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Abstract—Robust communication is vital for multi-agent robotic
systems involving heterogeneous agents like Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) operating
in dynamic and contested environments. These agents often
communicate to collaboratively execute critical tasks for perception
awareness and are faced with different communication challenges:
(a) The disparity in velocity between these agents results in rapidly
changing distances, in turn affecting the physical channel parame-
ters such as Received Signal Strength Indicator (RSSI), data rate
(applicable for certain networks) and most importantly “reliable
data transfer”, (b) As these devices work in outdoor and network-
deprived environments, they tend to use proprietary network
technologies with low frequencies to communicate long range,
which tremendously reduces the available bandwidth. This poses
a challenge when sending large amounts of data for time-critical
applications. To mitigate the above challenges, we propose DACC-
Comm, an adaptive flow control and compression sensing frame-
work to dynamically adjust the receiver window size and selectively
sample the image pixels based on various network parameters
such as latency, data rate, RSSI, and physiological factors such as
the variation in movement speed between devices. DACC-Comm
employs state-of-the-art DNN (TABNET) to optimize the payload
and reduce the retransmissions in the network, in turn maintaining
low latency. The multi-head transformer-based prediction model
takes the network parameters and physiological factors as input
and outputs (a) an optimal receiver window size for TCP, deter-
mining how many bytes can be sent without the sender waiting for
an acknowledgment (ACK) from the receiver, (b) a compression
ratio to sample a subset of pixels from an image. We propose a
novel sampling strategy to select the image pixels, which are then
encoded using a feature extractor. To optimize the amount of data
sent across the network, the extracted feature is further quantized
to INTS8 with the help of post-training quantization. We evaluate
DACC-Comm on an experimental testbed comprising Jackal and
ROSMaster2 UGV devices that communicate image features using
a proprietary radio (Doodle) in 915-MHz frequency. We demon-
strate that DACC-Comm improves the retransmission rate by
~17% and reduces the overall latency by ~12%. The novel com-
pression sensing strategy reduces the overall payload by ~56%.

Index Terms—Adaptive Compressive Sensing, Adaptive
Congestion Control, improved QoS.

I. INTRODUCTION

In the rapidly advancing domain of autonomous robotics,
reliable and resilient communication is essential for networked
heterogeneous agents (devices), such as Unmanned Aerial
Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs), to
collaborate effectively on tasks like path planning and enhanced
perception in network-constrained environments characterized
by low bandwidth and long-range communication [1]. Various
factors, including the nature of application data, message
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frequency, synchronicity, and the operational environment, influ-
ence the performance of robotic networks [2]. Existing solutions
tackle the robustness of communication from different perspec-
tives. At the transport level, researchers suggest incorporating
dynamic window sizes at the transport layer [3] [4], compression
algorithms at the application level [5], and adaptive modulation
schemes [6] at the physical layer that alter transmission rates
based on the movement patterns of agents.

At the application level, researchers have employed tech-
niques such as (a) selective transmission to convey semantic-
level information for executing multiple tasks [5], and (b)
data compression strategies to minimize data transmission
between devices [7]. State-of-the-art methods [8] also propose
leveraging physical channel characteristics to enable semantic,
task-oriented image compression, adjusting the volume of data
transmitted based on channel constraints. At the network level,
these agents often operate in dynamic and contested envi-
ronments where fluctuating physical channel properties (e.g.,
Received Signal Strength Indicator (RSSI), data rate), influenced
by Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) condi-
tions, degrade network performance. Such challenges result in
packet loss, increased latency, and reduced network efficiency,
which negatively impact system coordination, decision-making,
and mission outcomes [9]. For example, Gorsich et al. [10]
assessed the effects of mobility (UGV speed) on latency, finding
that latency increases with the speed of UGV teleoperation.

Current state-of-the-art solutions typically focus on
optimizing a single layer of the TCP/IP stack. However, as
discussed in Section III, addressing network performance across
multiple layers, including both the application and transport
layers, can yield significantly better results. At the transport
layer, receiver window sizes allow the sender to transmit large
amounts of data without waiting for acknowledgments from
the receiver, with a larger window size enabling more data to
be sent at once. However, this approach is not well-suited for
network-constrained environments that rely on low-frequency,
low-bandwidth, long-range communication radios, such as LoRa
or proprietary radios like Doodle Radios [11]. Additionally,
these techniques struggle to adapt to the constantly changing
conditions of operational environments, leading to degraded
performance and inefficient resource allocation [12], [13].
DACC-Comm addresses this challenge and proposes a novel
congestion control for multi-agent robotic communication in
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real-world settings using Doodle Radios at 915MHz.

