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ABSTRACT. The emergence of trapped surfaces in solutions to the Einstein field equations is intimately tied to the
well-posedness properties of the corresponding Cauchy problem in the low regularity regime. In this paper, we study
the question of existence of trapped surfaces already at the level of the initial hypersurface when the scale invariant size
of the Cauchy data is assumed to be bounded. Our main theorem states that no trapped surfaces can exist initially
when the Cauchy data are close to the data induced on a spacelike hypersurface of Minkowski spacetime (not necessarily

a flat hyperplane) in the Besov Bg’/f norm. We also discuss the question of extending the above result to the case when

merely smallness in H3/2 is assumed.

1. INTRODUCTION

The celebrated incompleteness theorem by Penrose [10] asserts that, for initial data (3, g, k) to the Einstein vacuum

equations

Ric(g) =0
prescribed on a non-compact initial hypersurface 3, the presence of a trapped surface in the corresponding maximal
development (M, g) implies that (M, g) is causally geodesically incomplete. As a special case, (M, g) is necessarily
incomplete if a compact trapped surface is already contained inside the initial hypersurface.

It can be easily verified that Minkowski spacetime (R3*1 m) is geodesically complete. Thus, in particular, (R3+1 m)
contains no compact trapped surface S. The existence of such a surface S inside an initial data set (R?, g, k) can be,
therefore, viewed as an indication that (g, k) is far away from the data induced on any spacelike slice of Minkowski
spacetime. Indeed, it is easy to check that, when (g, k) is close to the data (go, ko) induced on a spacelike embedding
of R? in (R3*! m) in a sufficiently strong norm, then (R3, g, k) contains no trapped surfaces. (In the case where
(g, k) is close to (e,0), the induced data on the {¢ = 0}, in a sufficiently strong norm, the global nonlinear stability of
Minkowski spacetime, established by Christodoulou—Klainerman [5], moreover implies that the corresponding maximal
development is also geodesically complete. In principle, one expects that such a global nonlinear stability result also
holds for (g, k) close to the induced data on more general spacelike hypersurfaces, for instance by adapting the proof of
Lindblad—Rodnianski [9].) The purpose of this article is to prove that smallness in a sharp scale-invariant
low-regularity norm is already sufficient to rule out the existence of trapped surfaces in the initial
hypersurface. We refer the reader to Section 2 for connections of this problem to other questions about the Cauchy
problem for the Einstein equations in the regime of low regularity.

Our main result is the following:

Theorem 1.1. Let Q C R? be a domain and f : Q — R be a smooth function such that the graph ¥ = {(t,z*, 2%, 23) :
t = f(zt 2% 2%)} is a uniformly spacelike hypersurface of Minkowski spacetime (R3*1 m). Then, there exists a
constant ey > 0 depending only on ||0* f|| =) and info(1 — |0f|c) such that the following holds: Let (g,k) be a pair
of a Riemannian metric and a symmetric covariant 2-tensor on Q satisfying the bound

Hg - gOHB;/IZ(Q) + |1k — kOHBgly/lz(Q) < ¢o,

where (go, ko) are the pullbacks of the Riemannian metric and second fundamental form induced on XYy by the
Minkowski metric m. Then, there does not exist a smooth embedded compact trapped 2-surface S in (Q,g,k).

For the definition of a trapped surface inside (2, g, k), see Section 3.3. For the definition of the Besov spaces B3 ;(2),
see Section 3.5. Let us note that the norms appearing in Theorem 1.1 involve the components of the corresponding
tensor fields in standard Cartesian coordinate system on R3.

Remark. Notice that Theorem 1.1 applies to the case of general pairs of (g, k) which do not necessarily have to obey
the constraint equations. In the simplest case when f =0, the background tensors (go, ko) reduce to (e,0), where e is
the Euclidean metric on R3.

The Besov norms appearing in Theorem 1.1 are invariant under the scaling

(935 (@), kig(2)) = ((90)iz: (kx)ij) = (9i5(Az), Akij (Az)). (1.1)

It is clear that the same result as in Theorem 1.1 cannot hold for a norm below scaling, e.g. H*(R3) x H*~}(R3) for

s < % since (in the f = 0 case) one can construct counterexamples simply by rescaling as follows. Take a particular

pair (g, k) such that (¢ — e, k) is compactly supported and such that a smooth embedded compact trapped 2-surface

is present. Consider the rescaled data sets (gx,k») as in (1.1). When A — oo, the H*(R?) x H*"1(R3) norm of
1
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(gx — e, ky) becomes arbitrarily small (for s < %), but a compact trapped surface would still be present in all rescaled
data sets.
Moreover, in Proposition 1.2, we show that the result in Theorem 1.1 would still fail if Bg’ 7/12 X B;,/f norm is replaced

by H3/2 x HY/2 (Note that the proof of Theorem 1.1 relies on trace estimates and Sobolev embedding estimates
which no longer hold when 33/2 X Bl/ norm is replaced by H3/2 x H1/2.)

Proposition 1.2. There exist a sequence {(g(j),k(j))}?‘;l where g9 are smooth asymptotically flat Riemannian
metrics on R3, kU) are smooth and compactly supported symmetric covariant 2-tensors on R3 such that

199 = ell grarzrey + 16| a2 rsy < 277

(where e is the Buclidean metric on R?), but there is a smooth embedded compact trapped 2-sphere ¥ in (R3, g0, k()
for all j € N.

Since initial data sets to the evolution problem must satisfy the constraint equations, Proposition 1.2 may not be
fully satisfactory. Instead, one may want to look for counterexamples when the constraint equations are imposed. To
study this, we turn to the Einstein—scalar field system in spherical symmetry. First, we show that counterexamples
can still be found in this setting. (In particular, this shows that the dominant energy condition would not be sufficient
to rule out counterexamples.)

Proposition 1.3. There exists a sequence of initial data sets {(g(j)7 k@) ’(/J(()j), (j)) . for the Einstein—scalar field
system on B(0,1) C R3, i.e. a sequence of Riemannian metrics g, symmetric (0,2) tensors kU) and functions
1/)(()]), 77/19) : B(0,1) — R satisfying the constraint equations

RlgD] + (tryo) k) — ||kU ||gm = Ve 120 + @{)?, (1.2)
div o kY — V(tryop kW) = vl (1.3)

such that
g — ell 32 (B(0,1)) + ||k(j)HH1/2(B(O,1)) <277, VjeN (1.4)

and (B(O, 1);g(j), k‘(j)) contains a smooth embedded compact trapped 2-sphere 3 for all j € N.

However, in the setting of the spherically symmetric Einstein-scalar field system, it is natural to impose an additional
smallness assumption on the scalar field in H3/2 x H'Y2. In this case, it can be shown that spherically symmetric
trapped surfaces can be ruled out:

Proposition 1.4. Suppose (B(0, R), g, k) are spherically symmetric taking that form
9(ps,9) = dp? + (r(p))* (d0? + sin® 9 dp?),  k(p, 0, 0) = kpp(p)dp® + koo (p) (d09? + sin® ¥ dp?)

and moreover satisfy the constraints (1.2) and (1.3) for some smooth and spherically symmetric Vg, ;.
Introduce the corresponding Cartesian coordinates by
1

z! = psindcosp, x?=psindsing, > =pcos?d (1.5)
so that in the (z1, 2%, 23) coordinate system,
2 2 i i
r*(lz) r=(Jaf) \ =2 ko koo \ ' 27
O P P B P (R )
Yo a2 Y > 227 Y e T (a2 a2
Then there exists €g > 0 (independent of R) such that as long as the following smallness condition in the Cartesian
coordinates holds

M3 0.0 * 190012 0. * 181013 .y < €0 (16)
then there does not exist a spherically symmetric smooth embedded compact trapped 2-surface S in (B(0,R), g, k).

In view of Propositions 1.3 and 1.4, it is perhaps of interest to understand whether the constraint equations in
vacuum together with a smallness assumption of (g, k) € H>/? x H'/? would be sufficient to rule out trapped surfaces
in the absence of symmetry.

See Section 5 for the proof of Propositions 1.2-1.4.

