it was

crossing a solid object; creating NLOS condition. We can see

DACC-Comm properly adjusted the sliding window both times

to reduce packet loss. It is noted that DACC-Comm gives better

performance with larger data sizes more attributing to the

changing environment conditions in the transmission duration.

Fig. 6: Sliding window selection trend varying image size.

Impact of image size on latency: We have experimented

DACC-Comm with varying image size in terms of total delay.

As per literature, total delay is influenced predominantly by

the transmission delay, with the propagation delay contributing

only a small fraction of the total. We can observe the similar

trend in Table III . The consistency of propagation delay

implies that it is determined by the physical distance and

medium rather than the size of the data. Also, the transmission

delay is dependent upon the volume of the image and as we

found with ta fixed values of data rate the relation is linear

between transmission delay and image size.
Image Size (MB) Transmission Delay (s) Propagation Delay (ms) Total Delay (s)

1 0.8 8 0.808
2 1.6 8 1.608
3 2.4 9 2.409
4 3.2 8 3.208
5 4.0 8 4.080

TABLE III: Average transmission and propagation delay results for various
image Sizes using DACC-Comm.

Variable velocity and LOS and NLOS communication

scenarios: To understand how our proposed DL model is

performing in terms of packet loss percentage while predicting

the appropriate sliding window in two distinct scenarios: line-of-

sight (LOS) and non-line-of-sight (NLOS) circumstances. The

findings are illustrated in the fig. 7. To measure the performance

of our adaptive transmission in terms of sliding window size

and respective packet loss values, we vary the sliding window

size is from 256 bytes to 2560 bytes. At a sliding window size

of 500 bytes, for example, the packet loss is negligible for both

cases; but, as the window size increases, the difference between

LOS and NLOS packet loss widens dramatically. By the time

the sliding window reaches 2500 bytes, the packet loss caused

by NLOS is greater than 0.5%, but the loss of packets caused

by LOS is somewhat less than 0.3%. It can be deduced from

this that bigger sliding window sizes result in higher packet

losses, particularly in non-line-of-sight (NLOS) conditions. This

is because of the increased chance of interference and signal

degradation that occurs in such circumstances. The visualization

of the baseline comparison can be found in fig. 7. This graph

shows how the change in velocity (in meters per second) affects

latency (in seconds) and packet loss (in percentage) for both the

Fig. 7: (a) Packet loss trend for LOS and NLOS scenario with predict window
size using DACC-Comm, (b) comparative results between the baseline default
window size and proposed adaptive sliding window (ASW) with varying
velocity among robotic agents.

proposed system (ASW) and the baseline model with fixed win-

dow and compression ratio. In both systems, latency and packet

loss go up as the velocity gap grows. Our proposed system also

Fig. 8: Average delay and packet loss results of DACC-Commwith varying
distance compared to the default settings for both WiFi and LoRA network.

has a better performance in high-speed situations, as shown by

the fact that the maximum reduction in packet loss is about 20%.

Performance varying Frequency of communication medium:

We have evaluated the performance of DACC-Comm with two

wireless communication technologies, LoRa and WiFi, in terms

of average delay and packet loss probability across increasing

distances, while evaluating the “Default” and DACC-Comms

configuration. For, ‘LoRa’ (left plot), the default configuration

shows a steady increase in average delay, rising from around

0.5s at 25 meters to nearly 1.75s at 100 meters. The proposed

configuration, while also increasing with distance, performs

better, peaking at 1.5s at 100 meters. In terms of packet loss

probability, the default configuration sees a sharp increase from

5% at 25 meters to 60% at 100 meters. For ‘WiFi’ (right

plot), the default configuration exhibits a sharp rise in average

delay from 0.2s at 25 meters to 0.8s at 100 meters, while the

proposed method limits the delay increase to about 0.6s at 100

meters. Packet loss shows relatively rapid degradation in the

default WiFi setup, rising to 100% at 100 meters, meaning

total communication breakdown at this distance. The proposed

configuration mitigates this significantly, limiting packet loss

to 60% at 100 meters. The illustration can be found in Fig. 8.

B. Baseline Comparison

We present a comprehensive baseline comparison with

state-of-the art studies baased on resource consumption,

latency, and image reconstruction quality.

Computing resource and Latency: We conduct a detailed

baseline comparison with OPineNet+ [15] and CSNet [14]

based on the transmission power required, amount of data to

be sent and also combination of transmission and propagation
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latency. At 20% compression, DACC-Comm consumes 1.8W

of power, which is lower than CSNet (2.4W) and slightly lower

than OpineNet+ (2.1W). Additionally, the data to be sent is

significantly reduced for the proposed approach (1.312MB)

compared to CSNet (5.2MB) and OpineNet+ (4MB), resulting

in a shorter transmission latency (2.12s) compared to CSNet

(3.15s) and OpineNet+ (3.61s). At 40% compression, the

proposed approach shows an even greater efficiency, with

1.75W power consumption, lower data to be sent (0.864MB),

and a reduced transmission latency of 1.68s. In contrast,

CSNet and OpineNet+ require more power (2W and 1.8W,

respectively), while sending significantly more data, leading to

higher transmission latency (2.37s and 2.04s, respectively). At

60% compression, the benefits of the proposed approach become

more pronounced. It consumes only 1.2W of power, sends the

smallest amount of data (0.615MB), and achieves the fastest

transmission time (0.74s), compared to CSNet’s 1.8W and 0.85s

latency, and OpineNet’s 1.5W and 0.83s latency. Table IV

shows the detailed comparative results among those methods.