While the transport layer can control the data flow between
the transmitter and receiver, it has to adhere to the amount of
data sent by the application layer. Reducing the amount of data
to be sent in dynamic environments is critical. We envision a
perception awareness task that requires a large amount of image
data transmission between devices. While many techniques
have been investigated in compression sensing (CS) [14], [15]
to manage the increasing data volume and alleviate transmission
difficulties, they fail to provide a unified DNN model for
different compression ratios. The state-of-the-art CS techniques
require learning independent CS matrix for each compression
ratio. Thus, a device must first train the “N” models for “N” dif-
ferent compression ratios and load them for inference. Dynam-
ically varying conditions thus will severely affect the computa-
tional performance as the device spends most of the time load-
ing and unloading a pre-trained model. DACC-Comm first trains
a DNN model to learn a universal sensing matrix. By selecting
suitable subsets of this matrix according to the required com-
pression ratio, we optimize the compression process and mini-
mize computing costs. Additionally, we improve our model by
applying post-training INT8 quantization. This method reduces
the model’s dimensions and the volume of data transferred with-
out substantially affecting performance. The quantized model
exhibits more efficiency, necessitating reduced memory and
processing capacity, which is especially advantageous for imple-
mentation on resource-constrained devices. Key Contributions
of DACC-Comm We make the following Key Contributions:

o Channel-Aware Adaptive TCP Flow Control DACC-Comm
adjust the TCP receiver window size to reduce the retransmis-
sion rate depending on the varying channel parameters such
as RSSI, velocity differences between two communicating
agents, data rate, packet loss, and payload. DACC-Comm
reduces the retransmission rate by 17% compared to default
TCP.

o Channel-Aware adaptive compression sensing DACC-Comm
employs a use-case-specific DNN-powered compressive-
sensing strategy to selectively sense the image pixels that
adapt to varying RSSI, data rates, and latency. We propose
a novel sampling strategy to sample the pixels based on
the selected compression ratio. The sampled pixels are
passed through a RESNET-18-based encoder to extract image
features. These features are further quantized to an INTS8
quantization scheme to further reduce the payload. DACC-
Comm reduces the total payload by 56% compared to similar
compression-sensing strategies.

o Multi-head DNN model to select TCP receiver window and
compression ratio DACC-Comm’s pipeline engages a state-
of-the-art multi-head transformer-based DNN model [16]
to predict a suitable receiver window size and compression
ratio for given network parameters. We conducted extensive
experiments in a real-world environment to collect data
(RSSI, data rate, packet loss, latency) for varying network
conditions (LOS, NLOS, varying velocities and distance
between heterogeneous agents). The data is fed to TABNET
to optimally select the compression ratio and window size
for a given network condition.
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o Extensive Real World Evaluation DACC-Comm was evaluated
in an extensive real world environment taking into account
both line-of-sight (LOS) and non-line-of-sight (NLOS) sce-
narios with varying data rate and RSSI values. DACC-Comm
improves the overall performance (with respect to latency) of
the network by 8% compared to using traditional TCP without
payload reduction and by 12% compared to using traditional
TCP with payload reduction (compression sensing).

II. RELATED WORK

In this section, we will briefly outline the existing research
techniques used to improve network performance in the
transport and application layers.

A. Machine Learning-based strategies to mitigate packet loss

Customizing and accurate modeling of the OSI layer
components have been a popular approach to increase network
performance in diverse communication scenarios. Specially,
modifying the transport layer components, i.e., sliding window
of TCP/IP dynamically is a point of interest to the research
community Machine learning techniques [17] have become
highly effective instruments for improving and optimizing
different facets of communication networks. In order to over-
come obstacles in fields like channel coding, estimation, signal
identification, and resource allocation, researchers and engineers
have created creative solutions by utilizing machine learning
algorithms’ capacity to learn from data and spot patterns [18],
[19]. For example, deep learning has been investigated recently
for efficient channel code creation [20], [21] and for joint
channel estimation and signal detection. In wireless networks,
machine learning has also been used for resource allocation
tasks including spectrum management and power control [22],
[23]. One well-known use is the dynamic adjustment of network
settings, TCP window sizes, to correspond with the constantly
shifting circumstances of the communication environment [24].
Some of the works in this sector proposed custom TCP protocol
design using reinforcement learning [3], [25] The best settings
for these parameters can be predicted by machine learning
models, which can be trained on past data or in-the-moment
observations. This ensures effective resource use, minimizes
packet loss, and lowers network latency [26], [27].

However, these approaches often overlook the degradation of
performance in a high velocity disparity scenario. We proposed
a multi-head tabular transformer-based model to accurately
predict the sliding window size to set in such scenario.