1.1. Idea of the proof. The proof of the theorem is based on a contradiction argument using a uniform trace
theorem. To explain the ideas of the proof, we first focus on the simpler case where f = 0, i.e. we assume that
(9,k) — (e,0) is small in BB’/2 X Bl/2 In this setting, assume for the sake of contradiction that there is a compact
trapped surface S. The followmg are the main steps of the argument.
(1) Let St be the convex hull of S intersected with S, and let Hy be the Euclidean mean curvature. By convexity,
Hy > 0 on ST. Moreover, it is well-known that the Willmore energy has the following lower bound:

H3 dVolg,. > 167
S+

(This can be derived by noting that (a) the standard Gauss map 7 : St — (S?, 4,) covers the whole of S? and
thus, [q. Ky dVolg, > 4m and (b) HZ > 4Ky by the AM-GM inequality.)
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(2) The key ingredient we establish is a uniform trace estimate for convex hypersurfaces in R3:

[l avols. S 112, (1.7

where the implicit constant independent of the surface S, as long as it is convex. (It is easy to see that a trace
estimate cannot hold uniformly for all hypersurfaces without the convexity assumption.)

(3) Since ST is convex and (g, k) — (e, 0) is small, say of size O(e), in B;’{f X 321(12, we can apply the uniform trace
estimate in Step 2 so as to obtain

/ Ik dVols,. / 10(g — g0) > dVols,. < e.
S+ S+

(4) Since ST is trapped, trk + H < 0. In particular, we have 0 < Hy < Hy — H — trk. Moreover, using
Hy > 0 and that ||g — gollr~ < € (by Sobolev embedding B;,/f — L*), we have the pointwise bound
|Ho— H| < 10(9—go0)| + €Hp (see computations in Lemma 4.5). Hence, after applying the estimates in Step 3,

we obtain

/ |H0|2dVolg’e§/ |H—H0|2dVols’e+/ |k|* dVols,.
S+ S+ S+

S [ (kP 410 - o)) dVols, + ¢ [ [Ho dVols, Sete [ |Hof dVols,.
S+ ha S+

For € > 0 sufficiently small, we have |, S+ |Ho|? dVolg . < €, contradicting the lower bound in Step 1.

It remains to explain the uniform trace estimate (1.7) used in Step 2. Partition S? = {z € R? : ||z| = 1} into 6
pieces S? = ), & UUL, Wi, where & = {z € S* 1 2; > L}, W; = {z € §? : 2; < —L}. This induces a partition
S= U?:1 n=H&E) U U?Zl A=t (W;). Convexity implies that each of 7=*(N;), 7~ 1(S;) can be written as a graph, and
we can adapt the standard proof of trace estimates.

In the more general case where f # 0, we need a (spacetime) notion of the null convex hull of a 2-surface, which
is defined to be the intersection of null half-spaces containing the surface. In this case, instead of the convex hull, we
consider the intersection of the boundary of the null convex intersected with the surface; and the quantity we consider
in place of Hy is the Minkowski null expansion tryg. (Notice that in the case of f =0, tryo = Hp.) It turns out that
suitable analogues of the key properties (1) and (2) above still hold in the more general setting, using slightly more
involved arguments; see Proposition 4.2, Lemma 4.4 and Lemma 4.7.
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acknowledges the support of the Clay Mathematics Institute while this work was being completed.

2. MOTIVATION: CAUCHY PROBLEM AND OPTIMAL LOW-REGULARITY WELL-POSEDNESS FOR THE EINSTEIN
VACUUM EQUATIONS

The main motivation for Theorem 1.1 comes from the following fundamental question:

What is the threshold of well-posedness for the Einstein vacuum equations (or appropriate
Einstein-matter systems) when considering low-regularity initial data?

For many evolutionary partial differential equations, low-regularity well-posedness problems are often important for
understanding singularity formation. In the setting of the Einstein equations, a prominent example can be found in
the works of Christodoulou [3], in which the resolution of the weak cosmic censorship conjecture for the Einstein—scalar
field system in spherical symmetry relied on Christodoulou’s sharp BV well-posedness result [2].

The question of optimal low-regularity well-posedness can be formulated in local or global terms:

Problem 2.1. For s > 3, let X = H*(R®) x H*"Y(R3) (or a suitable weighted version or Besov replacement). Does
there exist a sequence of initial data sets {(R3, g;, ki) }32, to the Einstein vacuum equations such that

1(gs — e, ki)llx <277,
and for which:

(1) The solution does not remain of size O(27%) in the norm || - ||x “up to time O(1)”?
(2) The corresponding mazximal globally hyperbolic development is future causally geodesically incomplete?

Part (1) of Problem 2.1 probes the regularity threshold below which the local existence of solutions ceases to hold.
The best known result in this direction is the celebrated bounded L? curvature theorem of Klainerman-Rodnianski—
Szeftel [8], which established that (modulo technical assumptions) solutions to the Einstein vacuum equations remain
under control up to time O(1) if the initial data are small in X = H?(R3?) x H'(R?). As pointed out in [8], the
L? bound of curvature is crucially used in the proof to derive a lower bound on the radius of injectivity of null
hypersurfaces, and it is therefore unclear whether the solutions can be controlled below this regularity; see also [6, 7].
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Part (2) of Problem 2.1 is related to the question of the stability of Minkowski spacetime in the roughest possible
setting. This is closely connected to the question of trapped surface formation, since the emergence of a trapped
surface implies that the solution is geodesically incomplete due to Penrose’s incompleteness theorem. It is known by
Christodoulou’s monumental work [4] that trapped surfaces can form dynamically from initial data which are free of
trapped surfaces (and in fact are arbitrarily far from having trapped surfaces). The result in [4] requires that the
initial data are large in H'. In a subsequent work [1], An—Luk showed that largeness in H 3/2 is already sufficient to
guarantee that trapped surfaces form dynamically.

Our main result (Theorem 1.1) only concerns the existence of trapped surfaces within initial data sets and, thus,
does not directly address the evolution problem. Our theorem shows that if the Cauchy data to the Einstein vacuum
equations contain a trapped surface, then the data cannot be small in the scale-invariant 337/12
trapped surface is to emerge in evolution, then the B;/f norm of the data induced on spacelike slices of the spacetime
cannot remain small. Together with the possibility of inflation for the H® norm along the evolution when s < 2, one
is naturally led to the following question, which can be viewed as a reformulation of Problem 2.1 in the context of
trapped surface formation:

norm. Hence, if a

Problem 2.2. For s € [2,2), let X = H*(R3) x H*"1(R®) (or a suitable Besov replacement). Does there exist a
sequence of initial data sets {(R3, g;, k;)}S2, to the Einstein vacuum equations such that

I(g: — e, ki) lx <27,

but for which the corresponding maximal globally hyperbolic future development contains an embedded compact trapped
surface?

3. NOTATIONS

In this section, we will introduce the various notational conventions that we will adopt throughout the paper.

3.1. Special subsets of Minkowski spacetime. We will denote with m the Minkowski metric on R3*!, which, in
the standard Cartesian coordinates (¢, 2!, 22, 2%), takes the form

m = —dt* + (dz')? + (dz?)? + (dz*)2.
We will also denote with e the Euclidean metric on R3:
e = (dz')? + (d2?)? + (dz®)>.

We will frequently identify R® with {t = 0} € R3*!. We will also identify S? with the coordinate sphere {37 (z%)? =
1} in R®. In what follows, lower case Latin indices run through 4,5 = 1,2, 3.

Definition 3.1. We will define for any w = (w',w? w?) € S> C R? the vector
Lo = (1,w!,0?,03) € RO+,
We will also define for any w € S? and u € R the half space
W = {(t,2) e R® 1t — (2,w)e > u}. (3.1)
Remark. Note that L, is future directed and null with respect to m. Moreover, the boundary
Iy, = OW,, = {(t,x) ceR¥* it — (z,w). = u}
is a null hyperplane of (R3*t1 m) whose normal vector at every point is (parallel to) L.

3.2. Spacelike hypersurfaces in R3*!. Throughout this paper, we will frequently consider spacelike hypersurfaces
of (R3T1 m) which can be expressed as a graph of a given smooth function f : Q — R over a domain Q C R3:

Sp={{t,z): x€Q t=f(x)}.
Note that ¥ is spacelike if and only if

|0fle <1 everywhere on €, (3.2)

where, from now on, we use 9f to denote the Euclidean gradient of f and |0f|. = (Zf’zl 10;f)2)2. In what follows,
we will only consider functions f satisfying the uniform bound infq(1 — |0f|.) > 0.

For a spacelike ¥ = X, as above, we will denote with ny, the future-directed unit timelike normal of ¥ (with
respect to m), i.e. ny = ﬁ(@t +699;f0;). We will also denote with (go, ko) the Riemannian metric and second

fundamental form induced on ¥ = X by m, i.e.
go(X,Y)=m(X,Y) and ko(X,Y)=(Dxns,Y), forany X,Y tangentto X,

where D is the flat connection on R3+1.
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FIGURE 1. Schematic depiction of the null outer normal vector L(5)[p] and the null plane I/ (5)[p]
associated to a point p on the spacelike surface f(S) C R3*1.