Compression Ratio (%) Method
Power Consumption

(W)
Data to be
sent (MB)

Transmission
Latency (s)

20 Proposed Approach 1.8 1.312 2.12
CSNet 2.4 5.2 3.15
OpineNet+ 2.1 4 3.61

40 Proposed Approach 1.75 0.864 1.68
CSNet 2 4.8 2.37
OpineNet+ 1.8 3.2 2.04

60 Proposed Approach 1.2 0.615 0.74
CSNet 1.8 3.6 0.85
OpineNet+ 1.5 2.4 0.83

TABLE IV: Comparison based on power consumption, data to be sent, and
transmission latency among different baseline methods in terms of compression
ratios.

Image reconstruction quality: We have compared the

reconstruction quality of the image at receiver end based on

PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural

Similarity Index Measure) for different compression ratios

between DACC-Comm and the two baseline methods (Table

V). At lower compression ratios, OpineNet+ [15] has leverage

over both DACC-Comm and CSNet with the highest PSNR and

SSIM values. However, the difference between DACC-Comm

and the baselines is relatively small. For instance, at 20%

compression, the proposed approach achieves a PSNR of 32.5

dB and an SSIM of 0.915, which is only marginally lower

than OpineNet+’s PSNR of 36 dB and SSIM of 0.945. As the

compression ratio increases, the performance of DACC-Comm

remains competitive, particularly when compared to CSNet,

which experiences a significant drop in PSNR at higher

compression ratios (50% and 60%). DACC-Comm demonstrates

a more consistent performance, achieving PSNR values of 31

dB and 29.5 dB at 50% and 60% compression, respectively,

while maintaining relatively high SSIM scores. Although at

higher compression ratio (60%), we observe DACC-Comm

surpasses the other two baselines in terms of PSNR but has

less SSIM value. To further investigate the impact of this

performance drop, we test the reconstructed image for an

image classification application. We observe DACC-Comm has

a negligible performance drop (≤5%) in terms of classification

accuracy when compared with reconstructed images using

the baseline methods. This makes DACC-Comm a viable and

efficient option for compressive sensing and image transmission

tasks, especially in resource-constrained environments.

Compression Ratio (%) Method PSNR (dB) SSIM
10 Proposed Approach 32.5 0.93

CSNet 34 0.945
OpineNet+ 36.5 0.96

20 Proposed Approach 32.5 0.915
CSNet 34 0.93
OpineNet+ 36 0.945

30 Proposed Approach 32 0.895
CSNet 30.5 0.91
OpineNet+ 33 0.93

40 Proposed Approach 29 0.895
CSNet 39.5 0.875
OpineNet+ 30.5 0.915

50 Proposed Approach 31 0.88
CSNet 27 0.86
OpineNet+ 32 0.9

60 Proposed Approach 29.5 0.865
CSNet 26 0.845
OpineNet+ 27.5 0.885

TABLE V: Comparison based on PSNR and SSIM among different baseline
methods in terms of compression ratios.

VII. DISCUSSIONS AND FUTURE DIRECTION

Extending DACC-Comm for multi-task applications:

In the current work, we employ DACC-Comm to perform a

single task (image transmission). In the future work, we shall

investigate and develop models that can target multiple tasks

and sensing modalities such as LiDAR panoptic segmentation,

human gesture recognition in reconnaissance zones.

Enhancing the ML models capability by employing

automated communication scenario (LOS/NLOS) detection.

Using ML models to automatically recognize to LOS and

NLOS communication circumstances could be an interesting

extension of this study for better network optimization and

problem prediction. Existing research in this domain has

shown through automated detection of certain scenarios, the

real-time alteration of OSI layer parameters can be done more

effectively and the latency due to the parameter selection

essentially can be reduce. We are actively investigating to

incorporate advanced signal processing and real-time data into

our proposed ML model’s workflow to develop more robust

modelling of the communication scenario.

VIII. CONCLUSION

In this work, we have presented DACC-Comm, the overall

design of a deep model-driven intelligent selection of the

sliding window size and compression ratio of a TCP/IP network,

which will take into account the physical layer parameter values

during the transmission. We eliminate the need for training and

loading multiple models for different compression ratios while

employing an intelligent sampling strategy. We deployed our

framework on off-the-shelf robotic agents to do an extensive

analysis on the real world applicability of DACC-Comm. We

found significant improvement while comparing with state-of-

the-art baseline studies in understanding the communication sce-

nario to setup the packet volume to be transferred, resulting in a

lower packet loss, lower re-transmission rate. Additionally, our

proposed unified-model based quantization enabled compressive

sensing approach reduced the communication overhead by a

significant margin, reducing the overall transmission latency.
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