B. Application Layer strategies for effective communication

(compression)

Reducing the amount of data to be sent in the communication
network and later reconstruct it properly is one of the most
common approaches to involve application layer in efficient
data communication. Data compression [28], [29] is essential
for efficient data exchange in bandwidth- or resource-limited
contexts [30]. Traditional compression algorithms like entropy
coding method, i.e., Huffman coding, LZW, Distributed source
coding methods, i.e., Slepian-Wolf coding [31], salient region
detection [32], multi-scale DL [33], etc. have been studied for
efficient multi-terminal compression, enabling collaborative
data compression. In addition, deep learning-based compression
are being developed for effective data representations, allowing
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larger compression ratios without losing vital information [34].
Generative adversarial networks (GANs) outperform standard
codecs [35] in image and video compression. Autoencoder-
based designs have been used to compress text, voice, and sensor
data [36]. Compressive sensing [37], [38], which uses signal
sparsity in a transform domain to reconstruct from fewer data,
is another promising method. This method is used in wireless
sensor networks, IoT [39] devices, and resource-constrained
situations. Compressive sensing reduces data storage and
transmission by compressing the signal during sampling [40].
These traditional techniques, even the state-of-the art
compressive sensing mechanism suffers from the selection of
compression parameters keeping the networks parameters in
mind and also requires multiple pretrained model to store in
the devices to choose from; increasing resource-overhead. We
develop a unified model based compressive sensing technique
integrating post-training quantization where the compression
ratio will be predict based on the existing network parameters.

III. BACKGROUND AND MOTIVATION

We evaluate the performance of (a) existing approaches
to compress image data at the application layer using
compression sensing, and (b) the default sliding window size
on latency and packet loss. State-of-the-art techniques such as
OPINE-Net [15] require discrete training for each compression
ratio. These models learn the compression matrix for each
compression ratio and use the same to sample pixels from
images in real-time. Of course, as the image size increases, the
compression matrix size also increases, leading to increased
model size. The models require the transmitter to send different
parameters to the receivers for reconstruction, thus increasing
the latency. We conducted experiments to gauge the trend of
latency (transmission and propagation combined) with respect
to image size. We demonstrate in Fig. 1 that when sending
an image (rather than the feature representatives), the latency
overhead increases significantly after an image size 1MB.
We also observe Fig. 1 (left) that the encoded feature size
increases exponentially in conventional compression sensing.
This motivates us to (a) send image features rather than the
raw image data and (b) develop a unified CS model for all
compression ratios. At the transport layer, we observed the
“receiver window size” under the default TCP settings. The
window size regulates how many bytes a sender can send
without having to receive an acknowledgment. As shown
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Fig. 1: In conventional compressive sensing, the encoded features rise
exponentially after a certain image size (left), the latency values increase
linearly for sending image compared to sending features (middle), which is
also reflected in the transmission power (right).

in Fig 6 and 7, the window size begins small and gradually
increases. This behavior aligns with the TCP theory outlined
by Kurose [41], which suggests starting with a small window
to ensure reliable data reception. Once it is confirmed that
no packet loss has occurred, the window size is incrementally
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increased to optimize throughput. However, in a dynamically
changing environment, the increase in window size can
drastically affect the performance (especially when sending
large file sizes). It is to be noted that while we reduce the
image sizes to features and reduce the data being transmitted,
there are other applications that might require sending large
file sizes (such as sending model parameters of on-the-fly fine-
tuned models).. This motivates us to vary the “receiver window
size” depending on the network parameters such as RSSI, data
rate, and measured packet loss from previous transmissions.

IV. METHODOLOGY

In this section, we describe the design details of DACC-
Comm. We illustrate the interaction among the application,
network, and channel modules in Fig. 2. The multi-head deep
model is first trained using data collected from both simulation
and real-world settings. In real-time, the model takes the
network properties as input to predict the compression ratio
and sliding window size.
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Fig. 2: Design of proposed multi-head DNN based adaptive sliding window
and compression ration selection.

A. Adaptive Compression Sensing

We developed DNN-based adaptive compression sensing to
subsample image pixels from an image. Inspired by [15], we
choose a learnable sensing matrix that is employed to sample
images. Unlike the state-of-the-art that requires distinct models
for each compression ratio, DACC-Comm train one DNN model
capable of sampling the highest possible image (1920%1080).
We propose a novel subsampling technique to aggregate nearby
pixel values depending on the compression ratio. As shown in
Fig. 3, the sensing matrix first samples a large portion of the
image and then downsamples as per the compression ratio.

1) Transmitter Operation

Input Image (X) The input image is denoted as X € R"**",
where m and n are the dimensions of the image (rows and
columns, respectively).

Sampling from a Measurement Matrix (A) A trained
sensing matrix A € R**™" is developed following the process
of [15] and it is applied to the vectorized form of the input
image. Here, K < mn, meaning the measurement process
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Fig. 3: Illustration of Transmitter and receiver Operation.

compresses the image by projecting it onto a lower-dimensional
space:

Xyee =vee(X)
where X,.. € R™" is the vectorized form of the image.