We will frequently identify a hypersurface ¥ with the domain of support of f in R? (via the map f), and denote
simply with go, ko the respective pullbacks f.go, f<ko. In a system of Cartesian coordinates (z',z% 2%) on Q, the
tensors go and kg take the form

(90)ij = 0ij — Oif - 0; f, (3.3)
o2
(ko)ij = is)

VI=Iof2

3.3. The geometry of embedded 2-surfaces. Let S < R? be an embedded, connected, smooth 2-surface. Such
a surface is necessarily orientable and separates R? into two components, a compact one (which we will denote with
Kint) and a non-compact one (which we will call K..;); see [11].

(3.4)

Definition 3.2. Let S < R? be a closed embedded surface as above and let g be a Riemannian metric defined in an
open neighborhood of S in R3.

1) For all x € S, we will denote with Ny(x) € T,R3 the unit normal to S at x with respect to the metric g
g
pointing in the direction of Keyt.
(2) We will denote with ¢ the induced metric on S by g, i.e.

J(X,Y)=g(X,)Y) forall X,Y tangentto S.
(3) We will denote with hg the second fundamental form of S associated to g and N, i.e.
he(X,Y)=(VxN,,Y), forany X,Y tangentto S,
where V is the connection of (R3,g).
We will adopt the following definition for a trapped surface in (R3, g, k):

Definition 3.3 (Trapped surfaces). Let g be Riemannian metric on @ C R3 and k a symmetric covariant 2-tensor
on Q. Let also S — Q be a compact, embedded and smooth 2-surface. We will say that S is a trapped surface in
(Q,9,k) tf, at every point on S, the (0,2)-tensor k (restricted to S) and the second fundamental form hy of S satisfy

trg(k +hy) <0, trg(k—hy) <O0.

3.4. Null convex hulls of 2-surfaces in (R3*T! m). Let S be a smooth, connected, closed and embedded 2 surface
contained inside a domain @ C R3 and let f : O — R be a smooth function satisfying the gradient bound (3.2) (so
that ¥ is a spacelike hypersurface of (R**1 m)). Define also f: Q — R3*! by f(z) = (f(z),z).

Definition 3.4. For any p € S, we will define LI [p] to be the outgoing null normal to f(S) at p with respect to m,
normalized so that (L¥5)[p],0) = —1; that is to say, LY[p] is the unique vector in T,R3* with

<L?(S) [P, X)m =0 forall X €T,f(S) (3.5)

and which is of the form
LIGp] = (1,01, 02,0°)
with [v|2 = 1 and v pointing to Keg. We will also define I/ () [p] to be the null plane containing p with generator
LIS)[p], i.e.
Hﬂs)[p] ={z€ R¥*: (2 —p, L?(S)[pbm =0}.

Remark. Note that, in view of (3.5), /() [p] is necessarily tangent to S at p.
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FIGURE 2. The above figure is a schematic depiction of a slice of the form {t = ¢¢} in the special
case when f(S) C {t = to} (i.e. when f = const along S). In this case, the set K [S] N {t = to}
(depicted in brown), which is simply the intersection of all half-spaces W, ,, N {t = to} containing
f(S) (a typical such half-space is depicted in blue), reduces to the convex hull of f(S) inside {t = to}.

The set f(S*) (depicted with the red dotted line) is simply the set of points on f(S) which also lie
on the convex boundary K™ [S] N {t = to}.

Definition 3.5. Let S — Q C R? and f be as above. We will define the flat null expansion of S by the relation
tryo = trgo(DL?(S))7

where ¢ is the Riemannian metric induced on F(S) by m and the (0,2)-tensor DL(S) on, the surface f(S) (which
we will call the null second fundamental form) is defined by
DLI® (X,Y) = <DXL?(S),Y>m for any X,Y tangent to f(S)

(where D is the flat connection on R3T1).

Remark. Note that LT(S) = Cs-(nx, —|—f*NgO) with f*NgO being the pushforward of Ny, via f (hence, by the definition

OfQO} <.f*Ngoa,f_*Ngo>m = 1) and
. VP
L+ Ny (f)\/1—10f2

(note that since | Ny, (f)] < |0f](1 — |0f|2)"%, we have L(1 — |0f|?)% < ¢s < 2(1 — |0f]c)"2). Thus,
trxo = (s trgo(ko + hgo)' (36)

Definition 3.6 (The subset ST C S). Let S — Q C R? and f be as above. We will define the null convex hull of
S to be the subset of R3*1 consisting of the intersection of all half-spaces of the form (3.1) containing f(S), i.e.

Ky [S] = () {Wou : F(S) € Wou}- (3.7)

We will then set
St =F 1 (F(S)n oK, [S]) C S. (3.8)

Remark. In the trivial case Q = R and f = 0, the hypersurface Yy =3 is simply the hyperplane {t = 0}. In that
case, it can be easily verified that K [S] N g is simply the conver hull of S C R3 and thus St is contained in the
boundary of a convex body.

For S as in Definition 3.6, the set ST C S is always non-empty; see Proposition 4.2.

We can readily infer the following properties for the set ST (which are similar to the properties of the boundary of
the convex hull of a surface in R?):

Lemma 3.7. Let S and ST C S be as in Definition 3.6. For any point p € ST, f(S) lies on one side of the null
hyperplane TI7S) [p]. Moreover, the tensor DLI(%) is semi-positive definite on f(ST).

Proof. Let p be a point in ST, and set ¢ = f(p) to be the corresponding point on f(ST) C Xy c R3*!. Since
q € f(St) C OK,[S], there exists a sequence of points ¢, € R¥*1\ K [S] with ¢, ———» ¢. The definition of K [S]
then implies that, for each n, there exists a half space of the form W, ,, such that f(S) C Wy, ., and ¢, € W, u, -
After possibly restricting to a subsequence, the sets W, ., converge to a half space W,,__ ., such that g € OW,,
Then, T, f(S) C OW,,__ .. since, if T, f(S) was transversal to W,,__ ,.__, the null hyperplanes OW,, ., would have to
intersect f(S) transversally for n large enough. Therefore, the null generator L, of OW,,__ . is normal to T, f(S).

00 sUoo *

The fact that L, is equal to the outgoing normal LIS (and not the ingoing one) follows from the observation that
f(S) is contained in the future of OW,,__ ..
We will now establish the non-negativity of the null second fundamental form on f(S*). For p € ST as above, let

(2!, 22, 2%) be a Cartesian coordinate system in R? centered around p such that S is of the form z3 = %MABfAjB +



NON-EXISTENCE OF TRAPPED SURFACES 7

O(|i|3)7(with M 4p being constants, A, B taking the values 1,2 and z = (z!,2?)) and (L?(S),ag)m > 0. Then, the
surface f(S) can be locally expressed around ¢ as

f(S) = {(t,xl,wQ,x?’) sl = %MABxA:BB +0(z), t = f(wl,xz,xB)}.
Thus, setting © = (81 £(0), 92£(0)), we can express the Taylor expansion of L(5) (see (3.5)) around p as follows:
LIz 7%) =(1,0", 7%, /1 - [0]?)
+ (0, 074 £(0) + (93£(0) — /1= [02) M4, 854 £(0) + (D3£(0) — /1 — [0]2) M24, 0) - 2*
+ O(|z)?).
Since the tangent space of f(.S) at ¢ is spanned by 94 + 94 f(0)d;, A = 1,2, we can express the tensor DLf(5)[p] as
(DL p))ap = %5/(0) + (95£(0) = V1= [o]) Magp. (3.9)

In view of the fact that p € S *, we know that S is contained on the future half-space defined by the null hyperplane
7 (9)[p]. In particular, the affine function

ot ) = ((t, ), LI [p]) + (0)
satisfies
¢ <0on f(S) and ¢(q) = qi)(f(()), (),0,0) =0. (3.10)

Expressing ¢|?(S) in terms of the coordinates 4, A = 1,2 using the local expression for f(S) and the fact that
LIS p] = (1,0", 92, /1 — [0]2), we get

S5y (3, 7) = 5 (BRnlOFF° + (2(0) — VI~ TP)Mapa'2”) + O(J2f).
Thus, since 9% 53¢(0) is semi-negative definite (in view of (3.10)), we infer that (3.9) is semi-positive definite. O

3.5. Function spaces for scalars and tensors. In this section, we will introduce the function spaces that will be
used to measure the “size” of various tensors on (subsets of ) R3.

Definition 3.8 (Besov spaces on R3). Let n: R® — [0,1] be a radial smooth function such that
1 for €] <1,
(&) = <
0 for|¢l >2.
For every Schwartz function ¢ : R3 = R, the Littlewood—Paley projections Pi¢, k > 0, will be defined by
Poo = F (©F0),  Pro = F (27" — @9 Fe) k> 1,

where F denotes the Fourier transform.