To perform the sampling process based on the compression
ratio, the initial matrix X € R™*" is reduced to a sampled
matrix Xgampied € RP*9. The idea is to divide the initial matrix
into non-overlapping blocks of size % X 2 and then fill each
corresponding entry in the smaller sampfed matrix with the
mean of the values in each block of the original matrix. This
method ensures that the maximum amount of information from
the original matrix is preserved in a more compact form by
using local averages. For a block B;; C X, where i=1,2,...,p
and j=1,2,...,q, the block is defined as:

B;= {X(if1)k+1:(i71)k+k,(j71)l+1:(j71)l+l}
where k=" and [ =2 are the dimensions of each block.

P q
The average value for each block is computed as:
ko1

. 1
Xsampled(ZJ) = m ZZBU (x,y)

Thus, each element in the sampled matrix Xgmpled(?, J)
represents the average value of the corresponding blocks
from the original matrix. This approach provides a compact
representation while preserving the important structural and
statistical properties of the original image in a compressed form.

Encoded Feature Generation with Quantized Pretrained
Model After the sampling process, the compressed image is
passed through a pre-trained quantized model to extract the
encoded features. Let the function of the quantized model be
represented by fmodel(+), Which extracts feature maps from the
input image. The model has been quantized to 8-bit integers
for computational efficiency. The sampled matrix Xgampled
is then fed into the first layer of the quantized model. We
extract the last convolutional layer features as the image’s
representative features for transmission.

Fconv, q= Q(fmodel(Xsumpled) a8)

where Q(-,8) denotes the 8-bit quantized encoded features of
last layer convolution layer Fi,,y in the range [—128,127].

Transmission: DACC-Comm transmits the Quantized
features Fcony, q» Quantization parameters (scale, zero-point),
and the selected compression ratio to the receiver.

2) Receiver Operation

The receiver intiates its operation with the pre-stored
learned measurement matrix (A) and the quantized model.
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Dequantization: The receiver first dequantizes the received
quantized features Fiqny, ¢ back to floating-point values:

F cony, deq =Dequantize(F cony g,scale,zero-point)
where the dequantization uses the scale and zero-point from
the quantization step to convert integers back to approximated
floating-point values.

Initial Image Estimation: The initial estimation of the
image is done using the pseudo-inverse of the measurement
matrix AT. This operation computes an approximate
reconstruction of the vectorized image X, as follows:

Xest = ATFconv, deq
Here, AT is the transpose of the measurement matrix, and it
helps to approximate the inverse transformation to recover the
original high-dimensional image from the compressed features.

Refinement via Model (f,,04¢:(+)):

After the initial estimation, the estimated image Xeg iS
fed into the pretrained model for refinement, which enhances
the reconstructed image. Here, fiodei(Xest) represent this
refinement function:

Xrec = fmdodel (Xest)
where X € R™*"™ is the final reconstructed image.

B. TCP Flow Control

DACC-Comm employs a straightforward data-driven model
to adjust the “receiver window size”. We first collect data for
different window sizes and varying network conditions from
our extensive real-world experiments. This data is then used to
train the multi-head DNN model to output an optimum window
size.

C. Multi-head DNN Model with channel constraints

To predict both the suitable sliding window size (W) to
minimize packet loss and the suitable compression ratio (C) to
optimize latency while ensuring data fits within the available
bandwidth, we need to extend our machine learning model. This
model will need to account for both the transport layer (sliding
window size) and the presentation layer (compression ratio).

Notations and Inputs

Symbol Description Units
Vi Velocity of the robotic agents m/s
d Distance between agents meters
Rs Received Signal Strength Indicator dB
D, Data rate bps (bits per second)
|24 Sliding window size Bytes
C Compression ratio Dimensionless
Ly Packet loss Fraction
Tp Latency s (seconds)
Bmaz Maximum Receiver Buffer Bytes

TABLE I: Parameter definitions and units used in the algorithm.

Tasks of the DNN model: (a) Minimize packet loss (L;) by
predicting the optimal sliding window size (W). (b) Optimize
latency (7},) by predicting the suitable compression ratio (C),
ensuring data fits within the available bandwidth.

Multi-head Deep Learning Model We develop a multi-head
Multi-Layer Perceptron (MLP) to predict both W and C'
based on the input features V;,d;,D,;,Rs;. Let:

X =[V.d,D;,R]
be the input features vector.
W= fw (X;0w)
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is the machine learning model predicting the sliding window
size, where 6y represents the parameters of the model.
C=fo(X;0c)

is the machine learning model predicting the compression
ratio, where f¢ represents the parameters of the model.

Loss Function for Training the Model To train the model,
we need two loss functions: one for minimizing packet loss
and another for optimizing latency. The total loss function
will be a weighted sum of these two losses.

Packet Loss Prediction We have collected a dataset and
observed packet loss for different window sizes under various
network conditions, we then train the model to minimize the
packet loss. The reference packet loss values are generated
using the following equation: Packet loss,

1
i p=1-n2s (1)
Here, ;Ds is the number of dath ﬁackets delivered to the
total number of subscribers and !, D,, is the number of data
packets transmitted from the publishers. The average value
is reported after the data transmission is complete between
each publisher-subscriber pair.

Latency Prediction Similarly, we procured a dataset with
observed latency for different compression ratios under various
network conditions. While recording the latency values, we
considered the following parameters: Average packet delay,

PD,=Dy.+Di+D,p, )
Here, D, is processing delay Dy is transmission Delay, and
D4, D, represent propagation delay respectively.

Training Dataset Predictor variables = (V;,d;,D,;,Rs;)
Target variables = (C;,IW;)
Response variables = (Ly;,T}p;)
represents the observed agents velocity, distance, data rate,
window sizes, signal strength, packet loss, compression ratio,
and latency for sample .

Model Training We minimize the combined loss function:

L(Ow.0c)=aLlp(Ow)+LLL(Oc)

where:
1 ~
Lp(Ow)= gZ(Lp,i—Lp,iF

=1
n

1 ~
LL(GC):ﬁZ(TW»—Tm)Q

« and S are weighting fa}ctorzs tlhat balance the importance of
packet loss and latency. L,, ; is the predicted packet loss given
the network conditions and predicted window size. pri is the
predicted latency given the network conditions and predicted
compression ratio.

Combined Optimization Let g(V,d,D,,R;,W) be a func-
tion that models the packet loss based on the network conditions
and window size and h(V,d,D, ,Rs,C) be a function that mod-
els the latency based on the network conditions and compression
ratio. So, the combined approach can be formulated as:

<aiZ(PL,i —g(fw (Xi:0w)))?

min
Ow ,0c

HAS (L h(fo(Xibe))?

i=1
Algorithm 1 elaborates DACC-Comm pipeline to send
and receive data using the Robotic Operating System (ROS)
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Algorithm 1 Pseudo-code for adaptive sliding window size
and compression sensing selection

. Initialization:

: Registering publisher and subscriber, P,S € N

2140, w—wy > Start with default window size

: X« [V,d,D;,Rs] > Feature vector

: [W;,C;] <DL Model(X) > Predict initial window size
and compression ratio

6: W;+ min(Wi,BmaX)

receiver buffer

7: Adaptation:

8: if network event occurs then

9: L, fro(D,w,V,d,R;)

T;D — fT(D7w7‘/7d7RS)

11: if L, > L,r and T}, >T,r then

[ U N

> Ensure window size is within

> Calculate packet loss
> Calculate latency

12: L, fo(Dw,V,d,Rs)

13: T, <+ fr(D,w,V,d,R;)

14: w+—W; > Update window size
15: w ¢ min(w,Bmax)

16: C+C; > Update compression ratio
17: end if

18: end if

framework incorporated with the proposed compression
sensing and sliding window strategy. It is noted that the
primary objective of DACC-Comm 1is to reduce the payload
for transmission and control the data flow between the sender
and receiver. DACC-Comm do not take into optimization the
computational and communication complexities that might
arise due to (a) executing a compression-sensing module and
(b) multi-head DNN. However, the recommendation for any
system adopting DACC-Comm would be to consider the image
size before executing the compression-sensing model. If the
image size is smaller, any system can decide to send the image
directly rather than execute the compression-sensing module.
V. EXPERIMENTAL DETAILS
A. Data Collection

We have collected data from both real-world scenario with
robots including a Clearpath Jackal, ROSMaster X3 and
a Jetson Xavier mounted on car, and also the simulation
environment where we have arranged a specific co-simulation
setup using Gazebo as physics simulator, ns-3 as network
simulation and a customized ROS-based middleware [42] to
synchronize those twos simulators with different operating
principle. We have used the image data streamed from the
integrated camera of the robotics agents as the data modality to
be sent across agents. The collected data samples can be found
in Table II. We start with a pre-calculated default window size
based on the selective ARQ process and developed on top it. We
vary the interval by 8 KB to find the five different neighbouring
window sizes. Among those, the one for which we find the
lowest packet loss and latency, we mark that window as ground
truth. While collecting the data we kept the velocity difference
and distance constant for different iterations and varied the
other network parameters to record the latency and packet loss.

B. Details on the Deep Learning Model

We engaged the pre-trained weights of the TabNet [16] model
and performed a supervised fine-tuning on top of it for our use
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Velocity_diff | Distance | Data_rate RSSI Sliding window | Packet loss | Latency
(m/S) (m) (MBps) (KB) (%) (s)
5 55 2.3 -58 156.34 4.8 0.892
10 55 2.1 -52 148.12 52 1.345
15 55 1.8 -48 140.56 7.2 2223

TABLE II: Training data samples for real-robot scenario using Doodle radio
(915MHz).

case. TabNet uses Transformer architecture for tabular data
and employs a sequential attention mechanism, which provides
better interpretability. The model architecture is modified to
host the multi-head nature of our work, i.e., learn the features
to predict both sliding window size and compression ratio. The
model is fine-tuned for 150 epochs with adjust weight decay
enabled, and ‘RMSE’ is used as the performance metric. The
train-split of the dataset contained specific network scenarios
and while testing we enforced similar but unique cases.