(1) We will define the the Besov spaces B;’q(R3) (for s > 0, p,q € [1,00)) as the completion of the space of
Schwartz functions ¢ : R? = R under the following norm:

¢llB; , ®e) = (Z 2q8k||Pk¢Hqu(Rs))

k>0

1/q

We will also set
H*(R®) = B3 ,(R?).
(2) For a covariant 2-tensor ¢ on R, we will define ||@| Bs,(R?) (and || @ g+ (rs
components of ¢ in the (fized) Cartesian coordinate system, i.e.

B: ,(&3)) in terms of the

9]

B (R3) = Z H(bw ‘BS (R3)-

i,j=1
In the case of a domain Q C R3, the Besov space Bj  (€) will be defined to consist of the restriction of B (R?)
functions to Q:

Definition 3.9 (Besov spaces on Q C R?). Let Q C R? be an open set and s > 0,p,q € [1,+00). Let ¢ : 2 — R be a
measurable function. Define

Eps ={0: R’ > R:¢q=0,¢¢€B; (R}
We say that ¢ € By () if Eps o # 0. We will define:

1]

By, (@) = 3 inf  ||¢| Bs.,(R3)-

B g

In the case of a covariant 2-tensor ¢ on 2, ||¢||B (@) will be defined similarly in terms of its Cartesian components.

Remark. The Besov norm ||| Bs.,(Q) of a given tensor ¢ on Q C R3 as defined above is not affected by rotations and
translations of the Cartesian coordinate system used to express the components of ¢.
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4. PROOF OF MAIN THEOREM (THEOREM 1.1)

For the remainder of this section, we will assume that € and f : Q — R have been fixed as in the statement of
Theorem 1.1, and similarly for g,k and gg, k9. We will also assume, for the sake of contradiction, that €2 contains a
smooth, closed, embedded trapped surface S; without loss of generality, we will assume that S is connected.

Definition 4.1. We will define the null Gauss map ® : S — S? so that for any point p € S, ®(p) is the point on S?
in the direction of the Minkowskian null normal Lf(3)[p], i.e.

o(p) =w e LI = L,
(see Definition 3.4 for the definition of the normalized null normal LIS and Definition 3.1 for the definition of L, ).
Proposition 4.2. The set ST C S (see Definition 5.6) is non-empty and satisfies

/ (trxo)? dVolg 4, > 167 (4.1)
S+

Before we begin the proof of Proposition 4.2, we need to establish the following result regarding the pullback of
certain integrals via the null Gauss map :

Lemma 4.3. Let U C S be an open subset such that the null Gauss map ® : U — ®(U) is a local diffeomorphism
(see Definition 4.1 for the definition of ®). Suppose r: U — R is a smooth function. Then

/ (7‘ o tID) (trxo)? dVolg 4, > 4/ rdVolgz. (4.2)
U 2(U)

Proof. We will perform the computations in local coordinates. We will assume, without loss of generality (by consid-
ering a smaller coordinate patch, if necessary), that f : Q@ — R is a smooth function satisfying infq (1 — |0f].) > 0 and
S is locally given by

33‘3 — w(xl, 1‘2)
for some smooth function 1 satisfying (919)? + (021)? < 1 info(1 — |9f[?).

Step 1: Computations. We will introduce the notation 0 to denote the gradient of a function in the (2!, z2) variables,
so that Oy = (011, Oa1)), |0|? = (019)? + (D210)?, and similarly for df and |0f|. Moreover, for the remainder of the
proof, we will adopt the convention that capital Latin indices run through A, B =1, 2.

We now collect some computations in local coordinates.

(1) Locally, the tangent space of f(S) is spanned by
aA =04 + (6,41#)83 + (8Af + 0s3f 6Aw)6t, A=1,2. (4.3)

(2) The Minkowskian null normal Lf(5) = (1,v',v2,v3) can be computed as follows: The condition (3.5) for
the tangent vectors in (4.3) implies that —0af — O3f - Oav + Sapv® + 13049 = 0 (where 45 denotes the
Kronecker delta), or equivalently,

5ABUB :8Af+83f-8m/)—v38,4w, A=1,2. (4.4)
Using (4.4) together with the condition that |v|. = 1, we obtain
(0f + 03 fOU[* — 20°0% - (Df + 85 f0) + (v*)*|OY[* + (v*)* =1, (4.5)

which yields the following expression for v3:

o 00 Of +0sf[BU £ /(@0 Bf + s fBVP)2 + (1 +[UI2)(1 — [BF + s D)
- L+ (92

Since 1 — |0f + 05 f0|? = 1 — |0f|2 + (1 — |0v|*)(03f)* — 205f O - Of > 0 (in view of our assumption that

|0w[* < (1 —|9f[2)), the expression (4.6) implies that v® does not change sign in the region covered by the

local coordinate chart. Without loss of generality, we will thus assume that v3 > 0 (which corresponds to

considering the + solution in (4.6)).

v . (4.6)

(3) In these coordinates, the null second fundamental form of f(S) associated to L7(5) can be computed as follows

(using the relation v* = /1 — [0]2):

7 ScpvP (040Y)
F(S) _ C B CD A
DL (g, hm) = m (04000 = SEZts00.05 + 05005 + (O + 02 D)) 4
epvP(@50) o
- 5AUC(5BC _ CDUiB).
V1o
Define the null shape operator (DLY(5))%0 to be the (1,1)-tensor given in local coordinates by
= E ., _ - _ ScpvP (0
((DLf(S’))ﬁgO)A - (g() I)BE(DLf(S))AB _ (go I)BE(aAvC') <5BC _ CDi(B)>’ (4.8)

V1=l

where ¢, is the metric induced on S by go and in the last line we have used (4.7).
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(4) We will now compute the determinant of the matrix appearing as the third factor on the right-hand side of
(4.8). Using (4.4) and (4.6), we have

(1- 200 (o 2y ol O)(0)

det (530 -

V1—|7)? V1 —19)? 1—19]2 1o
o vhoay  (OF) - (0Y) + (Osf —vNOYP _ v (1 +[09[) - 05£10Y* — (Of) - (%) (4.9)
@0 B + 05 f10012)2 + (1 + [Bf2)(1 — [0F + B fDVIR)
= = _
(5) We compute that
(§y)a = 0ap + (04¥)(0Y) — (0af + 05f 0av) (O f + O3 f Opv), (4.10)
and thus B B B
det g =1+ [0y[* —[0f + 3 fO¢|* — (1o f — Dot f)*. (4.11)
In particular, the following lower bound holds:
det g, = 1+ (1= [ 2BV — [ — 205/ (Bf - D) + (Bf - B)? (4.12)

> (1+[0v*) (1 = [0f]7)-

(6) We finally collect some computations concerning volume forms. First, the volume forms dVolg 4, and dVols:
are given in our coordinates as follows:

o2

dVolg g, = \/det g da' da?,  dVolg = [1+ .E

1
13,2 19,2
5 dv dv” = v—gdv do*. (4.13)
Moreover, the pull-back of the volume form is given by
| det(Dv)|dz! dz? = &*(do' dv?), (4.14)
where Dv denotes the matrix whose entries are given by 9 v%.
Step 3: Proving the identity. Starting with (4.8), and using (4.9) and (4.11), we obtain
-1
B 5CDUD(5B¢))
V1= |v?
V314 (092 = [0f + O3 fIP|? — (D19Daf — Datpr [)? 3 <
= \/ — 1941 J | — ( — 7) (detgo) ’ (det(DLf(S))ﬁﬁo) (4.15)
V@0 Bf + 057022 + (1 + [B]2) (1 — [ + 03 fB02)

=3 ( det go) : (det(DL?(S))ﬁ”o) .

| det(Dv)| = (det(DLﬂS) )%o) (det go) <det (63(:

By a standard partition of unity argument, we can assume that U lies inside a local coordinate patch that we
are considering and ® is one-to-one when restricted to U. Using the volume forms computations in (4.13), the
transformation in (4.14), and the formula in (4.15), we obtain

1 1
/ rdVolgz: = / T dot dv? = / (ro ®)|det(Dv)|— dz! da?
®(U) oUv) Y U v

- /U(r o @)(det(DLﬂS))%) (det go)% da! da? (4.16)

- / (r o ®) ( det(DLW))ﬁao) dVolg g,
U
Finally, it is easy to get from (4.16) to the desired estimate (4.2) after noting that
_ — 2
o det(DLIE)H0 < L(((DLIS)f0:) 1) by the AM-GM inequality, and
. ((DL?(S))uﬂs)ﬁ = trxo. d