C. Parameter Selection

In this section we analyze the characteristics that significantly
affect latency and packet loss, as indicated in fig. 4. We
provide justification of choosing data Rate, distance, RSSI, and
sliding window as key parameters to understand the network
performance and enhancing it by dynamically modifying the
sliding window size. As performing extensive experiments in a
real-world environment is challenging, we analyzed the effects
of these parameters in a simulation environment to gauge the
effect of these parameters. We varied the network parameters
such as RSSI, data rate, and mobility, to mimic the real-world

communication. As shown in plot ‘a’ of fig. 4 increased
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data rate reduces delay, indicating more efficient transmission.
Beyond a certain point, increasing the data rate sharply increases
the latency and packet loss. This can be attributed to the
default TCP sliding window increasing the window size, leading
to higher re-transmissions. Also, transmitter-receiver distance
strongly affects latency and packet loss. Latency and packet
loss increase gradually with distance (plot ‘b’). Distance usually
weakens signals and increases error risk, requiring additional
re-transmissions. Adjusting the sliding window size based on
distance can help alleviate these impacts by allowing delays
without increasing network congestion. Another parameter we
investigated is RSSI value where we can notice the inverse re-
lationship between latency and packet loss with RSSI (plot ‘c’).
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This emphasizes signal strength’s relevance in a reliable and
efficient connection. In settings with fluctuating signal strength,
RSSI-based sliding window size modification can optimize
performance. The last plot (‘d”) shows how sliding window size
affects network performance. Latency and packet loss increases
with sliding window size. Bigger window sizes can increase la-
tency due to acknowledgment delays by enabling more packets
to be in transit, but it can also increase the retransmission rate.

Impact of variable Velocity: We have experimented the
impact of varying velocity on the packet loss performance
using a Doodle radio LoRA network. Fig. 5 demonstrates
that at 15 m/s, the packet loss remains relatively low, staying
below 60% even at 100 meters, while latency remains under 6
seconds. However, as velocity increases to 25 m/s, packet loss
becomes significantly more prominent, exceeding 60% at 100
meters, and latency grows to 7 seconds. By the time velocity
reaches 35 m/s, the packet loss nears 80%, and latency peaks
at 8 seconds within the same distance. This indicates that
higher velocities lead to greater challenges in maintaining
reliable communication, mainly due to fading effects, Doppler

shifts, and synchronization issues caused by rapid movement.
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Fig. 5: Packet loss and Latency trend of DACC-Comm with varying distance
for three different velocity differences.

D. Device Implementation Details

For the deployment of DACC-Comm we have chosen two
UGVs and one edge device (Jetson Xavier) mounted on a car;
mainly to test out the effects of variable velocity. To evaluate
DACC-Comm for long-range, we engage Doodle Radios [11]
at 915MHz frequency (also the frequency used by LoRa) and
microhard radios for Wi-Fi. Two Doodle Labs Mesh Rider
Radios (model RM-1700-22M3) were integrated with robotic
devices to carry out data transmission over the 915 MHz band.

VI. RESULT ANALYSIS
A. Prediction Performance

We evaluate DACC-Comm under varying network conditions
(LOS and NLOS). Notably, we analyzed the performance of
DACC-Comm with respect to transmission and propagation
latency, sliding window selection trend, communication
frequency, variable velocity, and distance.

Sliding Window Selection Trend: We first analyze the
performance of DACC-Comm to validate the efficacy of the
sliding-window approach. We have chosen two different image
sizes; 500KB and 8MB. We have illustrated the trend of sliding
window selection using both the default algorithm inside
Doddle radio (915MHz) and DACC-Comm. We observed a
significant difference in placing the suitable window size for
different stages of transmission as shown in Fig. 6. Also,
while comparing the default approach to set sliding windows,
we achieved about 17% improvement in re-transmission rate,
12% to 15% improvement in transmission latency, and also
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4.5% less packets to be sent across transmitter and receiver.
At 6th and 9th rounds, we observe a steep drop and then
increase in the sliding window size. To further investigate the
reason, we found out as the robotic agent was mobile, it was
crossing a solid object; creating NLOS condition. We can see
DACC-Comm properly adjusted the sliding window both times
to reduce packet loss. It is noted that DACC-Comm gives better
performance with larger data sizes more attributing to the
changing environment conditions in the transmission duration.

8MB Image 500KB Image
ﬂ‘.) 250 E 250 | e Default ,\
a a 200 Proposed
% 200 H
2 2150
= 150 =
= =
g 100 .8100
5 m— Default S >
%) 50 == Proposed »n 50

2 4 6 8 10 2 4 6 8
Rounds Rounds

Fig. 6: Sliding window selection trend varying image size.

Impact of image size on latency: We have experimented
DACC-Comm with varying image size in terms of total delay.
As per literature, total delay is influenced predominantly by
the transmission delay, with the propagation delay contributing
only a small fraction of the total. We can observe the similar
trend in Table III . The consistency of propagation delay
implies that it is determined by the physical distance and
medium rather than the size of the data. Also, the transmission
delay is dependent upon the volume of the image and as we
found with ta fixed values of data rate the relation is linear
between transmission delay and image size.

Image Size (MB) | Tr Delay (s) | Propagation Delay (ms) | Total Delay (s)
1 0.8 8 0.808
2 1.6 8 1.608
3 24 9 2.409
4 32 8 3.208
5 4.0 8 4.080

TABLE III: Average transmission and propagation delay results for various
image Sizes using DACC-Comm.

Variable velocity and LOS and NLOS communication
scenarios: To understand how our proposed DL model is
performing in terms of packet loss percentage while predicting
the appropriate sliding window in two distinct scenarios: line-of-
sight (LOS) and non-line-of-sight (NLOS) circumstances. The
findings are illustrated in the fig. 7. To measure the performance
of our adaptive transmission in terms of sliding window size
and respective packet loss values, we vary the sliding window
size is from 256 bytes to 2560 bytes. At a sliding window size
of 500 bytes, for example, the packet loss is negligible for both
cases; but, as the window size increases, the difference between
LOS and NLOS packet loss widens dramatically. By the time
the sliding window reaches 2500 bytes, the packet loss caused
by NLOS is greater than 0.5%, but the loss of packets caused
by LOS is somewhat less than 0.3%. It can be deduced from
this that bigger sliding window sizes result in higher packet
losses, particularly in non-line-of-sight (NLOS) conditions. This
is because of the increased chance of interference and signal
degradation that occurs in such circumstances. The visualization
of the baseline comparison can be found in fig. 7. This graph
shows how the change in velocity (in meters per second) affects
latency (in seconds) and packet loss (in percentage) for both the
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velocity among robotic agents.

proposed system (ASW) and the baseline model with fixed win-
dow and compression ratio. In both systems, latency and packet
loss go up as the velocity gap grows. Our proposed system also
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Fig. 8: Average delay and packet loss results of DACC-Commwith varying
distance compared to the default settings for both WiFi and LoRA network.
has a better performance in high-speed situations, as shown by
the fact that the maximum reduction in packet loss is about 20%.
Performance varying Frequency of communication medium:
We have evaluated the performance of DACC-Comm with two
wireless communication technologies, LoRa and WiFi, in terms
of average delay and packet loss probability across increasing
distances, while evaluating the “Default” and DACC-Comms
configuration. For, ‘LoRa’ (left plot), the default configuration
shows a steady increase in average delay, rising from around
0.5s at 25 meters to nearly 1.75s at 100 meters. The proposed
configuration, while also increasing with distance, performs
better, peaking at 1.5s at 100 meters. In terms of packet loss
probability, the default configuration sees a sharp increase from
5% at 25 meters to 60% at 100 meters. For ‘WiFi’ (right
plot), the default configuration exhibits a sharp rise in average
delay from 0.2s at 25 meters to 0.8s at 100 meters, while the
proposed method limits the delay increase to about 0.6s at 100
meters. Packet loss shows relatively rapid degradation in the
default WiFi setup, rising to 100% at 100 meters, meaning
total communication breakdown at this distance. The proposed
configuration mitigates this significantly, limiting packet loss
to 60% at 100 meters. The illustration can be found in Fig. 8.

B. Baseline Comparison

We present a comprehensive baseline comparison with
state-of-the art studies baased on resource consumption,
latency, and image reconstruction quality.

Computing resource and Latency: We conduct a detailed
baseline comparison with OPineNet+ [15] and CSNet [14]
based on the transmission power required, amount of data to
be sent and also combination of transmission and propagation
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latency. At 20% compression, DACC-Comm consumes 1.8W
of power, which is lower than CSNet (2.4W) and slightly lower
than OpineNet+ (2.1W). Additionally, the data to be sent is
significantly reduced for the proposed approach (1.312MB)
compared to CSNet (5.2MB) and OpineNet+ (4MB), resulting
in a shorter transmission latency (2.12s) compared to CSNet
(3.15s) and OpineNet+ (3.61s). At 40% compression, the
proposed approach shows an even greater efficiency, with
1.75W power consumption, lower data to be sent (0.864MB),
and a reduced transmission latency of 1.68s. In contrast,
CSNet and OpineNet+ require more power (2W and 1.8W,
respectively), while sending significantly more data, leading to
higher transmission latency (2.37s and 2.04s, respectively). At
60% compression, the benefits of the proposed approach become
more pronounced. It consumes only 1.2W of power, sends the
smallest amount of data (0.615MB), and achieves the fastest
transmission time (0.74s), compared to CSNet’s 1.8W and 0.85s
latency, and OpineNet’s 1.5W and 0.83s latency. Table IV
shows the detailed comparative results among those methods.