Proof of Proposition 4.2. The restriction of ® to ST maps onto S? (thus, in particular, S* is non-empty). This can
be deduced as follows: For any w € S?, define

u, =max {u: f(S) C Wy}

(u,, is well-defined and satisfies —co < u,, < +00 since f(S) is non-empty and compact). Then,

f(S) N Hw,uw 7£ wa
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since otherwise f(S) would be contained in the interior of W, ; this would imply that f(S) C W, ., +s for some
6 > 0 (since ?(é’ ) is compact) , contradicting the definition of w,,. Let p,, € S be chosen such that the image ¢, of p,
in f(5) lies in f(S) N1I,,. Then g, necessarily lies on K, [S] since, by definition of K [S], we have

K4 [S] € Wo o, -
Thus, p, € ST. Moreover,

L', = L,
since (1,w) is the null generator of I, ,,, and Il ,,, contains the tangent space of f(S) at f(p,) (since f(p.) € Iy u,
and f(S) C W u,)-

Let N/ C S be the set of points where D® : TS — TS? is degenerate. By Sard’s lemma, we know that ®(N) is

of zero measure in S? (with respect to dVolgz). Moreover, A is a compact subset of S (since S is compact and A
is necessarily closed), thus S? \ ®(N) is an open subset of S§? of full measure. Let V be any open subset of S\ N

containing S\ N. Since ® maps ST onto S?, we deduce that ®(V) = S?\ ®(N). Since D® is invertible on V C S\ N,
the map ® : V — S%\ ®(N\) is a covering map. Applying Lemma 4.3 for 7 = 1 and U = V, we therefore deduce that

/ (trxo)? dVolg 4, > 4 / dVolg> = 167.
1% S2\®(N)
Since the above bound holds for any open set V containing S* \ A, we readily infer (4.1). O

The following result states that ST can be separated into a fixed number of pieces (depending only on infqo (1—|0f|.))
which can be represented as graphs of smooth functions over planes in R?; the way S+ was defined is crucial for the
validity of this statement.

Lemma 4.4. Setting

v = (=) |

there exist relatively open sets {U;}., C S with the following properties:

o The union of {U;}}¥, covers ST.
o Foranyi € {1,...,N}, the subset SNU; of S can be written as a graph in the following way: There exists
a rotation U; € SO(3) such that, in the coordinate system (y*,y?,y>) obtained from (x*, 22, x3) after rotating

by U;, the subset U; of S can be expressed as a graph

Ui € {(y1,y2.53) - v° =iy, 7)1,

where ¥; : Vi = R is a smooth function defined on an open set V; C R2.
e Foranyi€ {l,...,N}, the function v; satisfies the gradient bound

5
|2 2 < )
V01132 + [Da1)i <51§12p( 1—|8f|e)
2

e Foranyi € {1,...,N}, the components of the null normal LIS = (1,0, v2,03) on U; expressed with respect
to the rotated coordinate system (y*,y?,y3) on R3 as above satisfy

12
VI + 02 < —=. (4.18)

VN

(4.17)

Remark. In the simpler case when f = 0, ST is contained in the boundary of the conver hull of S. In that case,
Lemma 4.4 follows readily for any N > 6 from the fact that the boundary of any convex body in R3 can be split into 6
pieces, each of which representable as the graph of a function over a coordinate plane.

Proof. Pick a collection of points {w;}Y ; in S? with the property that the union of the balls

0, ={ves®:|v—w < (4.19)

10 }
VN
covers the whole of S2. For any i € {1,..., N}, let us define the sets U; C ST as follows:
Ui = Qil(@i) N S+7

where ® : § — S? is the null Gauss map introduced in Definition 4.1. This implies, in particular, that for any p € U;,
the Minkowskian outgoing null normal L/(%)[p] is of the form (1,w) for some w € ©;.

For any i € {1,..., N}, fix a rotation U; € SO(3) so that, in the coordinate system (y', y?,%®) on R? obtained after
rotating the fixed Cartesian system by U;, the vector field d,s is equal to w;. We will now show that there exists an

open neighborhood U; of U; inside the surface S such that U; is the graph of a smooth function y® = ; (y*,y?). This
claim will follow immediately by showing the following (and using the implicit function theorem):

(1) For any p € U;, the tangent space T,S is transversal to w; = (0,0, 1).
(2) Any coordinate line of the form y',3? = const in R? intersects U; in at most one point.
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Establishing the property (1) is going to be a direct consequence of the definition of the set U;: For any p € U;, the
null normal Lf(9)[p] is of the form

L?(S)[p] = (1,w) for some w € ©; C $?,
while any vector X = (X1, X2, X3) € T,,S satisfies

(F XL Op])m =0
where f' X = (Dx f, X', X2, X3) € T f(S) is simply the push-forward of X along the map f. Therefore, in order to
show that w; is transversal to T,S, it suffices to show that (F wi, LIS [p]),, # 0. This follows readily by computing:
(Frwi, LY plym = —(wi)0; f + (w, wi)e > 0

since, for any w € ©;:

_|af|e + <W7wi>e Z _|af|e + 1- |w - i‘e

> —[0fle +1— \/i
1—-10
Z_|af|e+1 1|Of‘
9
> 21—
> 20— josl) >0

Establishing the property (2) is a bit trickier, and here we are going to make use of the way the set ST was defined.
Assume, for the sake of contradiction, that there exists a point (%!, 7?) € R? such that the straight line
l= {(y17y27y3) - (g17g277—)37 € ]R}
intersects U; at two points pr, ps. By switching the roles of p; and ps if necessary, we will assume that
= (g4, 9% m1) and po = (5!, 9%, 72) with 7, < 7.

Let wi,wy € ©; C S? be the directions of the corresponding null normals at pi,ps, i.e. LI [p1] = (1,w;) and
LIS py] = (1,ws). Since U; € S*, the definition of St (see Definition 3.6 and the comments above Lemma 3.7)
implies that the surface f(S) is contained in the Minkowskian half-spaces

WJ:{(tvy) t_<vaj>6Zf(pj)_<pjawj>€} j:1a2a
which are the future half spaces determined by the null hyperplanes /s [pj]. In particular,

(f@" 5% ). 9" 9°,2) € Wi
and therefore
F@h 5% m2) — mawi 2> f(5 9%, 1) — T
or, equivalently, since 7 < 7
f@h 9% ) — fh 5% )

>wi’
T2 —T1

which is a contradiction, since

w% — sgp |0f]e = (w1, wi)e — SIS;P |0f]e

10
>1— — —sup|df|e
Q

VN
9
> 15(1 —sup|0fl.) >
Thus, having established both Properties (1) and (2) above, we infer that an open neighborhood U; of U; in S can be
written as the graph of a smooth function y® = ;(y!, y?).
In the (t,4%, 42 y%) coordinate system (where, as before, (y ,y3,y3) is the rotated Cartesian system in which
= (0,0,1)), the components of the vector L/(S) = (1,0, v2,v3) satisfy the relation

UBaAz/} =0af + 03f0a0) — 5,437) , A=12.

Thus, noting that |90f| < /1 — (95f)2, |0f] < 1 and in l~] = <I>_1(@i), we have (by the definition (4.19) of ©;)

7] < \}—Oﬁ and (1 —v3)2+1—(v3)? < m and, thus, v3 > 1 — 3% we infer that
of

0%l o () < ’,Ug 45}121)(1 —10fle)"=.

’LOO(U)—’_‘ 8f‘L°°

Thus, by possibly considering a slightly smaller open neighborhood U; of U;, and using the smoothness of S, we infer
that (4.17) holds on U;.
The bound (4.18) is a direct consequence of the definition (4.19) of ©; after choosing U; smaller if necessary. O
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The following lemma is obtained by comparing the geometries of () with respect to (go, ko) and (g, k) and using
the assumption that S is a trapped surface for (g, k).

Lemma 4.5. Let S, ST and {U;}X,, {i}X, be as in the statement of Lemma 4.4 and let (g, k) be a smooth pair
of tensors on Q) as in the statement of Theorem 1.1, such that S is a trapped surface for (0, g,k). Assume also that
the parameter g in Theorem 1.1 satisfies €9 < ﬁ info(1—|0f|e). Then, in each U;, the Minkowskian null expansion
tryo satisfies the pointwise bound (in the rotated Cartesian system (y',y?, y3) associated to U;):

C 2 2
S - - : :
|trxolvins+| < nfo(1 = [97].)7 (10(g — go)le + |k — kole + eo(|0%¢s]ec + 107 fle + 1)), (4.20)

where C' > 0 is an absolute constant.
Proof. Using capital letters for indices associated to the (y!,y?) chart on U; and small letters for indices associated
to (y*,y2,4°), we can explicitly compute the induced second fundamental form hg on U; NS (which can be viewed as
the graph y3 = ¥;(y',y?)), by noting that (hy)ap = V2, FT$T,, where'
Fy) = Xy) - (v° = iy",y%),
1

N = Vg BOAY: i — 20340 at); + g3
and
1, ifa=A,
Thi =40 ifae{l,2} and a # A,
Oav; ifa=3.