Compression Ratio (%) | Method Power Consumption ]s):nt? (tlanl;)e 1{:?::2;55(1;])"
20 Proposed Approach 1.8 1.312 212
CSNet 2.4 52 3.15
OpineNet+ 2.1 4 3.61
40 Proposed Approach 1.75 0.864 1.68
CSNet 2 4.8 2.37
OpineNet+ 1.8 3.2 2.04
60 Proposed Approach 1.2 0.615 0.74
CSNet 1.8 3.6 0.85
OpineNet+ 1.5 24 0.83

TABLE IV: Comparison based on power consumption, data to be sent, and
transmission latency among different baseline methods in terms of compression
ratios.

Image reconstruction quality: We have compared the
reconstruction quality of the image at receiver end based on
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural
Similarity Index Measure) for different compression ratios
between DACC-Comm and the two baseline methods (Table
V). At lower compression ratios, OpineNet+ [15] has leverage
over both DACC-Comm and CSNet with the highest PSNR and
SSIM values. However, the difference between DACC-Comm
and the baselines is relatively small. For instance, at 20%
compression, the proposed approach achieves a PSNR of 32.5
dB and an SSIM of 0.915, which is only marginally lower
than OpineNet+’s PSNR of 36 dB and SSIM of 0.945. As the
compression ratio increases, the performance of DACC-Comm
remains competitive, particularly when compared to CSNet,
which experiences a significant drop in PSNR at higher
compression ratios (50% and 60%). DACC-Comm demonstrates
a more consistent performance, achieving PSNR values of 31
dB and 29.5 dB at 50% and 60% compression, respectively,
while maintaining relatively high SSIM scores. Although at
higher compression ratio (60%), we observe DACC-Comm
surpasses the other two baselines in terms of PSNR but has
less SSIM value. To further investigate the impact of this
performance drop, we test the reconstructed image for an
image classification application. We observe DACC-Comm has
a negligible performance drop (<5%) in terms of classification
accuracy when compared with reconstructed images using
the baseline methods. This makes DACC-Comm a viable and
efficient option for compressive sensing and image transmission
tasks, especially in resource-constrained environments.
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Compression Ratio (%) | Method PSNR (dB) | SSIM
10 Proposed Approach 325 0.93
CSNet 34 0.945

OpineNet+ 36.5 0.96

20 Proposed Approach 325 0.915
CSNet 34 0.93

OpineNet+ 36 0.945

30 Proposed Approach 32 0.895
CSNet 30.5 091

OpineNet+ 33 0.93

40 Proposed Approach 29 0.895
CSNet 39.5 0.875

OpineNet+ 30.5 0.915

50 Proposed Approach 31 0.88
CSNet 27 0.86

OpineNet+ 32 0.9

60 Proposed Approach 29.5 0.865
CSNet 26 0.845

OpineNet+ 27.5 0.885

TABLE V: Comparison based on PSNR and SSIM among different baseline
methods in terms of compression ratios.

VII. DISCUSSIONS AND FUTURE DIRECTION

Extending DACC-Comm for multi-task applications:
In the current work, we employ DACC-Comm to perform a
single task (image transmission). In the future work, we shall
investigate and develop models that can target multiple tasks
and sensing modalities such as LiDAR panoptic segmentation,
human gesture recognition in reconnaissance zones.

Enhancing the ML models capability by employing
automated communication scenario (LOS/NLOS) detection.
Using ML models to automatically recognize to LOS and
NLOS communication circumstances could be an interesting
extension of this study for better network optimization and
problem prediction. Existing research in this domain has
shown through automated detection of certain scenarios, the
real-time alteration of OSI layer parameters can be done more
effectively and the latency due to the parameter selection
essentially can be reduce. We are actively investigating to
incorporate advanced signal processing and real-time data into
our proposed ML model’s workflow to develop more robust
modelling of the communication scenario.

VIII. CONCLUSION

In this work, we have presented DACC-Comm, the overall
design of a deep model-driven intelligent selection of the
sliding window size and compression ratio of a TCP/IP network,
which will take into account the physical layer parameter values
during the transmission. We eliminate the need for training and
loading multiple models for different compression ratios while
employing an intelligent sampling strategy. We deployed our
framework on off-the-shelf robotic agents to do an extensive
analysis on the real world applicability of DACC-Comm. We
found significant improvement while comparing with state-of-
the-art baseline studies in understanding the communication sce-
nario to setup the packet volume to be transferred, resulting in a
lower packet loss, lower re-transmission rate. Additionally, our
proposed unified-model based quantization enabled compressive
sensing approach reduced the communication overhead by a
significant margin, reducing the overall transmission latency.
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