In particular, we obtain the expression
(hg)ap = A(y) - (*533% + TG p0ct; + T§40ci0p; + T§p0cidat
— T p — Ths0pvi — Ths0ath; — Fg?,)

where T'¢, are the Christoffel symbols of g in the rotated (y',y?, y?) chart.
Therefore, we can estimate using the gradient bound (4.17) for ¢;, the trivial Sobolev estimate

19— gole SNlg—go0ll 2 Seo
Bz,l
and the bound g~ — g5t < (info(1 — |{“)f\e))72eo (following from the explicit expression (3.3) for go and the
assumption €y < 155 info (1 — [0f]e)):

1
info (1 — [0f]e)*
As a result, using also (3.6), we can bound:

|trxo—Cstrg(k + he)| = (s - (|trg0(ko + hgy) — trg(k + hg)|)

g = hgole < (18G9 = g0)l. + co(l0®Wile + 1621 +1)). (4.21)

1
< -1 -1 1 _ B
~ lan(]. _ |8f|e) <|g gO |€(|kj|€ + |hg|e) + |gO |€(‘k k0|€ + |h_l] h90|€)>
L (|a(9 = g0)le + [k — kole + €0 (|0%i]e + [Ogole + [kole + 1))
~ lan(l — |af|e)6 e e ile e e

1

S = Tory7 (00 = e + 1k = kole + co10%le +102f1e + 1)), (4.22)

where, in the last line above, we made use of the explicit form (3.3)—(3.4) of (go, ko) in terms of f.
In view of the fact that tryo > 0 on St (by Lemma 3.7) and the assumption that S is trapped for (g, k) and thus
try(k + hy) < 0 (using also (s > 0 in (3.6)), we infer from (4.22) that, on S* NU;:
1
t S (trxo — Cstry(k+ hy)) S ———=—=(|0(g — e+ |k —kole 0*Pie + 0% fle + 1
‘ rX0|N(rXO CS l“g( + g))Nlan(17|8f|e)7(| (g g0)| +| 0| +60(| ¢| +| f| + ))a

which establishes (4.20). O

Lemma 4.6. Let U; C S, (y',y2,9%) and v; : V; C R? — R be as in the statement of Lemma 4.4. Then the following
pointwise bound holds for 1;:
C

L [ —
S N (BT YT

(trxo + 0% fle) on U;N ST, (4.23)
where C' > 0 is an absolute constant.
1Here, we are implicitly making use of the fact that the exterior pointing normal to S with respect to g satisfies the sign condition

(Ng,03)g > 0, which is the only sign choice consistent with the fact that, for the metric go, we have (Ng,,03)g, > 0 (which in turn follows
from our assumption that v® = +,/1 — [9]2 and |7] < éinfg(l — 8fle) for LIS = (1,01, 02, 43) on Uy).
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Proof. In this proof, we will only work with the coordinate chart (y*,y?) induced on U; by v; (recall that U; = {y® =
iy, y?)}); we will use capital letters to denote indices associated to this chart. The components of the vector field

LIG) = (1,0, v2,v3) can be computed as in (4.4), i.e
Sapv® = 0af + 03 f0athi — /1 — 02010, A=1,2,

where = (v!,v?). Solving the above relation with respect to d4v; (recalling that /1 — [0]>— 95 f > 1 info(1—[0f|.)
on U; as a consequence of (4.18)) and differentiating once more, we obtain

(92 1,[) _ ( 2 f - (50A 4 5AJ'UJ _ aAf 510 'UI )a C 5Ac’l) aAf f)
ABTE «/1—|v|2 Oy f \ P VI—0E—0sf J/1— 0] 1/1—|v|2 05 f Oint )
Using the bound (4.18) for v on U;, we thus obtain
4 _
2| < % 2 _
0] < T (|a flo+ 10|5‘v|). (4.24)

The Minkowskian null shape operator ((DL?(S))MO)B = (gal)BC(DL?(S))AC can be computed as in (4.8):

(DL ()40 ) =M2E . 9,40, (4.25)

where the matrix field MZ = (g, hB ( %\/%;M) is invertible (in view of the gradient bound (4.17) for di;,

the bound (4.18) for © on U; and the lower bound (4.12) for det(g)); in particular, M~! satisfies the pointwise bound
_ 10

M 1|§71—|8f| : (4.26)

Let us also recall the following basic facts about square matrices: If A, B are two symmetric matrices such that A is
positive definite and B is semi-positive definite, then

e 0 <tr(AB) < tr(A) - tr(B) (the latter bound can be computed directly by calculating the trace with respect
to an orthonormal basis of eigenvectors for A),

e AB has non-negative eigenvalues,

e AB and A* BA? have the same spectrum (but the second matrix is symmetric independently of whether A, B
commute or not),

e ||B| £ tr(B), where || - || the Frobenius norm of a matrix and the constants implicit in < depend only on the
dimension of B.

In particular, for such matrices we can estimate
tr(B) = tr(A"2 A2 BA3 A™%) < (tr(A72))tr(A2 BAZ) S ||A™Y - tx(AB)
and thus
IABI| < Al - 1Bl < Al |ATH] - tr(AB). (4.27)

Denoting with [(DL?(S))MO], A=[g,] and B = [DL?(S)] the 2 x 2 matrices formed by the coordinate components of
the respective tensors, we have that A, B are symmetric, A is positive definite, B is semi-positive definite (in view of
Lemma 3.7) and

[(DLI))é0] = A - B.
Thus, applying (4.27), we infer that
I@LIENi] || < ligyllllgy I e [(DLT )] = g Mgy M - trxo < 1= | T

The bound (4.23) now follows by combining (4.24), (4.25), (4.26) and (4.28). O

- trx0. (4.28)

To proceed, we need the following trace theorem:

Lemma 4.7. For U; C S an open set among the ones defined in Lemma 4.4, we can estimate any smooth function
¢: 0 —R:
C
2qVoly, ¢ < ————— 499
/smui 91" dVolgy s < info(1—|0f].) 1915720 (4.29)

for some absolute constant C' > 0.

1
Proof. In view of our definition of the space B3 ;(2) (see Section 3.5), there exists an extension of ¢ on the whole of
R3 such that

||¢HB;/2(]R3) = 2H¢||Bl/2(g)

We will decompose the newly extended function ¢ into its Littlewood-Paley pieces ¢ = >, - ¢r, where ¢, = Py ¢.
Let (y',%%,43) be the rotated Cartesian coordinate system associated to U;, so that U; = {y* = v;(y',v%)}.
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For each point y. = (yl,y2,y2 = ¥i(y},y?)) € ST NU;, we can use the fundamental theorem of calculus to show
that for every 3> € [y2 — 27%,42], we have

3
Y
o) < [ 1000nl(uh 020 +1nl (0022 0°)
yi—27

Averaging over y* € [y2 —27% y3], and then using the Cauchy-Schwarz inequality, we obtain

3 3

Y Y
oulw) < [ ol a2 [ ol an®
Yi—27 yi—27

7k/2 yf 2 1 2 3 3 1/2 k/2 yi 2 1 2 3 3 1/2
<2 ( |03br|" (vs, v, y°) dy ) +2 ( |onl (Ysr vz, y°) doe ) .
yi-—2=Fk yi—27k
It follows that
|on|*(ys) S2"“/R|53¢k|2(yi,y37y3)dy3+2k/ﬂ§|¢k|2(yi,yf,y3)dy3- (4.30)

Integrating (4.30) over y. € STNU; with respect to the volume form dy'dy?, taking square roots, and then summing
over k > 0, we obtain

2 1 1 / 1 1/2
(/Smm lo|” dy dy “< Z |0kl (y-) dy' dy )

k>0

<y (2—’f/2\|83¢k||Lz<Rs> + 2 el ) (31
k>0

S D 2Pkl sy = 16l 5272 oy < 2190 53720
k>0

where in the last line we have used Bernstein’s inequality. The bound (4.29) now follows using the fact that, on Uj,
dVolg, s = det(go)dyldy2 can be controlled by (4.12). O
Proposition 4.8. For ¢q > 0 sufficiently small depending on infq(1 — |0f|.), the following estimate holds on S*:

1+ supq |92 f|e
me(l —|0f]e)t

Proof. Let N and {U;}Y, be as in the statement of Lemma 4.4. Using the pointwise bound of Lemmas 4.5 and 4.6,
we obtain

/ (trxo)? dVolg 4, < Cel (4.32)
S+

/ (ter dVolg,,s < Z/ (trxo) dVolgo’S
S+ +NU;

1
S T AR (g — go)|? + |k — ko|?
~ infq(l —|0f|)” ;/Sml}i (‘ (9—90)lz + | ole

2

€0 2 2 )
——=((t e+ 1)) dVolg, s. 4.
1nfg(1—|3f\) (( rx0)” + |07 fle + ) Volg, s (4.33)
Using the trace estimate of Lemma 4.7 and the smallness assumption for ||g—go ”B3/2(Q)’ lk—ko ||Bl/2(Q) of Theorem 1.1,
2,1 2,1
we have
1
3y — 90)[2 + Ik — Kof2) dVolyy,s S ——————(lg — goll? k— kol
[y (10 = 00)E k= ol2) Vol s 5 et (o = ool + 1 = ol )
2

R
S Tt~ 07 (4.34)

Plugging (4.34) into (4.33) and summing over ¢ = 1,..., N, we obtain

Lt supg 03], 3
info(1—[0f].)° " infa(l— [0f])™0

For ¢ sufficiently small in terms of infq(1 — |0f|.), we can absorb the last term on the right-hand side of (4.35) to
the left-hand side and obtain (4.32) (recalling that N ~ m) O

/S +(trXO) dVol,, s < €N /S +(urXo)zdvolgms. (4.35)

Combining Proposition 4.2 and Proposition 4.8, we can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1. For ¢ > 0 sufficiently small in terms of [|8? f|| = (o) and infq(1 —[0f|.), the lower bound from
Proposition 4.2 and the upper bound from Proposition 4.8 are obviously incompatible, leading to a contradiction.
This finishes the proof of Theorem 1.1. O
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5. EXAMPLES IN SPHERICAL SYMMETRY
5.1. A simple counterexample. To prove Proposition 1.2, it suffices to use the fact that the trace theorem fails if
Bé{f(RS) is replaced by H'/?(R?). In fact in this case we can just rely on the following standard result.
Lemma 5.1. There exists a sequence of smooth, spherically symmetric functions {(b(j) G2y R3 — R supported in
r € [3,2] such that

6D (r=1) 210, 6|12y <277

We can now prove Proposition 1.2:

Proof of Proposition 1.2. Let ¢{) be as in Lemma 5.1. Multiplying ¢\¥) with —1 if necessary, we can assume that
o) (r =1) < —10.
We will now define the sequence {(g), k(j))}J‘?‘;1 of initial data pairs on R3 as follows:

e ¢\ is identically equal to the Euclidean metric e,
e In the standard polar coordinates (7,1, ) on R3, the components of kW) are

KD = k) = k) =0, k§) =99 and kG) = ¢ sin’ 0.
In view of Lemma 5.1, the definition of (¢\), ()} implies that
19 = ell garaqay + 169 |l ey S 277,

Now let ¥ = 0B(0,1). Let h denote the second fundamental form of ¥ in (R3,¢()). By a direct computation,

trg<j>h = 2. On the other hand, trg(j)k = —2¢U) = —20. Thus, ¥ is a trapped surface in (R?, ¢\ k() for all
= o

jeN O

5.2. A counterexample for the Einstein—scalar field system. We will now proceed to establish Proposition 1.3.

Proof of Proposition 1.3. For any j € N, let ¢6j ), z/Jij ) be smooth, spherically symmetric functions on B(0, 1). Let also
g% and k) be, respectively, a spherically symmetric Riemannian metric and a spherically symmetric (0,2)-tensor
on B(0,1), expressed in polar coordinates (p, ¥, @) as:

99 (p,0,9) = dp® + (7 (p))* (d9° + sin® ¥de?)
and
k9 (p,9, ) = k) (p)dp® + kG (p) (d0° + sin® 9d?),
where (), k,(f,;) and kq(gjﬁ) are smooth functions on [0,1). In order to somewhat simplify our notations, from now on we

will drop the superscript -) from ¢, k and g, 11 when no confusion arises.
With (g, k; 10, 11) as above, the constraint equations (1.2)—(1.3) reduce to:

1 1 1 1

=4 o (1= (7)) + ~hpphoo + 35k3y = 77((0)2 + ), (5.1)
k 1

kppr' — (%)/ = §T¢1¢6 (52)

We will use the following ansatz for 7:

1
2

() = p- (1277 F(p)",
where M > 0 is a large absolute constant (i.e. independent of j) and
P
F(p) = [ x(@)log (~log o ~ 1]}
0
where x : [0,1] — [0,1] is a fixed smooth cutoff function such that

1
5], xX=1 on [%,1] and x>0 on [0,1].

Note that, provided M > 10, the function r(p) belongs to C°>°([0,1)) N C°([0,1]) and satisfies

xX=0 on [0,

>

)

3
DN | =

1

r(p)=p for pel0,7]
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and
r!! 1

—— 4 (1 (")?) (5.3)

r 2r2
9—i—M

= 8p2(1 ~ 27j7MF(p))2 (4(1 — 2_j—MF(p)) <p2F1/(p) + 3pF’(p) 4 F(p)) + 2_j_M(F/(p))2>

> 0.

We will define the coeflicient kyy of k by the relation
k) (p) = —27772M x(2p)p, (5.4)

where x was defined above. Note that the definition of the cutoff function x implies that the support of (kgy/r)’ is
contained in the interval [§, 3].
We will define v as follows:

. 4 )\ ) k(]) 1
() = _(7") 1 2 ( ))z_ _
w0 =2 [ (= (- (0 + 58 9 an
Note that v is well-defined in view of (5.3); moreover, in view of the properties of the cut-off function x in the
definition of F', ¢ is a smooth function on [0, 1) vanishing identically on [0, ].
It remains to introduce an ansatz for the functions 1 (p) and k,,(p). The expressions for ¢, and k,, will be chosen
to satisfy the following pair of relations:

k5D (p) = 277 M =3 x (20)ui” (p) = —277 MY (2p), (5.5)

(¢§j)(p)) +9i- 2M+2X(p )k(J)( ) = 0.

In particular, we will choose

P (p) = —g--nnes XXC0) \/z—4f—8M+1X4(f"> a2 X0 o
p p p
and
B (p) = =272 (2p) + 27283 20)0 (o).
Note that both 1 and k,, vanish outside the support of x'(2p). In particular,
13

supp ¢, supp ki) C 3 5

Recall that 7(p) = p on [0, 2]. Thus, we readily deduce that (g, k(); 1/1(] ) w ) defined as above satisfy the constraint
equations (5.1)—(5.2).
Notice that, for any j € N, there exists some péj ) e (3,1) such that
(Y (") = 0. (5.6)
This can be immediately inferred from the fact that (r))'(1) = 1 and (r@®)/(1)

sphere SU) = {p = p(] )} 1s a trapped surface for the initial data set (¢(9), £U); z/)( 7) z/;u )) We immediately calculate
that the normal N of S is -2 and the second fundamental h of S) vanishes identically, as a consequence of (5.6).
Therefore:

—o0. We will now show that the

x(2p§)
(120 M ED)

2 :
trgo (k — h) = trgo) (k+ h) = trgomk = —————k§) () = —2=9—2M+1

<0
(rD ()"

(since p(()j) € [3,1]), L.e. SU) is a trapped surface.

We will now show that (g, k) satisfy the smallness bound (1.4). It is straightforward to check that the components
kop and kgg of k can be extended as C*° functions on the closed unit ball {p < 1} and are supported on {p > 1},
satisfying

1D om0,y + ||kf9]19)||cl(3(o,1)) <12777M for any 4,1 €N.
As a result, k) satisfies (1.4) provided M has been chosen to be larger than some explicit constant. As for the metric
g, we can express the components of the tensor g — e in Cartesian coordinates as follows:

, ) (p))2
g¥) —e = (M — 1)p2 (d192 + sin? 19d<p2)

P
=((T(j|)i'f')>2—1>(g Zf 92)
—2J‘MF<|:E|>(§; Zw )’).
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Thus, the proof of (1.4) will follow once we show that the spherically symmetric function F(|x|) on B(0,1) has finite
H? norm. Since F(|z]) is a C* function away from |z| = 1 and is supported on {|z| > 11}, that statement follows as
a corollary of Lemma 5.4 below. (I O

The remainder of this subsection will be devoted to the proof of Lemma 5.4, which we have used above.
Lemma 5.2. Let X : R — [0,1] be a smooth cutoff function such that supp(X) C [, 5] and X =1 on [13, 2]
Then X(z — 1)log|logz| € H2 (R).
Proof. Consider the function h : R* — R, which is radial and given by h(r) = X(r — &) log|logr|. We compute
B'(r) = X'(r — 1)log |logr| + X (r — 1) ——. Hence,

rlogr

00 1 1 9
2 _ 1002 < o 2 10 .
||hHH1(R2) /0 [A' (r)|“rdr < 0/210 (log | log r|)*rdr + ; <rlogr) rdr < oo

Since h(z,y) — h(x,0) is a bounded map H'(R%) — Hz(R) (by standard trace estimates), we obtain the desired
result. g

By translation invariance of the H 3 (R) norm, Lemma 5.2 immediately implies the following result:

Lemma 5.3. Define G:R — R by

G = / e_"f)((r) log(—log|r — 1]) dr, (5.7)
0
where X is as in Lemma 5.2. Then

| asimicorae < .

— 00

Lemma 5.4. Consider the radial function h : R® — R? given by
1
h(r) = —X(r) log(—log |r — 1),
r
where X is a cutoff function as in Lemma 5.2. Then h € Hz(R3).

Proof. The Fourier transform Fh is h is a radial function, i.e. can be expressed as Fh(§) = E(|§ |), where his expressed
as the Hankel transform of h. Hence,

ST

A(s) = 4 /000 sin(sr)h(r)rz dr = _%jm(G(s)),

where the function G(s) was defined in (5.7) and Jm (G(s)) denotes its imaginary part.
‘We now compute

21 2 4 = 1672 OO 5|23 IJm(G(s)) 252 s 2 - SI2)5 G ()12 ds 0
[ariemiFnefac=oe [ el (I Ras <16 [ (@ lsPGE) s < +

— 00

by Lemma 5.3. This implies h € Hz (R3). O
5.3. A spherically symmetric result in H 2.

Proof of Proposition 1.4. In order for this to be a smooth metric, we must have % —1=0(p?) as p — 0. Taylor
expanding r in p, this means that

r(p) = p+O(p*). (5.8)

Step 1: Application of Sobolev embedding. Since Hz(B(0, R)) < L3(B(0, R)), H2(B(0, R)) — W'3(B(0, R)) (with
constants independent of R), the assumptions on k, ¥y and 7 imply that

R
ko
| (el + 528 58+ 1) 2o 5 (59)

Step 2: Controlling the geometry. Define the Hawking mass by

ro1k3,  r(r')?

m= g+ 5t 5 (5.10)
For p,. € (0, R], assume that the following bootstrap assumptions hold for all p € [0, p.):
[ ]

g < r(p) < 2p. (5.11)

* 2 1

m
— <3 (5.12)
By smoothness at p = 0, we know that (5.11) and (5.12) hold for small p. Our goal will be to show that
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% < r(p) < V2p. (5.13)
¢ 2m 1
— < " (5.14)

Once we prove the bounds in (5.13) and (5.14) under the bootstrap assumptions (5.11) and (5.12), a standard
continuity argument shows that in fact both (5.13) and (5.14) hold for all p € [0, R].

Step 2(a): Non-negativity of m. Using the definition of m in (5.10) together with the constraint equations (5.1)—(5.2),
we obtain

2 r 2
2 ! 1 /
T ’I"T + TT(ICPPT — 57“1/)11&0)

r(W6)? +v3))
Sk — 1o +3)

(L el T
5T <2r(1 (r')*) + Tkppkw * 5 skoe — 1 (5.15)
1 1

= —r TT + T’T(k‘ppr, - *’I"’(blwé) ( k'ppkﬁﬁ + o
= — rkgoth1h + r’r *((%) + ﬁ)

r? k r? k 2
2 ) o) - ) )
By (5.10) and (5.12), we have

k2 1

N=1-"—)+2 > _ 1

(7 = (-2 g B > 2 (5.16)

Using (5.8), we have r/(0) = 1. Hence, continuity of 7’ and (5.16) imply that r’ > -

&\

2
By (5.12), 1+ %% — 2) < % In particular, using also the positivity of 7’ that we just established,

k
| “| <= (5.17)

Hence, every term on the right-hand side of (5.15) is non-negative. Since regularity implies that m = 0 at p = 0,
we obtain m > 0 for all p € [0, p.).

Step 2(b): Proof of (5.13). The lower bound in (5.13) is easier. Indeed, (5.16) implies (using (5.8)) that

_ [ Y L
)= [ a2 [Tap= 2 (5.18)

To obtain the upper bound in (5.13), we first need an improved estimate for kyy. For this, note that by (5.11) and
(5.9), we have fOR |k"%19|‘3 p~1dp < €. Hence, by the Cauchy—Schwarz inequality,

k k Pk 11, [P oy
/ 1802145 = / hooj 22 . "< ([ 1Fptap ([ 52 5 o (5.19)
Now, we use (5.10) together with m > 0 (established in Step 2(a)) and (5.19) to obtain
2 k2 k2
)2 =1-""14 W<1+ =99, (5.20)
T T2

which implies

14 4 k2 14 k
o) = [ o [ 1+ 5 ap< [T (14172 dp < 4 Ol (5.21)
0 0 r 0 r

The estimates (5.18) and (5.21) imply the lower and upper bound in (5.13) respectively.

Step 2(c): Improved bound for r’. In this step, we derive a bound for 7/(p) (see already (5.28)), which will be important
in Step 2(d) below.

Step 2(c).i: An estimate for @ By the constraint equation (5.2),

kg
‘( r ) ool | [T . (5.22)
We control each term on the right-hand side of (5.22). By the Cauchy—Schwarz inequality and ( 9), we have
1/ /2
[ 2 0 < ([l 2a0) ([T pan) s ([ e an) (5.23)
0 0

By (5.11), the Cauchy—Schwarz inequality and (5.9), we have

P 713/2 22 1= 3/2 3/2 g 3 2 \/? P s 2\ 3 3/2
/Olrwl%l prdp < 2°7p (/O |91 pdp) (/0 ol pdp) S e (5.24)
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Hence, plugging the bounds (5.23) and (5.24) into (5.22), we obtain

Pk s p 1/2
[y gap s @ ([ 1 an) (5.25)
Using the W12 (B(0, R)) — L3(B(0, R)) Sobolev embedding, we then obtain
Pk 2™ 2 p
/ B (/ (2P ) S e + eS(/ [ p%dp). (5.26)
o T 0 r 0
Step 2(c).ii: Proof of the improved estimate for r'. By (5.20) and (5.26), we have
P o P koo 3\ o0 5 s [ /32,4
[weras [ (14 122P) pap b+ ([ 10 an). (5.27)
0 0 0
For ¢ sufficiently small, we can absorb the last term on the right-hand side to the left to obtain
p b
[ weas s (5.28)
0
Step 2(d): Proof of (5.14). Plugging the bounds (5.11) and (5.17) into (5.15), we obtain
' ()] < 20%1"| (1 + (w6)?). (5.29)
Integrating (5.29) starting from the regularity condition m(p = 0) = 0, we obtain
P
mip) <2 [ 9| (02 + W0)?) dp (5.30)
0

for all p € [0, ps).
Using Holder’s inequality and then (5.9) and (5.28), we obtain

2/3
mlp) < ( / (bl + ) dep> ( / " an) s . (5.31)

Finally, combining (5.31) with (5.11), we obtain

m
_ < €2
r (h) S €

for all p € [0, p.). After choosing €y to be smaller, we have thus proven (5.14) and concluded the bootstrap argument.

Step 3: Conclusion of the argument. Having controlled the geometry in Step 2, the conclusion now follows straight-
forwardly.

Indeed, denote by S, the 2-sphere of constant p € (0, R). We first compute
2 2(p)
trg (k + h) = ——kyy £ ——=. (532)
’ r2(p) r(p)

Now, in the course of the bootstrap argument in Step 2, we have obtained the bound (5.17):

kgv
|— < ||
r
Moreover, since lim, o+ 7/(p) = 1 (by (5.8)) and [r'(p)| > % (by (5.16)), we have r'(p) > % > 0 for all p € [0, R).
As a result, we know that trg, (k +h) > 0 and trg, (k —h) <0, i.e., S, is not trapped. Since p € (0, R) is arbitrary,

we have completed the proof. O

Remark. Notice that we did not use the full strength of the smallness assumption (1.6). In fact, in this setting, it
suffices to assume the weaker smallness assumption (5.9).
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